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Abstract Patients with multiple chronic conditions and social needs represent a small percentage of 
the population but have a disproportionate impact on healthcare costs and utilization. 
Organizations around the United States have created programs, often referred to as com
plex care interventions, to improve the health and well-being of such patients and reduce 
avoidable hospital and emergency department use. In this tutorial, we focus on two emerg
ing themes in the field: (1) identifying clinically meaningful subgroups in complex care 
populations through unsupervised learning methods and (2) describing the key operational 
features of interventions with an emphasis on staffing needs and the impact on patient out
comes. The material presented in this tutorial draws on the research of the Healthcare 
Operations Research Laboratory at the University of Massachusetts, Amherst, and its col
laborating partners. To illustrate these themes and contextualize the details of complex 
care delivery, we use a range of patient-level examples, visualizations, descriptive summa
ries, case studies, and results from the clinical literature.
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1. Introduction
Healthcare expenditures in the United States are disproportionately concentrated in a small 
percentage of the population. Five percent of the population accounts for one-half of annual 
expenditures, whereas 1% accounts for almost a quarter of annual expenditures (Cohen [14]). 
Many individuals among these highest-cost segments have multiple chronic conditions and 
experience higher hospital utilization rates, including avoidable hospitalizations, than the 
average.

Multiple chronic conditions affect all segments of the U.S. population, but for some indivi
duals, the presence of other factors, such as homelessness, mental health conditions, substance 
abuse, poverty, the lack of employment or insurance, and the presence of disabilities, can 
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further complicate the care delivery process and add to the patients’ vulnerabilities. This leads 
them to “experience combinations of medical, behavioral health, and social challenges that result 
in extreme patterns of healthcare utilization and cost” (Humowiecki et al. [27], p. 11). In the clini
cal and health services literature, several different terms are used to describe this heterogeneous 
subpopulation: multimorbid patients (Skou et al. [58]), patients with multiple chronic conditions, 
high-cost high-need patients (Blumenthal et al. [7]), patients with complex medical and social 
needs (Martinez et al. [36]), and frequent users (Finkelstein et al. [19]).

Healthcare organizations around the country have developed specialized programs to assist 
patients with medical and/or social complexity. The programs are often called complex care 
interventions. The goal of such interventions has been to improve the health and well-being of 
patients by reducing avoidable emergency department visits and inpatient stays, increasing 
access to outpatient primary and specialty care, and connecting patients to social and behav
ioral resources in the community. The target populations and mechanisms of intervention 
have varied considerably. Some interventions have been specifically designed for a particular 
demographic and disease. For instance, Naylor et al. [42] describe an intervention in which an 
advanced practice nurse assists heart failure patients over 65 years of age after a hospital dis
charge. Other interventions have focused on the intersection of social risk factors and health. 
The Boston Healthcare for the Homeless Program (O’Connell et al. [46]), which uses 600 med
ical, behavioral health, and social service providers to ensure that individuals and families 
experiencing homelessness receive comprehensive, high-quality healthcare, falls in this cate
gory. In other cases, interventions focus more generally on high-risk patients. The Veterans 
Affairs (VA), for example, provides intensive care management through a team of primary 
care providers, social workers, psychologists, nurses, and other support staff to patients with 
the highest risk of hospitalizations (Zulman et al. [72]).

In fact, programs to assist individuals with complex medical and/or social needs exist in every 
community, town, city, or region. They can be led by small not-for-profit organizations, county 
public health departments, federally qualified health centers operating in medically underserved 
areas, social service organizations, or larger organizations such as hospitals, payers, and health 
systems. These efforts are not always visible within mainstream healthcare discussions, but they 
are vital nevertheless: they bring to light broader societal and population health concerns. Fur
thermore, although reductions in costs and decreases in avoidable hospitalizations are important 
criteria for complex care programs, among staff members who deliver care, the humanitarian 
impulse to genuinely connect with and help the most vulnerable individuals within a community 
is an equally important motivation. There’s also a broad consensus that the help provided must 
be holistic and comprehensive; that is, the nature of the assistance is not only restricted to indi
vidual diseases but looks at all of an individual’s medical needs, how they interact with each 
other, and also how social and behavioral factors might impede health and wellbeing.

1.1. Motivating Example
We now illustrate how a complex care intervention works with an actual patient example. 
The example is from the Camden Coalition, a New Jersey–based organization renowned in 
the field of complex care. The Coalition uses care teams consisting of community health work
ers, nurses, social workers, and clinical psychologists to assist patients. The Healthcare Opera
tions Research laboratory has collaborated with the Camden Coalition since 2015. See 
Section 3.3 for a detailed case study of the operational features of their care model.

Figure 1 shows the nine-month pre- and post-intervention timeline for a 52-year-old man liv
ing in Camden, New Jersey. The care team enrolled the patient in their intervention in June 
2013. Interviews and an assessment of the electronic health record revealed that the patient 
had three chronic conditions: hepatitis C, congestive heart failure, and diabetes. The care team 
also established that the patient did not have housing, was unemployed, had a substance use 
disorder, and had mental health conditions. This is a classic example of a patient with high 
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medical and social complexity. In the nine months before enrollment with the care team, the 
patient had three emergency department (ED) visits, seven inpatient stays totaling 61days, 
and $112,583 in hospital-based healthcare expenditures.

After enrollment, the care team worked closely with the patient, providing him with transi
tional housing and connecting him with a primary care provider (PCP), a cardiologist, a reha
bilitation center for drug abuse, and a behavioral health program at Rutgers University. In 
the nine months after the intervention, the patient had only one three-day inpatient stay; the 
total hospital-based expenditures in this period were $3,955. The social worker in the care 
team facilitated a process by which the patient eventually received social security income and 
Medicaid healthcare insurance. The intervention required significant care team capacity, 
totaling 236 hours across the team. This included 139hours from the social worker, 58 hours 
from the licensed practical nurse, 24 hours from the health coach, and 15 hours from the com
munity health worker. Even if we assume that each member of the care team is paid $35 per 
hour and factor in the costs of care team hours, the total reduction in costs is more than 
$100,000. The care team’s encounters with the patient are not shown on the postenrollment 
timeline in the figure, but if they were, they would present as a clustered series of points lead
ing up to the principal highlights (such as the PCP visit).

It is important to not generalize based on a single example: Reductions in costs and utilization 
for many medically and socially complex patients are highly stochastic and vary significantly 
between individuals. Indeed, the Camden Coalition’s randomized control trial (Finkelstein et al. 
[19]) demonstrates that hospitalizations and costs in individuals with similar medical and social 
complexity who did not receive the intervention can show a similar drop due to regression to the 
mean: “a statistical phenomenon that can make natural variation in repeated data make look 
like real change” (Barnett et al. [4], p. 1).

However, the example does illustrate the hypothesis underlying the interventions: that a 
care team can help patients (1) improve self-efficacy and well-being by enabling medical and 
social support, including access to primary and specialty care appointments, housing, employ
ment, and health insurance and (2) reduce adverse and costly events such as emergency visits, 
medication-related complications, and hospitalizations. The example also illustrates that a 
truly holistic intervention is not limited to only medical issues, but spans other sectors, such 
as housing, employment, and legal assistance.

Figure 1. (Color online) Timeline of complex care interventions for a patient. The figure shows an 
example of a complex care intervention: the event sequence and timing for a 52-year-old man before and 
after being helped by a multidisciplinary care team. Healthcare expenditures in nine months prior to 
enrollment with care team totaled $112,583. Healthcare expenditures after enrollment with care team 
totaled $3,955. “Inp. Stay” refers to inpatient hospitalization. 
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1.2. Focus and Organization of Tutorial
Intervention for individuals with complex health and social needs is a still emerging field and 
many open questions remain in both the clinical and operations research literature. This tuto
rial has two main parts.

1.2.1. Segmentation of Clinical Profiles. The first part discusses how to segment com
plex care populations into clinically meaningful subgroups. Almost all complex care programs 
provide care to heterogeneous groups of patients with multiple chronic conditions. Therefore, 
an important aspect of clinical segmentation is the identification of patterns in chronic condi
tion co-occurrence. In Section 2, we introduce how the presence of multiple chronic conditions 
(MCCs) in patients can significantly increase the complexity of medical treatment. Next, in 
Section 2.1, we illustrate key patterns in the MCC prevalence using the Medical Expenditure 
Panel Survey and describe how chronic condition combinations observed in patients can 
exhibit a high degree of heterogeneity. To deliver personalized care to patients, clinicians, epi
demiologists and administrators of complex care programs need a systematic, data-driven 
understanding of how chronic diseases that arise from different body/organ systems are associ
ated with each other. Co-occurrence patterns can then be used to identify whether treatment, 
medications, and lifestyle changes for one disease are concordant or discordant with those of 
other diseases. For instance, Zulman et al. [71] point out that some disease subsets (such as 
high blood pressure, high cholesterol, and heart disease) are considered biologically linked and 
concordant: This explains why lifestyle changes related to diet and exercise often overlap for 
these conditions. Other disease subsets such as heart disease, depression, and asthma are con
sidered discordant because they have very different treatment and management strategies.

To identify co-occurrence patterns and interpretable subgroups among complex care 
patients, we describe two unsupervised learning approaches: association rule mining (Section 
2.2) and latent class analysis (LCA) (Section 2.3). Association rule mining is a data mining 
methodology that is widely used in the retail context to quantify groups of items that are 
frequently purchased together. In our case, we apply the method to identify groups of 
chronic diseases that frequently occur together. Association rule mining goes further, how
ever; once the groups of co-occurring diseases have been identified, it quantifies pairwise 
associations/correlations between different subsets of diseases. This creates a comprehensive 
database of relationships that can be used by clinicians in complex care programs. Next, we 
focus on LCA, a method of clustering that is widely used in the clinical literature to infer 
subgroups. In both sections, we provide case studies, visualizations, and examples to illus
trate insights.

1.2.2. Operational Details, Staffing Needs, and Impact on Patient Outcomes. In 
the second part of the tutorial (Section 3), we illustrate the operational features of complex 
care programs, a theme that has not received much attention in the literature. We illustrate 
how complex care interventions are essentially staffing interventions, where staff refers to 
some combination of physicians, nurses, community health workers, and social workers who 
assist patients through a series of recurring and stochastic service interactions. We summarize 
two examples of complex care programs (Section 3.2) and provide a detailed case study of our 
collaborating partner, the Camden Coalition (Section 3.3). We also emphasize how the Cam
den Coalition and other programs have tested the impact of their care delivery models on a 
variety of patient outcomes through randomized control trials (RCTs). Although staffing has 
been one of the most widely studied topic areas in healthcare operations research, few (if any) 
studies have demonstrated the impact on patient outcomes. RCT-based evaluations of com
plex care interventions therefore provide a unique opportunity to directly evaluate how ser
vice interactions between the care team and the patient impact outcomes. The Camden 
Coalition study also shows the benefits of rigorously collecting data related to patient-care 
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team encounters, and how such data can be used to (a) create staffing estimates for different 
members of the care team and (b) evaluate whether patients who engaged more with the care 
team had better outcomes. The case study provides a template that can be adapted by other 
complex care programs.

2. MCCs and Complexity of Medical Care
Chronic diseases are defined as conditions that last a year or more, require ongoing medical 
attention, and/or limit the activities of daily living (Buttorff et al. [9]). Examples of highly 
prevalent chronic conditions include high blood pressure, diabetes, depression, inflammatory 
joint disorders, and asthma. MCCs refer to the presence of two or more chronic conditions in 
an individual. In the United States for example, the number of individuals with zero, one, 
two, three, four, and five or more chronic conditions was estimated to be 40%, 18%, 13%, 9%, 
7% and 12% respectively in a RAND report. Although 40% of the population has no apparent 
chronic conditions and contributes only 10% of total healthcare costs, 12% of the U.S. popula
tion has five or more chronic conditions and this segment accounts for 41% of total healthcare 
costs (Buttorff et al. [9]).

The RAND report on the prevalence of multiple chronic conditions is based on the Medical 
Expenditure Panel Survey (MEPS) from 2014. MEPS [37] is a set of large-scale, nationally repre
sentative surveys taken annually of families and individuals, their medical providers, their insur
ance companies, and their employers. Approximately 30,000 individuals are surveyed each year. 
MEPS is also a rich source of patient-level data and the basis of our analysis in this section. Medi
cal encounters for each surveyed individual, the type of specialist or other care provider seen, the 
associated diagnoses code, and the exact month and year in which the encounter happened are 
anonymized and released to the public each year. By merging various data files, longitudinal 
information about all health events for each surveyed individual can be assembled for two years.

Example. Consider the following patient example MEPS 2010 and 2011. In Figure 2, we 
present details of the total outpatient visits for a single 82-year-old male patient with high 
blood pressure, coronary heart disease, angina pectoris, joint pain, walking, and vision limita
tions. The patient had 79 doctor’s office visits spread over 12 different specialties in the 2-year 
survey period. In addition, the patient also had two inpatient stays and refilled more than 200 
prescriptions.

Most MCC patients, even younger patients in the 40–65 age group, have a similar utiliza
tion profiles, and it is easy to see why they have an outsize impact on healthcare utilization 
and costs. The example also shows how challenging this two-year period must have been for 
the patient and his caregivers. The burden of scheduling appointments, arranging transporta
tion, checking insurance paperwork and payments, ensuring the right medications are being 
taken at the right time, and reconciling potentially conflicting advice received from the differ
ent specialists: All such responsibility falls on the patient and the patient’s caregivers.

Patients with MCC also pose several challenges for healthcare providers. The presence of 
MCCs leads to visits to a large number of specialists because multiple organ/body systems 
need to be monitored. Furthermore, MCC patients are often on more than five unique medi
cations, and the risk of interactions between medications is high.

Medical complexity, in turn, leads to operational challenges. Physicians must spend more 
time communicating with each other, the patient, and the patient’s family, by email, phone, 
and messaging systems, to ensure that moving parts of a patient’s care are not out of sync. 
They must also spend greater time evaluating laboratory tests and other diagnostic informa
tion in the patient’s electronic health record. Thus, all clinicians involved must budget a 
greater nonvisit or non–face-to-face capacity for MCC patients. The burden of coordinating 
care most often falls on the patient’s PCP (Rossi and Balasubramanian [54], Press [49]). 
MCC patients also have higher visit rates, which in turn implies shorter intervals between 
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appointments. This means that each provider must have sufficient appointment capacity to 
accommodate MCC patients at short notice.

Such complexities in care delivery are precisely the motivation for setting up a specialized 
team dedicated to assisting MCC patients and coordinating their care. This eases the burden on 
patients and their caregivers and makes it easier for all clinicians involved in the patient’s care.

2.1. Heterogeneity in Chronic Condition Combinations
We now turn to another complicating factor in complex care delivery: the high levels of het
erogeneity observed in MCC combinations. To understand what this means, consider the 
chronic condition combinations of three different patients from MEPS. Conditions for each 
patient are separated by “;”.

Patient A (5 conditions): {Lipid Metabolism Disorders; Anxiety; Depression; Non-Traumatic 
Joint Disorders; Spondylosis/Intervertebral disc disorders/other back issues}

Patient B (5 conditions): {Diabetes; Lipid Metabolism Disorders; High Blood Pressure; Coronary 
Atherosclerosis/Heart Disease; Connective Tissue Disease}

Patient C (6 conditions): {Diabetes; Lipid Metabolism Disorders; High Blood Pressure; Chronic 
Obstructive Pulmonary Disease (COPD) and Bronchiectasis; Coronary Atherosclerosis/Heart 
Disease; Spondylosis/Intervertebral disc disorders/other back issues}

To create the combination for each patient, we first identified all diagnosis codes for the 
patient in a year related to different visit types (outpatient, inpatient, emergency room, home 
health visits, etc.). Diagnosis codes in MEPS are based on the International Classification of 
Diseases (ICD), maintained and revised by the World Health Organization (WHO). Each 
diagnosis code for the patient is then mapped to a higher-level grouping, the U.S. Agency of 
Healthcare Research and Quality’s Clinical Classification Software (CCS) codes. These are 
clinically meaningful aggregates of ICD diagnosis codes. (ICD codes could be directly used to 

Figure 2. (Color online) MCC patient profile: an Example. 

Notes. The outer circles stand for the type of physicians visited: PCP, primary care physician; Int. Med., internal med
icine; Onc., oncology (cancer specialist); Orth., orthopaedics (musculoskeletal specialist); Gast., gastroenterology; 
Urol., urology; ENT, ear-nose-throat, also known as Otorhinolaryngology; Rheu., rheumatology (specialist for muscu
loskeletal diseases and autoimmune conditions); Derm., dermatology; Opth., ophthalmology; Card., cardiology; Neph., 
nephrology (kidney specialist). The numbers on the edges indicate the number of visits to the respective specialty in 
the 2 years.
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create combinations, but the diagnosis descriptions are too detailed for meaningful patterns 
to emerge.)

Names of some of the conditions, such as diabetes, high blood pressure, anxiety, and depres
sion, are well known. Others are less familiar to a general audience. Lipid metabolism disor
ders refers to abnormal cholesterol levels; spondylosis/intervertebral disc disorders/other 
back issues to a specific subcollection of related musculoskeletal spine problems; Nontrau
matic joint disorders to a different subcollection of musculoskeletal problems; coronary ath
erosclerosis to a subcollection of heart disease diagnoses; chronic obstructive pulmonary 
disease (COPD) and bronchiectasis to a subcollection of lung/respiratory diagnoses.

We notice the patients share certain subsets of conditions. Patients B and C, for example, 
share a subset of four conditions: diabetes; lipid metabolism disorders; high blood pressure; 
and coronary atherosclerosis/heart disease. However, the combination for each of the patients 
is unique in that the full set of conditions for a patient is not repeated in another. Unique com
binations lead to unique clinical profiles, requiring the patient’s treatment plan to be 
personalized.

In a four-year extract of the MEPS data set (2016–2019), we found 34,880 unique chronic 
condition combinations involving two to seven diseases. Let K denote the number of chronic 
conditions in a combination and let N K denote the set of all unique combinations of size K. 
Let N K , l ⊆ N K denote the set of combinations of size K that appeared in l different years 
where l � 1, 2, :::4. Note that |N K | �

P4
l�1 |N K , l | . Combinations that appeared in all four 

years have a high degree of consistency (they are also relatively more prevalent), whereas 
combinations that appear in just one of the five years are rare and often appear in a single 
patient.

In Table 1, we show the |N K | and |N K, l | for K � 2, 3, : : : , 7. For instance, we found 7,842 
unique combinations of size 4 in MEPS 2016–2019. Of these, 7,350 (more than 93%) combina
tions appeared in only one of the four years (i.e. they were rare enough to be observed only in 
one year); 401 appeared in two of the four years; 63 appeared in three of the four years; and 
28 appeared consistently in all four years.

An increase in K aggravates this pattern sharply: the vast majority of combinations 
with five, six, and seven conditions rarely repeat beyond a single year. This is because 
each combination has a very low prevalence. Yet, paradoxically, there are such a large 
number of such combinations that they add up to a high combined prevalence in the 
population: Recall from the introduction of Section 2 that 19% of the U.S. population, 
that is, around 60 million individuals, had four or more conditions in 2014. Rezaee et al. 
[51] aptly call this phenomenon “the high prevalence of low prevalence chronic disease 
combinations.” This pattern is not just restricted to MEPS; it has also been found in Med
icaid data (Sorace et al. [62]).

In the next section, we show how association rule mining can be used to systematically (a) 
identify the most frequent subsets of diseases found in chronic condition combinations; and 
(b) establish pairwise relationships between subsets.

Table 1. Cardinality of sets N K , N K, l for K � 2, 3, : : : , 7 based on MEPS 2016–2019.

K |N K | |N K, 1 | |N K, 2 | |N K, 3 | |N K, 4 |

2 3,496 1,792 750 471 483
3 7,929 6,592 977 238 122
4 7,842 7,350 401 63 28
5 6,538 6,355 170 13 0
6 5,079 5,025 53 1 0
7 3,996 3,963 33 0 0
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2.2. Identifying Chronic Disease Co-Occurrence Patterns Through 
Association Rule Mining
Our presentation of association rule mining adapts the notation used in Hastie et al. [25]. Sup
pose we have j � 1, 2, : : : ,p diseases, and the binary variable Zj denotes whether a patient has 
disease j (Zj � 1) or not (Zj � 0). The goal is to find subsets of the p variables that frequently 
take on a value of one in a data set. Suppose that we have i � 1, 2, : : : ,N patients in the data 
set. Each variable Zj is assigned two values: zi, j � 1 if the jth disease is present in patient i, 
zi, j � 0 otherwise. Subsets of diseases that jointly take on the value of one represent diseases 
that frequently co-occur together: These are called frequent itemsets. In the retail/grocery 
store setting, variables that take on a value of one represent items that have been purchased 
together; hence, the method described later is often called market basket analysis.

More formally, we seek to find an itemset of diseases K ⊂ 1, 2, : : : ,p that co-occur with 
“high” probability. This probability can be written as Pr[∩k∈K(Zk � 1)]. In the context of the 
data set, the estimated value of this probability is simply the fraction of the N patients in the 
data who have all the diseases in K:

P̂r
\

k∈K

(Zk � 1)

" #

�
1
N

XN

i�1

Y

k∈K

zik

" #

: (1) 

We call this estimated probability the “support” or “prevalence” and denote it by T(K). A 
patient i for whom 

Q
k∈Kzik � 1 has all the diseases in K. In association rule mining, we seek to 

identify all disease itemsets or subsets (we use these terms interchangeably) that have a sup
port higher than some predetermined value t. Formally, we seek all subsets Kl such that 
{Kl |T(Kl) > t}. In other words, there are 2p disease subsets in total, of which we are inter
ested only in those that appear in the least t ∗ N patients of the data set. The value of t must 
be carefully calibrated. It cannot be too large because there are a large number of low- 
prevalence disease subsets. Many of these low-prevalence subsets would not be included if t is 
large. However, because of the combinatorial structure of the frequent itemsets problem, 
small values of t make the problem computationally challenging.

The “Apriori” algorithm (Agrawal and Srikant [1]) efficiently computes all the itemsets for 
a given value of t. It uses the following principle to eliminate subsets: Any item set L that 
comprises a subset of the items in K must have support greater than or equal to that of K, 
indicated by L ⊆ K ⇒ T(L) ≥ T(K).

We provide a brief overview of how the Apriori algorithm works. In the first pass through 
the data, the algorithm computes the support for all single itemsets; that is, it computes how 
frequently individual diseases occur. Diseases that have support below t are eliminated. In the 
next pass, it computes support of all disease pairs from the diseases that survived the first 
pass; itemsets of size two with support below t are dropped. Each successive traversal only 
considers itemsets formed by combining those that survived previous passes. To generate all 
frequent itemsets of size |K | � m, we need to only consider ancestral items of size m � 1 or 
less that cross the threshold t. The algorithm keeps traversing through the data until all can
didate itemsets from the preceding pass have support below t.

Sample Results. We applied the Apriori algorithm to the data set of n � 28,512 individuals 
surveyed in MEPS 2019. Ideally, the data set should be segmented based on age, race, geographic 
location, and other demographic characteristics. However, in the interest of keeping the analysis 
concise, we applied it to the entire data set. Furthermore, segmenting the population reduces the 
number of patients within each segment, making it more difficult to identify frequent itemsets. 
Large health systems that care for millions of patients (e.g., Veteran Affairs Health System) are 
better suited for Apriori analysis that considers demographic adjustments.
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The input to the algorithm was a binary matrix with each row corresponding to a patient 
and a column to 1 of 274 Clinical Classification Software (CCS) codes. For instance, CCS 49 
indicates diabetes; CCS 98 indicates high blood pressure (essential hypertension); CCS 204 
indicates nontraumatic joint disorders; and so on. We set the minimum support threshold 
t � 0.0003, which implies that all itemsets identified in the Apriori algorithm appear in at least 
0:0003 ∗ 28,512 ≈ 10 patients. This yields hundreds of dyads, triads, quartets, and quintets; 
we show some examples of these frequent subsets/itemsets here. For each subset, we provide 
the name of the CCS code and its number; codes are separated by a “;”. We also provide sup
port for each itemset. 

• {Lipid Metabolism Disorder (53); Essential Hypertension (98)}, Support: 0.098
• {Anxiety Disorders (651); Mood Disorders (657)}, Support: 0.032
• {Non-Traumatic Joint Disorders (204); Spondylosis/Intervertebral disc disorders/other 

back issues (205)}, Support: 0.017
• {Lipid Metabolism Disorder (53); Essential Hypertension (98); Diabetes (49)}, Support: 

0.036
• {Lipid Metabolism Disorder (53); Diabetes (49); Coronary Atherosclerosis/Heart Dis

ease (101)}, Support: 0.006
• {Lipid Metabolism Disorders (53); Essential Hypertension (98); Coronary Atherosclerosis/ 

Heart Disease (101); Chronic Obstructive Pulmonary Disease and Bronchiectasis (127)}, Sup
port: 0.002

• {Lipid Metabolism Disorder (53); Essential Hypertension (98); Diabetes (49); Non- 
Traumatic Joint Disorders (204); Spondylosis/Intervertebral disc disorders/other back issues 
(205)}, Support: 0.001

As subset sizes get larger, we begin to see diseases from different body systems appear 
together. For instance, in the last subset, metabolic diseases such as lipid metabolism disorder 
(abnormal cholesterol) diabetes, essential hypertension (high blood pressure), and diabetes 
combine with musculoskeletal conditions such as joint disorders and spondylosis/invertebral 
disc disorders/back issues. In the second to last subset, we see metabolic (abnormal choles
terol, high blood pressure), heart (coronary atherosclerosis), and lung-related conditions 
(chronic obstructive pulmonary disease and bronchiectasis).

We visualize this pattern in more detail in Figure 3. The middle panel in the figure shows a 
selection of subsets involving four or five condition codes. The right panel shows the fre
quency, that is, the number of patients where the subset was present. The left panel shows 
five clinically meaningful disease groupings of condition codes: musculoskeletal; metabolic; 
mental health; respiratory; and cardiac. For instance, the cardiac grouping collects condition 
codes 100 (acute myocardial infarction),101 (coronary atherosclerosis and heart disease), and 
105 (conduction disorders), all of which are heart related. Each disease grouping is marked by 
a different shape so that the groupings present in a subset can be easily identified. We observe 
that all itemsets contain diseases from at least two different groupings.

As discussed earlier, diseases within a grouping can often be concordant; for instance, life
style changes concerning diet and exercise are similar for diabetes, high blood pressure, and 
high cholesterol. However, this may not be true when diseases belong to different groups. For 
instance, exercise is recommended for cardiovascular disease, but the presence of osteoarthri
tis or chronic obstructive pulmonary disease (COPD) may make exercise difficult (Zulman 
et al. [71]). In such cases, the diseases are discordant. Diseases that map to different body sys
tems may also increase the risk that a particular medication for one disease may have compel
ling contraindication (i.e., negative outcome) for another. Thus, frequent itemset analysis 
provides a systematic method for identifying the most prevalent patterns of chronic condition 
co-occurrence, which in turn can be used to guide further research on medication, lifestyle 
changes, and treatment options.
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2.2.1. Quantifying Relationships Between Frequent Itemsets. We next discuss how 
pairs of frequent itemsets can be analyzed for further insights. We first define an antecedent 
itemset A and a consequent itemset B. A and B do not share diseases in common. The associa
tion rule between A and B is denoted as follows:

A ⇒ B: (2) 

Figure 3. Frequencies (row count) of selected subsets with four and five conditions. Itemsets shown here 
contain disease codes from multiple body/organ systems, indicated by different shapes. 
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We now illustrate three quantities, support, confidence, and lift, related to this association 
rule. The support of the rule T(A ⇒ B) is the fraction of patients in the data set that have all 
the conditions in the union of the antecedent and consequent. The confidence C(A ⇒ B) is 
defined by Equation (3).

C(A ⇒ B) �
T(A ⇒ B)

T(A)
(3) 

This is simply an approximation of the probability of B given A, denoted as Pr(B |A). Here, 
Pr(A) represents the probability of item set A occurring in a basket, shorthand for 
Pr(

Q
k∈AZk � 1). The “lift” of the rule is given in Equation (4).

L(A ⇒ B) �
C(A ⇒ B)

T(B)
�

T(A ⇒ B)

T(A)T(B)
(4) 

This is a ratio of the joint occurrence of A and B (numerator) to the product of individual 
occurrences (denominator). If A and B are independent of each other, the ratio will be close to 
one. If A and B are positively correlated with each other, the ratio will be higher than one. If 
they are negatively correlated, the ratio will be between zero and one.

The objective of this analysis is to generate association rules (2) that exhibit high levels of 
both support and confidence (Equation (3)). The Apriori algorithm is used to identify all item 
sets with significant support, determined by the support threshold t. Now an additional 
confidence threshold c is established, and any rules formed from pairs of itemsets (2) that 
surpass this confidence threshold are identified and reported. More formally, we now generate 
a set of rules between all pairs of mutually exclusive itemsets that meet the following two 
criteria:

T(A ⇒ B) > t and C(A ⇒ B) > c: (5) 

Alternatively, instead of confidence, we can generate rules that cross an additional lift thresh
old l:

T(A ⇒ B) > t and L(A ⇒ B) > l: (6) 

Sample Results. To illustrate T(A ⇒ B), C(A ⇒ B), and L(A ⇒ B), we use one anteced
ent, A: {Diabetes, High Blood Pressure, Cholesterol}, and the three consequents: 

• B1: {Chronic obstructive pulmonary disease; Asthma}

• B2: {Joint Disorders; Spondylosis, invertebral disc disorders, other back problems}
• B3: {Anxiety Disorders; Mood Disorders}

The antecedent is the most prevalent triad of chronic conditions in the United States; the 
conditions in the triad belong to the group of metabolic diseases. The three consequents are 
pairs of chronic conditions chosen from respiratory, musculoskeletal, and mental health condi
tions respectively. We deliberately chose antecedents and consequents from disparate body 
systems to see whether any noteworthy associations were indicated by confidence or lift. We 
used the same MEPS 2019 data for this analysis. Our binary data set comprises n � 28,512 
patients (rows) and 274 Clinical Classification Codes (columns).

There are n(A) � 1,050 patients in the data set with the three diseases that constitute the 
Antecedent group (A). Therefore the support of the antecedent is

T(A) �
n(A)

N
� 0:036 Support � 0:036:
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Association Rules for Antecedent A and Consequent B1: 

Diabetes
High blood pressure

Cholesterol

2

4

3

5

⇓

Chronic obstructive pulmonary disease and bronchiectasis
Asthma

� �

Support � 0.0015 (43 patients), Confidence � 4.1%, Lift � 4.23

Association Rules for Antecedent A and Consequent B2: 

Diabetes
High blood pressure

Cholesterol

2

4

3

5

⇓

Other non-traumatic joint disorders
Spondylosis; intervertebral disc disorders; other back problems

� �

Support � 0.0016 (47 patients), Confidence � 4.5%, Lift � 2.57

Association Rules for Antecedent A and Consequent B3: 

Diabetes
High blood pressure

Cholesterol

2

4

3

5

⇓

Anxiety disorders
Mood disorders

� �

Support � 0.0021 (62 patients), Confidence � 5.9%, Lift � 1.8
Although confidence values differ only slightly across the three comparisons, the lift values are 

greater than one for all three comparisons. In particular, the lift of the metabolic diseases in the ante
cedent with the two respiratory diseases (COPD and asthma) in consequent B1 is quite high at 4.23.

These results should be treated with caution because the analysis uses a single year of 
MEPS data and factors such as age, gender, and socioeconomic indicators are currently not 
included in the analysis. Nevertheless, the previous examples illustrate how association rule 
mining can be used to create a comprehensive database consisting of thousands of pairwise 
associations quantified with support, confidence, and lift. The database can systematically 
identify disease subsets with high pairwise confidence and lift values. If a clinician sees a 
patient with a particular subset of diseases, confidence and lift could be used to determine the 
risk of developing other disease subsets and thereby formulate prevention strategies. Subsets 
that have high pairwise confidence or lift can be prioritized for (i) resource planning and coor
dination among the relevant specialties; (ii) the creation of guidelines for medication choices 
(in particular to avoid contraindications), treatment options, and lifestyle changes; and (iii) 
to postulate physiological connections between diseases that belong to different organs/body 
systems.

2.3. Identifying Interpretable Subgroups Through LCA
LCA is a statistical method used to identify distinct subgroups, known as latent classes, 
within populations. These classes are characterized by observable traits known as indicator 
variables, for example, the age group of a patient and whether they have certain 
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comorbidities. The assumption behind latent variable models is that the observed distribution 
of the indicators results from a finite latent mixture of underlying distributions. These models 
are used to identify solutions that can accurately represent the latent variables, within which 
the indicators follow the same distribution (Sinha et al. [57]).

The indicator and latent variables can be either continuous or categorical. In the healthcare 
context, continuous variables could be the number of ED visits, the number of days of inpa
tient hospitalization in a given time period, the patient’s age, their comorbidity index (such 
as Charlson Comorbidity Index; Charlson et al. [13]), healthcare utilization/total expenses, 
and so on. Some of these variables, such as ED visits, take on discrete values but can be mod
eled as continuous variables. Categorical indicator variables could be whether they have cer
tain chronic conditions, their mobility level (good, needs some support, needs wheelchair), 
their self-rating of health (fair, good, not good, poor), and so on. Depending on the types of 
indicator and latent variables in our data set, different latent variable models are applicable 
as described in Skrondal and Rabe-Hesketh [59]. For instance, when both variables are contin
uous, models such as the common factor model, structural equation model, linear mixed 
model, and covariate measurement error model are appropriate. If the indicator variable is 
continuous and the latent variable is categorical, the latent profile model is applicable. In con
trast, when the indicator variable is categorical and the latent variable is continuous, the 
latent trait model (also known as item-response theory) is suitable. Finally, when both vari
ables are categorical, the latent class model is the recommended approach. In this tutorial, 
our primary focus is on exploring the LCA algorithm. However, by delving into this algo
rithm, we aim to establish a foundational understanding that will serve as a springboard for 
other related algorithms as well.

2.3.1. LCA Algorithm. LCA uses the expectation-maximization (EM) algorithm to 
determine the underlying latent classes. The process begins by randomly assigning model 
probabilities, encompassing both the overall probability of observing each class in the given 
population and the probability of a specific response given the latent class probability. This 
entails treating the randomized class membership as an observed variable. During the expec
tation (E) step, posterior probabilities of class membership are calculated. This involves 
determining, for a given pattern of indicator values, the probability that the pattern belongs 
to each class. These probabilities are mutually exclusive for each pattern and sum to one. The 
maximization (M) step entails the assignment of classes based on the posterior probabilities 
derived in the E-step. Subsequently, the model probabilities (or model parameters) are recal
culated. The E- and M-steps are alternatively repeated until the change in the log-likelihood 
value stabilizes, indicating convergence (Vermunt [64]).

The algorithm for LCA can be further explained using an illustrative example adapted 
from Vermunt et al. [65]. Let us consider three chronic conditions, anxiety, depression, and 
substance-related disorders, which are typically prevalent among patients with mental or 
behavioral illnesses. Let C1, C2, and C3 refer to the binary indicator variables representing 
whether a patient has anxiety, depression, and substance abuse, respectively. The vector 
notations C and c are used to refer to a complete response pattern. Furthermore, let X be the 
underlying latent variable and N the number of latent classes; each latent class (LC) is enu
merated by the index x, x � 1, 2, : : : ,N . In this example, the goal is to identify subgroups of 
patients exhibiting varying levels of mental illness diagnoses.

The fundamental concept behind an LC model is that the probability of obtaining a 
response pattern c, P(C � c), is the weighted average of the N class-specific probabilities 
P(C � c |X � x), that is

P(C � c) �
XN

x�1
P(X � x)P(C � c |X � x), (7) 
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where P(X � x) is the proportion of patients belonging to the LC x. The assumption of local inde
pendence, that is, mutual independence of the indicator variables within each LC, is formulated as

P(C � c |X � x) �
Y3

i�1
P(Ci � ci |X � x): (8) 

Once the conditional response probabilities P(Ci � yi |X � x) have been estimated, observing 
the variability among these probabilities across the LCs reveals the distinct features of each 
class. Combining Equations (1) and (2), the model for P(C � c) can be written as

P(C � c) �
XN

x�1
P(X � x)

Y3

i�1
P(Ci � ci |X � x): (9) 

The data given in Table 2 results in the model described in Table 3.
The two classes identified have 62% and 38% of the patients. Because the first class has 

higher probabilities of having the response 0 (patient does not have the chronic condition) for 
the three indicator variables compared with the second class, the LCs can be named “no seri
ous mental health issues” and “serious mental health issues,” respectively.

The posterior class membership probability, that is, the probability of belonging to class x 
given a certain response pattern c, can be used to classify patients into the appropriate LC. 
This can be calculated using Bayes rule as

P(X � x |C � c) �
P(X � x)P(C � c |X � x)

P(C � c)
: (10) 

The class membership probabilities P(X � x) reported in Table 3 are based on modal assign
ment, which means each patient is assigned to the LC with the highest P(X � x |C � c) value. 
This is the most commonly used classification rule in LCA and other clustering methods. The 

Table 3. Probabilities for two latent classes.

X � 1 (no serious 
mental health issues)

X � 2 (serious 
mental health issues)

P(X � x) 0.62 0.38
P(C1 � 0 |X � x) 0.96 0.23
P(C2 � 0 |X � x) 0.74 0.04
P(C3 � 0 |X � x) 0.92 0.24

Source. Adapted from Vermunt and Magidson [65].

Table 2. Prevalence of different response patterns in the data.

C1 C2 C3 Frequency P(X � 1 |C � c) P(X � 2 |C � c)

Expanded frequencies

X � 1 X � 2

0 0 0 696 0.998 0.002 694 2
0 0 1 68 0.929 0.071 63 5
0 1 0 275 0.876 0.124 241 34
0 1 1 130 0.168 0.832 109 21
1 0 0 34 0.848 0.152 29 5
1 0 1 19 0.138 0.862 3 16
1 1 0 125 0.080 0.920 10 115
1 1 1 366 0.002 0.998 1 365

Source. Adapted from Vermunt and Magidson [65].
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average posterior membership probabilities within each class are indicators of the effective
ness of the latent variable in segregating patients into distinct subgroups. In this example, the 
average posterior membership probabilities are 0.913 for the “no serious mental health issues” 
class and 0.903 for the “serious mental health issues” class, indicating a high likelihood that 
patients truly belong to their respective groups. In other words, patients within each class 
exhibit similar characteristics or features that align with the classification.

Algorithm 1 provides a more comprehensive explanation of the iterative procedure men
tioned previously. If there are I unique response patterns in the data and fi is the frequency of 
each pattern i, the log-likelihood can be evaluated for each iteration as follows:

ln L �
XI

i�1
filnP(C � ci), (11) 

P(C � ci) �
XN

j�1
P(X � xj)P(C � ci |X � xj): (12) 

The algorithm is run multiple times with different random initializations to avoid finding just 
the local optimum. Various tools and software, including Mplus (Muthén and Muthén [41]), 
the poLCA package in R (Linzer and Lewis [34]), and the Stepmix package in Python (Morin 
et al. [38]), are used to implement LCA. These packages typically include customizable EM 
optimization parameters, often with predefined default values. For instance, in Stepmix, para
meters such as the maximum number of EM iterations, the tolerance for stopping the optimi
zation (default 10�3), and the number of different initializations to try are provided (Morin 
et al. [38], Lacourse et al. [33]).

Algorithm 1 (LCA Algorithm) 

1: Initialize the current model probabilities in Table 3 with random values.
2: Calculate the conditional response probabilities using Equation (8) and the complete 

response probabilities using Equation (9), based on the current model probabilities.
3: Evaluate the log-likelihood based on the newly found pattern probabilities P(C � c), 

using Equations (11) and (12).
4: [E-Step] Calculate the class membership probabilities using Equation (10) and create 

an expanded frequency table based on these probabilities for each pattern (i.e., the 
new class membership frequencies for each pattern).

5: [M-Step] Recalculate the model probabilities in Table 3 based on values in the 
expanded frequency table.

6: Repeat steps 2–5 until the change in log-likelihood stabilizes to zero or some acceptable 
minimum threshold.

2.3.2. LCA in Practice. While using LCA in practice, it is imperative to account for cer
tain key considerations. 

1. Multicollinearity: Mixture modeling assumes “local independence” within latent clas
ses, implying that observed variables are independent within each class. However, the 
degree of acceptable correlation between variables and its impact on model fit is uncertain. 
Sensitivity analyses, such as excluding highly correlated variables or allowing them to be 
correlated in the model, are recommended to assess the effects on class composition and 
model fit statistics, ensuring robustness and accuracy in LCA (Sinha et al. [57]).

2. Sample Size: Prior studies indicate that sample sizes between 300 and 1,000 are suffi
cient for most of the commonly used fit indices in mixture models. However, for simpler 
LCA models featuring only a few well-separated classes, as few as 30 samples might be 
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sufficient. Conversely, it is recommended to have larger sample sizes for complex LCA mod
els with a large number of indicators and classes, to ensure accurate parameter estimation 
and identification of true classes (Nylund-Gibson and Choi [45]). It is also important to 
check if the sample size within each latent class is big enough to spot meaningful differences 
in the predetermined outcome measures, such as clinical outcomes (Sinha et al. [57]). A con
straint such that each latent class should comprise at least 10% of the patient population 
could also be applied, as smaller class sizes may not be substantial for facilitating tailored 
interventions (Smeet et al. [60]).

3. Number of Classes: The process of selecting the most appropriate LCA model 
involves fitting models ranging from 1 to N classes, where N is the largest reasonable number 
of latent classes that might be present in the data, it is subjective to each data set. Fit statis
tics such as Akaike information criteria (AIC, ideally minimized), Bayesian information crite
ria (BIC, ideally minimized), log likelihood (ideally maximized), entropy (ideally maximized), 
and average latent class posterior probability (ideally maximized) can be plotted against the 
number of classes to select the best model. However, it must be noted that the statistical crite
ria should complement the interpretability of the model. A model exhibiting superior statisti
cal metrics holds limited utility if it lacks clinical coherence (Weller et al. [67]).

4. Item-Response Probabilities: The probability that an indicator variable takes on a 
particular value when the latent class membership is known, is defined as P(Ci � ci |X � x)

(the values in Table 3). These probabilities represent the strength of the relationship 
between the observed indicator variables and the latent variable and are used to interpret 
and define the latent classes. In a good LCA fit, we should observe 2 properties: homogene
ity and latent class separation (Bray [8]). Homogeneity means that all the item-response 
probabilities are either close to zero or close to one; that is, there is either a strong negative 
or strong positive relationship. Latent class separation refers to the degree to which the 
latent classes can be distinguished from each other. If all item-response probabilities are 
homogeneous, but have the same strength, there is no separation between variables. Table 4
shows what good and bad fits might look like for the example discussed in Section 2.3.1.

In the healthcare domain, the indicator variable selection depends on the research question 
and is generally an iterative process involving preliminary data collection, analysis, model fit 
assessments, and feedback from clinicians. The LCA study by Davis et al. used 53 hierarchical 
chronic condition categories and identified seven clinically distinctive subgroups: “end-stage 
renal disease,” “cardiopulmonary conditions,” “diabetes with multiple comorbidities,” “acute 
illness superimposed on chronic conditions,” “conditions requiring highly specialized care,” 
“neurologic and catastrophic conditions,” and “patients with few comorbidities” (Davis et al. 
[16]). A study by Smith et al. [61] aimed to characterize the impact of multimorbidity on indi
viduals experiencing homelessness by identifying distinct groups based on medical, psychiat
ric, and substance use disorder profiles and comparing clinical outcomes across these groups. 
Indicators were extracted from EHR for 497 adults referred to the Durham Homeless Care 
Transitions (DHCT) program over a period of four years. Five distinct groups were identified 

Table 4. Homogeneity and latent class separation.

High homogeneity 
+ latent class separation (good fit)

High homogeneity 
+ no latent class separation (bad fit)

X � 1 X � 2 X � 1 X � 2

P(C1 � 0 |X � x) 0.84 0.13 0.84 0.95
P(C2 � 0 |X � x) 0.96 0.22 0.96 0.89
P(C3 � 0 |X � x) 0.01 0.89 0.01 0.05
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using LCA: “low morbidity” (referent),” “high comorbidity,” “high tri-morbidity,” “high alcohol 
use,” and “high medical illness.” LCA has also been used to categorize the top 10% of care 
users or patients with multimorbidity with above-average care utilization, based on charac
teristics more geared toward their socio-demographic conditions in a study by Smeets et al. 
[60]. A cohort of 12,602 patients was divided into four classes distinguished by dominant char
acteristics such as age, household position, and source of income. The indicator variables used 
in the final model can be a subset of the originally chosen variables as well. The original LCA 
model included 41 indicator variables, of which 32 were discarded in the final model due to 
low statistical relevance (i.e., the item-response probabilities were not distinguishable among 
the different classes). The final model used only nine variables to identify the same latent clas
ses in a more streamlined manner, which made it easier to interpret and analyze.

Once the latent classes have been identified using the indicator variables, associations 
and patterns can be determined by analyzing exogenous variables (i.e., data that were not 
used in the LC model). For example, in the study by Davis et al. [16], survival rates ranged 
from 43% to 88% across the identified subgroups (Table 5). The difference in survival rates 
marked a clear difference in the healthcare needs of each subgroup. Likewise, in the 
research conducted by Smith et al. [61], individuals categorized under the high medical ill
ness classification exhibited higher mortality rates within 12 months of being referred to 
the DHCT program, in contrast to those classified under the low morbidity category. Addi
tionally, both the high comorbidity and high tri-morbidity groups demonstrated elevated 
risks of drug overdose within the same timeframe following referral compared with the ref
erent group: low morbidity.

In contrast to these two studies, Smeeths et al. [60] conducted a post hoc analysis on the 
prevalence of chronic conditions within latent classes, which were identified using demo
graphic, biomedical, and socioeconomic characteristics in combination with pharmaceutical 
costs. The four latent classes they identified are as follows: “older adults living with partner,” 
“older adults living alone,” “middle-aged, employed adults with family,” and “middle-aged 
adults with social welfare dependency” (Figure 4). They discovered that diabetes was the 
most prevalent across all classes (30.5%–43.4%). The second most prevalent condition varied 
between osteoarthritis in classes with older adults (21.7%–23.8%), asthma in the middle-aged 
and employed group (25.3%), and mood disorders in the group with middle-aged adults with 
social welfare dependency (23.1%). Moreover, although there was an increase in the utiliza
tion of general practitioner (GP) care among the older adult classes over the follow-up period, 
it remained fairly consistent among middle-aged classes.

The findings presented in these studies carry significant implications; they showcase how 
the integration of social, behavioral, and medical data can yield a detailed understanding of 
high-risk patient subgroups, hence opening up possibilities for targeted interventions and 
appropriate care planning strategies (Rinehart et al. [52]).

Table 5 Survival rates by group.

Percentage surviving 
through 2011

Percentage surviving 
through 2014

All Top 1% 88 69
Class 1: End Stage Renal Disease 91 68
Class 2: Neurologic and Catastrophic 90 73
Class 3: Cardio-Vascular and Pulmonary 87 66
Class 4: Diabetes with Multiple Comorbid Conditions 80 46
Class 5: Highly Specialized Treatments 81 62
Class 6: Acute Exacerbation of Chronic Conditions 72 43
Class 7: Few Comorbidities 96 88

Source. Data from Davis et al. [16].
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3. Complex Care Interventions: Operational Details, Staffing 
Needs, and Impact on Patient Outcomes
As described in Section 1, organizations around the country have developed programs or 
interventions for patients with complex medical and social needs. In this second part of the 
tutorial, we turn our attention to the operational and staffing features of such interventions, 
and the evidence of their effectiveness in improving patient outcomes. The section is orga
nized as follows. After describing the features of complex care programs (Section 3.1), we 
summarize two examples (Section 3.2). We then turn to our primary case study: the complex 
care program of our collaborating partner, the Camden Coalition (Section 3.3). We provide 
patient-level examples of intervention progression, quantify how they vary between patients, 
and present an algorithm to adequately staff care teams. We conclude the section with the 
Camden Coalition’s RCT-based evaluation of their interventions.

3.1. Features of Complex Care Interventions
Complex care programs across the United States vary considerably in their target population, 
staff used, duration of the intervention, and the outcomes evaluated (see Chang et al. [12] for 
the most recent systematic review and meta-analysis of programs). However, the programs 
do share some key features which we encapsulate in Figure 5. We describe these features in 
detail here.

3.1.1. Eligibility. All complex care programs begin with defining the pool of eligible 
patients. Eligibility depends on the scope of the intervention. The most common eligibility 
criteria include patients with two or more conditions; patients in the top percentiles of annual 
medical expenditures; patients with a high number of ED visits or hospitalizations or unique 

Figure 4. Item-response probabilities of each indicator variable the latent classes, in a Dutch primary 
care group. 

Source. Republished from Smeets et al. [60].
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medications; or some combination of these. Patients are typically identified based on data in 
electronic health records and claims data and are approached by one or more care team mem
bers at a primary care appointment or during an inpatient hospitalization.

For specialized programs such as the Boston Healthcare for the Homeless (O’Connell et al. 
[46]), chronically homeless individuals in the Greater Boston area living in shelters would be 
the eligible population. For the Transitions Clinic (Shavit et al. [56]), a consortium of 45 pri
mary care programs active in 14 states and Puerto Rico that provides community health 
worker support for patients returning to the community from incarceration, the eligible popu
lation consists of individuals older than 50 with multiple chronic conditions who are about to 
be released from prison.

3.1.2. Care Team Composition and Intervention Goals. The intervention begins 
when the patient consents to be part of the program. Programs vary widely in the types of 
staff members used. Interventions are often provided in teams. Teams can consist of physi
cians, nurses, community health workers, social workers, pharmacists etc. Even in cases where 
the intervention is led by a single member, for instance, community health workers, the staff 
member still works with a medical team.

A typical doctor’s visit is generally focused on a specific disease, treatment, procedure, 
or resolving a set of symptoms; it often addresses only a small portion of the patient’s full 
set of medical needs. Patient-care team encounters in complex care, in contrast, are 
designed to consider how all medical conditions, associated medications, and treatments 
of the patient interact and affect well-being. Interventions typically begin with the care 
team having detailed conversations and interviews with the patient to get a holistic, com
prehensive picture of the patient’s current situation. A set of patient-centered goals define 
the scope of the intervention. The care team tries to facilitate better access to primary, 
specialty, and mental health care; some members of the care team even accompany the 
patients to their appointments. The care team’s activities also touch on aspects of the 
patient’s personal life that are barriers to health and well-being. They include addressing 
the lack of family member or peer support, housing instability and homelessness, and chal
lenges with alcohol and substance abuse.

Such in-depth conversations and related action plans require care team members to be 
empathetic and build trust: a slow process that can take multiple attempts and may not 
always be successful. The role of community health workers, who often have the same 

Figure 5. Key features of complex care interventions. 
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socioeconomic background as the patient and in many cases have gone through the same 
health and social challenges, is crucial for patient engagement. The intervention ends when 
the patient’s immediate goals have been met and they can go about their daily life with mini
mal support from the care team.

3.1.3. Intervention Progression as a Stochastic Process. From an operational point 
of view, the patient and the care team have recurring interactions, shown in Figure 5, creating 
a longitudinal event history. This event history is a realization of an underlying stochastic 
process. Encounters include interactions in which the patient is present (physically or virtu
ally) and activities that the care team carries out on behalf of the patient but where the 
patient is not present (such as a nurse in the care team calling the patient’s cardiologist, or a 
social worker calling a landlord to secure apartment housing for the patient).

The process is stochastic because there is uncertainty in the types of encounters (home 
visit, accompanying the patient to a specialty visit, phone call, etc.), the time spent in the 
encounter, and the number of days between encounters. The precise sequence of encoun
ters varies from patient to patient because each patient has a different set of needs. The 
duration of the intervention varies significantly between programs, some last for two 
weeks, whereas others last for six months or longer. The total time spent by the care team 
across all encounters from the start to end of the intervention is often termed as the dos
age of the intervention. Dosage too can vary significantly between patients, as we will 
demonstrate in Section 3.3.

3.1.4. Intervention Outcomes. Complex care programs have tracked a wide range of 
patient outcomes such as mortality, hospital and ED visit rates, number of days spent in hos
pital, and expenditures. Intermediate measures such as the number of outpatient primary 
and specialty care visits and whether patients received a primary care appointment after hos
pital discharge are also of interest because these are indirect indicators that the patient’s 
chronic conditions are being managed. In one study (Kangovi et al. [29]), clinical measures 
such as systolic blood pressure, blood sugar levels, and the number of cigarettes smoked per 
day were tracked. Finally, more qualitative metrics such as patient satisfaction with care and 
self-rating of physical and mental health are also collected.

The most common time frames for tracking outcomes are 3-, 6-, and 12-month periods 
before and after the start of the intervention. However, simply conducting a pre-post analysis 
is methodologically problematic, especially for utilization measures such as the number of hos
pitalizations and ED visits. Patients are enrolled in complex care programs precisely because 
their hospitalizations and ED visits have reached the highest observed percentiles in, say, a 
preceding six-month period. In the following six-month period, these same measures are more 
likely to exhibit regression toward the mean, that is, they are more likely to drop naturally, 
with or without an intervention. This may give the false impression that an improvement has 
occurred due to the intervention. The correct approach, therefore, is to include a control 
group, that is, track outcomes in similar time periods for a group of eligible patients who did 
not receive a complex care intervention.

RCTs are the most unbiased methods to create intervention and control groups. Results of 
several complex care RCTs have been published in recent years. However, RCTs are logisti
cally challenging and costly to organize. Furthermore, complex care RCTs involve a small 
percentage (1%–5%) of the population, which results in low trial recruitment rates. Most 
trials have a few hundred patients in total across intervention and control arms. Because of 
these challenges, most complex care programs are unable to evaluate their outcomes through 
RCTs. An alternative to RCTs is to identify a control group retrospectively by matching 
covariates through methods such as propensity score matching (Caliendo and Kopeinig [10]).
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3.2. Examples of Complex Care Interventions
Although our primary case study is from the Camden Coalition (Section 3.3), to give a sense 
of the diversity of approaches to complex care, we summarize two additional examples of 
complex care programs.

3.2.1. Kaiser Permanente Mid-Atlantic States Complex Care Program. In 
2017–2018, the managed care provider Kaiser Permanente started a new Complex Care Pro
gram (CCP) in the mid-Atlantic states (Roblin et al. [53]). A team consisting of a primary 
care physician and a nurse assisted a special panel of patients with advanced clinical disease 
and a history of recent hospitalizations. A typical primary care physician has a panel of 1,800 
patients, whereas a Kaiser physician dedicated to serving complex care patients was assigned 
a panel of 200 patients. This allowed the physician to spend more time on in-person visits 
(45minutes as opposed to the typical 15- or 20-minute visit) in addition to nontraditional vis
its (visits to the patient’s home or nursing home and video calls). The physician and nurse 
team also spent a significant amount of time providing personalized care: reviewing patients’ 
medical records, reconciling medications prescribed by multiple specialists, and addres
sing social needs such as financial challenges in making medical payments and lack of 
transportation.

A major finding was that patients who were assigned to complex care panels had lower 
mortality rates (17.2%) than propensity score–matched control patients (26%) six months 
after enrollment in CCP. However, hospital readmission rates six months after enrollment 
were not statistically different between CCP patients and matched control patients.

3.2.2. University of Pennsylvania Community Health Worker Program. In this 
program (Kangovi et al. [29]), a community health worker (CHW) assisted patients in a high- 
poverty region of Philadelphia. The patients had two or more of the following chronic 
diseases: hypertension, diabetes, obesity, and tobacco dependence. The program was titled 
Individualized Management of Patient-Centered Targets (IMPaCT), and enrollment of 
patients happened during a primary care visit. The CHW and the patient worked together to 
develop “patient-driven action plans.” For instance, if the patient’s goal was to address obesity 
by losing weight through better nutrition, the CHW might accompany the patient to a food 
pantry where affordable fresh produce was available. If the patient wanted more information 
about diabetes, the CHW would guide them to a diabetes educator at the local YMCA. The 
CHW interacted with each of the patients for at least six months from the enrollment date 
via phone calls, texts, and in-person visits and facilitated patient support groups. The average 
time a CHW spent with a patient, that is, the average dosage, was 38.4 hours.

The CHW-led intervention was tested in a randomized control trial involving 302 partici
pants (150 in intervention and 152 in control). All patients in the trial collaboratively set a 
disease management goal with their primary care physician; however, the intervention groups 
received additional support from a CHW (see previous examples) to assist with the goal. The 
intervention group saw statistically significant drops in clinical outcomes such as blood sugar 
levels, weight loss, and the number of cigarettes smoked per day six months after the inter
vention. For instance, blood sugar levels, as measured by glycosylated hemoglobin (known 
widely as the HbA1c level) dropped by 0.4 points in the intervention group compared with 
the preintervention baseline; there was no change in the control group. Self-rated mental 
health also improved in the intervention group. 23% of the patients in the intervention group 
were hospitalized one year after trial enrollment while the same rate in the control group was 
31%. Not all measures improved in the intervention group. For instance, systolic blood pres
sure (SBP) was reduced by 11.2 points in the control group (a clinically significant reduction) 
compared with the pre-intervention baseline; in the intervention group, it was reduced only 
by 1.8 points.
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Other evaluations of the IMPaCT program (Kangovi et al. [30], Kangovi et al. [31]) have 
yielded generally positive results, and the program has been adopted widely around the coun
try by state and local governments, insurance providers, and the VA.

3.3. Case Study: Camden Coalition
The Camden Coalition is a multidisciplinary nonprofit organization that works to improve 
care for patients with complex health and social needs in Camden, New Jersey, and nation
ally. We showed an example in Section 1 of how the Coalition uses multidisciplinary care 
teams to assist a patient with complex medical and social needs.

Founded by a family physician named Jeffrey Brenner in 2002, the effort grew into a 
city-wide initiative (hence the term Coalition) that brought together “hospitals, primary 
care, social service providers, and community representatives” in Camden, New Jersey 
(Noonan and Craig [44]). The Coalition’s goal is to empower patients with the skills and 
support they need to avoid preventable hospital use and improve their well-being. In 2007, 
the Coalition piloted its first care team intervention. Since then, it has worked with thou
sands of people from the Camden region struggling with chronic health issues, addic
tion, mental health challenges, poverty, unemployment, housing instability, child 
welfare issues, and criminal justice involvement. Their work has attracted nationwide 
attention and has been featured in The New Yorker (Gawande [22]) and PBS Frontline 
(Gawande [21]).

The intervention developed by the Coalition is called the Core Model. In what follows, we 
describe and quantify key operational features of the Core Model; see Martinez et al. [36] and 
Koker et al. [32] for further details. To enroll patients, the care team first identifies patients 
currently admitted in Camden area hospitals with a history of two or more hospitalizations in 
the previous six months. Among this set, patients are considered eligible for intervention if 
they satisfy two or more of the following criteria: 

• Two or more chronic conditions
• Polypharmacy, as defined by five or more medications
• A mental health diagnosis
• Homelessness
• Active substance use
• Lack of social support
• Difficulty accessing services (e.g., limited physical mobility, language barrier, lack of 

transportation, etc.)

The care team approaches the patient in the inpatient setting. The intervention begins 
once the patient consents to be part of the program. The patient is assigned to a community 
health worker (CHW) and licensed practice nurse (LPN) pair who lead the intervention. 
Other team members who assist the pair include a social worker (SW), a registered nurse 
(RN), and a clinical psychologist (CP). Patients and the care team collaboratively determine 
domains in which the patient needs assistance. The Coalition lists 16 such domains; examples 
include medication and medication supplies, transportation support, housing, relationships 
with primary care providers, legal assistance, addiction support, etc.

Care team members aim to meet with each patient in their home within five days of dis
charge to conduct a review of the patient’s current medications. They also aim to schedule 
a primary care appointment for the patient within seven days of discharge. Nurses in the 
care team (LPN or RN) accompany the patient to the PCP appointment. The care team 
continues to assist the patient with clinical and social coordination in the ensuing weeks. 
When the team determines that the patient’s clinical and social goals have been met and 
can go about their daily lives with minimal support, the patient is said to “graduate” from 
the intervention. Otherwise, the intervention is considered “incomplete.” Incomplete 
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interventions can happen when a patient cannot be reached despite multiple attempts by 
the care team, is no longer interested in further services, has moved out from the Camden 
region, or has passed away. In some cases, incomplete patients may re-enroll again after a 
hospitalization.

3.3.1. Analyzing Intervention Progression. As conceptualized earlier, the intervention 
leads to a series of stochastic recurring encounters between the patient and the care team. 
The Coalition collects very detailed operational data on these encounters.

Figure 6 shows a visualization of intervention events for three patients from the start of the 
intervention (day 0) to their graduation from the intervention. Shapes indicate the type of care 
team-patient encounter and color indicates the type of staff member involved. Stacking indi
cates that multiple staff types can be involved in the same encounter. Home visits, for instance, 
are often conducted by a pair of staff members. Importantly, the Camden Coalition also collects 
the amount of time spent by each staff type in each encounter. Home visits and accompanying 
patients to specialty and PCP visits can take more than an hour, whereas phone calls can be as 
short as a few minutes. The sequence of encounters and time spent in each encounter allows us 
to reconstruct the precise sequence of encounters for each patient and infer how the duration of 
intervention and dosage (amount of care team spent) varies among its patients.

Let S be the set of all staff types and s refer to a particular staff type. At the Camden Coali
tion, s ∈ {chw, lpn, rn, sw,cp}. Let E denote the set of all encounter types (home visit, accom
panying patient to the PCP, phone call, etc.), and e ∈ E a particular type of encounter. Let 
ze
i,d, s denote the number of hours spent by staff type s with (or on behalf of) patient i in 

encounter type e on day d of the intervention. Here d can range from enrollment day d � 0 to 
week d � µi, when the intervention concludes and an outcome Oi for the patient {incomplete, 
graduated} is determined. The cumulative intervention dosage for patient i on day k, 
0 ≤ k ≤ µi, across all care team staff members is given by

Zi,k �
Xk

d�0

X

s∈S

X

e∈E
ze
i,d, s: (13) 

When k � µi, Zi,k denotes the total dosage for patient i from the start of the intervention to 
the outcome date. Figure 7 shows Zi,d (y axis) for d � 0, 1, : : : ,µi for one patient. Steeper parts 

Figure 6. (Color online) Examples of intervention timelines. 
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of the trajectory indicate more care team effort in a short period while plateaus indicate no 
care team effort. The trajectory also illustrates important events during intervention such as 
the first home visit, the initial PCP visit, ED visits and inpatient hospitalizations.

The Coalition enrolled 531 patients between 2012 and 2015. In Figure 8, we show a scatter 
plot (µi, Zi,µi

) for these patients. The plot tell us how the interventions vary in two measures: 
the length of the intervention (µi shown on the x axis) and the total dosage (Zi,µi 

on the y 
axis). To cluster patients in the two-dimensional space, we first divided Zi,µi 

into three 
groups. Each group was further subdivided into two subgroups based on µi. This gives us six 
interpretable clusters with approximately equal numbers of patients. We also report the per
centage of patients who graduated in each cluster. Patients in the lowest left cluster (“low 
hours, lower duration”), for instance, had the shortest intervention durations (less than 
40days) and the lowest intervention dosage (less than 20hours); this cluster also had the low
est graduation rates (18.2%). In contrast, patients in the top right cluster (“high hours, higher 
duration”), had the longest intervention durations (greater than 150days) and the highest 
intervention dosage (greater than 45hours); graduation rates in this cluster were the highest 
(86.5%) suggesting that care team was able to address patient goals in most cases. We also 
show the full trajectory Zi,k for k � 1, 2, : : : ,µi for one patient whose final endpoint is in the 
top left cluster. Trajectories in this cluster are some of these steepest, requiring a large 
amount of care team effort in a short period of time.

These results demonstrate how intervention duration and dosage can vary significantly 
even among patients with complex medical and social needs. Indeed, the Core Model was 
originally planned as a 90-day intervention but results in Figure 8 suggest that interventions 
can be far shorter or longer than 90days. Similarly, intervention dosage also varies signifi
cantly: The 90th percentile of intervention dosage was three times the median dosage. Uncer
tainty in intervention duration and dosage complicates staffing decisions. Ideally, medical or 
social covariates could be used to predict these quantities. However, complex care programs 
treat a small number of patients which makes it difficult to build accurate predictive models. 
Additionally, although we identified characteristics associated with the top quintile of inter
vention dosage through a random forest model (Martinez et al. [36]), such as count of mental 
health conditions, homelessness and housing needs, inadequate nutrition, and lack of 

Figure 7. (Color online) Intervention trajectory of a specific patient. 
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relationships with medical providers, these models still have high variability when it comes to 
predicting staff hours needed each week.

3.4. Nonstationary Features
Another important feature of the interventions is that they are front-loaded and nonstation
ary; that is, intervention intensity is higher in the first two weeks after enrollment and reduces 
with time. Table 6 shows that approximately a fifth of the 24,249 total hours spent by the 
care team on the 531 patients occurred in the first 12 days after enrollment and 40% of the 
total effort happened within 33 days of enrollment. This front-loaded pattern reflects the need 
for the care team to develop strong relationships with their patients through home visits, 
accompanying the patient to primary care appointments, and taking all the needed steps to 
avoid readmissions within 30 days of discharge (recall that the patients are enrolled during an 
inpatient hospitalization). The workload of the nurses (RN and LPN) is high in the first two 
weeks of the intervention as clinical needs after hospital discharge take precedence. As 
patients graduate, relatively smaller numbers are active in later stages (active patients are 
those that do not have a graduated or incomplete outcome yet). However, we see that 166 of 
the 531 patients were still active four months after the start of the intervention, and 20% of 
the care team’s effort was spent on these patients for over a year (days 188–575). A deeper 

Figure 8. (Color online) Variation in patient trajectories. 

Source. Adapted from Martinez et al. [36].

Table 6. Distribution of (approximate) deciles of care team hours by time period since intervention 
enrollment.

Fifth of postenrollment effort First Second Third Fourth Fifth All

Delivery period (days) 0–12 13–33 34–62 63–117 118–575 0–575
Patients active 531–509 509–457 457–347 347–166 166–1 531–1
Total care team time (h) 4,813 4,797 4,864 4,919 4,856 24,249
Total care team time (percent of total) 19.8% 19.8% 20.1% 20.3% 20% 100%

Source. Adapted from Martinez et al. [36].
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analysis reveals that most of these patients needed higher engagement of the social worker’s 
time for activities such as assistance in obtaining housing. These results show that different 
staff types are needed at different stages of the intervention.

3.5. Staffing Algorithm
An important concern in complex care is how multidisciplinary care teams should be staffed 
for a given rate of patient enrollment. Specifically, how many hours of each staff type (com
munity health worker, nurse, social worker, etc.) would be needed for, say, an enrollment of 
three patients per week, to ensure that patients receive timely assistance? Staffing decisions 
are challenging because, as our preceding analyses demonstrate, intervention durations are 
highly unpredictable, the progression of the intervention is nonstationary, and the workload 
of different staff members peaks at different stages of the intervention. Analytical queueing 
network models are unable to capture these features. Even a discrete event simulation of the 
nonstationary intervention process is challenging since many parameters need to be estimated 
from a data set with a small number of patients.

To overcome these challenges we use a simple sampling-based simulation algorithm (Koker 
et al. [32]). The algorithm uses the patient’s complete sequence of encounters from enrollment 
to graduation; see Figure 6 for examples of encounter sequences. The advantage of using a 
patient’s chronologically sequenced record is that it implicitly captures the nonstationary 
dynamics of the intervention and differences in staff involvement. By sampling in such a way 
that different combinations of patients are active at any time, we can calculate estimates of 
staff hours needed for a given patient enrollment rate. We briefly describe the algorithm next.

Consider a simulation time horizon of t � 1, 2, : : : ,T days, and an enrollment rate that fol
lows a Poisson distribution with a mean of λ patients per day. On each day, starting with 
t�1, we sample from this Poisson distribution to determine the number of enrollments (distri
butions other than Poisson can also be used in the framework). Let nt denote the number of 
enrollments on day t. We then randomly sample nt patient indices without replacement from 
our total set of 531 patients and assign them to be enrolled on day t. The event history of each 
sampled patient is assumed to unfold in the exact sequence observed in the data from day t 
onward, with day t being the first day of the intervention, t + 1 being the second day, and so 
on, until t + µi when the patient is assigned an outcome and graduates from the intervention. 
The simulation runs until no more patient indices remain to be sampled (recall that indices 
are sampled without replacement). If a patient is enrolled once every two days, that is, with a 
rate of λ � 1

2 per day (observed at the Coalition), then the simulation will run on average for 
531×2 � 1,062days, which is a long enough period to estimate key metrics. We choose sam
pling without replacement because the encounter histories of patients with longer interven
tions and larger intervention dosages can bias the results if picked repeatedly.

By Little’s Law (Little and Graves [35]), we know that the simulation reaches a steady 
state when the mean number of active patients in the program is λ × µ where µ is the mean 
intervention duration. The precise day that the simulation reaches steady state can be deter
mined either visually or through more formal moving average approaches such as Welch’s 
method [66]. Consider any day k when the simulation has reached steady state. Let Wk denote 
the patients that are active in the intervention on day k and let τi,k be the number of days 
that patient i ∈ Wk has been active on simulation day k. Then, the total demand for staff type 
s on day k is given by

Ds,k �
X

i∈Wk

zi,τi,k , s: (14) 

Here zi,τi,k , s denotes the time spent by staff type s on patient i on day τi,k of the intervention. 
After recording Ds,k for all steady-state days across multiple replications of the simulation, 
we can estimate the distribution of workload for staff type s. This method of estimating 
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demand is called offered load analysis where we measure the capacity needed as if there were 
no limits on its availability. See Whitt et al. [68] for more details. The distribution of the 
offered load (estimated using Ds,k values) can be used to determine staffing levels to meet per
formance targets (e.g., ensure that delays for complex care patients do not exceed a predeter
mined target). Offered load analysis is particularly helpful when there when time-varying 
dynamics and when queues have a network structure [68].

In Koker et al. [32], offered load demand estimates were obtained at the level of each week. 
Figure 9 shows the histograms of the demand in hours for CHWs and LPNs for a mean enroll
ment rate of three per week. We see that the CHW and the LPN in the care team will spend 
on average 37.24 and 33.78 hours, respectively, on behalf of active patients. However, the 
80th percentiles of the two distributions suggest that overtime hours beyond the 40-hour 
workweek will be necessary for both CHW and LPN, especially so for the CHW. These results 
can be used to make decisions on whether part-time support staff need to be recruited for a 
given patient enrollment rate. Several other staffing results including joint offered load analy
sis (because multiple staff are involved in an encounter, staff workloads can often be corre
lated), and nonstationary arrival rates have been presented in Koker et al. [32].

3.6. Randomized Control Trial of Camden Core Model Interventions
The Camden Coalition conducted a multiyear randomized control trial (2014–2017) in part
nership with the Poverty Action Laboratory (J-PAL) at the Massachusetts Institute of Tech
nology. The goal of the RCT was to test whether their interventions were impacting inpatient 
hospitalizations. Patients who consented to be part of the trial were randomly assigned to 
intervention and control groups. Results of the trial, published in January 2020 in the New 
England Journal of Medicine (Finkelstein et al. [19]), revealed that the six-month readmission 
rate (a binary yes/no variable for each patient) in the intervention (n � 393) and control (n �
389) groups was 62.3% and 61.7%, respectively, six months after assignment. There was no 
statistical difference. Other measures such as the average number of readmissions, number of 
days in hospital, and hospital charges were also not statistically different between interven
tion and control.

Although this null result was a disappointment to many complex care practitioners, it is 
instructive to revisit the assumptions of an RCT. The RCT assumes that all patients under
went the same intervention when in reality the trial took place over a four-year span where 
the intervention changed significantly (different staffing arrangements, new service offerings 
for patients with housing instability, etc.). The RCT thus studies only the average impact of 
an aggregated measure for a diverse patient population recruited in four years. Furthermore, 
complex care interventions do not deal with a single disease or administer a single drug or 

Figure 9. (Color online) Distribution of weekly staff hours. 

Source. Adapted from Koker et al. [32]).
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vaccine whose effect can be isolated; they deal with a mix of chronic conditions and social 
determinants, resulting in a great deal of variability, as revealed by our analysis of interven
tion dosage and duration. Each patient’s clinical profile, when combined with their social 
needs, makes them essentially unique, and an exact match in medical and social covariates 
between an intervention and control patient is quite rare.

Two recent analyses that revisited the Camden RCT data set have revealed some intrigu
ing insights. The first demonstrates that readmission rates were statistically lower for patients 
who engaged more with the care team, and the second found that the RCT was successful in 
other outcomes. We summarize the two studies here.

3.6.1. RCT Outcomes by Variation in Patient Engagement. Yang et al. [70] looked 
at variation in patient engagement as an explanatory variable for intervention outcomes. As 
our intervention analysis demonstrated, many patients received an incomplete status because 
they did not respond despite multiple attempts by the care team. Yang et al. [70] defined an 
intervention patient to be “engaged” if at least two of the following three criteria were satis
fied: (1) the patient received at least three intervention hours during the first two weeks of 
enrollment; (2) the patient had contact with staff at least once per week for four of the initial 
six weeks; and (3) the patient was retained in the program for 60 days (half of the average 
treatment length) or graduated within that time frame.

Next, they identified medical and social covariates that predicted the binary engagement 
variable using a gradient-boosting machine learning model. They found that patients with 
the highest probability of engagement were less likely to have been arrested and less likely to 
have substance abuse disorder or alcohol-specific hospital diagnoses. The model was used to 
predict the probability of engagement for each intervention and control patient. Finally, the 
study compared intervention and control patients with progressively higher probabilities of 
engagement. Between intervention and control patients who were in the top decile of engage
ment probability, there were statistically different outcomes when it came to readmission 
rates (66% readmission rate in control versus 53% in intervention) and average number of 
hospital visits (1.57 for intervention versus 1.22 for control) six months after enrollment.

3.6.2. Other RCT Outcomes: Access to Primary Care, Specialty Care, and Medi
cal Equipment. Finkelstein et al. [20] looked at whether Camden’s Core Model interven
tion improved access to primary and specialty care in the immediate weeks, months, and a 
year following enrollment. Reducing hospitalizations can be challenging in complex care 
patients; however, improved access to primary and specialty care gives the patient a strong 
preventive foundation and tools for long-term chronic care management. Using Medicaid 
claims data, the study found that among control patients, only 18.93% received a primary 
care appointment 14days after being discharged from the hospital (recall that patients were 
enrolled in the trial after a hospitalization). Among intervention patients, 33.1% received a 
primary care appointment. Similar statistically different differences in both the percent of 
individuals as well as average number of visits were observed at six months and even a year 
after enrollment. Intervention patients were more likely to receive durable medical equipment 
(e.g., wheelchairs, oxygen equipment) than the control group (43.06% versus 29.29%).

Thus, a more nuanced picture of the effectiveness of the Camden Core Model has emerged 
since the aggregate RCT results with the null result were first published in January 2020. 
These new results suggest that the Core Model did indeed improve outcomes in certain groups 
of patients and in providing patients access to primary and specialty care.

There’s also a subtle link between staffing and RCT outcomes that we wish to explore in 
future research. The RCT assumes the delivery of intervention to one patient does not impact 
the intervention for another. This is certainly true in a vaccine or drug trial. However, because 
complex care is a staffing intervention, a patient’s intervention has subtle but important 
dependencies on the interventions of other patients. This is because the care team’s time is a 
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resource shared by all concurrently active patients. If the care team is short of capacity, 
among currently active patients a particular subset may be prioritized over others, thus 
delaying the intervention process for other patients and possibly affecting outcomes. Simi
larly, patients who enroll when care team workloads are at their peak may have less than opti
mal outcomes compared with those who enroll when care team workloads are low. Thus, care 
team availability is key to intervention success and therefore RCT outcomes. The same prin
ciple applies also to other resources critical to intervention success such as access to primary 
and specialty care appointments.

4. Conclusions, Discussion, and Future Research
In summary, we focused on two different themes related to interventions for patients with 
complex medical and social needs. In the first theme, we illustrated unsupervised learning 
approaches to segment heterogeneous patient populations into meaningful subgroups that 
share common groups of diseases and other characteristics. In the second theme, we consid
ered operational features of complex care interventions, in particular, the question of staffing 
care teams and quantifying the impact on patient outcomes. The methodologies illustrated, 
association rule mining, latent class analysis, descriptive analyses of patient-care team 
encounter sequences, and sampling patient sequences to create staffing estimates, can be used 
by clinicians and administrators of complex care programs.

The tutorial, however, has discussed only a fraction of a challenging domain. There are 
numerous other questions under each theme and opportunities for research at the intersection 
of traditional OR/MS-based methods and AI/ML. We highlight some topics here.

MCCs and Care Needs: Although our work focused on the first step of quantifying asso
ciations between diseases and disease groups, there is a pressing need to develop a comprehen
sive understanding of causal mechanisms. Mechanisms could be biological, that is, one disease 
can compromise an individual’s clinical risk for another, or they could be behavioral, for 
example, lack of exercise and poor diet could be common risk factors for diabetes and cardio
vascular diseases. Furthermore, poor diet and exercise could be driven by social determinants 
such as access and affordability to physical activity and healthy foods.

The biggest challenge in this field is the heterogeneity in disease combinations and the low 
prevalence of each combination, as illustrated in Section 2. This makes it difficult to estimate 
the joint prevalence of health, social, and behavioral conditions. Even the largest data sets, 
such as those available at U.S. government providers such as Veterans Affairs, Medicare, and 
Medicaid, can become sparse once a population is segmented by age, race, geographic loca
tion, income, and education levels. There is a need for systematic methods to estimate joint 
prevalence distributions that extrapolate beyond marginal and pairwise associations observed 
in such data sets. Examples of such methods include Markov random fields or undirected 
probabilistic graphical models solved using maximum entropy or iterative proportional fitting 
(Murphy [40], Fienberg [18], Bishop et al. [6], Gopalappa and Khoshegbhal [24]), Copula- 
based methods (Nelson [43], Geenens [23]), and maximum entropy optimization (Phillips et al. 
[47]). When it comes to establishing causal mechanisms, Bayesian methods, probabilistic 
graphical methods, and graph neural networks will be most relevant.

A different way to address the sparse data problem is to integrate insights from diverse 
data sources and published findings. The difficulty here is that features relevant for the analy
ses may reside in data sets that have their own data collection design and further take differ
ent modality, for example, longitudinal medical records, expert inputs, and insights obtained 
from meta-analyses of smaller controlled studies presented in the literature.

Complex Care Interventions: The Camden Coalition case study in Section 3 illustrates 
the importance of collecting data on medical and social covariates and granular details of 
intervention progression. The section also illustrates the importance of control groups to infer 
causality, either through RCTs or other methods, to ensure that the problem of regression to 
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the mean is properly accounted for. RCTs are among the best methods for testing causality 
between interventions and outcomes. Although they have been widely used in medical treat
ment and pharmaceutical interventions, their use in testing innovations in healthcare delivery 
(such as complex care interventions) is still in the early stages (Alsan and Finkelstein [3]). 
The biggest barrier is that RCTs for complex care have low recruitment rates and are logisti
cally challenging and costly for organizations to implement. However, they do allow for a 
richer understanding of intervention impact and the development of further hypotheses. In 
particular, they facilitate the identification of subgroups of intervention patients based on 
medical and social characteristics that might have performed better or worse than the same 
subgroups of control patients (see Bertsimas et al. [5] for an operations research/management 
science (OR/MS) perspective). Given the heterogeneity of the patient population, such sub
group analyses are a vital direction of future research because they could lead to trials to test 
more personalized interventions.

Furthermore, the literature in the social and behavioral sciences domain is rich in studies 
that jointly analyze social and health support programs (Courtin et al. [15], Akinyemiju [2], 
Hill-Briggs et al. [26], Powell-Wiley et al. [48], Remes et al. [50]). Each study may focus on a 
narrower set of issues, such as effectiveness of depression treatment and medication adherence 
for a chronic condition from one study (Świątoniowska-Lonc et al. [63]) and a separate study 
on effectiveness of social support for housing instability in patients with the chronic condition 
(Mosley-Johnson et al. [39]). For a person with that chronic condition with both depression 
and housing instability, a combined intervention may be relevant but if there is a causation 
between housing instability and depression the fraction of the population that needs both 
interventions may be lower. Similarly, if the evidence from the published literature on other 
conditions and social determinants is collected, this would yield a large number of interven
tion combinations for different patient subgroups. The methods of OR/MS and artificial 
intellligence can help guide the portfolio of candidate interventions that are likely to have the 
greatest impact; these, then, could be evaluated through randomized controlled trials.

Another direction of future work in this space relates to modeling the longitudinal progres
sion of disease and intervention actions in time. While traditional intervention analysis tech
niques have used simulation or Markov processes to model disease stage progressions (Denton 
[17]), this approach may become challenging as the number of conditions and interventions 
increase, and further development of such a model will be reliant on an understanding of 
causal mechanisms. Alternate approaches could focus on use of machine learning, such as gen
erative adversarial networks and transformer models (Shankar et al. [55]), for prediction by 
training of longitudinal data (Hwang et al. [28], Yang et al. [69], Cascarano et al. [11]). 
Although these may not address causality directly, they can be combined with expert opinion 
to develop appropriate preventive decision support.
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