cinfoerms’ TUTORIALS IN OPERATIONS RESEARCH

https: /pubsonline.informs.org/series/educ

© 2024 INFORMS | ISBN 979-8-9882856-2-5
https://doi.org/10.1287 /educ.2024.0279

Interventions for Patients with Complex Medical
and Social Needs

Hari Balasubramanian,®* Sindhoora Prakash,? Ali Jafari,’ Arjun Mohan,?
Chaitra Gopalappa®

A Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst,
Massachusetts 01003

Contact: hbalasub@admin.umass.edu, @ https: //orcid.org/0009-0002-8096-1954 (HB);
sprakash@umass.edu, (@ https: //orcid.org/0009-0009-6930-2318 (SP); ajafari@umass.edu,

(® https: //orcid.org/0000-0002-4936-3684 (AJ); arjunmohan@umass.edu,

(® https: //orcid.org/0009-0000-7680-1371 (AM); chaitrag@umass.edu,

@ https: //orcid.org/0000-0001-8384-6041 (CG)

Abstract

Keywords

Patients with multiple chronic conditions and social needs represent a small percentage of
the population but have a disproportionate impact on healthcare costs and utilization.
Organizations around the United States have created programs, often referred to as com-
plex care interventions, to improve the health and well-being of such patients and reduce
avoidable hospital and emergency department use. In this tutorial, we focus on two emerg-
ing themes in the field: (1) identifying clinically meaningful subgroups in complex care
populations through unsupervised learning methods and (2) describing the key operational
features of interventions with an emphasis on staffing needs and the impact on patient out-
comes. The material presented in this tutorial draws on the research of the Healthcare
Operations Research Laboratory at the University of Massachusetts, Amherst, and its col-
laborating partners. To illustrate these themes and contextualize the details of complex
care delivery, we use a range of patient-level examples, visualizations, descriptive summa-
ries, case studies, and results from the clinical literature.
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of the authors and not of the National Science Foundation.
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1. Introduction

Healthcare expenditures in the United States are disproportionately concentrated in a small
percentage of the population. Five percent of the population accounts for one-half of annual
expenditures, whereas 1% accounts for almost a quarter of annual expenditures (Cohen [14]).
Many individuals among these highest-cost segments have multiple chronic conditions and
experience higher hospital utilization rates, including avoidable hospitalizations, than the

average.

Multiple chronic conditions affect all segments of the U.S. population, but for some indivi-
duals, the presence of other factors, such as homelessness, mental health conditions, substance
abuse, poverty, the lack of employment or insurance, and the presence of disabilities, can
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further complicate the care delivery process and add to the patients’ vulnerabilities. This leads
them to “experience combinations of medical, behavioral health, and social challenges that result
in extreme patterns of healthcare utilization and cost” (Humowiecki et al. [27], p. 11). In the clini-
cal and health services literature, several different terms are used to describe this heterogeneous
subpopulation: multimorbid patients (Skou et al. [58]), patients with multiple chronic conditions,
high-cost high-need patients (Blumenthal et al. [7]), patients with complex medical and social
needs (Martinez et al. [36]), and frequent users (Finkelstein et al. [19]).

Healthcare organizations around the country have developed specialized programs to assist
patients with medical and/or social complexity. The programs are often called complex care
interventions. The goal of such interventions has been to improve the health and well-being of
patients by reducing avoidable emergency department visits and inpatient stays, increasing
access to outpatient primary and specialty care, and connecting patients to social and behav-
ioral resources in the community. The target populations and mechanisms of intervention
have varied considerably. Some interventions have been specifically designed for a particular
demographic and disease. For instance, Naylor et al. [42] describe an intervention in which an
advanced practice nurse assists heart failure patients over 65 years of age after a hospital dis-
charge. Other interventions have focused on the intersection of social risk factors and health.
The Boston Healthcare for the Homeless Program (O’Connell et al. [46]), which uses 600 med-
ical, behavioral health, and social service providers to ensure that individuals and families
experiencing homelessness receive comprehensive, high-quality healthcare, falls in this cate-
gory. In other cases, interventions focus more generally on high-risk patients. The Veterans
Affairs (VA), for example, provides intensive care management through a team of primary
care providers, social workers, psychologists, nurses, and other support staff to patients with
the highest risk of hospitalizations (Zulman et al. [72]).

In fact, programs to assist individuals with complex medical and/or social needs exist in every
community, town, city, or region. They can be led by small not-for-profit organizations, county
public health departments, federally qualified health centers operating in medically underserved
areas, social service organizations, or larger organizations such as hospitals, payers, and health
systems. These efforts are not always visible within mainstream healthcare discussions, but they
are vital nevertheless: they bring to light broader societal and population health concerns. Fur-
thermore, although reductions in costs and decreases in avoidable hospitalizations are important
criteria for complex care programs, among staff members who deliver care, the humanitarian
impulse to genuinely connect with and help the most vulnerable individuals within a community
is an equally important motivation. There’s also a broad consensus that the help provided must
be holistic and comprehensive; that is, the nature of the assistance is not only restricted to indi-
vidual diseases but looks at all of an individual’s medical needs, how they interact with each
other, and also how social and behavioral factors might impede health and wellbeing.

1.1. Motivating Example

We now illustrate how a complex care intervention works with an actual patient example.
The example is from the Camden Coalition, a New Jersey—based organization renowned in
the field of complex care. The Coalition uses care teams consisting of community health work-
ers, nurses, social workers, and clinical psychologists to assist patients. The Healthcare Opera-
tions Research laboratory has collaborated with the Camden Coalition since 2015. See
Section 3.3 for a detailed case study of the operational features of their care model.

Figure 1 shows the nine-month pre- and post-intervention timeline for a 52-year-old man liv-
ing in Camden, New Jersey. The care team enrolled the patient in their intervention in June
2013. Interviews and an assessment of the electronic health record revealed that the patient
had three chronic conditions: hepatitis C, congestive heart failure, and diabetes. The care team
also established that the patient did not have housing, was unemployed, had a substance use
disorder, and had mental health conditions. This is a classic example of a patient with high
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Figure 1. (Color online) Timeline of complex care interventions for a patient. The figure shows an
example of a complex care intervention: the event sequence and timing for a 52-year-old man before and
after being helped by a multidisciplinary care team. Healthcare expenditures in nine months prior to
enrollment with care team totaled $112,583. Healthcare expenditures after enrollment with care team
totaled $3,955. “Inp. Stay” refers to inpatient hospitalization.
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medical and social complexity. In the nine months before enrollment with the care team, the
patient had three emergency department (ED) visits, seven inpatient stays totaling 61 days,
and $112,583 in hospital-based healthcare expenditures.

After enrollment, the care team worked closely with the patient, providing him with transi-
tional housing and connecting him with a primary care provider (PCP), a cardiologist, a reha-
bilitation center for drug abuse, and a behavioral health program at Rutgers University. In
the nine months after the intervention, the patient had only one three-day inpatient stay; the
total hospital-based expenditures in this period were $3,955. The social worker in the care
team facilitated a process by which the patient eventually received social security income and
Medicaid healthcare insurance. The intervention required significant care team capacity,
totaling 236 hours across the team. This included 139 hours from the social worker, 58 hours
from the licensed practical nurse, 24 hours from the health coach, and 15 hours from the com-
munity health worker. Even if we assume that each member of the care team is paid $35 per
hour and factor in the costs of care team hours, the total reduction in costs is more than
$100,000. The care team’s encounters with the patient are not shown on the postenrollment
timeline in the figure, but if they were, they would present as a clustered series of points lead-
ing up to the principal highlights (such as the PCP visit).

It is important to not generalize based on a single example: Reductions in costs and utilization
for many medically and socially complex patients are highly stochastic and vary significantly
between individuals. Indeed, the Camden Coalition’s randomized control trial (Finkelstein et al.
[19]) demonstrates that hospitalizations and costs in individuals with similar medical and social
complexity who did not receive the intervention can show a similar drop due to regression to the
mean: “a statistical phenomenon that can make natural variation in repeated data make look
like real change” (Barnett et al. [4], p. 1).

However, the example does illustrate the hypothesis underlying the interventions: that a
care team can help patients (1) improve self-efficacy and well-being by enabling medical and
social support, including access to primary and specialty care appointments, housing, employ-
ment, and health insurance and (2) reduce adverse and costly events such as emergency visits,
medication-related complications, and hospitalizations. The example also illustrates that a
truly holistic intervention is not limited to only medical issues, but spans other sectors, such
as housing, employment, and legal assistance.
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1.2. Focus and Organization of Tutorial

Intervention for individuals with complex health and social needs is a still emerging field and
many open questions remain in both the clinical and operations research literature. This tuto-
rial has two main parts.

1.2.1. Segmentation of Clinical Profiles. The first part discusses how to segment com-
plex care populations into clinically meaningful subgroups. Almost all complex care programs
provide care to heterogeneous groups of patients with multiple chronic conditions. Therefore,
an important aspect of clinical segmentation is the identification of patterns in chronic condi-
tion co-occurrence. In Section 2, we introduce how the presence of multiple chronic conditions
(MCCs) in patients can significantly increase the complexity of medical treatment. Next, in
Section 2.1, we illustrate key patterns in the MCC prevalence using the Medical Expenditure
Panel Survey and describe how chronic condition combinations observed in patients can
exhibit a high degree of heterogeneity. To deliver personalized care to patients, clinicians, epi-
demiologists and administrators of complex care programs need a systematic, data-driven
understanding of how chronic diseases that arise from different body/organ systems are associ-
ated with each other. Co-occurrence patterns can then be used to identify whether treatment,
medications, and lifestyle changes for one disease are concordant or discordant with those of
other diseases. For instance, Zulman et al. [71] point out that some disease subsets (such as
high blood pressure, high cholesterol, and heart disease) are considered biologically linked and
concordant: This explains why lifestyle changes related to diet and exercise often overlap for
these conditions. Other disease subsets such as heart disease, depression, and asthma are con-
sidered discordant because they have very different treatment and management strategies.

To identify co-occurrence patterns and interpretable subgroups among complex care
patients, we describe two unsupervised learning approaches: association rule mining (Section
2.2) and latent class analysis (LCA) (Section 2.3). Association rule mining is a data mining
methodology that is widely used in the retail context to quantify groups of items that are
frequently purchased together. In our case, we apply the method to identify groups of
chronic diseases that frequently occur together. Association rule mining goes further, how-
ever; once the groups of co-occurring diseases have been identified, it quantifies pairwise
associations/correlations between different subsets of diseases. This creates a comprehensive
database of relationships that can be used by clinicians in complex care programs. Next, we
focus on LCA, a method of clustering that is widely used in the clinical literature to infer
subgroups. In both sections, we provide case studies, visualizations, and examples to illus-
trate insights.

1.2.2. Operational Details, Staffing Needs, and Impact on Patient Outcomes. In
the second part of the tutorial (Section 3), we illustrate the operational features of complex
care programs, a theme that has not received much attention in the literature. We illustrate
how complex care interventions are essentially staffing interventions, where staff refers to
some combination of physicians, nurses, community health workers, and social workers who
assist patients through a series of recurring and stochastic service interactions. We summarize
two examples of complex care programs (Section 3.2) and provide a detailed case study of our
collaborating partner, the Camden Coalition (Section 3.3). We also emphasize how the Cam-
den Coalition and other programs have tested the impact of their care delivery models on a
variety of patient outcomes through randomized control trials (RCTs). Although staffing has
been one of the most widely studied topic areas in healthcare operations research, few (if any)
studies have demonstrated the impact on patient outcomes. RCT-based evaluations of com-
plex care interventions therefore provide a unique opportunity to directly evaluate how ser-
vice interactions between the care team and the patient impact outcomes. The Camden
Coalition study also shows the benefits of rigorously collecting data related to patient-care



Balasubramanian et al.: Interventions for Patients with Complex Medical and Social Needs
362 Tutorials in Operations Research, (©) 2024 INFORMS

team encounters, and how such data can be used to (a) create staffing estimates for different
members of the care team and (b) evaluate whether patients who engaged more with the care
team had better outcomes. The case study provides a template that can be adapted by other
complex care programs.

2. MCCs and Complexity of Medical Care

Chronic diseases are defined as conditions that last a year or more, require ongoing medical
attention, and/or limit the activities of daily living (Buttorff et al. [9]). Examples of highly
prevalent chronic conditions include high blood pressure, diabetes, depression, inflammatory
joint disorders, and asthma. MCCs refer to the presence of two or more chronic conditions in
an individual. In the United States for example, the number of individuals with zero, one,
two, three, four, and five or more chronic conditions was estimated to be 40%, 18%, 13%, 9%,
7% and 12% respectively in a RAND report. Although 40% of the population has no apparent
chronic conditions and contributes only 10% of total healthcare costs, 12% of the U.S. popula-
tion has five or more chronic conditions and this segment accounts for 41% of total healthcare
costs (Buttorff et al. [9]).

The RAND report on the prevalence of multiple chronic conditions is based on the Medical
Expenditure Panel Survey (MEPS) from 2014. MEPS [37] is a set of large-scale, nationally repre-
sentative surveys taken annually of families and individuals, their medical providers, their insur-
ance companies, and their employers. Approximately 30,000 individuals are surveyed each year.
MEPS is also a rich source of patient-level data and the basis of our analysis in this section. Medi-
cal encounters for each surveyed individual, the type of specialist or other care provider seen, the
associated diagnoses code, and the exact month and year in which the encounter happened are
anonymized and released to the public each year. By merging various data files, longitudinal
information about all health events for each surveyed individual can be assembled for two years.

Example. Consider the following patient example MEPS 2010 and 2011. In Figure 2, we
present details of the total outpatient visits for a single 82-year-old male patient with high
blood pressure, coronary heart disease, angina pectoris, joint pain, walking, and vision limita-
tions. The patient had 79 doctor’s office visits spread over 12 different specialties in the 2-year
survey period. In addition, the patient also had two inpatient stays and refilled more than 200
prescriptions.

Most MCC patients, even younger patients in the 40-65 age group, have a similar utiliza-
tion profiles, and it is easy to see why they have an outsize impact on healthcare utilization
and costs. The example also shows how challenging this two-year period must have been for
the patient and his caregivers. The burden of scheduling appointments, arranging transporta-
tion, checking insurance paperwork and payments, ensuring the right medications are being
taken at the right time, and reconciling potentially conflicting advice received from the differ-
ent specialists: All such responsibility falls on the patient and the patient’s caregivers.

Patients with MCC also pose several challenges for healthcare providers. The presence of
MCCs leads to visits to a large number of specialists because multiple organ/body systems
need to be monitored. Furthermore, MCC patients are often on more than five unique medi-
cations, and the risk of interactions between medications is high.

Medical complexity, in turn, leads to operational challenges. Physicians must spend more
time communicating with each other, the patient, and the patient’s family, by email, phone,
and messaging systems, to ensure that moving parts of a patient’s care are not out of sync.
They must also spend greater time evaluating laboratory tests and other diagnostic informa-
tion in the patient’s electronic health record. Thus, all clinicians involved must budget a
greater nonvisit or non—face-to-face capacity for MCC patients. The burden of coordinating
care most often falls on the patient’s PCP (Rossi and Balasubramanian [54], Press [49]).
MCC patients also have higher visit rates, which in turn implies shorter intervals between
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Figure 2. (Color online) MCC patient profile: an Example.

Patient Profile (MEPS 2010-
2011)

* Age: 82 years

* Gender: Male

+ Conditions: High blood
pressure, coronary heart
disease, angina pectoris

+ Diagnosed: High blood
pressure (since age 63),
Diabetes (since age 82)

Impact

« Office-based visits: 79

* Specialties: 12

* In-patient stays: 2 (in 2010)

* Prescriptions: 124 (in 2010),
90 (in 2011)

* Heart attack (age 77)

+ Other conditions: Joint pain,
walking and vision
limitations

Notes. The outer circles stand for the type of physicians visited: PCP, primary care physician; Int. Med., internal med-
icine; Onc., oncology (cancer specialist); Orth., orthopaedics (musculoskeletal specialist); Gast., gastroenterology;
Urol., urology; ENT, ear-nose-throat, also known as Otorhinolaryngology; Rheu., rheumatology (specialist for muscu-
loskeletal diseases and autoimmune conditions); Derm., dermatology; Opth., ophthalmology; Card., cardiology; Neph.,
nephrology (kidney specialist). The numbers on the edges indicate the number of visits to the respective specialty in
the 2 years.

appointments. This means that each provider must have sufficient appointment capacity to
accommodate MCC patients at short notice.

Such complexities in care delivery are precisely the motivation for setting up a specialized
team dedicated to assisting MCC patients and coordinating their care. This eases the burden on
patients and their caregivers and makes it easier for all clinicians involved in the patient’s care.

2.1. Heterogeneity in Chronic Condition Combinations

We now turn to another complicating factor in complex care delivery: the high levels of het-
erogeneity observed in MCC combinations. To understand what this means, consider the
chronic condition combinations of three different patients from MEPS. Conditions for each

IR}

patient are separated by “;

Patient A (5 conditions): {Lipid Metabolism Disorders; Anxiety; Depression; Non-Traumatic
Joint Disorders; Spondylosis/Intervertebral disc disorders/other back issues}

Patient B (5 conditions): {Diabetes; Lipid Metabolism Disorders; High Blood Pressure; Coronary
Atherosclerosis/Heart Disease; Connective Tissue Disease}

Patient C (6 conditions): {Diabetes; Lipid Metabolism Disorders; High Blood Pressure; Chronic
Obstructive Pulmonary Disease (COPD) and Bronchiectasis; Coronary Atherosclerosis/Heart
Disease; Spondylosis/Intervertebral disc disorders/other back issues}

To create the combination for each patient, we first identified all diagnosis codes for the
patient in a year related to different visit types (outpatient, inpatient, emergency room, home
health visits, etc.). Diagnosis codes in MEPS are based on the International Classification of
Diseases (ICD), maintained and revised by the World Health Organization (WHO). Each
diagnosis code for the patient is then mapped to a higher-level grouping, the U.S. Agency of
Healthcare Research and Quality’s Clinical Classification Software (CCS) codes. These are
clinically meaningful aggregates of ICD diagnosis codes. (ICD codes could be directly used to
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create combinations, but the diagnosis descriptions are too detailed for meaningful patterns
to emerge.)

Names of some of the conditions, such as diabetes, high blood pressure, anxiety, and depres-
sion, are well known. Others are less familiar to a general audience. Lipid metabolism disor-
ders refers to abnormal cholesterol levels; spondylosis/intervertebral disc disorders/other
back issues to a specific subcollection of related musculoskeletal spine problems; Nontrau-
matic joint disorders to a different subcollection of musculoskeletal problems; coronary ath-
erosclerosis to a subcollection of heart disease diagnoses; chronic obstructive pulmonary
disease (COPD) and bronchiectasis to a subcollection of lung/respiratory diagnoses.

We notice the patients share certain subsets of conditions. Patients B and C, for example,
share a subset of four conditions: diabetes; lipid metabolism disorders; high blood pressure;
and coronary atherosclerosis/heart disease. However, the combination for each of the patients
is unique in that the full set of conditions for a patient is not repeated in another. Unique com-
binations lead to unique clinical profiles, requiring the patient’s treatment plan to be
personalized.

In a four-year extract of the MEPS data set (2016-2019), we found 34,880 unique chronic
condition combinations involving two to seven diseases. Let K denote the number of chronic
conditions in a combination and let Nk denote the set of all unique combinations of size K.
Let Nk, SNk denote the set of combinations of size K that appeared in [ different years
where 1=1,2,...4. Note that [N x| =31, |Nk,|. Combinations that appeared in all four
years have a high degree of consistency (they are also relatively more prevalent), whereas
combinations that appear in just one of the five years are rare and often appear in a single
patient.

In Table 1, we show the |[N'k| and | Nk | for K =2,3,...,7. For instance, we found 7,842
unique combinations of size 4 in MEPS 2016-2019. Of these, 7,350 (more than 93%) combina-
tions appeared in only one of the four years (i.e. they were rare enough to be observed only in
one year); 401 appeared in two of the four years; 63 appeared in three of the four years; and
28 appeared consistently in all four years.

An increase in K aggravates this pattern sharply: the vast majority of combinations
with five, six, and seven conditions rarely repeat beyond a single year. This is because
each combination has a very low prevalence. Yet, paradoxically, there are such a large
number of such combinations that they add up to a high combined prevalence in the
population: Recall from the introduction of Section 2 that 19% of the U.S. population,
that is, around 60 million individuals, had four or more conditions in 2014. Rezaee et al.
[51] aptly call this phenomenon “the high prevalence of low prevalence chronic disease
combinations.” This pattern is not just restricted to MEPS; it has also been found in Med-
icaid data (Sorace et al. [62]).

In the next section, we show how association rule mining can be used to systematically (a)
identify the most frequent subsets of diseases found in chronic condition combinations; and
(b) establish pairwise relationships between subsets.

Table 1. Cardinality of sets N g, N'g; for K =2,3,...,7 based on MEPS 2016-2019.

K [Nkl [Nk 1l [Nk 2l [Nk 3l [Nk 4l
2 3,496 1,792 750 471 483
3 7,929 6,592 977 238 122
4 7,842 7,350 401 63 28

5 6,538 6,355 170 13 0

6 5,079 5,025 53 1 0

7 3,996 3,963 33 0 0
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2.2. Identifying Chronic Disease Co-Occurrence Patterns Through
Association Rule Mining

Our presentation of association rule mining adapts the notation used in Hastie et al. [25]. Sup-
pose we have j=1,2,..., p diseases, and the binary variable Z; denotes whether a patient has
disease j (Z;= 1) or not (Z; = 0). The goal is to find subsets of the p variables that frequently
take on a value of one in a data set. Suppose that we have i=1,2,..., N patients in the data
set. Each variable Z; is assigned two values: z; ; = 1 if the jth disease is present in patient 7,
z; i = 0 otherwise. Subsets of diseases that jointly take on the value of one represent diseases
that frequently co-occur together: These are called frequent itemsets. In the retail/grocery
store setting, variables that take on a value of one represent items that have been purchased
together; hence, the method described later is often called market basket analysis.

More formally, we seek to find an itemset of diseases K C 1,2,...,p that co-occur with
“high” probability. This probability can be written as Pr[Nexc(Z; = 1)]. In the context of the
data set, the estimated value of this probability is simply the fraction of the N patients in the
data who have all the diseases in K:

Pr lﬂ(zk =1)

kelC

1 [
=5 lznzk] : (1)
=1 kel

We call this estimated probability the “support” or “prevalence” and denote it by T(K). A
patient ¢ for whom [ ], ,zix = 1 has all the diseases in K. In association rule mining, we seek to
identify all disease itemsets or subsets (we use these terms interchangeably) that have a sup-
port higher than some predetermined value ¢. Formally, we seek all subsets K; such that
{K;| T(K;) > t}. In other words, there are 2P disease subsets in total, of which we are inter-
ested only in those that appear in the least ¢t* N patients of the data set. The value of ¢t must
be carefully calibrated. It cannot be too large because there are a large number of low-
prevalence disease subsets. Many of these low-prevalence subsets would not be included if ¢ is
large. However, because of the combinatorial structure of the frequent itemsets problem,
small values of ¢ make the problem computationally challenging.

The “Apriori” algorithm (Agrawal and Srikant [1]) efficiently computes all the itemsets for
a given value of t. It uses the following principle to eliminate subsets: Any item set L that
comprises a subset of the items in I must have support greater than or equal to that of /C,
indicated by LS K = T(L) > T(K).

We provide a brief overview of how the Apriori algorithm works. In the first pass through
the data, the algorithm computes the support for all single itemsets; that is, it computes how
frequently individual diseases occur. Diseases that have support below ¢ are eliminated. In the
next pass, it computes support of all disease pairs from the diseases that survived the first
pass; itemsets of size two with support below ¢ are dropped. Each successive traversal only
considers itemsets formed by combining those that survived previous passes. To generate all
frequent itemsets of size |K| = m, we need to only consider ancestral items of size m — 1 or
less that cross the threshold ¢. The algorithm keeps traversing through the data until all can-
didate itemsets from the preceding pass have support below t.

Sample Results. We applied the Apriori algorithm to the data set of n = 28,512 individuals
surveyed in MEPS 2019. Ideally, the data set should be segmented based on age, race, geographic
location, and other demographic characteristics. However, in the interest of keeping the analysis
concise, we applied it to the entire data set. Furthermore, segmenting the population reduces the
number of patients within each segment, making it more difficult to identify frequent itemsets.
Large health systems that care for millions of patients (e.g., Veteran Affairs Health System) are
better suited for Apriori analysis that considers demographic adjustments.
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The input to the algorithm was a binary matrix with each row corresponding to a patient
and a column to 1 of 274 Clinical Classification Software (CCS) codes. For instance, CCS 49
indicates diabetes; CCS 98 indicates high blood pressure (essential hypertension); CCS 204
indicates nontraumatic joint disorders; and so on. We set the minimum support threshold
t=0.0003, which implies that all itemsets identified in the Apriori algorithm appear in at least
0.0003 * 28,512 ~ 10 patients. This yields hundreds of dyads, triads, quartets, and quintets;
we show some examples of these frequent subsets/itemsets here. For each subset, we provide
the name of the CCS code and its number; codes are separated by a “;”. We also provide sup-
port for each itemset.

e {Lipid Metabolism Disorder (53); Essential Hypertension (98)}, Support: 0.098

o {Anxiety Disorders (651); Mood Disorders (657)}, Support: 0.032

e {Non-Traumatic Joint Disorders (204); Spondylosis/Intervertebral disc disorders/other
back issues (205)}, Support: 0.017

o {Lipid Metabolism Disorder (53); Essential Hypertension (98); Diabetes (49)}, Support:
0.036

e {Lipid Metabolism Disorder (53); Diabetes (49); Coronary Atherosclerosis/Heart Dis-
ease (101)}, Support: 0.006

o {Lipid Metabolism Disorders (53); Essential Hypertension (98); Coronary Atherosclerosis/
Heart Disease (101); Chronic Obstructive Pulmonary Disease and Bronchiectasis (127)}, Sup-
port: 0.002

o {Lipid Metabolism Disorder (53); Essential Hypertension (98); Diabetes (49); Non-
Traumatic Joint Disorders (204); Spondylosis/Intervertebral disc disorders/other back issues
(205)}, Support: 0.001

As subset sizes get larger, we begin to see diseases from different body systems appear
together. For instance, in the last subset, metabolic diseases such as lipid metabolism disorder
(abnormal cholesterol) diabetes, essential hypertension (high blood pressure), and diabetes
combine with musculoskeletal conditions such as joint disorders and spondylosis/invertebral
disc disorders/back issues. In the second to last subset, we see metabolic (abnormal choles-
terol, high blood pressure), heart (coronary atherosclerosis), and lung-related conditions
(chronic obstructive pulmonary disease and bronchiectasis).

We visualize this pattern in more detail in Figure 3. The middle panel in the figure shows a
selection of subsets involving four or five condition codes. The right panel shows the fre-
quency, that is, the number of patients where the subset was present. The left panel shows
five clinically meaningful disease groupings of condition codes: musculoskeletal; metabolic;
mental health; respiratory; and cardiac. For instance, the cardiac grouping collects condition
codes 100 (acute myocardial infarction),101 (coronary atherosclerosis and heart disease), and
105 (conduction disorders), all of which are heart related. Each disease grouping is marked by
a different shape so that the groupings present in a subset can be easily identified. We observe
that all itemsets contain diseases from at least two different groupings.

As discussed earlier, diseases within a grouping can often be concordant; for instance, life-
style changes concerning diet and exercise are similar for diabetes, high blood pressure, and
high cholesterol. However, this may not be true when diseases belong to different groups. For
instance, exercise is recommended for cardiovascular disease, but the presence of osteoarthri-
tis or chronic obstructive pulmonary disease (COPD) may make exercise difficult (Zulman
et al. [71]). In such cases, the diseases are discordant. Diseases that map to different body sys-
tems may also increase the risk that a particular medication for one disease may have compel-
ling contraindication (i.e., negative outcome) for another. Thus, frequent itemset analysis
provides a systematic method for identifying the most prevalent patterns of chronic condition
co-occurrence, which in turn can be used to guide further research on medication, lifestyle
changes, and treatment options.
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Figure 3. Frequencies (row count) of selected subsets with four and five conditions. Itemsets shown here
contain disease codes from multiple body /organ systems, indicated by different shapes.
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2.2.1. Quantifying Relationships Between Frequent Itemsets. We next discuss how
pairs of frequent itemsets can be analyzed for further insights. We first define an antecedent
itemset A and a consequent itemset B. A and B do not share diseases in common. The associa-
tion rule between A and B is denoted as follows:

A= B. (2)
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We now illustrate three quantities, support, confidence, and lift, related to this association
rule. The support of the rule T(A = B) is the fraction of patients in the data set that have all
the conditions in the union of the antecedent and consequent. The confidence C(A = B) is
defined by Equation (3).

T(A = B)

(A= B) === (3)

This is simply an approximation of the probability of B given A, denoted as Pr(B|A). Here,
Pr(A) represents the probability of item set A occurring in a basket, shorthand for
Pr([TesZi = 1). The “lift” of the rule is given in Equation (4).

C(A=B) T(A= B) 4
T(B)  T(A)T(B) 4)

This is a ratio of the joint occurrence of A and B (numerator) to the product of individual
occurrences (denominator). If A and B are independent of each other, the ratio will be close to
one. If A and B are positively correlated with each other, the ratio will be higher than one. If
they are negatively correlated, the ratio will be between zero and one.

The objective of this analysis is to generate association rules (2) that exhibit high levels of
both support and confidence (Equation (3)). The Apriori algorithm is used to identify all item
sets with significant support, determined by the support threshold ¢. Now an additional
confidence threshold ¢ is established, and any rules formed from pairs of itemsets (2) that
surpass this confidence threshold are identified and reported. More formally, we now generate
a set of rules between all pairs of mutually exclusive itemsets that meet the following two
criteria:

L(A= B) =

T(A= B)>t and C(A= B)>c. (5)

Alternatively, instead of confidence, we can generate rules that cross an additional lift thresh-
old &

T(A= B)>t and L(A= B)>1l (6)

Sample Results. To illustrate T(4A = B), C(A = B), and L(A = B), we use one anteced-
ent, A: {Diabetes, High Blood Pressure, Cholesterol}, and the three consequents:

e B;: {Chronic obstructive pulmonary disease; Asthma}
e B,: {Joint Disorders; Spondylosis, invertebral disc disorders, other back problems}
e Bs: {Anxiety Disorders; Mood Disorders}

The antecedent is the most prevalent triad of chronic conditions in the United States; the
conditions in the triad belong to the group of metabolic diseases. The three consequents are
pairs of chronic conditions chosen from respiratory, musculoskeletal, and mental health condi-
tions respectively. We deliberately chose antecedents and consequents from disparate body
systems to see whether any noteworthy associations were indicated by confidence or lift. We
used the same MEPS 2019 data for this analysis. Our binary data set comprises n = 28,512
patients (rows) and 274 Clinical Classification Codes (columns).

There are n(A) = 1,050 patients in the data set with the three diseases that constitute the
Antecedent group (A). Therefore the support of the antecedent is

T(A) = % =0.036 Support = 0.036.



Balasubramanian et al.: Interventions for Patients with Complex Medical and Social Needs
Tutorials in Operations Research, (©) 2024 INFORMS 369

Association Rules for Antecedent A and Consequent B;:

Diabetes
High blood pressure
Cholesterol

Chronic obstructive pulmonary disease and bronchiectasis
Asthma

Support = 0.0015 (43 patients), Confidence = 4.1%, Lift = 4.23

Association Rules for Antecedent A and Consequent Bs:

Diabetes
High blood pressure
Cholesterol

Other non-traumatic joint disorders
Spondylosis; intervertebral disc disorders; other back problems

Support = 0.0016 (47 patients), Confidence = 4.5%, Lift = 2.57

Association Rules for Antecedent A and Consequent Bs:

Diabetes
High blood pressure
Cholesterol

Anxiety disorders
Mood disorders

Support = 0.0021 (62 patients), Confidence = 5.9%, Lift = 1.8

Although confidence values differ only slightly across the three comparisons, the lift values are
greater than one for all three comparisons. In particular, the lift of the metabolic diseases in the ante-
cedent with the two respiratory diseases (COPD and asthma) in consequent B; is quite high at 4.23.

These results should be treated with caution because the analysis uses a single year of
MEPS data and factors such as age, gender, and socioeconomic indicators are currently not
included in the analysis. Nevertheless, the previous examples illustrate how association rule
mining can be used to create a comprehensive database consisting of thousands of pairwise
associations quantified with support, confidence, and lift. The database can systematically
identify disease subsets with high pairwise confidence and lift values. If a clinician sees a
patient with a particular subset of diseases, confidence and lift could be used to determine the
risk of developing other disease subsets and thereby formulate prevention strategies. Subsets
that have high pairwise confidence or lift can be prioritized for (i) resource planning and coor-
dination among the relevant specialties; (ii) the creation of guidelines for medication choices
(in particular to avoid contraindications), treatment options, and lifestyle changes; and (iii)
to postulate physiological connections between diseases that belong to different organs/body
systems.

2.3. Identifying Interpretable Subgroups Through LCA

LCA is a statistical method used to identify distinct subgroups, known as latent classes,
within populations. These classes are characterized by observable traits known as indicator
variables, for example, the age group of a patient and whether they have certain
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comorbidities. The assumption behind latent variable models is that the observed distribution
of the indicators results from a finite latent mixture of underlying distributions. These models
are used to identify solutions that can accurately represent the latent variables, within which
the indicators follow the same distribution (Sinha et al. [57]).

The indicator and latent variables can be either continuous or categorical. In the healthcare
context, continuous variables could be the number of ED visits, the number of days of inpa-
tient hospitalization in a given time period, the patient’s age, their comorbidity index (such
as Charlson Comorbidity Index; Charlson et al. [13]), healthcare utilization/total expenses,
and so on. Some of these variables, such as ED visits, take on discrete values but can be mod-
eled as continuous variables. Categorical indicator variables could be whether they have cer-
tain chronic conditions, their mobility level (good, needs some support, needs wheelchair),
their self-rating of health (fair, good, not good, poor), and so on. Depending on the types of
indicator and latent variables in our data set, different latent variable models are applicable
as described in Skrondal and Rabe-Hesketh [59]. For instance, when both variables are contin-
uous, models such as the common factor model, structural equation model, linear mixed
model, and covariate measurement error model are appropriate. If the indicator variable is
continuous and the latent variable is categorical, the latent profile model is applicable. In con-
trast, when the indicator variable is categorical and the latent variable is continuous, the
latent trait model (also known as item-response theory) is suitable. Finally, when both vari-
ables are categorical, the latent class model is the recommended approach. In this tutorial,
our primary focus is on exploring the LCA algorithm. However, by delving into this algo-
rithm, we aim to establish a foundational understanding that will serve as a springboard for
other related algorithms as well.

2.3.1. LCA Algorithm. LCA uses the expectation-maximization (EM) algorithm to
determine the underlying latent classes. The process begins by randomly assigning model
probabilities, encompassing both the overall probability of observing each class in the given
population and the probability of a specific response given the latent class probability. This
entails treating the randomized class membership as an observed variable. During the expec-
tation (E) step, posterior probabilities of class membership are calculated. This involves
determining, for a given pattern of indicator values, the probability that the pattern belongs
to each class. These probabilities are mutually exclusive for each pattern and sum to one. The
maximization (M) step entails the assignment of classes based on the posterior probabilities
derived in the E-step. Subsequently, the model probabilities (or model parameters) are recal-
culated. The E- and M-steps are alternatively repeated until the change in the log-likelihood
value stabilizes, indicating convergence (Vermunt [64]).

The algorithm for LCA can be further explained using an illustrative example adapted
from Vermunt et al. [65]. Let us consider three chronic conditions, anxiety, depression, and
substance-related disorders, which are typically prevalent among patients with mental or
behavioral illnesses. Let C;, Cs, and Cs refer to the binary indicator variables representing
whether a patient has anxiety, depression, and substance abuse, respectively. The vector
notations C and c are used to refer to a complete response pattern. Furthermore, let X be the
underlying latent variable and N the number of latent classes; each latent class (LC) is enu-
merated by the index z, x=1,2,..., N. In this example, the goal is to identify subgroups of
patients exhibiting varying levels of mental illness diagnoses.

The fundamental concept behind an LC model is that the probability of obtaining a
response pattern ¢, P(C = c¢), is the weighted average of the N class-specific probabilities
P(C =c|X =1z), that is

N
P(C=c)=)» P(X=2)P(C=c|X=2), (7)

r=1
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Table 2. Prevalence of different response patterns in the data.

Expanded frequencies

Cy Chy Cs Frequency P(X=1|C=c¢) P(X=2|C=c) X=1 X=2
0 0 0 696 0.998 0.002 694 2

0 0 1 68 0.929 0.071 63 5

0 1 0 275 0.876 0.124 241 34
0 1 1 130 0.168 0.832 109 21

1 0 0 34 0.848 0.152 29 5

1 0 1 19 0.138 0.862 3 16

1 1 0 125 0.080 0.920 10 115
1 1 1 366 0.002 0.998 1 365

Source. Adapted from Vermunt and Magidson [65].

where P(X = z) is the proportion of patients belonging to the LC z. The assumption of local inde-
pendence, that is, mutual independence of the indicator variables within each LC, is formulated as

3
P(C=C|X=.7J)=HP(C¢=C¢|X=.CC). (8)
i=1
Once the conditional response probabilities P(C; = y;| X = x) have been estimated, observing
the variability among these probabilities across the LCs reveals the distinct features of each
class. Combining Equations (1) and (2), the model for P(C = ¢) can be written as

N 3
P(C=c)=> P(X=a)[[P(Ci=c:|X =2). (9)
=1 i=1

The data given in Table 2 results in the model described in Table 3.

The two classes identified have 62% and 38% of the patients. Because the first class has
higher probabilities of having the response 0 (patient does not have the chronic condition) for
the three indicator variables compared with the second class, the LCs can be named “no seri-
ous mental health issues” and “serious mental health issues,” respectively.

The posterior class membership probability, that is, the probability of belonging to class z
given a certain response pattern c, can be used to classify patients into the appropriate LC.
This can be calculated using Bayes rule as

(10)
The class membership probabilities P(X = x) reported in Table 3 are based on modal assign-

ment, which means each patient is assigned to the LC with the highest P(X = z|C = ¢) value.
This is the most commonly used classification rule in LCA and other clustering methods. The

Table 3. Probabilities for two latent classes.

X =1 (no serious X = 2 (serious
mental health issues) mental health issues)
P(X=1) 0.62 0.38
P(C, =0]X = 2) 0.96 0.23
P(Cy=0|X=1) 0.74 0.04
P(C;=0]X = 2) 0.92 0.24

Source. Adapted from Vermunt and Magidson [65].
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average posterior membership probabilities within each class are indicators of the effective-
ness of the latent variable in segregating patients into distinct subgroups. In this example, the
average posterior membership probabilities are 0.913 for the “no serious mental health issues”
class and 0.903 for the “serious mental health issues” class, indicating a high likelihood that
patients truly belong to their respective groups. In other words, patients within each class
exhibit similar characteristics or features that align with the classification.

Algorithm 1 provides a more comprehensive explanation of the iterative procedure men-
tioned previously. If there are [ unique response patterns in the data and f; is the frequency of
each pattern 4, the log-likelihood can be evaluated for each iteration as follows:

1
InL = Zﬁ;lnP(C =¢)), (11)
=1
N
P(C=c) =) P(X=1)P(C=c]|X=uz). (12)

J=1

The algorithm is run multiple times with different random initializations to avoid finding just
the local optimum. Various tools and software, including Mplus (Muthén and Muthén [41]),
the poLCA package in R (Linzer and Lewis [34]), and the Stepmix package in Python (Morin
et al. [38]), are used to implement LCA. These packages typically include customizable EM
optimization parameters, often with predefined default values. For instance, in Stepmix, para-
meters such as the maximum number of EM iterations, the tolerance for stopping the optimi-
zation (default 107?), and the number of different initializations to try are provided (Morin
et al. [38], Lacourse et al. [33]).

Algorithm 1 (LCA Algorithm)

1: Initialize the current model probabilities in Table 3 with random values.

2: Calculate the conditional response probabilities using Equation (8) and the complete
response probabilities using Equation (9), based on the current model probabilities.

3: Evaluate the log-likelihood based on the newly found pattern probabilities P(C = c¢),
using Equations (11) and (12).

4: [E-Step| Calculate the class membership probabilities using Equation (10) and create
an expanded frequency table based on these probabilities for each pattern (i.e., the
new class membership frequencies for each pattern).

5: [M-Step| Recalculate the model probabilities in Table 3 based on values in the
expanded frequency table.

6: Repeat steps 2-5 until the change in log-likelihood stabilizes to zero or some acceptable
minimum threshold.

2.3.2. LCA in Practice. While using LCA in practice, it is imperative to account for cer-
tain key considerations.

1. Multicollinearity: Mixture modeling assumes “local independence” within latent clas-
ses, implying that observed variables are independent within each class. However, the
degree of acceptable correlation between variables and its impact on model fit is uncertain.
Sensitivity analyses, such as excluding highly correlated variables or allowing them to be
correlated in the model, are recommended to assess the effects on class composition and
model fit statistics, ensuring robustness and accuracy in LCA (Sinha et al. [57]).

2. Sample Size: Prior studies indicate that sample sizes between 300 and 1,000 are suffi-
cient for most of the commonly used fit indices in mixture models. However, for simpler
LCA models featuring only a few well-separated classes, as few as 30 samples might be
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sufficient. Conversely, it is recommended to have larger sample sizes for complex LCA mod-
els with a large number of indicators and classes, to ensure accurate parameter estimation
and identification of true classes (Nylund-Gibson and Choi [45]). It is also important to
check if the sample size within each latent class is big enough to spot meaningful differences
in the predetermined outcome measures, such as clinical outcomes (Sinha et al. [57]). A con-
straint such that each latent class should comprise at least 10% of the patient population
could also be applied, as smaller class sizes may not be substantial for facilitating tailored
interventions (Smeet et al. [60]).

3. Number of Classes: The process of selecting the most appropriate LCA model
involves fitting models ranging from 1 to N classes, where N is the largest reasonable number
of latent classes that might be present in the data, it is subjective to each data set. Fit statis-
tics such as Akaike information criteria (AIC, ideally minimized), Bayesian information crite-
ria (BIC, ideally minimized), log likelihood (ideally maximized), entropy (ideally maximized),
and average latent class posterior probability (ideally maximized) can be plotted against the
number of classes to select the best model. However, it must be noted that the statistical crite-
ria should complement the interpretability of the model. A model exhibiting superior statisti-
cal metrics holds limited utility if it lacks clinical coherence (Weller et al. [67]).

4. Item-Response Probabilities: The probability that an indicator variable takes on a
particular value when the latent class membership is known, is defined as P(C; = ¢;| X = z)
(the values in Table 3). These probabilities represent the strength of the relationship
between the observed indicator variables and the latent variable and are used to interpret
and define the latent classes. In a good LCA fit, we should observe 2 properties: homogene-
ity and latent class separation (Bray [8]). Homogeneity means that all the item-response
probabilities are either close to zero or close to one; that is, there is either a strong negative
or strong positive relationship. Latent class separation refers to the degree to which the
latent classes can be distinguished from each other. If all item-response probabilities are
homogeneous, but have the same strength, there is no separation between variables. Table 4
shows what good and bad fits might look like for the example discussed in Section 2.3.1.

In the healthcare domain, the indicator variable selection depends on the research question
and is generally an iterative process involving preliminary data collection, analysis, model fit
assessments, and feedback from clinicians. The LCA study by Davis et al. used 53 hierarchical
chronic condition categories and identified seven clinically distinctive subgroups: “end-stage
renal disease,” “cardiopulmonary conditions,” “diabetes with multiple comorbidities,” “acute
illness superimposed on chronic conditions,” “conditions requiring highly specialized care,”
“neurologic and catastrophic conditions,” and “patients with few comorbidities” (Davis et al.
[16]). A study by Smith et al. [61] aimed to characterize the impact of multimorbidity on indi-
viduals experiencing homelessness by identifying distinct groups based on medical, psychiat-
ric, and substance use disorder profiles and comparing clinical outcomes across these groups.
Indicators were extracted from EHR for 497 adults referred to the Durham Homeless Care
Transitions (DHCT) program over a period of four years. Five distinct groups were identified

Table 4. Homogeneity and latent class separation.

High homogeneity High homogeneity
+ latent class separation (good fit) + no latent class separation (bad fit)
X=1 X=2 X=1 X=2
P(C,=0|X=1) 0.84 0.13 0.84 0.95
P(Cy=0|X=1) 0.96 0.22 0.96 0.89

P(C;=0|X=1) 0.01 0.89 0.01 0.05
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using LCA: “low morbidity” (referent),” “high comorbidity,” “high tri-morbidity,” “high alcohol
use,” and “high medical illness.” LCA has also been used to categorize the top 10% of care
users or patients with multimorbidity with above-average care utilization, based on charac-
teristics more geared toward their socio-demographic conditions in a study by Smeets et al.
[60]. A cohort of 12,602 patients was divided into four classes distinguished by dominant char-
acteristics such as age, household position, and source of income. The indicator variables used
in the final model can be a subset of the originally chosen variables as well. The original LCA
model included 41 indicator variables, of which 32 were discarded in the final model due to
low statistical relevance (i.e., the item-response probabilities were not distinguishable among
the different classes). The final model used only nine variables to identify the same latent clas-
ses in a more streamlined manner, which made it easier to interpret and analyze.

Once the latent classes have been identified using the indicator variables, associations
and patterns can be determined by analyzing exogenous variables (i.e., data that were not
used in the LC model). For example, in the study by Davis et al. [16], survival rates ranged
from 43% to 88% across the identified subgroups (Table 5). The difference in survival rates
marked a clear difference in the healthcare needs of each subgroup. Likewise, in the
research conducted by Smith et al. [61], individuals categorized under the high medical ill-
ness classification exhibited higher mortality rates within 12 months of being referred to
the DHCT program, in contrast to those classified under the low morbidity category. Addi-
tionally, both the high comorbidity and high tri-morbidity groups demonstrated elevated
risks of drug overdose within the same timeframe following referral compared with the ref-
erent group: low morbidity.

In contrast to these two studies, Smeeths et al. [60] conducted a post hoc analysis on the
prevalence of chronic conditions within latent classes, which were identified using demo-
graphic, biomedical, and socioeconomic characteristics in combination with pharmaceutical
costs. The four latent classes they identified are as follows: “older adults living with partner,”
“older adults living alone,” “middle-aged, employed adults with family,” and “middle-aged
adults with social welfare dependency” (Figure 4). They discovered that diabetes was the
most prevalent across all classes (30.5%43.4%). The second most prevalent condition varied
between osteoarthritis in classes with older adults (21.7%-23.8%), asthma in the middle-aged
and employed group (25.3%), and mood disorders in the group with middle-aged adults with
social welfare dependency (23.1%). Moreover, although there was an increase in the utiliza-
tion of general practitioner (GP) care among the older adult classes over the follow-up period,
it remained fairly consistent among middle-aged classes.

The findings presented in these studies carry significant implications; they showcase how
the integration of social, behavioral, and medical data can yield a detailed understanding of
high-risk patient subgroups, hence opening up possibilities for targeted interventions and
appropriate care planning strategies (Rinehart et al. [52]).

Table 5 Survival rates by group.

Percentage surviving Percentage surviving

through 2011 through 2014
All Top 1% 88 69
Class 1: End Stage Renal Disease 91 68
Class 2: Neurologic and Catastrophic 90 73
Class 3: Cardio-Vascular and Pulmonary 87 66
Class 4: Diabetes with Multiple Comorbid Conditions 80 46
Class 5: Highly Specialized Treatments 81 62
Class 6: Acute Exacerbation of Chronic Conditions 72 43
Class 7: Few Comorbidities 96 88

Source. Data from Davis et al. [16].
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Figure 4. Item-response probabilities of each indicator variable the latent classes, in a Dutch primary
care group.
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3. Complex Care Interventions: Operational Details, Staffing
Needs, and Impact on Patient Outcomes

As described in Section 1, organizations around the country have developed programs or
interventions for patients with complex medical and social needs. In this second part of the
tutorial, we turn our attention to the operational and staffing features of such interventions,
and the evidence of their effectiveness in improving patient outcomes. The section is orga-
nized as follows. After describing the features of complex care programs (Section 3.1), we
summarize two examples (Section 3.2). We then turn to our primary case study: the complex
care program of our collaborating partner, the Camden Coalition (Section 3.3). We provide
patient-level examples of intervention progression, quantify how they vary between patients,
and present an algorithm to adequately staff care teams. We conclude the section with the
Camden Coalition’s RCT-based evaluation of their interventions.

3.1. Features of Complex Care Interventions

Complex care programs across the United States vary considerably in their target population,
staff used, duration of the intervention, and the outcomes evaluated (see Chang et al. [12] for
the most recent systematic review and meta-analysis of programs). However, the programs
do share some key features which we encapsulate in Figure 5. We describe these features in
detail here.

3.1.1. Eligibility. All complex care programs begin with defining the pool of eligible
patients. Eligibility depends on the scope of the intervention. The most common eligibility
criteria include patients with two or more conditions; patients in the top percentiles of annual
medical expenditures; patients with a high number of ED visits or hospitalizations or unique
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Figure 5. Key features of complex care interventions.
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medications; or some combination of these. Patients are typically identified based on data in
electronic health records and claims data and are approached by one or more care team mem-
bers at a primary care appointment or during an inpatient hospitalization.

For specialized programs such as the Boston Healthcare for the Homeless (O’Connell et al.
[46]), chronically homeless individuals in the Greater Boston area living in shelters would be
the eligible population. For the Transitions Clinic (Shavit et al. [56]), a consortium of 45 pri-
mary care programs active in 14 states and Puerto Rico that provides community health
worker support for patients returning to the community from incarceration, the eligible popu-
lation consists of individuals older than 50 with multiple chronic conditions who are about to
be released from prison.

3.1.2. Care Team Composition and Intervention Goals. The intervention begins
when the patient consents to be part of the program. Programs vary widely in the types of
staff members used. Interventions are often provided in teams. Teams can consist of physi-
cians, nurses, community health workers, social workers, pharmacists etc. Even in cases where
the intervention is led by a single member, for instance, community health workers, the staff
member still works with a medical team.

A typical doctor’s visit is generally focused on a specific disease, treatment, procedure,
or resolving a set of symptoms; it often addresses only a small portion of the patient’s full
set of medical needs. Patient-care team encounters in complex care, in contrast, are
designed to consider how all medical conditions, associated medications, and treatments
of the patient interact and affect well-being. Interventions typically begin with the care
team having detailed conversations and interviews with the patient to get a holistic, com-
prehensive picture of the patient’s current situation. A set of patient-centered goals define
the scope of the intervention. The care team tries to facilitate better access to primary,
specialty, and mental health care; some members of the care team even accompany the
patients to their appointments. The care team’s activities also touch on aspects of the
patient’s personal life that are barriers to health and well-being. They include addressing
the lack of family member or peer support, housing instability and homelessness, and chal-
lenges with alcohol and substance abuse.

Such in-depth conversations and related action plans require care team members to be
empathetic and build trust: a slow process that can take multiple attempts and may not
always be successful. The role of community health workers, who often have the same
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socioeconomic background as the patient and in many cases have gone through the same
health and social challenges, is crucial for patient engagement. The intervention ends when
the patient’s immediate goals have been met and they can go about their daily life with mini-
mal support from the care team.

3.1.3. Intervention Progression as a Stochastic Process. From an operational point
of view, the patient and the care team have recurring interactions, shown in Figure 5, creating
a longitudinal event history. This event history is a realization of an underlying stochastic
process. Encounters include interactions in which the patient is present (physically or virtu-
ally) and activities that the care team carries out on behalf of the patient but where the
patient is not present (such as a nurse in the care team calling the patient’s cardiologist, or a
social worker calling a landlord to secure apartment housing for the patient).

The process is stochastic because there is uncertainty in the types of encounters (home
visit, accompanying the patient to a specialty visit, phone call, etc.), the time spent in the
encounter, and the number of days between encounters. The precise sequence of encoun-
ters varies from patient to patient because each patient has a different set of needs. The
duration of the intervention varies significantly between programs, some last for two
weeks, whereas others last for six months or longer. The total time spent by the care team
across all encounters from the start to end of the intervention is often termed as the dos-
age of the intervention. Dosage too can vary significantly between patients, as we will
demonstrate in Section 3.3.

3.1.4. Intervention Outcomes. Complex care programs have tracked a wide range of
patient outcomes such as mortality, hospital and ED visit rates, number of days spent in hos-
pital, and expenditures. Intermediate measures such as the number of outpatient primary
and specialty care visits and whether patients received a primary care appointment after hos-
pital discharge are also of interest because these are indirect indicators that the patient’s
chronic conditions are being managed. In one study (Kangovi et al. [29]), clinical measures
such as systolic blood pressure, blood sugar levels, and the number of cigarettes smoked per
day were tracked. Finally, more qualitative metrics such as patient satisfaction with care and
self-rating of physical and mental health are also collected.

The most common time frames for tracking outcomes are 3-, 6-, and 12-month periods
before and after the start of the intervention. However, simply conducting a pre-post analysis
is methodologically problematic, especially for utilization measures such as the number of hos-
pitalizations and ED visits. Patients are enrolled in complex care programs precisely because
their hospitalizations and ED visits have reached the highest observed percentiles in, say, a
preceding six-month period. In the following six-month period, these same measures are more
likely to exhibit regression toward the mean, that is, they are more likely to drop naturally,
with or without an intervention. This may give the false impression that an improvement has
occurred due to the intervention. The correct approach, therefore, is to include a control
group, that is, track outcomes in similar time periods for a group of eligible patients who did
not receive a complex care intervention.

RCTs are the most unbiased methods to create intervention and control groups. Results of
several complex care RCTs have been published in recent years. However, RCTs are logisti-
cally challenging and costly to organize. Furthermore, complex care RCTs involve a small
percentage (1%-5%) of the population, which results in low trial recruitment rates. Most
trials have a few hundred patients in total across intervention and control arms. Because of
these challenges, most complex care programs are unable to evaluate their outcomes through
RCTs. An alternative to RCTs is to identify a control group retrospectively by matching
covariates through methods such as propensity score matching (Caliendo and Kopeinig [10]).
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3.2. Examples of Complex Care Interventions

Although our primary case study is from the Camden Coalition (Section 3.3), to give a sense
of the diversity of approaches to complex care, we summarize two additional examples of
complex care programs.

3.2.1. Kaiser Permanente Mid-Atlantic States Complex Care Program. In
20172018, the managed care provider Kaiser Permanente started a new Complex Care Pro-
gram (CCP) in the mid-Atlantic states (Roblin et al. [53]). A team consisting of a primary
care physician and a nurse assisted a special panel of patients with advanced clinical disease
and a history of recent hospitalizations. A typical primary care physician has a panel of 1,800
patients, whereas a Kaiser physician dedicated to serving complex care patients was assigned
a panel of 200 patients. This allowed the physician to spend more time on in-person visits
(45 minutes as opposed to the typical 15- or 20-minute visit) in addition to nontraditional vis-
its (visits to the patient’s home or nursing home and video calls). The physician and nurse
team also spent a significant amount of time providing personalized care: reviewing patients’
medical records, reconciling medications prescribed by multiple specialists, and addres-
sing social needs such as financial challenges in making medical payments and lack of
transportation.

A major finding was that patients who were assigned to complex care panels had lower
mortality rates (17.2%) than propensity score-matched control patients (26%) six months
after enrollment in CCP. However, hospital readmission rates six months after enrollment
were not statistically different between CCP patients and matched control patients.

3.2.2. University of Pennsylvania Community Health Worker Program. In this
program (Kangovi et al. [29]), a community health worker (CHW) assisted patients in a high-
poverty region of Philadelphia. The patients had two or more of the following chronic
diseases: hypertension, diabetes, obesity, and tobacco dependence. The program was titled
Individualized Management of Patient-Centered Targets (IMPaCT), and enrollment of
patients happened during a primary care visit. The CHW and the patient worked together to
develop “patient-driven action plans.” For instance, if the patient’s goal was to address obesity
by losing weight through better nutrition, the CHW might accompany the patient to a food
pantry where affordable fresh produce was available. If the patient wanted more information
about diabetes, the CHW would guide them to a diabetes educator at the local YMCA. The
CHW interacted with each of the patients for at least six months from the enrollment date
via phone calls, texts, and in-person visits and facilitated patient support groups. The average
time a CHW spent with a patient, that is, the average dosage, was 38.4 hours.

The CHW-led intervention was tested in a randomized control trial involving 302 partici-
pants (150 in intervention and 152 in control). All patients in the trial collaboratively set a
disease management goal with their primary care physician; however, the intervention groups
received additional support from a CHW (see previous examples) to assist with the goal. The
intervention group saw statistically significant drops in clinical outcomes such as blood sugar
levels, weight loss, and the number of cigarettes smoked per day six months after the inter-
vention. For instance, blood sugar levels, as measured by glycosylated hemoglobin (known
widely as the HbAlc level) dropped by 0.4 points in the intervention group compared with
the preintervention baseline; there was no change in the control group. Self-rated mental
health also improved in the intervention group. 23% of the patients in the intervention group
were hospitalized one year after trial enrollment while the same rate in the control group was
31%. Not all measures improved in the intervention group. For instance, systolic blood pres-
sure (SBP) was reduced by 11.2 points in the control group (a clinically significant reduction)
compared with the pre-intervention baseline; in the intervention group, it was reduced only
by 1.8 points.
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Other evaluations of the IMPaCT program (Kangovi et al. [30], Kangovi et al. [31]) have
yielded generally positive results, and the program has been adopted widely around the coun-
try by state and local governments, insurance providers, and the VA.

3.3. Case Study: Camden Coalition

The Camden Coalition is a multidisciplinary nonprofit organization that works to improve
care for patients with complex health and social needs in Camden, New Jersey, and nation-
ally. We showed an example in Section 1 of how the Coalition uses multidisciplinary care
teams to assist a patient with complex medical and social needs.

Founded by a family physician named Jeffrey Brenner in 2002, the effort grew into a
city-wide initiative (hence the term Coalition) that brought together “hospitals, primary
care, social service providers, and community representatives” in Camden, New Jersey
(Noonan and Craig [44]). The Coalition’s goal is to empower patients with the skills and
support they need to avoid preventable hospital use and improve their well-being. In 2007,
the Coalition piloted its first care team intervention. Since then, it has worked with thou-
sands of people from the Camden region struggling with chronic health issues, addic-
tion, mental health challenges, poverty, unemployment, housing instability, child
welfare issues, and criminal justice involvement. Their work has attracted nationwide
attention and has been featured in The New Yorker (Gawande [22]) and PBS Frontline
(Gawande [21]).

The intervention developed by the Coalition is called the Core Model. In what follows, we
describe and quantify key operational features of the Core Model; see Martinez et al. [36] and
Koker et al. [32] for further details. To enroll patients, the care team first identifies patients
currently admitted in Camden area hospitals with a history of two or more hospitalizations in
the previous six months. Among this set, patients are considered eligible for intervention if
they satisfy two or more of the following criteria:

e Two or more chronic conditions

e Polypharmacy, as defined by five or more medications

A mental health diagnosis

Homelessness

Active substance use

Lack of social support

Difficulty accessing services (e.g., limited physical mobility, language barrier, lack of
transportation, etc.)

The care team approaches the patient in the inpatient setting. The intervention begins
once the patient consents to be part of the program. The patient is assigned to a community
health worker (CHW) and licensed practice nurse (LPN) pair who lead the intervention.
Other team members who assist the pair include a social worker (SW), a registered nurse
(RN), and a clinical psychologist (CP). Patients and the care team collaboratively determine
domains in which the patient needs assistance. The Coalition lists 16 such domains; examples
include medication and medication supplies, transportation support, housing, relationships
with primary care providers, legal assistance, addiction support, etc.

Care team members aim to meet with each patient in their home within five days of dis-
charge to conduct a review of the patient’s current medications. They also aim to schedule
a primary care appointment for the patient within seven days of discharge. Nurses in the
care team (LPN or RN) accompany the patient to the PCP appointment. The care team
continues to assist the patient with clinical and social coordination in the ensuing weeks.
When the team determines that the patient’s clinical and social goals have been met and
can go about their daily lives with minimal support, the patient is said to “graduate” from
the intervention. Otherwise, the intervention is considered “incomplete.” Incomplete
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interventions can happen when a patient cannot be reached despite multiple attempts by
the care team, is no longer interested in further services, has moved out from the Camden
region, or has passed away. In some cases, incomplete patients may re-enroll again after a
hospitalization.

3.3.1. Analyzing Intervention Progression. As conceptualized earlier, the intervention
leads to a series of stochastic recurring encounters between the patient and the care team.
The Coalition collects very detailed operational data on these encounters.

Figure 6 shows a visualization of intervention events for three patients from the start of the
intervention (day 0) to their graduation from the intervention. Shapes indicate the type of care
team-patient encounter and color indicates the type of staff member involved. Stacking indi-
cates that multiple staff types can be involved in the same encounter. Home visits, for instance,
are often conducted by a pair of staff members. Importantly, the Camden Coalition also collects
the amount of time spent by each staff type in each encounter. Home visits and accompanying
patients to specialty and PCP visits can take more than an hour, whereas phone calls can be as
short as a few minutes. The sequence of encounters and time spent in each encounter allows us
to reconstruct the precise sequence of encounters for each patient and infer how the duration of
intervention and dosage (amount of care team spent) varies among its patients.

Let S be the set of all staff types and s refer to a particular staff type. At the Camden Coali-
tion, s € {chw, lpn, rn, sw, cp}. Let E denote the set of all encounter types (home visit, accom-
panying patient to the PCP, phone call, etc.), and e € E a particular type of encounter. Let
z; 4 s denote the number of hours spent by staff type s with (or on behalf of) patient ¢ in
encounter type e on day d of the intervention. Here d can range from enrollment day d = 0 to
week d = p,, when the intervention concludes and an outcome O; for the patient {incomplete,
graduated} is determined. The cumulative intervention dosage for patient ¢ on day £,
0 < k < u,, across all care team staff members is given by

i
Zik=Y 3 . (13)

d=0 seS eck

When k= p,, Z; ; denotes the total dosage for patient ¢ from the start of the intervention to
the outcome date. Figure 7 shows Z; 4 (y axis) for d =0,1,..., u, for one patient. Steeper parts

Figure 6. (Color online) Examples of intervention timelines.
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Figure 7. (Color online) Intervention trajectory of a specific patient.
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of the trajectory indicate more care team effort in a short period while plateaus indicate no
care team effort. The trajectory also illustrates important events during intervention such as
the first home visit, the initial PCP visit, ED visits and inpatient hospitalizations.

The Coalition enrolled 531 patients between 2012 and 2015. In Figure 8, we show a scatter
plot (s, Z; u,) for these patients. The plot tell us how the interventions vary in two measures:
the length of the intervention (u; shown on the z axis) and the total dosage (Z; ,, on the y
axis). To cluster patients in the two-dimensional space, we first divided Z; u, into three
groups. Each group was further subdivided into two subgroups based on ;. This gives us six
interpretable clusters with approximately equal numbers of patients. We also report the per-
centage of patients who graduated in each cluster. Patients in the lowest left cluster (“low
hours, lower duration”), for instance, had the shortest intervention durations (less than
40 days) and the lowest intervention dosage (less than 20 hours); this cluster also had the low-
est graduation rates (18.2%). In contrast, patients in the top right cluster (“high hours, higher
duration”), had the longest intervention durations (greater than 150days) and the highest
intervention dosage (greater than 45hours); graduation rates in this cluster were the highest
(86.5%) suggesting that care team was able to address patient goals in most cases. We also
show the full trajectory Z; . for k=1,2,..., u, for one patient whose final endpoint is in the
top left cluster. Trajectories in this cluster are some of these steepest, requiring a large
amount of care team effort in a short period of time.

These results demonstrate how intervention duration and dosage can vary significantly
even among patients with complex medical and social needs. Indeed, the Core Model was
originally planned as a 90-day intervention but results in Figure 8 suggest that interventions
can be far shorter or longer than 90 days. Similarly, intervention dosage also varies signifi-
cantly: The 90th percentile of intervention dosage was three times the median dosage. Uncer-
tainty in intervention duration and dosage complicates staffing decisions. Ideally, medical or
social covariates could be used to predict these quantities. However, complex care programs
treat a small number of patients which makes it difficult to build accurate predictive models.
Additionally, although we identified characteristics associated with the top quintile of inter-
vention dosage through a random forest model (Martinez et al. [36]), such as count of mental
health conditions, homelessness and housing needs, inadequate nutrition, and lack of
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Figure 8. (Color online) Variation in patient trajectories.
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relationships with medical providers, these models still have high variability when it comes to
predicting staff hours needed each week.

3.4. Nonstationary Features

Another important feature of the interventions is that they are front-loaded and nonstation-
ary; that is, intervention intensity is higher in the first two weeks after enrollment and reduces
with time. Table 6 shows that approximately a fifth of the 24,249 total hours spent by the
care team on the 531 patients occurred in the first 12 days after enrollment and 40% of the
total effort happened within 33 days of enrollment. This front-loaded pattern reflects the need
for the care team to develop strong relationships with their patients through home visits,
accompanying the patient to primary care appointments, and taking all the needed steps to
avoid readmissions within 30 days of discharge (recall that the patients are enrolled during an
inpatient hospitalization). The workload of the nurses (RN and LPN) is high in the first two
weeks of the intervention as clinical needs after hospital discharge take precedence. As
patients graduate, relatively smaller numbers are active in later stages (active patients are
those that do not have a graduated or incomplete outcome yet). However, we see that 166 of
the 531 patients were still active four months after the start of the intervention, and 20% of
the care team’s effort was spent on these patients for over a year (days 188-575). A deeper

Table 6. Distribution of (approximate) deciles of care team hours by time period since intervention
enrollment.

Fifth of postenrollment effort First Second Third Fourth Fifth All

Delivery period (days) 0-12 13-33 34-62  63-117 118575 0-575
Patients active 531-509 509-457 457-347 347-166 166-1  531-1
Total care team time (h) 4,813 4,797 4,864 4,919 4,856 24,249

Total care team time (percent of total)  19.8% 19.8% 20.1% 20.3% 20% 100%

Source. Adapted from Martinez et al. [36].
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analysis reveals that most of these patients needed higher engagement of the social worker’s
time for activities such as assistance in obtaining housing. These results show that different
staff types are needed at different stages of the intervention.

3.5. Staffing Algorithm

An important concern in complex care is how multidisciplinary care teams should be staffed
for a given rate of patient enrollment. Specifically, how many hours of each staff type (com-
munity health worker, nurse, social worker, etc.) would be needed for, say, an enrollment of
three patients per week, to ensure that patients receive timely assistance? Staffing decisions
are challenging because, as our preceding analyses demonstrate, intervention durations are
highly unpredictable, the progression of the intervention is nonstationary, and the workload
of different staff members peaks at different stages of the intervention. Analytical queueing
network models are unable to capture these features. Even a discrete event simulation of the
nonstationary intervention process is challenging since many parameters need to be estimated
from a data set with a small number of patients.

To overcome these challenges we use a simple sampling-based simulation algorithm (Koker
et al. [32]). The algorithm uses the patient’s complete sequence of encounters from enrollment
to graduation; see Figure 6 for examples of encounter sequences. The advantage of using a
patient’s chronologically sequenced record is that it implicitly captures the nonstationary
dynamics of the intervention and differences in staff involvement. By sampling in such a way
that different combinations of patients are active at any time, we can calculate estimates of
staff hours needed for a given patient enrollment rate. We briefly describe the algorithm next.

Consider a simulation time horizon of t=1,2,..., T days, and an enrollment rate that fol-
lows a Poisson distribution with a mean of A patients per day. On each day, starting with
t=1, we sample from this Poisson distribution to determine the number of enrollments (distri-
butions other than Poisson can also be used in the framework). Let n, denote the number of
enrollments on day ¢. We then randomly sample n; patient indices without replacement from
our total set of 531 patients and assign them to be enrolled on day ¢. The event history of each
sampled patient is assumed to unfold in the exact sequence observed in the data from day ¢
onward, with day ¢ being the first day of the intervention, ¢ + 1 being the second day, and so
on, until £+ u, when the patient is assigned an outcome and graduates from the intervention.
The simulation runs until no more patient indices remain to be sampled (recall that indices
are sampled without replacement). If a patient is enrolled once every two days, that is, with a
rate of A =3 per day (observed at the Coalition), then the simulation will run on average for
531 x 2 = 1,062 days, which is a long enough period to estimate key metrics. We choose sam-
pling without replacement because the encounter histories of patients with longer interven-
tions and larger intervention dosages can bias the results if picked repeatedly.

By Little’s Law (Little and Graves [35]), we know that the simulation reaches a steady
state when the mean number of active patients in the program is A X y where u is the mean
intervention duration. The precise day that the simulation reaches steady state can be deter-
mined either visually or through more formal moving average approaches such as Welch’s
method [66]. Consider any day k when the simulation has reached steady state. Let W) denote
the patients that are active in the intervention on day k and let 7, be the number of days
that patient i € W}, has been active on simulation day k. Then, the total demand for staff type
son day kis given by

Ds,k = Z Zi, Ty g, 50 (14)
=

Here z; ¢, , s denotes the time spent by staff type s on patient 7 on day 7 of the intervention.
After recording D ;. for all steady-state days across multiple replications of the simulation,
we can estimate the distribution of workload for staff type s. This method of estimating
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demand is called offered load analysis where we measure the capacity needed as if there were
no limits on its availability. See Whitt et al. [68] for more details. The distribution of the
offered load (estimated using D; ;. values) can be used to determine staffing levels to meet per-
formance targets (e.g., ensure that delays for complex care patients do not exceed a predeter-
mined target). Offered load analysis is particularly helpful when there when time-varying
dynamics and when queues have a network structure [68].

In Koker et al. [32], offered load demand estimates were obtained at the level of each week.
Figure 9 shows the histograms of the demand in hours for CHWs and LPNs for a mean enroll-
ment rate of three per week. We see that the CHW and the LPN in the care team will spend
on average 37.24 and 33.78 hours, respectively, on behalf of active patients. However, the
80th percentiles of the two distributions suggest that overtime hours beyond the 40-hour
workweek will be necessary for both CHW and LPN, especially so for the CHW. These results
can be used to make decisions on whether part-time support staff need to be recruited for a
given patient enrollment rate. Several other staffing results including joint offered load analy-
sis (because multiple staff are involved in an encounter, staff workloads can often be corre-
lated), and nonstationary arrival rates have been presented in Koker et al. [32].

3.6. Randomized Control Trial of Camden Core Model Interventions

The Camden Coalition conducted a multiyear randomized control trial (2014-2017) in part-
nership with the Poverty Action Laboratory (J-PAL) at the Massachusetts Institute of Tech-
nology. The goal of the RCT was to test whether their interventions were impacting inpatient
hospitalizations. Patients who consented to be part of the trial were randomly assigned to
intervention and control groups. Results of the trial, published in January 2020 in the New
England Journal of Medicine (Finkelstein et al. [19]), revealed that the six-month readmission
rate (a binary yes/no variable for each patient) in the intervention (n = 393) and control (n =
389) groups was 62.3% and 61.7%, respectively, six months after assignment. There was no
statistical difference. Other measures such as the average number of readmissions, number of
days in hospital, and hospital charges were also not statistically different between interven-
tion and control.

Although this null result was a disappointment to many complex care practitioners, it is
instructive to revisit the assumptions of an RCT. The RCT assumes that all patients under-
went the same intervention when in reality the trial took place over a four-year span where
the intervention changed significantly (different staffing arrangements, new service offerings
for patients with housing instability, etc.). The RCT thus studies only the average impact of
an aggregated measure for a diverse patient population recruited in four years. Furthermore,
complex care interventions do not deal with a single disease or administer a single drug or

Figure 9. (Color online) Distribution of weekly staff hours.
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vaccine whose effect can be isolated; they deal with a mix of chronic conditions and social
determinants, resulting in a great deal of variability, as revealed by our analysis of interven-
tion dosage and duration. Each patient’s clinical profile, when combined with their social
needs, makes them essentially unique, and an exact match in medical and social covariates
between an intervention and control patient is quite rare.

Two recent analyses that revisited the Camden RCT data set have revealed some intrigu-
ing insights. The first demonstrates that readmission rates were statistically lower for patients
who engaged more with the care team, and the second found that the RCT was successful in
other outcomes. We summarize the two studies here.

3.6.1. RCT Outcomes by Variation in Patient Engagement. Yang et al. [70] looked
at variation in patient engagement as an explanatory variable for intervention outcomes. As
our intervention analysis demonstrated, many patients received an incomplete status because
they did not respond despite multiple attempts by the care team. Yang et al. [70] defined an
intervention patient to be “engaged” if at least two of the following three criteria were satis-
fied: (1) the patient received at least three intervention hours during the first two weeks of
enrollment; (2) the patient had contact with staff at least once per week for four of the initial
six weeks; and (3) the patient was retained in the program for 60 days (half of the average
treatment length) or graduated within that time frame.

Next, they identified medical and social covariates that predicted the binary engagement
variable using a gradient-boosting machine learning model. They found that patients with
the highest probability of engagement were less likely to have been arrested and less likely to
have substance abuse disorder or alcohol-specific hospital diagnoses. The model was used to
predict the probability of engagement for each intervention and control patient. Finally, the
study compared intervention and control patients with progressively higher probabilities of
engagement. Between intervention and control patients who were in the top decile of engage-
ment probability, there were statistically different outcomes when it came to readmission
rates (66% readmission rate in control versus 53% in intervention) and average number of
hospital visits (1.57 for intervention versus 1.22 for control) six months after enrollment.

3.6.2. Other RCT Outcomes: Access to Primary Care, Specialty Care, and Medi-
cal Equipment. Finkelstein et al. [20] looked at whether Camden’s Core Model interven-
tion improved access to primary and specialty care in the immediate weeks, months, and a
year following enrollment. Reducing hospitalizations can be challenging in complex care
patients; however, improved access to primary and specialty care gives the patient a strong
preventive foundation and tools for long-term chronic care management. Using Medicaid
claims data, the study found that among control patients, only 18.93% received a primary
care appointment 14 days after being discharged from the hospital (recall that patients were
enrolled in the trial after a hospitalization). Among intervention patients, 33.1% received a
primary care appointment. Similar statistically different differences in both the percent of
individuals as well as average number of visits were observed at six months and even a year
after enrollment. Intervention patients were more likely to receive durable medical equipment
(e.g., wheelchairs, oxygen equipment) than the control group (43.06% versus 29.29%).

Thus, a more nuanced picture of the effectiveness of the Camden Core Model has emerged
since the aggregate RCT results with the null result were first published in January 2020.
These new results suggest that the Core Model did indeed improve outcomes in certain groups
of patients and in providing patients access to primary and specialty care.

There’s also a subtle link between staffing and RCT outcomes that we wish to explore in
future research. The RCT assumes the delivery of intervention to one patient does not impact
the intervention for another. This is certainly true in a vaccine or drug trial. However, because
complex care is a staffing intervention, a patient’s intervention has subtle but important
dependencies on the interventions of other patients. This is because the care team’s time is a
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resource shared by all concurrently active patients. If the care team is short of capacity,
among currently active patients a particular subset may be prioritized over others, thus
delaying the intervention process for other patients and possibly affecting outcomes. Simi-
larly, patients who enroll when care team workloads are at their peak may have less than opti-
mal outcomes compared with those who enroll when care team workloads are low. Thus, care
team availability is key to intervention success and therefore RCT outcomes. The same prin-
ciple applies also to other resources critical to intervention success such as access to primary
and specialty care appointments.

4. Conclusions, Discussion, and Future Research

In summary, we focused on two different themes related to interventions for patients with
complex medical and social needs. In the first theme, we illustrated unsupervised learning
approaches to segment heterogeneous patient populations into meaningful subgroups that
share common groups of diseases and other characteristics. In the second theme, we consid-
ered operational features of complex care interventions, in particular, the question of staffing
care teams and quantifying the impact on patient outcomes. The methodologies illustrated,
association rule mining, latent class analysis, descriptive analyses of patient-care team
encounter sequences, and sampling patient sequences to create staffing estimates, can be used
by clinicians and administrators of complex care programs.

The tutorial, however, has discussed only a fraction of a challenging domain. There are
numerous other questions under each theme and opportunities for research at the intersection
of traditional OR/MS-based methods and AT/ML. We highlight some topics here.

MCCs and Care Needs: Although our work focused on the first step of quantifying asso-
ciations between diseases and disease groups, there is a pressing need to develop a comprehen-
sive understanding of causal mechanisms. Mechanisms could be biological, that is, one disease
can compromise an individual’s clinical risk for another, or they could be behavioral, for
example, lack of exercise and poor diet could be common risk factors for diabetes and cardio-
vascular diseases. Furthermore, poor diet and exercise could be driven by social determinants
such as access and affordability to physical activity and healthy foods.

The biggest challenge in this field is the heterogeneity in disease combinations and the low
prevalence of each combination, as illustrated in Section 2. This makes it difficult to estimate
the joint prevalence of health, social, and behavioral conditions. Even the largest data sets,
such as those available at U.S. government providers such as Veterans Affairs, Medicare, and
Medicaid, can become sparse once a population is segmented by age, race, geographic loca-
tion, income, and education levels. There is a need for systematic methods to estimate joint
prevalence distributions that extrapolate beyond marginal and pairwise associations observed
in such data sets. Examples of such methods include Markov random fields or undirected
probabilistic graphical models solved using maximum entropy or iterative proportional fitting
(Murphy [40], Fienberg [18], Bishop et al. [6], Gopalappa and Khoshegbhal [24]), Copula-
based methods (Nelson [43], Geenens [23]), and maximum entropy optimization (Phillips et al.
[47]). When it comes to establishing causal mechanisms, Bayesian methods, probabilistic
graphical methods, and graph neural networks will be most relevant.

A different way to address the sparse data problem is to integrate insights from diverse
data sources and published findings. The difficulty here is that features relevant for the analy-
ses may reside in data sets that have their own data collection design and further take differ-
ent modality, for example, longitudinal medical records, expert inputs, and insights obtained
from meta-analyses of smaller controlled studies presented in the literature.

Complex Care Interventions: The Camden Coalition case study in Section 3 illustrates
the importance of collecting data on medical and social covariates and granular details of
intervention progression. The section also illustrates the importance of control groups to infer
causality, either through RCTs or other methods, to ensure that the problem of regression to
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the mean is properly accounted for. RCTs are among the best methods for testing causality
between interventions and outcomes. Although they have been widely used in medical treat-
ment and pharmaceutical interventions, their use in testing innovations in healthcare delivery
(such as complex care interventions) is still in the early stages (Alsan and Finkelstein [3]).
The biggest barrier is that RCTs for complex care have low recruitment rates and are logisti-
cally challenging and costly for organizations to implement. However, they do allow for a
richer understanding of intervention impact and the development of further hypotheses. In
particular, they facilitate the identification of subgroups of intervention patients based on
medical and social characteristics that might have performed better or worse than the same
subgroups of control patients (see Bertsimas et al. [5] for an operations research/management
science (OR/MS) perspective). Given the heterogeneity of the patient population, such sub-
group analyses are a vital direction of future research because they could lead to trials to test
more personalized interventions.

Furthermore, the literature in the social and behavioral sciences domain is rich in studies
that jointly analyze social and health support programs (Courtin et al. [15], Akinyemiju [2],
Hill-Briggs et al. [26], Powell-Wiley et al. [48], Remes et al. [50]). Each study may focus on a
narrower set of issues, such as effectiveness of depression treatment and medication adherence
for a chronic condition from one study (Swi@toniowska—Lonc et al. [63]) and a separate study
on effectiveness of social support for housing instability in patients with the chronic condition
(Mosley-Johnson et al. [39]). For a person with that chronic condition with both depression
and housing instability, a combined intervention may be relevant but if there is a causation
between housing instability and depression the fraction of the population that needs both
interventions may be lower. Similarly, if the evidence from the published literature on other
conditions and social determinants is collected, this would yield a large number of interven-
tion combinations for different patient subgroups. The methods of OR/MS and artificial
intellligence can help guide the portfolio of candidate interventions that are likely to have the
greatest impact; these, then, could be evaluated through randomized controlled trials.

Another direction of future work in this space relates to modeling the longitudinal progres-
sion of disease and intervention actions in time. While traditional intervention analysis tech-
niques have used simulation or Markov processes to model disease stage progressions (Denton
[17]), this approach may become challenging as the number of conditions and interventions
increase, and further development of such a model will be reliant on an understanding of
causal mechanisms. Alternate approaches could focus on use of machine learning, such as gen-
erative adversarial networks and transformer models (Shankar et al. [55]), for prediction by
training of longitudinal data (Hwang et al. [28], Yang et al. [69], Cascarano et al. [11]).
Although these may not address causality directly, they can be combined with expert opinion
to develop appropriate preventive decision support.
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