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Abstract. Apart from spheres and an infinite family of manifolds in dimension seven,
Bazaikin spaces are the only known examples of simply connected Riemannian manifolds
with positive sectional curvature in odd dimensions. We consider positively curved Rie-
mannian manifolds whose universal covers have the same cohomology as Bazaikin spaces
and prove structural results for the fundamental group in the presence of torus symmetry.

1. Introduction

An important question in Riemannian geometry is to investigate the structure of
fundamental groups of Riemannian manifolds with non-negative sectional curva-
ture. A well-known example of this is a theorem of Gromov which states that
the fundamental group of a complete Riemannian manifold Mn with non-negative
sectional curvature has at most C(n) generators, where C(n) is a constant depend-
ing only on the dimension of M (see [Gro78]). In addition, the Cheeger–Gromoll
splitting theorem, together with a theorem of Wilking, implies that a group G
is the fundamental group of a non-negatively curved Riemannian manifold if and
only if G has a normal subgroup isomorphic to Zd such that the quotient group is
finite (see [CG71] and [Wil00, Thm. 2.1]).

Under the stronger assumption of positive curvature, the only known further
obstructions are the results of Bonnet–Myers and Synge which together imply that
the fundamental group of a positively curved Riemannian manifold is finite and,
moreover, trivial or Z2 if the dimension of the manifold is even.

As for examples, the largest class of groups which arise as fundamental groups of
positively curved manifolds are the spherical space form groups. These are groups
that act freely and linearly on spheres (for a complete classification, see [Wol11,
Chap. III]). The first step in the classification of spherical space form groups is to
establish that they satisfy the (p2) and (2p) conditions, which mean respectively
that every subgroup of order p2 or 2p is cyclic. The (p2) condition was proved by
Smith for groups acting freely on a mod p homology sphere, i.e., a space whose
homology groups with coefficients in Zp coincide with that of a sphere (see [Smi44]).
Moreover, the (2p) condition holds for groups acting freely on a mod 2 homology
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sphere by results of Milnor and Davis (see [Mil57] and [Dav83]).
In 1965, Chern asked if the (p2) condition holds for the fundamental groups

of Riemannian manifolds with positive sectional curvature. This question was not
answered for over 30 years until Shankar proved that there are examples for which
the (p2) condition fails for p = 2 and the (2p) condition fails for all p (see [Sha98]).
Later, Bazaikin and Grove–Shankar (see [Baz99] and [GS00]) showed that there are
other classes of positively curved manifolds which fail to satisfy the (p2) condition
for p = 3. It remains an open problem whether the (p2) condition holds for p ≥ 5
(see [GSZ06]).

In the presence of symmetry, much more is known. For example, the only
groups that can arise as fundamental groups of Riemannian homogeneous spaces
with positive sectional curvature are finite subgroups of SO(3) or SU(2) (see
[WZ18]). Under more relaxed symmetry assumptions, the most remarkable result
in this direction is due to Rong (see [Ron99]): The fundamental group of an odd-
dimensional positively curved Riemannian manifold M with circle symmetry has a
cyclic subgroup of index at most a constant w(n) depending only on the dimension
of M . In particular, the (p2) condition holds for sufficiently large p for this class of
manifolds. The constant w(n) here is larger than Gromov’s Betti number estimate.
Part of our motivation is to refine the estimate for w(n) in dimension 13. Our main
result replaces S1 by T 2 or T 3 and restricts to the class of manifolds whose universal
covers have the rational cohomology of a Bazaikin space (see [Baz96] and [FZ09]).

Theorem A. Let M13 be a closed Riemannian manifold with positive sectional
curvature. Suppose that the universal cover of M is a rational cohomology Bazaikin
space.

(1) If M admits an effective isometric T 2-action, then π1(M) has a cyclic
subgroup whose index D either is 27 or divides 18. Moreover, D ≤ 9 if
the universal cover of M is also a mod 3 cohomology Bazaikin space.

(2) If M admits an effective isometric T 3-action, then π1(M) has a cyclic
subgroup of index at most three.

Remark.
• Note that π1(M) is cyclic in Theorem A under the stronger assumption of T 4

symmetry by a result of Frank, Rong, and Wang (see [FRW13]).
• Since the index of cyclic subgroup in Theorem A is not divisible by primes

greater than three, it follows that under the assumptions of Theorem A, π1(M)
satisfies the (p2) condition for all p ≥ 5. Davis has commented to the author that
the results in [DM91] imply that, for all odd primes p, there exists a closed, simply
connected, smooth manifold with the rational cohomology of a Bazaikin space that
admits a free action by Zp × Zp. Therefore Theorem A does not hold without the
curvature and symmetry assumptions.

We now discuss a corollary to Theorem A. The only simply connected, closed 13-
dimensional manifolds known to admit positive curvature are S13 and the Bazaikin
spaces (see [Zil07]). By a result of Kennard (see [Ken17, Cor. 6.3]), if M13 is a
closed, positively curved Riemannian manifold with T 2 symmetry whose universal
cover is a rational sphere, then π1(M) is cyclic. Combining this result with Theorem
A, we get the following corollary:
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Corollary. If M13 is a closed, positively curved Riemannian manifold with T 2

symmetry, and if the universal cover of M has the integral cohomology of one
of the known positively curved 13-dimensional examples, then π1(M) has a cyclic
subgroup of index 1, 2, 3, 6, or 9.

We now discuss the tools used in the proof. In addition to the well known results
such as Berger’s fixed point theorem and Wilking’s connectedness lemma (see
Section 2), the main new tool is Lemma 4.2. This is a structural result for groups
acting freely on positively curved manifolds with circle symmetry that generalizes
an obstruction from Kennard (see [Ken17, Prop. 5.1]). Together with a result of
Davis and Weinberger (see Theorem 2.7), Lemma 4.2 places strong restrictions
on the Sylow subgroups of the fundamental group. In fact, we show that after
possibly passing to a subgroup B of index 2, 3, 6, or 9, every Sylow subgroup is
cyclic. Burnside’s classification (see Section 2), together with Lemma 4.2, then
implies that B itself has a cyclic subgroup of index 1 or 3. In addition, results
from equivariant cohomology are applied to calculate the fixed point components
of the circle action. The key here is that we fix the rational type of the universal
cover. Finally, to analyze the case in which the manifold is a mod 3 cohomology
Bazaikin space, we modify an argument due to Heller to further restrict the Sylow
3-subgroups of the fundamental group (see Section 6).

This article is organized as follows. Section 2 provides basic results which will
be used throughout the paper. Section 3 states the definition of Bazaikin spaces
as well as a lemma about groups acting freely and isometrically on a rational
cohomology Bazaikin space. In Section 4, we prove Lemma 4.2. Theorem A in
the case of rational cohomology Bazaikin spaces is proved in Section 5. Finally, in
Section 6, we complete the proof of Theorem A by considering the case of mod 3
cohomology Bazaikin spaces.

Acknowledgements. This paper is part of the author’s Ph.D. thesis. The author
would like to thank her advisor, Lee Kennard, for his support and helpful comments
and suggestions. The author would also like to thank the anonymous referees for
suggestions that considerably improved the paper.

2. Preliminaries

This section consists of three parts. The first part states some results about
positively curved manifolds. In the second part, we provide a theorem from equi-
variant cohomology. The last part discusses some tools from group theory.

One of the most powerful results in the theory of positively curved manifolds is
the following theorem due to Wilking:

Theorem 2.1 (Connectedness lemma, [Wil03, Thm. 2.1]).Let Mn be a closed po-
sitively curved Riemannian manifold. If Nn−k is a closed totally geodesic submani-
fold of M , then the inclusion Nn−k ↪→Mn is (n− 2k+ 1)-connected. Moreover, if
Nn−k is fixed pointwise by the action of a Lie group G which acts isometrically on
M , then the inclusion is (n−2k+1+δ(G))-connected, where δ(G) is the dimension
of the principal orbit.
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The following is a result of Poincaré duality and refines the conclusion of
Theorem 2.1:

Lemma 2.2 ([Wil03, Lem. 2.2]). Let Mn be a closed orientable smooth manifold
and let Nn−k be a closed orientable submanifold. If the inclusion Nn−k ↪→Mn is
(n − k − l)-connected and n − k − 2l > 0, then there exists e ∈ Hk(M ;Z) such
that the map ∪e : Hi(M ;Z)→ Hi+k(M ;Z) is surjective for l ≤ i < n− k − l and
injective for l < i ≤ n− k − l.

The next result is due to Frank, Rong, and Wang.

Proposition 2.3 ([FRW13, Cors. 1.7 and 1.9]). Suppose that Mn is a closed odd-
dimensional Riemannian manifold with positive sectional curvature. If n ≥ 5
and M has a closed totally geodesic submanifold N of codimension two, then the
universal covering spaces of M and N are homotopy spheres, and π1(M) ∼= π1(N)
is cyclic.

For our purposes, we need the following generalization of Proposition 2.3:

Proposition 2.4. Let Mn be a closed odd-dimensional Riemannian manifold with
positive sectional curvature. Suppose that n ≥ 5 and M has a closed totally geodesic
submanifold N of codimension two. If Γ is a finite group that acts freely and
isometrically on M such that the action preserves N , then Γ is cyclic.

Proof. Consider the Riemannian covering map q : M → M/Γ. By [Hat02, Prop.
1.40], we have Γ ∼= π1(M/Γ)/q∗(π1(M)). In addition, M/Γ andN/Γ are closed odd-
dimensional positively curved manifolds and N/Γ is a totally geodesic submanifold
of M/Γ of codimension two. Hence π1(M/Γ) is cyclic by Proposition 2.3. This
implies that Γ ∼= π1(M/Γ)/q∗(π1(M)) is cyclic. �

We end the first part of this section with a generalization of Berger’s theorem
about torus actions on positively curved Riemannian manifolds of even dimension
(see [Ber61]). The statement in odd dimensions is due to Sugahara.

Theorem 2.5 ([Sug82], cf. [GS94]). Let M be a closed odd-dimensional Rieman-
nian manifold with positive sectional curvature. If M admits an effective isometric
T k-action, then there is a circle orbit. In particular, there exists T k−1 ⊆ T k with
non-empty fixed point set.

One of the main tools used in the proof of Theorem A is the relationship between
the cohomology of a manifold M and that of the fixed point set MS1

of a circle
acting on M . For our purposes, we need the following result. It is proved by
applying tools from equivariant cohomology.

Theorem 2.6 ([AP93, Thms. 3.8.12 and 3.10.4]). If M is a compact manifold,
which admits a smooth S1-action, then the rational Betti numbers satisfy∑

i

bi(M
S1

;Q) ≤
∑
i

bi(M ;Q).

Moreover, if
∑
i bi(M

S1

;Q) =
∑
i bi(M ;Q) and if H∗(M ;Q) has r generators of

even degree and s generators of odd degree, then for any component F of MS1

,
H∗(F ;Q) has at most r generators of even degree and at most s generators of odd
degree.
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We end this section with some results from the theory of finite groups and free
actions by finite groups. The first result is due to Davis and Weinberger.

Theorem 2.7 ([Dav83, Thm. D]). Let M4k+1 be a closed manifold such that the

integer
∑2k
i=0(−1)i dimHi(M ;Q) is odd. If G is a finite group that acts freely on

M such that the induced action on H∗(M ;Q) is trivial, then G is the direct product
of a cyclic 2-group and a group Γ of odd order.

Remark 2.8. For G and Γ as in Theorem 2.7, G is cyclic if and only if Γ is cyclic,
and, more generally, G has a cyclic subgroup of index r if and only if Γ has a cyclic
subgroup of index r.

In the proof of Theorem A, we are interested in the Sylow p-subgroups of π1(M).
Theorem 2.7 states a condition under which the Sylow 2-subgroup of a finite group
acting freely on a (4k+1)-dimensional manifold is cyclic. Theorem 2.10 provides a
condition under which Sylow p-subgroups for odd p are cyclic. Before proceeding,
we recall the definition of the (p2) and (2p) conditions.

Definition 2.9. Let Γ be a finite group and let p be a prime. We say that Γ
satisfies

• (p2) condition if every subgroup of order p2 is cyclic.
• (2p) condition if every subgroup of order 2p is cyclic.

Theorem 2.10 ([Wol11, Thm. 5.3.2]). If Γ is a finite group of odd order, then
the following statements are equivalent:

(1) Γ satisfies every (p2) condition.
(2) Every Sylow p-subgroup of Γ is cyclic.

Odd-order groups which satisfy all (p2) conditions have a nice presentation and
enjoy some properties which will be discussed in what follows:

Theorem 2.11 (Burnside, [Wol11, Thm. 5.4.1]). If G is a finite group in which
every Sylow subgroup is cyclic, then G is generated by two elements A and B with
defining relations

Am = Bn = 1, BAB−1 = Ar;

((r − 1)n,m) = 1, rn ≡ 1(mod m).

Definition 2.12. The collection of all groups of the form

〈A,B : Am = Bn = 1, BAB−1 = Ar〉 where ((r− 1)n,m) = 1 and rn ≡ 1(mod m)

will be denoted by C. We partition the collection C into groups Cd, where d denotes
the order of r in the multiplicative group of units modulo m.

Remark 2.13. Note that every Γ ∈ Cd has a normal cyclic subgroup of index d.
Indeed, the subgroup H generated by A and Bd is a normal cyclic subgroup of
index d in Γ (see [Wol11, Thm. 5.5.1]). It can be proved moreover that H is not
strictly contained in any cyclic subgroup.

The last collection of algebraic tools which we require are some basic results
about p-groups and normal p-complements. Let p be a prime. It is a well-known
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fact that every p-group P with |P | = pm has a normal subgroup of order pi for all
1 ≤ i ≤ m. Moreover, the classification of groups of order p3 (see [Bur55, p. 140])
implies that any group of order 27 is isomorphic to Z27, Z9 × Z3, Z3 × Z3 × Z3,
Z9 o Z3, or

U(3, 3) :=


1 x z

0 1 y
0 0 1

 : x, y, z ∈ Z3

 .

We also require a result about groups of order 81. Every non-cyclic group of order
81 contains either a copy of Z9 × Z3 or a copy of Z3 × Z3 × Z3 (see [Bur55, pp.
140 and 145]). These facts imply the following proposition:

Proposition 2.14. If G is a 3-group which contains Z3×Z3 but does not contain
Z9 × Z3, Z3 × Z3 × Z3, or U(3, 3), then G is isomorphic to Z3 × Z3 or Z9 o Z3.

Proof. By the discussion above, we only need to prove that the order of G is at
most 81. Suppose by way of contradiction that the order of G is bigger than 81
and let P81 be a normal subgroup of G of order 81. If P81 is non-cyclic, then it
contains a copy of Z9×Z3 or Z3×Z3×Z3, a contradiction. Hence we may assume
that P81 = 〈g〉 is cyclic. Since P81 is cyclic and G contains a copy of Z3×Z3, there
exists Z3 = 〈h〉 ⊆ G such that 〈h〉 ∩ P81 = {1}. Since 〈h〉 normalizes 〈g3〉, we can
form the subgroup K = 〈g3〉〈h〉 which is a group of order 81. By the information
concerning groups of order 81 mentioned above, in order to get a contradiction, it
suffices to show that K is non-cyclic.

Suppose for a moment that K is cyclic and hence abelian. Then every element
in K is of the form (g3)ihj and has order at most 27, a contradiction. �

The normal rank of a p-group P is the largest integer k such that P contains
an elementary abelian normal subgroup of order pk. Our final algebraic result is
the following:

Theorem 2.15 ([Gor80, p. 257]). Let G be a finite group and let p be the smallest
prime dividing the order of G. Let P denote the Sylow p-subgroup of G. Suppose
that P is cyclic if p = 2 and that the normal rank of P is at most two otherwise.
Then there exists a normal p-complement of G, i.e., a normal subgroup N of G
such that G = PN and P ∩N = {1}.

3. Bazaikin Spaces

Besides spherical space forms, the only 13-dimensional manifolds known to
admit positive curvature are a family of biquotients called Bazaikin spaces.

Biquotients are defined in the following way. Let G be a compact Lie group
and let U be a subgroup of G × G. There exists an action of U on G defined
by (u1, u2) · g = u1gu

−1
2 . In case the action is free, the quotient space is called a

biquotient and is denoted by G//U .

Bazaikin spaces are examples of biquotients but here we give a slightly different
description (for more details, see [FZ09]). Let q = (q1, . . . , q5) be a five tuple of
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integers and let q0 :=
∑
qi. There exists an injective homomorphism

Sp(2)× S1 → U(5)×U(5),

(A, z) 7→ (diag(zq1 , . . . zq5), diag(zq0 , A)),

where we consider Sp(2) as a subgroup of SU(4) via the inclusion

A+Bj ∈ Sp(2) 7−→
(
A B
−B̄ Ā

)
.

The above homomorphism gives an action of Sp(2)×S1 on U(5) defined by (A, z) ·
g = diag(zq1 , . . . zq5)g diag(z−q0 , A−1) which restricts to an action of Sp(2) × S1

on SU(5). The kernel of this action is Z2 and hence we obtain an effective action
of Sp(2) · S1 := (Sp(2) × S1)/Z2 on SU(5). The action of Sp(2) · S1 on SU(5) is
free if and only if all the qi are odd and gcd(qσ(1) + qσ(2), qσ(3) + qσ(4)) = 2 for
all permutations σ ∈ S5. In this case, the quotient space Bq = SU(5)/Sp(2) · S1 is
called a Bazaikin space. The Bazaikin space Bq admits positive sectional curvature
if qi + qj > 0 (or < 0) for all i < j.

Proposition 3.1 ([Baz96]). The integral cohomology groups of the Bazaikin space
Bq are given by:

Hk(Bq;Z) =


Z if k = 0, 2, 4, 9, 11, 13,

Zm if k = 6, 8,

0 otherwise.

Here, m = 1
8

∑
i<j<k qiqjqk. Moreover, if x is a generator of H2(Bq;Z), then

xk is a generator of H2k(Bq;Z) for k = 2, 3, 4. In particular, Bq has the rational
cohomology of CP2×S9 and the mod 3 cohomology of either CP2×S9 or CP4×S5.

One of the crucial steps in the proof of Theorem A, is to find a subgroup
of π1(M) of minimal index which satisfies the conditions of Theorem 2.7. The
following lemma provides such a subgroup:

Lemma 3.2. Let M13 be a closed Riemannian manifold with positive sectional
curvature whose universal cover has the rational cohomology of a Bazaikin space.
Let Γ := π1(M). Then Γ has a subgroup Γ1 of index at most two that acts trivially

on H∗(M̃ ;Q), where M̃ denotes the universal cover of M .

Proof. Since Γ acts isometrically and freely on M̃ , Weinstein’s theorem (see [dC92,
Chap. 9, Thm. 3.7]) implies that Γ acts by orientation-preserving homeomorphisms

on M̃ and hence trivially on H13(M̃ ;Q). Now, H∗(M̃ ;Q) ∼= H∗(CP2 × S9;Q)

by Proposition 3.1, so H∗(M̃ ;Q) is generated by some α ∈ H2(M̃ ;Q) and β ∈
H9(M̃ ;Q). Since Γ acts by homomorphisms on H∗(M̃ ;Q), there is a subgroup
Γ1 E Γ of index at most two fixing α. Indeed, Γ1 is the kernel of the homomorphism
f : Γ → Z2 = {±1} defined by f(γ) = εγ , where γ∗(α) = εγα. Since Γ1 also fixes

α2 and α2β ∈ H13(M̃ ;Q), it acts trivially on H∗(M̃ ;Q). �
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4. A new obstruction

One of the key tools in the proof of Theorem A has to do with the structure
of finite groups which act freely and by isometries on a positively curved manifold
with circle symmetry. Here, we generalize an obstruction from Kennard [Ken17,
Prop. 5.1] (cf. Sun–Wang [SW09, Lem. 1.5]) to restrict the structure of such groups.

Definition 4.1. Let G be a group and let (X,A) be a pair of G-spaces. For g ∈ G,
the Lefschetz number Lef(g;X,A) of g is defined as follows:

Lef(g;X,A) =
∑
i

(−1)i tr(g∗ : Hi(X,A;Q)→ Hi(X,A;Q)).

Lemma 4.2. Let M be a closed positively curved Riemannian manifold. Let Γ be
a group of odd order which acts freely and by isometries on M . Assume M admits
an effective isometric S1-action which commutes with the action of Γ. If H = 〈α〉
is a normal cyclic subgroup of Γ that is not strictly contained in a larger cyclic
subgroup, then |Γ/H| divides the Lefschetz number Lef(α; M̄,MS1

) of α, where
M̄ = M/S1.

Note that when applied to Γ = Zp × Zp, Lemma 4.2 implies that p divides

Lef(α; M̄,MS1

). Recall also from Remark 2.13 that for Γ ∈ Cd, the subgroup H
generated by A and Bd is a normal cyclic subgroup of index d in Γ that is not
strictly contained in any cyclic subgroup. Hence Lemma 4.2 applies to Γ ∈ Cd and
shows that d divides Lef(α; M̄,MS1

).

Proof. Since the action of α on M commutes with the circle action, α acts on
M̄ . Consider the fixed point set M̄α. We claim that χ(M̄α) = Lef(α; M̄,MS1

).
In order to prove this, note that since the action of Γ on M commutes with
the S1-action, α acts on MS1

. Moreover, the action of α on MS1

is free since
Γ acts freely on M . Therefore, (MS1

)α = ∅ and χ(M̄α) = χ(M̄α, (MS1

)α), where

χ(M̄α, (MS1

)α) =
∑
i(−1)i dimHi(M̄α, (MS1

)α;Q). The claim follows since we

have χ(M̄α, (MS1

)α) = Lef(α; M̄,MS1

) by [Hat02, Exercise 2.C.4] (cf. [AP93, p.
250]).

We may assume that M̄α is non-empty since otherwise Lef(α; M̄,MS1

) is zero
by the claim and we are done. Since H = 〈α〉 is a normal subgroup of Γ, Γ acts
on M̄α. The kernel of this action is H and hence it induces an action of G = Γ/H
on M̄α. Note that G acts on the set of components of M̄α and hence partitions
the set of components into orbits. Let {Fi}mi=1 be the set of connected components
of M̄α and let GFi

denote the isotropy group of Fi. Either GFi
= 1 for all i or

GFi
6= 1 for some i.

Suppose first that GFi
= 1 for all i. In this case, we have |G.Fi| = |G| for all

i. This means that each orbit consists of |G| components. In addition, any two
components in the same orbit are homeomorphic and hence have the same Euler
characteristic. Therefore, |Γ/H| = |G| divides χ(M̄α) and hence Lef(α; M̄,MS1

).
Now, consider the case in which GFi

6= 1 for some i. In this case, there exists
non-trivial [g] ∈ G such that [g].Fi = Fi and hence g.Fi = Fi. Let π : M → M̄
denote the quotient map. Note that g acts isometrically on π−1(Fi). Since this
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action commutes with the circle action on π−1(Fi), g preserves some circle orbit
C in π−1(Fi) (see [Ron05, Thm. A]). But α also acts on C and hence 〈g, α〉 acts
on C. Since this action is free, 〈g, α〉 is cyclic. Since g /∈ 〈α〉, we conclude that 〈α〉
is strictly contained in 〈g, α〉, a contradiction. �

Remark 4.3. In our applications, except in the first case of the proof of Lemma
5.5, the cohomology groups Hi(M̄,MS1

;Q) have dimension at most one. Hence the

induced action of α on H∗(M̄,MS1

;Q) is trivial and we may replace Lef(α;M̄,MS1

)

by χ(M̄,MS1

).

When applying Lemma 4.2, we need to figure out the cohomology groups
Hi(M/S1,MS1

). The main tool in calculating these groups is the Smith-Gysin

sequence which relates the relative cohomology groups Hi(M/S1,MS1

) to the

cohomology groups of M and MS1

.

Theorem 4.4 (Smith–Gysin sequence, [Bre72, p. 161]). If S1 acts on a paracom-
pact space X, then there exists a long exact sequence

. . .→ Hi(X/S1, XS1

)→ Hi(X)→ Hi−1(X/S1, XS1

)⊕Hi(XS1

)

→ Hi+1(X/S1, XS1

)→ . . .

called the Smith–Gysin sequence. Here, we take coefficients in Q.

5. Proof of Theorem A for rational cohomology Bazaikin spaces

In this section, we prove Theorem A for rational cohomology Bazaikin spaces.
We equip the universal cover M̃ of M with the pullback metric. We also lift
the torus action to M̃ (see [Bre72, Thm. I.9.1]) and then break the proof into

subsections. Section 5.1 discusses the case in which the lifted torus action on M̃
has non-empty fixed point set. In Section 5.2, we consider the case in which there
is a circle inside T 2 whose action on M̃ has a fixed point component of dimension
one or three. In Section 5.3, we consider the case of a circle inside T 2 with five-
dimensional fixed point set. Finally, in Section 5.4, we conclude the proof. Before
proceeding to the proof, we prove the following lemma:

Lemma 5.1. Let M13 be a closed, positively curved Riemannian manifold. If the
universal cover of M is a rational cohomology Bazaikin space, then M does not
have any totally geodesic submanifolds of codimension two or four.

Proof. We proceed by contradiction. Let N be a totally geodesic submanifold
of M . If the codimension of N equals two, then by Proposition 2.3, Ñ and M̃
are homotopy spheres and this contradicts the assumption that M̃ is a rational
cohomology Bazaikin space.

Suppose now that the codimension of N equals four. Theorem 2.1 implies that
the inclusion N ↪→M is 6-connected. Therefore, by Lemma 2.2, the homomorphism
∪e : Hi(M ;Z)→ Hi+4(M ;Z) is surjective for 3 ≤ i < 6 and injective for 3 < i ≤ 6.

This implies that H5(M ;Z) ∼= H9(M ;Z). Recall that H∗(M ;Q) ∼= H∗(M̃ ;Q)Γ,

where Γ = π1(M) and where H∗(M̃ ;Q)Γ denotes the subring of elements invariant
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under the induced action of Γ (see [Bre72, Thm. III.2.4]). Since H5(M̃ ;Q) = 0, it

follows that H5(M ;Q) = 0. On the other hand, H9(M̃ ;Q) ∼= Q and Γ acts trivially

on H9(M̃ ;Q) by the proof of Lemma 3.2. Hence H9(M ;Q) ∼= Q and we have a
contradiction. �

Notation 5.2. Throughout the rest of paper M̃G (resp. MG), where G = S1 or

T 2, denotes the fixed point set of the action of G on M̃ (resp. M). Similarly, M̃G
x

(resp. MG
x ) denotes the component of M̃G (resp. MG) containing x.

5.1. Torus actions with fixed points

The first case in the proof of Theorem A is when the lifted torus action on M̃ has
a fixed point. In this case, we get a better bound for the index of cyclic subgroups
of minimal index.

Lemma 5.3. Let M13 be a closed Riemannian manifold with positive sectional
curvature which admits an effective isometric T 2-action. Suppose that the universal
cover of M is a rational cohomology Bazaikin space. If the lifted torus action on
M̃ has a fixed point, then π1(M) has a cyclic subgroup of index at most three.

Note that Theorem A in the case of T 3 symmetry follows immediately since
some T 2 ⊆ T 3 has a fixed point by Theorem 2.5.

Proof. Let x be a fixed point for the T 2-action on M̃ and let codim(P ⊆ Q) denote
the codimension of P in Q. Borel’s formula (see [AP93, Thm. 5.3.11]) states that∑

S1⊆T 2

codim(M̃T 2

x ⊆ M̃S1

x ) = codim(M̃T 2

x ⊆ M̃),

where we take the sum over all the circles inside T 2. Note that only finitely many
terms contribute to this sum. Note also that any fixed point component of an
effective torus action on a positively curved manifold has even codimension. We
break the proof into cases:

• dim(M̃T 2

x ) = 1. In this case, M̃T 2

x is diffeomorphic to S1. Set Γ = π1(M) and

let Γ2 ⊆ Γ be the subgroup of elements mapping the component M̃T 2

x to itself.

Note that Γ acts on M̃T 2

because its action on M̃ commutes with the T 2-action.
Since Γ2 acts freely on M̃T 2

x and M̃T 2

x is a circle, Γ2 is cyclic. In order to calculate

the index of Γ2, note that Γ acts on the set of components of M̃T 2

and hence

[Γ : Γ2] ≤ #{components of M̃T 2

}.

In addition (for the second inequality, see [AP93, Cor. 3.1.14]),

#{components of M̃T 2

} ≤
∑
i

dimH2i(M̃T 2

;Q) ≤
∑
i

dimH2i(M̃ ;Q) = 3.

Therefore, [Γ : Γ2] ≤ 3, as required.

• dim(M̃T 2

x ) ≥ 3 and there exists S1 ⊆ T 2 with codim(M̃T 2

x ⊆ M̃S1

x ) = 2. Let

Γ2 be the subgroup of Γ which acts on M̃T 2

x . As argued in the previous case, the
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index of Γ2 in Γ is at most three. Since Γ2 acts on M̃T 2

x , it also acts on M̃S1

x .
Proposition 2.4 now implies that Γ2 is cyclic.

• dim(M̃T 2

x ) ≥ 3 and codim(M̃T 2

x ⊆ M̃S1

x ) 6= 2 for all S1 ⊆ T 2. By Lemma 5.1,

the dimension of M̃S1

x is at most seven. Therefore,

7 ≤ dim(M̃T 2

x ) + 4 ≤ dim(M̃T 2

x ) + codim(M̃T 2

x ⊆ M̃S1

x ) = dim(M̃S1

x ) ≤ 7

for all S1 ⊆ T 2 with codim(M̃T 2

x ⊆ M̃S1

x ) > 0. Hence equality holds and we have

dim(M̃T 2

x ) = 3 and dim(M̃S1

x ) = 7. On the one hand, the right-hand side of Borel’s
formula equals 10. On the other hand, the left-hand side is a multiple of four. This
is a contradiction. �

5.2. Fixed point component of dimension one or three

In the presence of T 2 symmetry, Theorem 2.5 guarantees existence of a circle whose
fixed point set is non-empty. In this section, we prove Theorem A in the case where
this fixed point set has a component of dimension one or three.

Lemma 5.4. Let M13 and T 2 be as in Theorem A. If there exists S1 ⊆ T 2 such
that M̃S1

has a component M̃S1

x of dimension one or three, then Γ := π1(M) has
a cyclic subgroup of index dividing six.

Proof. Let Γ1 ⊆ Γ be the subgroup that acts trivially on H∗(M̃ ;Q). Recall by
the proof of Lemma 3.2 that Γ1 has index at most two. By Theorem 2.7, we have
Γ1
∼= Z2a × Γ′1 for some a ≥ 0 and some group Γ′1 of odd order. Next, let Γ′2 ⊆ Γ′1

be the subgroup preserving the component M̃S1

x . As in the proof of Lemma 5.3,

we see that M̃S1

has at most three components and therefore that Γ′2 ⊆ Γ′1 has
index at most three. Note in addition that the index is a divisor of three because
Γ′1 has odd order. We claim that Γ′2 is cyclic. In order to prove this, we consider
each case separately.

• dim(M̃S1

x ) = 1. Since M̃S1

x is diffeomorphic to S1 and the action of Γ′2 on M̃S1

x

is free, Γ′2 is cyclic.

• dim(M̃S1

x ) = 3. Let N := M̃S1

x . By Lemma 5.3, we may assume that M̃T 2

= ∅
and hence that there exists S1

1 ⊆ T 2 such that NS1
1 = ∅. We apply Lemma 4.2

to the action of S1
1 on N . For this, we use the Smith-Gysin sequence to calculate

χ(N̄ ,NS1
1 ) = χ(N̄ ,∅) = 2. Since Γ′2 has odd order, Lemma 4.2 (see also Remark

4.3) implies that Γ′2 does not contain a copy of Zp × Zp for any p. By Theorem
2.10, every Sylow subgroup of Γ′2 is cyclic. Hence by Theorem 2.11, Γ′2 ∈ Cd for
some d ≥ 1. Lemma 4.2 then implies that d = 1 and hence that Γ′2 is cyclic by
Remark 2.13.

Therefore, Γ′1, and hence Γ1, has a cyclic subgroup of index dividing three. Since
[Γ : Γ1] ≤ 2, we are done. �

5.3. Five-dimensional fixed point set

In this section, we assume that there exists some S1 ⊆ T 2 whose fixed point set
is five-dimensional. Note that by Lemma 5.4, we only need to discuss the case
in which all components of M̃S1

are five-dimensional. Since each component of
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M̃S1

is a totally geodesic and hence positively curved submanifold of M̃ , the
first rational Betti number of each component of the fixed point set M̃S1

is zero.
In addition, by Thereom 2.6, the sum of the rational Betti numbers of M̃S1

is
at most six. Moreover, M̃S1

cannot have the same rational cohomology ring as
(CP1×S3)#(CP1×S3) since otherwise we will have

∑
i bi(M̃

S1

;Q) =
∑
i bi(M̃ ;Q).

But this contradicts Theorem 2.6 because the rational cohomology ring of (CP1×
S3)#(CP1 × S3) has four generators. Altogether, we get that each component of

M̃S1

has the rational cohomology of either S5 or CP1×S3. Therefore, the rational
cohomology ring of M̃S1

must be the same as that of one of the following spaces:

S5 t . . . t S5︸ ︷︷ ︸
k times

(1 ≤ k ≤ 3), CP1 × S3, S5 t (CP1 × S3). (1)

Lemma 5.5. For M13 and T 2 as in Theorem A, if there exists S1 ⊆ T 2 such that
the fixed point set M̃S1

is five-dimensional, then Γ := π1(M) has a cyclic subgroup
of index dividing 18 or 27.

Proof. By the discussion before Lemma 5.5, we may assume that M̃S1

has the
same rational cohomology as one of the five spaces in (1). We break the proof into
cases:

• M̃S1

has a component N1 with the rational cohomology of CP1 × S3. As in
Lemma 5.4, let Γ1 ⊆ Γ be the subgroup of index at most two that acts trivially
on H∗(M̃ ;Q) and write Γ1 as Γ1

∼= Z2a × Γ′1 for some a ≥ 0 and some group Γ′1
of odd order. Since the action of Γ′1 on M̃ commutes with the S1-action, Γ′1 acts

on M̃S1

. Since M̃S1

has at most one component with the rational cohomology of
CP1×S3, Γ′1 acts on N1. By Lemma 5.3, we may assume that M̃T 2

= ∅ and hence

that there exists S1
2 ⊆ T 2 such that N

S1
2

1 = ∅. Let N̄1 := N1/S
1
2 . By applying the

Smith-Gysin sequence to the pair (N̄1, N
S1
2

1 ) = (N̄1,∅), it follows that Hi(N̄1;Q)
is isomorphic to Q for i ∈ {0, 4}, isomorphic to Q2 for i = 2, and trivial otherwise.

Let α ∈ Γ′1. We claim that Lef(α; N̄1) equals 1 or 4. In order to prove this,
note that since α has odd order, the induced action of α on Hi(N̄1;Q) is trivial
for i ∈ {0, 4}. Now, let λ1 and λ2 denote the eigenvalues of α∗ : H2(N̄1;Q) →
H2(N̄1;Q). Since α has finite order, λ1 and λ2 are roots of unity, so λ1 + λ2 ∈
[−2, 2]. Moreover, the Lefschetz number and hence λ1 +λ2 is an integer. Therefore,
λ1 +λ2 ∈ {−2,−1, 0, 1, 2}. In addition, λ1 and λ2 have odd orders since α has odd
order. In particular, λi 6= −1, so λ1 + λ2 6= −2. Similarly, if λ1 6= 1, then it is
complex and hence λ2 = λ̄1 and λ1 +λ2 = 2Re(λ1). Therefore, if λ1 +λ2 ∈ {0, 1},
then λ1 has order 4 or 6, a contradiction. Hence λ1 + λ2 ∈ {−1, 2}. This proves
the claim.

Lemma 4.2 now implies that Γ′1 does not contain Zp × Zp for all p. Hence by
Theorem 2.10, all Sylow subgroups of Γ′1 are cyclic. Theorem 2.11 and Lemma 4.2
then imply that Γ′1 ∈ Cd, where d = 1. Therefore, Γ′1, and hence Γ1, is cyclic. This
means that Γ has a cyclic subgroup of index at most two.

• M̃S1

is a rational cohomology 5-sphere. Let N2 := M̃S1

. Note that Γ acts on
N2. Moreover, Γ acts trivially on the rational cohomology of N2 by Weinstein’s
theorem. Therefore, we can apply Theorem 2.7 to conclude that Γ ∼= Z2b × Γ′,
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where b ≥ 0 and Γ′ is a group of odd order. As in the previous case, we can choose

S1
3 ⊆ T 2 such that N

S1
3

2 = ∅ and apply the Smith-Gysin sequence to the pair

(N̄2, N
S1
3

2 ) = (N̄2,∅) to get χ(N̄2) = 3. Lemma 4.2 then implies that Γ′ does not
contain a copy of Zp × Zp for p 6= 3. This, together with Theorem 2.10, implies
that all Sylow p-subgroups of Γ′ are cyclic for p 6= 3. Now, we claim that the
Sylow 3-subgroup of Γ′ is either cyclic or isomorphic to one of Z3×Z3 or Z9 oZ3.
The idea is to prove that Γ′ does not contain a copy of Z3 × Z3 × Z3, U(3, 3), or
Z9×Z3. Proposition 2.14 then implies the claim. By Lemma 4.2, in order to prove
that Γ′ does not contain a copy of Z3 × Z3 × Z3, U(3, 3), or Z9 × Z3, it suffices to
find a normal subgroup of order three of each of these groups which is not strictly
contained in a cyclic subgroup. Existence of such a subgroup is obvious in the
case of Z3 × Z3 × Z3 or Z9 × Z3. As for U(3, 3), it has center isomorphic to Z3.
This subgroup is normal and is not strictly contained in a larger cyclic subgroup
because every non-trivial element of U(3, 3) has order three.

Now, we have a group Γ′ of odd order such that its Sylow p-subgroups are cyclic
for p 6= 3 and its Sylow 3-subgroup is either cyclic, Z3 × Z3, or Z9 o Z3. Let P3

be a Sylow 3-subgroup of Γ′. If P3 is cyclic, then Γ′ ∈ Cd for some d ≥ 1 by
Theorem 2.11. If not, then we apply Theorem 2.15. Hence Γ′ can be written in
the form of P3N for some N E Γ′ such that P3 ∩ N = {1}. Letting Γ′′2 := Z3N
or Γ′′2 := Z9N , depending on whether P3

∼= Z3 × Z3 or P3
∼= Z9 o Z3,we get an

index three subgroup Γ′′2 of Γ′ such that all Sylow subgroups of Γ′′2 are cyclic. By
Theorem 2.11, it follows that Γ′′2 ∈ Cd for some d. The discussion above shows that
either Γ′ or Γ′′2 has a cyclic subgroup of index d. Now, Lemma 4.2 implies that d
divides three. Therefore, Γ′, and hence Γ, has a cyclic subgroup of index dividing
nine, as required.

• M̃S1

is the disjoint union of two rational cohomology 5-spheres. In this case,
let M̃S1

x denote one of the two components of M̃S1

and let Γ3 be the subgroup of

Γ of index at most two which acts on M̃S1

x . Replacing Γ by Γ3 in the argument for
the previous case, it follows that Γ has a cyclic subgroup of index dividing 18.

• M̃S1

is the disjoint union of three rational cohomology 5-spheres. Let M̃S1

x

denote one of the components of M̃S1

and let Γ3 ⊆ Γ be the subgroup of index at
most three that acts on M̃S1

x . We again argue as in the second case, replacing Γ
by Γ3 to conclude that Γ has a cyclic subgroup of index dividing 18 or 27. �

5.4. Conclusion of proof

Let M and T 2 be as in Theorem A. As remarked at the beginning of this section, we
may lift the T 2-action to the universal cover of M . By Theorem 2.5, we may choose
S1 ⊆ T 2 such that M̃S1 6= ∅. If M̃S1

has a component of dimension one or three,
then we are done by Lemma 5.4. In particular, we are done if dim(M̃S1

) ≤ 3. In

addition, if dim(M̃S1

) = 5, then the proof follows by Lemma 5.5. Recall also that

the dimension of M̃S1

is at most seven by Lemma 5.1. We may assume therefore
that dim(M̃S1

) = 7.

Note that by Frankel’s theorem (see [Fra61]), M̃S1

cannot have more than one

component of dimension seven. Moreover, the seven-dimensional component M̃S1

x

of M̃S1

satisfies b2(M̃S1

x ;Q) = 1 since the inclusion M̃S1

x ↪→ M̃ is 3-connected by
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Theorem 2.1. By Poincaré duality, M̃S1

x has total Betti number at least four.

Suppose for a moment that M̃S1

is not connected. Let M̃S1

y denote another

component. By Theorem 2.6, M̃S1

y is a rational S1, S3, or S5 because M̃ has total
Betti number six. It follows by Lemma 5.4 and by the second case in the proof
Lemma 5.5 that π1(M) has a cyclic subgroup of index 1, 2, 3, 6, or 9. Therefore,

we may assume that M̃S1

is connected.

Lemma 5.6. Suppose that T 2 acts effectively and isometrically on a closed, positi-
vely curved manifold M13 whose universal cover is a rational cohomology Bazaikin
space. If there exists S1 ⊆ T 2 such that M̃S1

is connected and seven-dimensional,
then at least one of the following holds:

(1) π1(M) is cyclic.

(2) M̃T 2 6= ∅.

(3) There exists another circle S1
1 ⊆ T 2 such that M̃S1

1 is non-empty and has
dimension at most five.

Proof. Let p : M̃ →M be the universal covering map. Note that p(M̃S1

) = MS1

,

so MS1

is connected and seven-dimensional.
If the action of S1 on M does not have any non-trivial finite isotropy groups,

then π1(M) is cyclic (see [Ron05, Thm. C]) and we are done. Hence we may assume

that this action has a non-trivial finite isotropy group S1
q . Let N := M

S1
q

q .

We claim that N ∩ MS1

is empty. Indeed, if q′ ∈ N ∩ MS1

, then we have

MS1 ⊆ M
S1
q

q′ = M
S1
q

q . Now, q /∈ MS1

since the isotropy group S1
q is finite, so this

inclusion is strict. But then the dimension of M
S1
q

q would be greater than seven,
so we have a contradiction to Lemma 5.1.

Next we claim that there exists a circle S1
1 ⊆ T 2 such that NS1

1 6= ∅. In order to
prove this, note that T 2 acts on N . Let H denote the kernel of this action. If H is
not finite, then there exists S1

1 ⊆ H and we are done. If H is finite, then the claim
follows by applying Theorem 2.5 to the action of T 2/H ∼= T 2 on N . Therefore, we

can choose q1 ∈ NS1
1 .

We claim that S1
1 6= S1. If instead S1

1 = S1, then q1 ∈MS1

since q1 is fixed by

S1
1 . But q1 ∈ N , so q1 ∈ N ∩MS1

, a contradiction.

In order to conclude the proof, we consider two cases. If dim(MS1
1 ) ≤ 5, then

dim(M̃S1
1 ) ≤ 5 and we are done. If not, then MS1∩MS1

1 6= ∅ by Frankel’s theorem.

In this case, T 2 has a fixed point on M and hence on M̃ . �

Lemma 5.6, together with Lemmas 5.3, 5.4, and 5.5, completes the proof of
Theorem A for rational cohomology Bazaikin spaces.

6. Proof of Theorem A for mod 3 cohomology Bazaikin spaces

In this section, we prove Theorem A for mod 3 cohomology Bazaikin spaces.
The idea here is to find a subgroup Γ3 ⊆ Γ of index at most three which does not
contain a copy of Zp × Zp for any p. Recall that by a result of Smith, Zp × Zp
cannot act freely on a mod p cohomology sphere (see [Smi44]). Heller proved that
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Z3
p cannot act freely on a manifold M with H∗(M ;Zp) ∼= H∗(Sm × Sn;Zp), where

n > m (see [Hel59], cf. [AP93, Example 3.10.17]). We refine Heller’s argument in
a special case to prove the following lemma:

Lemma 6.1. If M is a smooth manifold such that H∗(M ;Zp) ∼= H∗(S2 × S3;Zp)
for some odd prime p, then Zp × Zp cannot act freely on M .

Proof. Suppose by contradiction that G = Zp × Zp acts freely on M and consider
the Leray-Serre spectral sequence associated to the Borel fibration M → MG →
BG. Note that since p is odd and dimHi(M ;Zp) ≤ 1 for all i, G acts trivially on
H∗(M ;Zp). Therefore, we can apply the Leray–Serre spectral sequence.

Since G acts freely on M , it follows from [AP93, Prop. 3.10.9] that H∗(MG;Zp)
∼= H∗(M/G;Zp). By [AP93, Lem. 3.10.16], this implies that Hi(MG;Zp) = 0
for all i > 5. In particular, H6(MG;Zp) = 0 and hence E6,0

∞ is trivial. Observe
that for the differential map dr : Em,nr → E6,0

r , m and n satisfy m + n = 5
and n ≥ 1. Moreover, Em,n2 = 0 for n = 1 or 4. Hence the only non-trivial
differentials which can kill elements of E6,0

2 come from E3,2
3 , E2,3

4 and E0,5
6 . Note

that H∗(BG;Zp) = Zp[t1, t2]⊗∧(s1, s2), where each ti has degree two, each si has
degree one, and ∧(s1, s2) denotes the exterior algebra over Zp generated by s1 and

s2. Therefore, the set {ti1t
j
2 : i + j = 3} ∪ {s1s2t

i
1t
j
2 : i + j = 2} forms a basis for

E6,0
2 and hence dimE6,0

2 = 7. Moreover,

dimE0,5
2 + dimE2,3

2 + dimE3,2
2 =

∑
0≤i≤3
i 6=1

dimHi(BG;Zp) = 1 + 3 + 4 = 8.

We get a contradiction by proving that E6,0
∞ cannot be trivial. By considering the

dimensions calculated above, in order to prove this, it suffices to find at least two
basis elements in the groups E3,2

2 , E2,3
2 , and E0,5

2 that either do not survive to the
appropriate page or do not kill any elements of E6,0

2 . In order to find such basis
elements, we need to analyze the differentials. Fix generators x ∈ H3(M ;Zp) and
y ∈ H2(M ;Zp). We break the proof into two cases:

• The differential d2 : E1,3
2 → E3,2

2 is non-zero. In this case, the differential d2 :
E0,3

2 → E2,2
2 is non-zero because {s1x, s2x} forms a basis for E1,3

2 and d2(si) = 0.
Note that d2(x) is of the form a1t1y + a2t2y + a3s1s2y for some ai ∈ Zp. Note

also that at least one of a1 or a2 is non-zero since otherwise d2 vanishes on E1,3
2 .

Therefore, d2(six) = −a1sit1y − a2sit2y and hence d2 : E1,3
2 → E3,2

2 is injective.
This means that two of the basis elements of E3,2

2 do not survive to the E3 page
and hence cannot kill any elements of E6,0

3 .

• The differential d2 : E1,3
2 → E3,2

2 is zero. In this case, E3,2
3
∼= E3,2

2
∼=

H3(BG;Zp). Since y survives to the E3 page, the set {s̄it̄j ȳ : i, j ∈ {1, 2}} forms a

basis for E3,2
3 , where the bars denote the images of elements from the E2 page in the

E3 page. In addition, d3(ȳ) = b1s̄1t̄1 + b2s̄1t̄2 + b3s̄2t̄1 + b4s̄2t̄2 for some bi ∈ Zp,
and each differential map dr : Em,nr → Em+r,n−r+1

r is a derivation. Therefore,
the differential d3 : Z4

p
∼= E3,2

3 → E6,0
3
∼= Z7

p has its image in the 3-dimensional

subspace of E6,0
3 spanned by {s̄1s̄2t̄

i
1t̄
j
2 : i + j = 2}. But any linear map from

a 4-dimensional space to a 3-dimensional space has non-trivial kernel. Hence the
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kernel of d3 : E3,2
3 → E6,0

3 is at least 1-dimensional and so not all basis elements
of E3,2

3 can contribute to killing elements of E6,0
3 . Now, we only need to find one

more basis element in another group that does not kill any elements of E6,0
2 .

Without loss of generality, we may assume that d3(ȳ) 6= 0 since otherwise d3 :
E3,2

3 → E6,0
3 would be trivial and so E3,2

3 cannot kill any elements of E6,0
3 . If

d2(x) = 0, then x survives to the E3 page and so we have d3(x̄ȳ) = d3(x̄)ȳ −
x̄d3(ȳ) 6= 0. This means that E0,5

3 does not survive to the E4 page and hence it
cannot kill any elements of E6,0

6 . If instead d2(x) 6= 0, then d2 : E2,3
2 → E4,2

2 would
be non-zero. This means that at least one of the basis elements of E2,3

2 does not
survive to the E3 page and so it cannot kill any elements of E6,0

4 . �

We now proceed to the proof of Theorem A. As the proof for rational cohomolo-
gy Bazaikin spaces shows, index 18 or 27 would possibly arise only when the fixed
point set of the circle action is the disjoint union of either two or three rational
cohomology 5-spheres. Hence we only need to discuss those two cases.

First, suppose that M̃S1

= M̃S1

x t M̃S1

y , where each component is a rational

cohomology 5-sphere. Consider Z3 ⊆ S1. We may assume that M̃S1

x = M̃Z3
x since

otherwise we get strict inclusions M̃S1

x ( M̃Z3
x ( M̃ . Lemma 5.1 then implies that

dim(M̃Z3
x ) = 7. By Proposition 2.3, M̃Z3

x is a homotopy sphere. Since the inclusion

M̃Z3
x ↪→ M̃ is 2-connected by Theorem 2.1, we have a contradiction. Similarly,

M̃S1

y = M̃Z3
y . Moreover,

∑
i

dimHi(M̃Z3 ;Z3) ≤
∑
i

dimHi(M̃ ;Z3) ≤ 10.

Together with Poincaré duality, this implies that at least one of the fixed point set
components, say M̃S1

x , has the mod 3 cohomology of either S5 or S2 × S3 (note

that M̃S1

x is positively curved, so it has vanishing first integral Betti number. This,

together with the universal coefficient theorem, implies that M̃S1

x cannot have the
mod 3 cohomology of S1×S4). Let Γ3 denote the subgroup of Γ of index at most two

which acts on M̃S1

x . By Theorem 2.7, we have Γ3
∼= Z2c×Γ′3, where c ≥ 0 and Γ′3 is

a group of odd order. As the proof of Theorem A for rational cohomology Bazaikin
spaces shows, Γ′3 does not contain a copy of Zp×Zp for p 6= 3. In addition, Lemma
6.1, together with the fact that Zp ×Zp cannot act freely on a mod p cohomology
sphere, implies that Γ′3 does not contain Z3 × Z3 . Hence all Sylow subgroups of
Γ′3 are cyclic and Γ′3 ∈ Cd for some d ≥ 1. Our calculations from the previous
section imply that d divides three. This means that Γ3 has a cyclic subgroup of
index dividing three and hence Γ has a cyclic subgroup of index dividing six.

The proof for the case where M̃S1

is the disjoint union of three rational cohomo-
logy 5-spheres is similar except that here the bound on dimH∗(M̃Z3 ;Z3) implies

that at least one of the components of M̃S1

is a mod 3 cohomology S5. Moreover,
in this case, the index of Γ3 in Γ is at most three and hence we get that Γ has a
cyclic subgroup of index 1, 2, 3, 6, or 9.
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