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Abstract. Apart from spheres and an infinite family of manifolds in dimension seven,
Bazaikin spaces are the only known examples of simply connected Riemannian manifolds
with positive sectional curvature in odd dimensions. We consider positively curved Rie-
mannian manifolds whose universal covers have the same cohomology as Bazaikin spaces
and prove structural results for the fundamental group in the presence of torus symmetry.

1. Introduction

An important question in Riemannian geometry is to investigate the structure of
fundamental groups of Riemannian manifolds with non-negative sectional curva-
ture. A well-known example of this is a theorem of Gromov which states that
the fundamental group of a complete Riemannian manifold M™ with non-negative
sectional curvature has at most C'(n) generators, where C(n) is a constant depend-
ing only on the dimension of M (see [Gro78]). In addition, the Cheeger—Gromoll
splitting theorem, together with a theorem of Wilking, implies that a group G
is the fundamental group of a non-negatively curved Riemannian manifold if and
only if G has a normal subgroup isomorphic to Z? such that the quotient group is
finite (see [CG71] and [Wil00, Thm. 2.1]).

Under the stronger assumption of positive curvature, the only known further
obstructions are the results of Bonnet—Myers and Synge which together imply that
the fundamental group of a positively curved Riemannian manifold is finite and,
moreover, trivial or Zs if the dimension of the manifold is even.

As for examples, the largest class of groups which arise as fundamental groups of
positively curved manifolds are the spherical space form groups. These are groups
that act freely and linearly on spheres (for a complete classification, see [Wolll,
Chap. IIT]). The first step in the classification of spherical space form groups is to
establish that they satisfy the (p?) and (2p) conditions, which mean respectively
that every subgroup of order p? or 2p is cyclic. The (p?) condition was proved by
Smith for groups acting freely on a mod p homology sphere, i.e., a space whose
homology groups with coefficients in Z, coincide with that of a sphere (see [Smi44]).
Moreover, the (2p) condition holds for groups acting freely on a mod 2 homology
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sphere by results of Milnor and Davis (see [Mil57] and [Dav83]).

In 1965, Chern asked if the (p?) condition holds for the fundamental groups
of Riemannian manifolds with positive sectional curvature. This question was not
answered for over 30 years until Shankar proved that there are examples for which
the (p?) condition fails for p = 2 and the (2p) condition fails for all p (see [Sha98]).
Later, Bazaikin and Grove—Shankar (see [Baz99] and [GS00]) showed that there are
other classes of positively curved manifolds which fail to satisfy the (p?) condition
for p = 3. It remains an open problem whether the (p?) condition holds for p > 5
(see [GSZ06]).

In the presence of symmetry, much more is known. For example, the only
groups that can arise as fundamental groups of Riemannian homogeneous spaces
with positive sectional curvature are finite subgroups of SO(3) or SU(2) (see
[WZ18]). Under more relaxed symmetry assumptions, the most remarkable result
in this direction is due to Rong (see [Ron99]): The fundamental group of an odd-
dimensional positively curved Riemannian manifold M with circle symmetry has a
cyclic subgroup of index at most a constant w(n) depending only on the dimension
of M. In particular, the (p?) condition holds for sufficiently large p for this class of
manifolds. The constant w(n) here is larger than Gromov’s Betti number estimate.
Part of our motivation is to refine the estimate for w(n) in dimension 13. Our main
result replaces S* by T2 or T2 and restricts to the class of manifolds whose universal
covers have the rational cohomology of a Bazaikin space (see [Baz96] and [FZ09]).

Theorem A. Let M'3 be a closed Riemannian manifold with positive sectional
curvature. Suppose that the universal cover of M is a rational cohomology Bazaikin
space.

(1) If M admits an effective isometric T?-action, then w1 (M) has a cyclic
subgroup whose index D either is 27 or divides 18. Moreover, D < 9 if
the universal cover of M is also a mod 3 cohomology Bazaikin space.

(2) If M admits an effective isometric T3-action, then m (M) has a cyclic
subgroup of index at most three.

Remark.

e Note that 71 (M) is cyclic in Theorem A under the stronger assumption of 7%
symmetry by a result of Frank, Rong, and Wang (see [FRW13]).

e Since the index of cyclic subgroup in Theorem A is not divisible by primes
greater than three, it follows that under the assumptions of Theorem A, (M)
satisfies the (p?) condition for all p > 5. Davis has commented to the author that
the results in [DM91] imply that, for all odd primes p, there exists a closed, simply
connected, smooth manifold with the rational cohomology of a Bazaikin space that
admits a free action by Z, x Z,. Therefore Theorem A does not hold without the
curvature and symmetry assumptions.

We now discuss a corollary to Theorem A. The only simply connected, closed 13-
dimensional manifolds known to admit positive curvature are S'® and the Bazaikin
spaces (see [Zil07]). By a result of Kennard (see [Kenl7, Cor. 6.3]), if M3 is a
closed, positively curved Riemannian manifold with 72 symmetry whose universal
cover is a rational sphere, then 71 (M) is cyclic. Combining this result with Theorem
A, we get the following corollary:
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Corollary. If M*' is a closed, positively curved Riemannian manifold with T?
symmetry, and if the universal cover of M has the integral cohomology of one
of the known positively curved 13-dimensional examples, then w1 (M) has a cyclic
subgroup of index 1,2,3,6, or 9.

We now discuss the tools used in the proof. In addition to the well known results
such as Berger’s fixed point theorem and Wilking’s connectedness lemma (see
Section 2), the main new tool is Lemma 4.2. This is a structural result for groups
acting freely on positively curved manifolds with circle symmetry that generalizes
an obstruction from Kennard (see [Kenl7, Prop. 5.1]). Together with a result of
Davis and Weinberger (see Theorem 2.7), Lemma 4.2 places strong restrictions
on the Sylow subgroups of the fundamental group. In fact, we show that after
possibly passing to a subgroup B of index 2,3,6, or 9, every Sylow subgroup is
cyclic. Burnside’s classification (see Section 2), together with Lemma 4.2, then
implies that B itself has a cyclic subgroup of index 1 or 3. In addition, results
from equivariant cohomology are applied to calculate the fixed point components
of the circle action. The key here is that we fix the rational type of the universal
cover. Finally, to analyze the case in which the manifold is a mod 3 cohomology
Bazaikin space, we modify an argument due to Heller to further restrict the Sylow
3-subgroups of the fundamental group (see Section 6).

This article is organized as follows. Section 2 provides basic results which will
be used throughout the paper. Section 3 states the definition of Bazaikin spaces
as well as a lemma about groups acting freely and isometrically on a rational
cohomology Bazaikin space. In Section 4, we prove Lemma 4.2. Theorem A in
the case of rational cohomology Bazaikin spaces is proved in Section 5. Finally, in
Section 6, we complete the proof of Theorem A by considering the case of mod 3
cohomology Bazaikin spaces.

Acknowledgements. This paper is part of the author’s Ph.D. thesis. The author
would like to thank her advisor, Lee Kennard, for his support and helpful comments
and suggestions. The author would also like to thank the anonymous referees for
suggestions that considerably improved the paper.

2. Preliminaries

This section consists of three parts. The first part states some results about
positively curved manifolds. In the second part, we provide a theorem from equi-
variant cohomology. The last part discusses some tools from group theory.

One of the most powerful results in the theory of positively curved manifolds is
the following theorem due to Wilking:

Theorem 2.1 (Connectedness lemma, [Wil03, Thm. 2.1]). Let M™ be a closed po-
sitively curved Riemannian manifold. If N"* is a closed totally geodesic submani-
fold of M, then the inclusion N" =% < M™ is (n — 2k + 1)-connected. Moreover, if
N"=F is fized pointwise by the action of a Lie group G which acts isometrically on
M, then the inclusion is (n—2k+143(Q))-connected, where 6(G) is the dimension
of the principal orbit.
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The following is a result of Poincaré duality and refines the conclusion of
Theorem 2.1:

Lemma 2.2 ([Wil03, Lem. 2.2]). Let M™ be a closed orientable smooth manifold
and let N"~* be a closed orientable submanifold. If the inclusion N™™% < M™ is
(n — k — 1)-connected and n — k — 2l > 0, then there exists e € H*(M;Z) such
that the map Ue : H'(M;Z) — H'T*(M;Z) is surjective for | <i<n —k —1 and
injective forl <i<mn—k—1.

The next result is due to Frank, Rong, and Wang.

Proposition 2.3 ([FRW13, Cors. 1.7 and 1.9]). Suppose that M™ is a closed odd-
dimensional Riemannian manifold with positive sectional curvature. If n > 5
and M has a closed totally geodesic submanifold N of codimension two, then the
universal covering spaces of M and N are homotopy spheres, and w1 (M) = w1 (N)
1s cyclic.

For our purposes, we need the following generalization of Proposition 2.3:

Proposition 2.4. Let M™ be a closed odd-dimensional Riemannian manifold with
positive sectional curvature. Suppose thatn > 5 and M has a closed totally geodesic
submanifold N of codimension two. If T' is a finite group that acts freely and
isometrically on M such that the action preserves N, then I' is cyclic.

Proof. Consider the Riemannian covering map ¢ : M — M/T. By [Hat02, Prop.
1.40], we have T 2 711 (M /T) /g« (71 (M)). In addition, M /T and N/T are closed odd-
dimensional positively curved manifolds and N/T is a totally geodesic submanifold
of M/T of codimension two. Hence m1(M/T") is cyclic by Proposition 2.3. This
implies that I' & my (M/T)/q. (71 (M)) is cyclic. O

We end the first part of this section with a generalization of Berger’s theorem
about torus actions on positively curved Riemannian manifolds of even dimension
(see [Ber61]). The statement in odd dimensions is due to Sugahara.

Theorem 2.5 ([Sug82|, cf. [GS94]). Let M be a closed odd-dimensional Rieman-
nian manifold with positive sectional curvature. If M admits an effective isometric
Tk-action, then there is a circle orbit. In particular, there exists T*=1 C T* with
non-empty fized point set.

One of the main tools used in the proof of Theorem A is the relationship between
the cohomology of a manifold M and that of the fixed point set M S' of a circle
acting on M. For our purposes, we need the following result. It is proved by
applying tools from equivariant cohomology.

Theorem 2.6 ([AP93, Thms. 3.8.12 and 3.10.4]). If M is a compact manifold,
which admits a smooth S*-action, then the rational Betti numbers satisfy

Zbi(Msl;Q) < Zbi(MQQ)-

Moreover, if ), bi(MS Q) = > bi(M;Q) and if H*(M;Q) has r generators of
even degree and s generators of odd degree, then for any component F of MSI,
H*(F;Q) has at most r generators of even degree and at most s generators of odd
degree.
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We end this section with some results from the theory of finite groups and free
actions by finite groups. The first result is due to Davis and Weinberger.

Theorem 2.7 ([Dav83, Thm. D]). Let M**+! be a closed manifold such that the
integer Z?io(—l)idim HY(M;Q) is odd. If G is a finite group that acts freely on
M such that the induced action on H*(M;Q) is trivial, then G is the direct product
of a cyclic 2-group and a group I' of odd order.

Remark 2.8. For G and T as in Theorem 2.7, G is cyclic if and only if I' is cyclic,
and, more generally, G has a cyclic subgroup of index r if and only if I has a cyclic
subgroup of index 7.

In the proof of Theorem A, we are interested in the Sylow p-subgroups of w1 (M).
Theorem 2.7 states a condition under which the Sylow 2-subgroup of a finite group
acting freely on a (4k + 1)-dimensional manifold is cyclic. Theorem 2.10 provides a
condition under which Sylow p-subgroups for odd p are cyclic. Before proceeding,
we recall the definition of the (p?) and (2p) conditions.

Definition 2.9. Let T be a finite group and let p be a prime. We say that T’
satisfies

e (p?) condition if every subgroup of order p? is cyclic.

e (2p) condition if every subgroup of order 2p is cyclic.
Theorem 2.10 ([Wolll, Thm. 5.3.2]). If " is a finite group of odd order, then
the following statements are equivalent:

(1) T satisfies every (p*) condition.

(2) FEwvery Sylow p-subgroup of T is cyclic.

Odd-order groups which satisfy all (p?) conditions have a nice presentation and
enjoy some properties which will be discussed in what follows:

Theorem 2.11 (Burnside, [Wolll, Thm. 5.4.1]). If G is a finite group in which
every Sylow subgroup is cyclic, then G is generated by two elements A and B with
defining relations
A™=B"=1, BAB '= A"

((r=1)n,m)=1, r"=1(mod m).
Definition 2.12. The collection of all groups of the form
(A,B: A™ = B" =1,BAB™!' = A") where ((r — 1)n,m) = 1 and " = 1(mod m)
will be denoted by C. We partition the collection C into groups C4, where d denotes
the order of r in the multiplicative group of units modulo m.

Remark 2.13. Note that every I' € C4 has a normal cyclic subgroup of index d.
Indeed, the subgroup H generated by A and B¢ is a normal cyclic subgroup of
index d in T (see [Wolll, Thm. 5.5.1]). It can be proved moreover that H is not
strictly contained in any cyclic subgroup.

The last collection of algebraic tools which we require are some basic results
about p-groups and normal p-complements. Let p be a prime. It is a well-known
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fact that every p-group P with |P| = p™ has a normal subgroup of order p® for all
1 < i < m. Moreover, the classification of groups of order p? (see [Burb5, p. 140])
implies that any group of order 27 is isomorphic to Zoy, Zg X Z3, Z3 X Z3 X Z3,
Zg X Zg, or

1
U(3,3) := 0 cw,Yy,2 € ZLs
0

o =R
— < W

We also require a result about groups of order 81. Every non-cyclic group of order
81 contains either a copy of Zg x Zs or a copy of Zz X Zz X Zs (see [Burb5, pp.
140 and 145]). These facts imply the following proposition:

Proposition 2.14. If G is a 3-group which contains Zs X Z3 but does not contain
Ly x L3, Lz X ZLsg X Zs, or U(3,3), then G is isomorphic to Zs X Z3 or Zg X Zs.

Proof. By the discussion above, we only need to prove that the order of G is at
most 81. Suppose by way of contradiction that the order of G is bigger than 81
and let Pg; be a normal subgroup of G of order 81. If Pg; is non-cyclic, then it
contains a copy of Zg X Zsz or Zsz X Z3 X Z3, a contradiction. Hence we may assume
that Pg; = (g) is cyclic. Since Py is cyclic and G contains a copy of Zs X Zs, there
exists Zz = (h) C G such that (k) N Ps; = {1}. Since (h) normalizes (g°), we can
form the subgroup K = (g®)(h) which is a group of order 81. By the information
concerning groups of order 81 mentioned above, in order to get a contradiction, it
suffices to show that K is non-cyclic.

Suppose for a moment that K is cyclic and hence abelian. Then every element
in K is of the form (¢®)"h? and has order at most 27, a contradiction. [J

The normal rank of a p-group P is the largest integer k£ such that P contains
an elementary abelian normal subgroup of order p*. Our final algebraic result is
the following;:

Theorem 2.15 ([Gor80, p. 257]). Let G be a finite group and let p be the smallest
prime dividing the order of G. Let P denote the Sylow p-subgroup of G. Suppose
that P is cyclic if p = 2 and that the normal rank of P is at most two otherwise.

Then there exists a normal p-complement of G, i.e., a normal subgroup N of G
such that G = PN and PN N = {1}.

3. Bazaikin Spaces

Besides spherical space forms, the only 13-dimensional manifolds known to
admit positive curvature are a family of biquotients called Bazaikin spaces.

Biquotients are defined in the following way. Let G be a compact Lie group
and let U be a subgroup of G x G. There exists an action of U on G defined
by (u1,ug) - g = ulgugl. In case the action is free, the quotient space is called a
biquotient and is denoted by G//U.

Bazaikin spaces are examples of biquotients but here we give a slightly different
description (for more details, see [FZ09]). Let ¢ = (¢1,...,¢5) be a five tuple of
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integers and let go := > _ ¢;. There exists an injective homomorphism

Sp(2) x S* — U(5) x U(5),
(4, z) — (diag(z?,...2%), diag(z?, A)),

where we consider Sp(2) as a subgroup of SU(4) via the inclusion
‘ A B

The above homomorphism gives an action of Sp(2) x S on U(5) defined by (4, z)-
g = diag(z®,...2%)gdiag(z7%, A=) which restricts to an action of Sp(2) x S*
on SU(5). The kernel of this action is Zs and hence we obtain an effective action
of Sp(2) - St := (Sp(2) x S1)/Zy on SU(5). The action of Sp(2) - St on SU(5) is
free if and only if all the ¢; are odd and gcd(go(1) + o (2)s Go(3) + do(a)) = 2 for
all permutations o € Ss. In this case, the quotient space B, = SU(5)/Sp(2) - S* is
called a Bazaikin space. The Bazaikin space B, admits positive sectional curvature
if ¢ +¢; >0 (or <0) for all 4 < j.

Proposition 3.1 ([Baz96]). The integral cohomology groups of the Bazaikin space
B, are given by:

Z ifk=0,2,4,9,11,13,
H*(By;Z) = { L if k= 6,8,

0 otherwise.

Here, m = %ZKK,C 4iq;qr- Moreover, if x is a generator of H*(By;Z), then
x¥ is a generator of H%(BQ;Z) for k =2,3,4. In particular, B, has the rational

cohomology of CP? xS? and the mod 3 cohomology of either CP? x S° or CP* x S°.

One of the crucial steps in the proof of Theorem A, is to find a subgroup
of m1 (M) of minimal index which satisfies the conditions of Theorem 2.7. The
following lemma provides such a subgroup:

Lemma 3.2. Let M' be a closed Riemannian manifold with positive sectional
curvature whose universal cover has the rational cohomology of a Bazaikin space.
LetT':= w1 (M). Then T has a subgroup T'1 of index at most two that acts trivially

on H*(]\A/f7 Q), where M denotes the universal cover of M.

Proof. Since I acts isometrically and freely on M Weinstein’s theorem (see [dC92,
Chap 9, Thm. 3.7]) implies that T" acts by orlentatlon—preservmg homeomorphisms

on M and hence trivially on H13(M Q). Now, H*(M Q) H*((CP2 x §%: Q)
by Proposition 3.1, so H*(M Q) is generated by some a € H2(M Q) and B €

H9(M Q). Since I' acts by homomorphisms on H*(M Q), there is a subgroup
I'y < T of index at most two fixing «. Indeed, I'y is the kernel of the homomorphism
f:T'— Zy = {1} defined by f(v) = €,, where v*(a)) = eya. Since I'; also fixes
o? and o8 € H3(M;Q), it acts trivially on H*(M;Q). O
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4. A new obstruction

One of the key tools in the proof of Theorem A has to do with the structure
of finite groups which act freely and by isometries on a positively curved manifold
with circle symmetry. Here, we generalize an obstruction from Kennard [Kenl?7,
Prop. 5.1] (cf. Sun—Wang [SW09, Lem. 1.5]) to restrict the structure of such groups.

Definition 4.1. Let G be a group and let (X, A) be a pair of G-spaces. For g € G,
the Lefschetz number Lef(g; X, A) of g is defined as follows:

Lef(g; X, A) = > (—1)'tr(g" : H'(X, A;Q) — H'(X, 4;Q)).

%

Lemma 4.2. Let M be a closed positively curved Riemannian manifold. Let T' be
a group of odd order which acts freely and by isometries on M. Assume M admits
an effective isometric S'-action which commutes with the action of T. If H = (o)
is a mormal cyclic subgroup of T' that is not strictly contained in a larger cyclic
subgroup, then |U'/H| divides the Lefschetz number Lef(a;M,MSl) of a, where
M = M/S",

Note that when applied to I' = Z,, x Z,, Lemma 4.2 implies that p divides
Lef(a; M, MSI). Recall also from Remark 2.13 that for I' € C4, the subgroup H
generated by A and B? is a normal cyclic subgroup of index d in T' that is not

strictly contained in any cyclic sub%roup. Hence Lemma 4.2 applies to I' € Cy and
shows that d divides Lef(a; M, M5").

Proof. Since the action of a on M commutes with the circle action, a acts on
M. Consider the fixed point set M®. We claim that x(M®) = Lef(a; M, M5").
In order to prove this, note that since the action of I' on M commutes with
the S'-action, o acts on MS" Moreover, the action of a on M5 is free since
T" acts freely on M. Therefore, (Msl)a =@ and x(M?®) = x(M*, (Msl)a), where
X(M*, (MS")*) = 3. (=1)" dim H(M®, (M5")*; Q). The claim follows since we
have (M, (MS")*) = Lef(o; M, MS") by [Hat02, Exercise 2.C.4] (cf. [AP93, p.
250]).

We may assume that M® is non-empty since otherwise Lef(a; M, M*® 1) is zero
by the claim and we are done. Since H = («) is a normal subgroup of ', T" acts
on M. The kernel of this action is H and hence it induces an action of G = I'/H
on M?. Note that G acts on the set of components of M® and hence partitions
the set of components into orbits. Let {F;}™, be the set of connected components
of M® and let G, denote the isotropy group of F;. Either G, = 1 for all i or
GF, # 1 for some i.

Suppose first that Gp, = 1 for all 4. In this case, we have |G.F;| = |G| for all
i. This means that each orbit consists of |G| components. In addition, any two
components in the same orbit are homeomorphic and hence have the same Euler
characteristic. Therefore, |[['/H| = |G| divides x(M®) and hence Lef(o; M, MS").

Now, consider the case in which G, # 1 for some 4. In this case, there exists
non-trivial [g] € G such that [g].F; = F; and hence g.F; = F;. Let m : M — M
denote the quotient map. Note that g acts isometrically on 7~1(F;). Since this
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action commutes with the circle action on 7~1(F}), g preserves some circle orbit
C in 7= (F};) (see [Ron05, Thm. A]). But « also acts on C' and hence (g, ) acts
on C'. Since this action is free, (g, «) is cyclic. Since g ¢ {(a), we conclude that ()
is strictly contained in (g, ), a contradiction. O

Remark 4.3. In our applications, except in the first case of the proof of Lemma
5.5, the cohomology groups H*(M, M?® ; Q) have dimension at most one. Hence the
induced action of o on H* (M, MS! ; Q) is trivial and we may replace Lef(a;M,MSl)
by x(M,M5").

When applying Lemma 4.2, we need to figure out the cohomology groups
Hi(M/Sl,Msl). The main tool in calculating these groups is the Smith-Gysin
sequence which relates the relative cohomology groups H®(M/S*, M*® 1) to the
cohomology groups of M and M*° "

Theorem 4.4 (Smith-Gysin sequence, [Bre72, p. 161]). If S acts on a paracom-
pact space X, then there exists a long exact sequence

Lo HY(X/SY, XS o HY(X) - HY(X/SY, X5 e HI(XS)
- HHY(X/S', X5 .

called the Smith—Gysin sequence. Here, we take coefficients in Q.

5. Proof of Theorem A for rational cohomology Bazaikin spaces

In this section, we prove Theorem A for rational cohomology Bazaikin spaces.
We equip the universal cover M of M with the pullback metric. We also lift
the torus action to M (see [Bre72, Thm. 1.9.1]) and then break the proof into
subsections. Section 5.1 discusses the case in which the lifted torus action on M
has non-empty fixed point set. In Section 5.2, we consider the case in which there
is a circle inside T2 whose action on M has a fixed point component of dimension
one or three. In Section 5.3, we consider the case of a circle inside 72 with five-
dimensional fixed point set. Finally, in Section 5.4, we conclude the proof. Before
proceeding to the proof, we prove the following lemma;:

Lemma 5.1. Let M3 be a closed, positively curved Riemannian manifold. If the
universal cover of M is a rational cohomology Bazaikin space, then M does not
have any totally geodesic submanifolds of codimension two or four.

Proof. We proceed by contradiction. Let N be a totally geodesic submanifold
of M. If the codimension of N equals two, then by Proposition 2.3, N and M
are homotopy spheres and this contradicts the assumption that M is a rational
cohomology Bazaikin space.

Suppose now that the codimension of N equals four. Theorem 2.1 implies that
the inclusion N < M is 6-connected. Therefore, by Lemma 2.2, the homomorphism
Ue : H{(M;Z) — H"*(M;Z) is surjective for 3 < i < 6 and injective for 3 < i < 6.
This implies that H®(M;Z) = H9(M;Z). Recall that H*(M;Q) = H*(M;Q)",
where I' = 1, (M) and where H*(M; Q)" denotes the subring of elements invariant
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under the induced action of I" (see [Bre72, Thm. II1.2.4]). Since H5(M; Q)=0,it
follows that H®(M;Q) = 0. On the other hand, HQ(M; Q) = Q and I acts trivially
on H9(1\7; Q) by the proof of Lemma 3.2. Hence H?(M;Q) = Q and we have a
contradiction. [

Notation 5.2. Throughout the rest of paper MC (resp. MY), where G = S! or
T2, denotes the fixed point set of the action of G on M (resp. M). Similarly, Mf
(resp. M&) denotes the component of M¢ (resp. M%) containing .

5.1. Torus actions with fixed points

The first case in the proof of Theorem A is when the lifted torus action on M has
a fixed point. In this case, we get a better bound for the index of cyclic subgroups
of minimal index.

Lemma 5.3. Let M'3 be a closed Riemannian manifold with positive sectional
curvature which admits an effective isometric T?-action. Suppose that the universal
cover of M is a rational cohomology Bazaikin space. If the lifted torus action on
M has a fized point, then m (M) has a cyclic subgroup of index at most three.

Note that Theorem A in the case of T3 symmetry follows immediately since
some T2 C T3 has a fixed point by Theorem 2.5.

Proof. Let x be a fixed point for the T2-action on M and let codim(P C @) denote
the codimension of P in Q. Borel’s formula (see [AP93, Thm. 5.3.11]) states that

Z codim(]\,ZCT2 C MISI) = codim(]\,\jg2 C M),
S1CT?
where we take the sum over all the circles inside 72. Note that only finitely many
terms contribute to this sum. Note also that any fixed point component of an

effective torus action on a positively curved manifold has even codimension. We
break the proof into cases:

o dim(M7T’) = 1. In this case, MZ” is diffeomorphic to S!. Set T' = 7r1(M) and
let 'y C T be the subgroup of elements mappmg the component M, MT* to itself.

Note that T acts on M7~ because its action on M commutes with the T2-action.
Since T'y acts freely on M MT? and M MT? is a circle, T's is cyclic. In order to calculate
the index of I'y, note that I' acts on the set of components of M MT? and hence

[[': T'g] < #{components of MTz}.
In addition (for the second inequality, see [AP93, Cor. 3.1.14]),
#{components of MT2} < Zdim H2i(MT2; Q) < Z dim H2i(M; Q) =3.
Therefore, [I" : T's] < 3, as required.

e dim(M7’) > 3 and there exists §' C T2 with codim(MZ* C M5') = 2. Let
'y be the subgroup of I' which acts on ML °.As argued in the previous case, the
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index of T's in T' is at most three. Since s acts on Mj“, it also acts on Mfl
Proposition 2.4 now implies that I'5 is cyclic.

o dim(MT") > 3 and codim(MI” C M5") # 2 for all S* C T2. By Lemma 5.1,
the dimension of M MS" is at most seven. Therefore,

7 < dim(MT") + 4 < dim(MZL") + codim(MT~ € M5') = dim(M5') < 7

for all 5* C T2 with codim(MZ” C MS") > 0. Hence equality holds and we have
dim(ﬂfz) = 3 and dim(Mfl) = 7. On the one hand, the right-hand side of Borel’s
formula equals 10. On the other hand, the left-hand side is a multiple of four. This
is a contradiction. O

5.2. Fixed point component of dimension one or three

In the presence of T? symmetry, Theorem 2.5 guarantees existence of a circle whose
fixed point set is non-empty. In this section, we prove Theorem A in the case where
this fixed point set has a component of dimension one or three.

Lemfnvlal5.4. Let M3 and 22 1be as in Theorem A. If there exists S' C T? such
that M®" has a component M2  of dimension one or three, then I := 71 (M) has
a cyclic subgroup of index dividing siz.

Proof. Let 'y C T be the subgroup that acts trivially on H* (M, Q). Recall by
the proof of Lemma 3.2 that I'; has index at most two. By Theorem 2.7, we have
Ty & Zge x T for some a > 0 and some group I'] of odd order. Next, let T, C T}
be the subgroup preserving the component M MS'. As in the proof of Lemma 5.3,
we see that M5 has at most three components and therefore that Iy, C T has
index at most three. Note in addition that the index is a divisor of three because
T} has odd order. We claim that I'}, is cyclic. In order to prove this, we consider
each case separately.

e dim(M?5") = 1. Since M5" is diffeomorphic to S! and the action of I’y on M5’
is free, T, is cyclic.

o dim(]\/\jxsl) =3.Let N := Mfl By Lemma 5.3, we may assume that M7~ = @
and hence that there exists S} C T? such that N Si = @. We apply Lemma 4.2
to the action of S] on N. For this, we use the Smith-Gysin sequence to calculate
X(N,Nsll) = x(N,2) = 2. Since I'y has odd order, Lemma 4.2 (see also Remark
4.3) implies that Iy does not contain a copy of Z, x Z, for any p. By Theorem
2.10, every Sylow subgroup of T’ is cyclic. Hence by Theorem 2.11, T, € C; for
some d > 1. Lemma 4.2 then implies that d = 1 and hence that I'}, is cyclic by
Remark 2.13.

Therefore, I'}, and hence T'y, has a cyclic subgroup of index dividing three. Since
[[':T4] <2, we are done. [

5.3. Five-dimensional fixed point set

In this section, we assume that there exists some S' C T? whose fixed point set
is five-dimensional. Note that by Lemma 5.4, we only need to discuss the case
in which all components of M MS' are five-dimensional. Since each component of
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M5 is a totally geodesic and hence positively curved submanifold of M the
first rational Betti number of each component of the fixed point set M MS" is zero.
In addition, by Thereom 2. 6 the sum of the rational Betti numbers of M5 i
at most six. Moreover, M MS" cannot have the same rational cohomology ring as
(CP! xS?)#(CP' x S?) since otherwise we will have 3, b; (MS*:Q) = > bi(M;Q).
But this contradicts Theorem 2.6 because the rational cohomology ring of (CP' x
83)#((CP1 x S3) has four generators. Altogether, we get that each component of
M5" has the rational I cohomology of either S® or CP' x S%. Therefore, the rational
cohomology ring of M MS" must be the same as that of one of the following spaces:

SPU...US® (1<k<3), CP'xS? S°U(CP'xS?). (1)
N—————

k times

Lemma 5.5. FOTMll?’ and T? as in Theorem A, if there exists S' C T? such that
the fized point set M is five-dimensional, then T := 7y (M) has a cyclic subgroup
of index dividing 18 or 27.

Proof. By the discussion before Lemma 5.5, we may assume that M5 has the
same rational cohomology as one of the five spaces in (1). We break the proof into
cases:

e M5 has a component N; with the rational cohomology of CP! x S?. As in
Lemma 5.4, let I'y € I' be the subgroup of index at most two that acts trivially
on H*(M;Q) and write I'y as I'; & Zgo x I'} for some a > 0 and some group I'
of odd order. Since the action of '} on M commutes with the S1- action, I} acts
on M5'. Since MS" has at most one component with the rational cohomology of
CP! x S3 T} acts on N;j. By Lemma 5. 3 we may assume that MT’ = @ and hence
that there exists S3 C T2 such that N1 = @. Let Ny := N;/S3. By applying the
Smith-Gysin sequence to the pair (Nl,NIS;) = (N1, @), it follows that H*(N1; Q)
is isomorphic to Q for i € {0, 4}, isomorphic to Q? for i = 2, and trivial otherwise.

Let a € T'}. We claim that Lef(a; N;) equals 1 or 4. In order to prove this,
note that since o has odd order, the induced action of o on H*(Ny;Q) is trivial
for i € {0,4}. Now, let A\; and Ay denote the eigenvalues of a* : H?(Ny;Q) —
H?(N1;Q). Since a has finite order, A\; and Ay are roots of unity, so A\; + Ao €
[—2, 2]. Moreover, the Lefschetz number and hence A; 4+ Az is an integer. Therefore,
A1+ € {—2,-1,0,1,2}. In addition, A; and A2 have odd orders since « has odd
order. In particular, \; # —1, so A\; + Ay # —2. Similarly, if Ay # 1, then it is
complex and hence \o = A\; and A\; + Ay = 2Re(\;). Therefore, if \; + o € {0,1},
then A; has order 4 or 6, a contradiction. Hence A; + Ay € {—1,2}. This proves
the claim.

Lemma 4.2 now implies that I} does not contain Z, x Z, for all p. Hence by
Theorem 2.10, all Sylow subgroups of I'} are cyclic. Theorem 2.11 and Lemma 4.2
then imply that '} € Cy4, where d = 1. Therefore, I}, and hence I'y, is cyclic. This
means that I" has a cyclic subgroup of index at most two.

e M5 is a rational cohomology 5-sphere. Let Ny := M5". Note that T acts on
Ns. Moreover, I' acts trivially on the rational cohomology of N, by Weinstein’s
theorem. Therefore, we can apply Theorem 2.7 to conclude that I' = Zg, x I,
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where b > 0 and I is a group of odd order. As in the previous case, we can choose
S C T? such that NQS - @ and apply the Smith-Gysin sequence to the pair
(N27N5§) = (N3, @) to get x(N2) = 3. Lemma 4.2 then implies that I does not
contain a copy of Z, x Z, for p # 3. This, together with Theorem 2.10, implies
that all Sylow p-subgroups of I are cyclic for p # 3. Now, we claim that the
Sylow 3-subgroup of I is either cyclic or isomorphic to one of Z3 X Zs or Zg X Zs.
The idea is to prove that IV does not contain a copy of Zz X Zs x Zs, U(3,3), or
Zg x Z3. Proposition 2.14 then implies the claim. By Lemma 4.2, in order to prove
that I does not contain a copy of Zs x Zs X Zsz, U(3,3), or Zg X Zs, it suffices to
find a normal subgroup of order three of each of these groups which is not strictly
contained in a cyclic subgroup. Existence of such a subgroup is obvious in the
case of Zs X Zg X Zs or Zg X Zs. As for U(3,3), it has center isomorphic to Zs.
This subgroup is normal and is not strictly contained in a larger cyclic subgroup
because every non-trivial element of U(3,3) has order three.

Now, we have a group I'V of odd order such that its Sylow p-subgroups are cyclic
for p # 3 and its Sylow 3-subgroup is either cyclic, Zs X Zs, or Zg X Zs. Let P;
be a Sylow 3-subgroup of I'V. If Pj is cyclic, then IV € C; for some d > 1 by
Theorem 2.11. If not, then we apply Theorem 2.15. Hence I can be written in
the form of P3N for some N < IV such that P3N N = {1}. Letting I'}) := Z3N
or ') := ZyN, depending on whether P3 2 Zs3 x Zs or P3 = Zg x Z3,we get an
index three subgroup I'j of T such that all Sylow subgroups of I'J are cyclic. By
Theorem 2.11, it follows that 'y € C,4 for some d. The discussion above shows that
either IV or I'j has a cyclic subgroup of index d. Now, Lemma 4.2 implies that d
divides three. Therefore, IV, and hence I', has a cyclic subgroup of index dividing
nine, as required.

'Nﬁ S' is the disjoint union of two rational cohomology 5-spheres. In this case,
let M2 " denote one of the two components of M S" and let I's be the subgroup of
I' of index at most two which acts on Mf " Replacing I by I's in the argument for
the previous case, it follows that I" has a cyclic subgroup of index dividing 18.

o M5S' is the disjoint union of three rational cohomology 5-spheres. Let M st
denote one of the Components of MS" and let I's C T be the subgroup of index at

most three that acts on M MS'. We again argue as in the second case, replacing I"
by I's to conclude that T’ has a cyclic subgroup of index dividing 18 or 27. O

5.4. Conclusion of proof

Let M and T2 be as in Theorem A. As remarked at the beginning of this section, we
may lift the T2-action to the universal cover of M. By Theorem 2.5, we may choose
S C T? such that MS' +o. If MS" has a component of dimension one or three,
then we are done by Lemma 5.4. In particular, we are done if dim(M5") < 3. In
addition, if dim(]T] Sl) = 5, then the proof follows by Lemma 5.5. Recall also that
the dimension of M5 is at most seven by Lemma 5.1. We may assume therefore
that dim(MS") = 7.

Note that by Frankel’s theorem (see [Fra61]), M5" cannot have more than one
component of dimension seven. Moreover, the seven- d1mens10nal component M MS'
of MS" satisfies by(MS';Q) = 1 since the inclusion M5 < M is 3-connected by
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Theorem 2.1. By Poincaré duality, Mfl has total Betti number at least four.
Suppose for a moment that MS' is not connected. Let ]ijsl denote another
component. By Theorem 2.6, Mfl is a rational S', S3, or S® because M has total
Betti number six. It follows by Lemma 5.4 and by the second case in the proof
Lemma 5.5 that 71 (M) has a cyclic subgroup of index 1, 2, 3, 6, or 9. Therefore,

1,
we may assume that M° is connected.

Lemma 5.6. Suppose that T? acts effectively and isometrically on a closed, positi-
vely curved manifold M'® whose universal cover is a rational cohomology Bazaikin
space. If there exists S* C T? such that M5" is connected and seven-dimensional,
then at least one of the following holds:

(1) m (M) is cyclic.

(2) MT° + .

(3) There exists another circle St C T? such that M5t s non-empty and has

dimension at most five.

Proof. Let p: M — M be the universal covering map. Note that p(MSl) = Msl,
so MS" is connected and seven-dimensional.

If the action of S' on M does not have any non-trivial finite isotropy groups,
then 71 (M) is cyclic (see [Ron05, Thm. C]) and we are done. Hence we may assume

Sl
that this action has a non-trivial finite isotropy group S;. Let N := M,“.
We claim that N N MS' is empty. Indeed, if ¢ € N N MSI7 then we have
st st . . . . .
MS' C M," = Mg*. Now, ¢ ¢ M5" since the isotropy group S; is finite, so this

1
inclusion is strict. But then the dimension of qu ¢ would be greater than seven,
so we have a contradiction to Lemma 5.1.

Next we claim that there exists a circle Sl1 C T2 such that N 51 # @&. In order to
prove this, note that T2 acts on N. Let H denote the kernel of this action. If H is
not finite, then there exists S; C H and we are done. If H is finite, then the claim
follows by applying Theorem 2.5 to the action of T72/H =2 T2 on N. Therefore, we
can choose ¢; € NSt

We claim that S} # S'. If instead S} = S, then ¢; € M since ¢, is fixed by
Si.But ¢ € N,soq € NN MSI7 a contradiction.

In order to conclude the proof, we consider two cases. If dim(M Sll) < 5, then
dim(MS}) < 5 and we are done. If not, then MS' NMS! # & by Frankel’s theorem.
In this case, T2 has a fixed point on M and hence on M. O

Lemma 5.6, together with Lemmas 5.3, 5.4, and 5.5, completes the proof of
Theorem A for rational cohomology Bazaikin spaces.

6. Proof of Theorem A for mod 3 cohomology Bazaikin spaces

In this section, we prove Theorem A for mod 3 cohomology Bazaikin spaces.
The idea here is to find a subgroup I's C I' of index at most three which does not
contain a copy of Z, x Z, for any p. Recall that by a result of Smith, Z, x Z,
cannot act freely on a mod p cohomology sphere (see [Smid4]). Heller proved that
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Z3 cannot act freely on a manifold M with H*(M;Z,) = H*(S™ x S"; Z,), where
n > m (see [Hel59], cf. [AP93, Example 3.10.17]). We refine Heller’s argument in
a special case to prove the following lemma:

Lemma 6.1. If M is a smooth manifold such that H*(M;Z,) = H*(S? x S*;Z,)
for some odd prime p, then Z, x Z, cannot act freely on M.

Proof. Suppose by contradiction that G = Z,, x Z, acts freely on M and consider
the Leray-Serre spectral sequence associated to the Borel fibration M — Mg —
BG. Note that since p is odd and dim H*(M;Z,) < 1 for all i, G acts trivially on
H*(M;Z,). Therefore, we can apply the Leray—-Serre spectral sequence.

Since G acts freely on M, it follows from [AP93, Prop. 3.10.9] that H*(M¢; Z,)
~ H*(M/G;Zy). By [AP93, Lem. 3.10.16], this implies that H*(Mg;Z,) = 0
for all i > 5. In particular, H*(Mg;Z,) = 0 and hence ES? is trivial. Observe
that for the differential map d, : E™" — E%° m and n satisfy m +n = 5
and n > 1. Moreover, E;"" = 0 for n = 1 or 4. Hence the only non-trivial
differentials which can kill elements of ES° come from Eg”Q, E>% and Eg’5. Note
that H*(BG; Zy,) = Zp[t1,t2] ® A(s1, $2), where each t; has degree two, each s; has
degree one, and A(s1, s2) denotes the exterior algebra over Z, generated by s; and
s2. Therefore, the set {tz thi+j=3}U{sisotit] : i+ j = 2} forms a basis for
Eg ¥ and hence dim E2 ' = 7. Moreover,

dim Ey° + dim E3° + dim B3 = Y dim H'(BG;Z,) =1+3+4 =38,
0<i<3
i£1
We get a contradiction by proving that ES:" cannot be trivial. By considering the
dimensions calculated above, in order to prove this, it suffices to find at least two
basis elements in the groups E3 2 E2 3 , and E that either do not survive to the
appropriate page or do not klll any elements of E2 In order to find such basis

elements, we need to analyze the differentials. Fix generators z € H3(M;Z,) and
y € H? (M Z,). We break the proof into two cases:

e The dlﬁerentlal dy: By 3 E2 is non-zero. In this case, the differential d :
Ey?® — E2? is non-zero because {s,x, sox} forms a basis for Ey® and da(s;) = 0.
Note that do(z) is of the form ait1y + aatay + azsisqey for some a; € Z,. Note
also that at least one of a; or as is non-zero since otherwme do vanishes on EQl’3
Therefore, da(s;2) = —ay1s;t1y — ass;toy and hence ds : E 3 E3 is injective.
This means that two of the basis elements of E2 do not survive to the Fs page
and hence cannot kill any elements of E3

e The differential dy : E,”® — E3? is zero. In this case, E§’2 ~ 37
H3(BG;Z,). Since y survives to the F3 page, the set {5,¢;5:14,j € {1,2}} forms a
basis for Eg’ ’2, where the bars denote the images of elements from the F5 page in the
FE5 page. In addition, dg(g) = blglfl + b2§17?2 + b3§2£1 + b4§2£2 for some b; € Zp,
and each differential map d, : E™"™ — EmTmn=rtl g a derivation. Therefore,
the differential ds : Zg = Eg’Q — Eg’o = Z; has its image in the 3-dimensional
subspace of ES spanned by {55,#i#), : i + j = 2}. But any linear map from
a 4-dimensional space to a 3-dimensional space has non-trivial kernel. Hence the
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kernel of ds : E3 2 E6 0 is at least 1-dimensional and so not all basis elements
of B3 can contrlbute to killing elements of ES°. Now, we only need to ﬁnd one
more basis element in another group that does not kill any elements of E

Without loss of generality, we may assume that d3(g) # 0 since otherwise ds :
E§’2 — Eg’o would be trivial and so E§”2 cannot kill any elements of Eg’o. If
da(x) = 0, then z survives to the E3 page and so we have d3(Zy) = d3(Z)y —
Zd3(y) # 0. This means that E ® does not survive to the Ej page and hence it
cannot kill any elements of ES° If instead dy(x) # 0, then dy : E2 —> E % would
be non-zero. This means that at least one of the basis elements of E2 does not
survive to the E3 page and so it cannot kill any elements of E 00

We now proceed to the proof of Theorem A. As the proof for rational cohomolo-
gy Bazaikin spaces shows, index 18 or 27 would possibly arise only when the fixed
point set of the circle action is the disjoint union of either two or three rational
cohomology 5-spheres. Hence we only need to discuss those two cases.

First, suppose that MS' = MS U Mj ,

cohomology 5-sphere. Consider Zz C S'. We may assume that ]T/ff t= Mf‘”’ since

where each component is a rational

otherwise we get strict inclusions Mf ' - Mfii - M. Lemma 5.1 then implies that
dim(ﬁz@) = 7. By Proposition 2.3, MIZ?’ is a homotopy sphere. Since the inclusion
Mf?’ < M is 2-connected by Theorem 2.1, we have a contradiction. Similarly,
M;l = Myzg,' Moreover,

> " dim H (M Z3) <Y dim H'(M; Zs) < 10.

Together with Poincaré duality, this implies that at least one of the fixed point set
components, say Mf , has the mod 3 cohomology of either S® or §? x S* (note
that M S* g positively curved, so it has vanishing first integral Betti number. This,
together with the universal coefficient theorem, implies that M MS" cannot have the
mod 3 cohomology of S' xS*). Let I's denote the subgroup of I of index at most two
which acts on Mf . By Theorem 2.7, we have I's & Zg. xI';, where ¢ > 0 and I'j is
a group of odd order. As the proof of Theorem A for rational cohomology Bazaikin
spaces shows, I'; does not contain a copy of Z, x Z, for p # 3. In addition, Lemma
6.1, together with the fact that Z, x Z, cannot act freely on a mod p cohomology
sphere, implies that T'; does not contain Zsz x Zs . Hence all Sylow subgroups of
Iy are cyclic and I'y € Cq4 for some d > 1. Our calculations from the previous
section imply that d divides three. This means that I's has a cyclic subgroup of
index dividing three and hence I' has a cyclic subgroup of index dividing six.

The proof for the case where M5 is the disjoint union of three rational cohomo-
logy 5-spheres is similar except that here the bound on dim H*(M?%3;Z3) implies
that at least one of the components of M5" is a mod 3 cohomology S°. Moreover,
in this case, the index of I'3 in I" is at most three and hence we get that I" has a
cyclic subgroup of index 1,2, 3,6, or 9.
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