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Abstract—Line outage detection is an essential component of
situational awareness and security of the smart grid. Trans-
mission lines are an attractive target for advanced persistent
threats, and their outages can be caused by cyber or physical
attacks. In this paper, we demonstrate the effectiveness of
prediction-based data augmentation in enhancing the detection
and location of line outages. Moreover, we show how prediction-
based data augmentation can benefit various data-driven learning
techniques, specifically support vector machines, naive Bayes, and
convolutional neural networks. This work presents the results
of six evaluation cases using six training compositions to show
that, on average, our enhanced method of prediction-based data
augmentation can increase the accuracy of line outage detection
by 4.19% compared to using only historical data for training.
Furthermore, we test the algorithm under ten measurement
availability conditions. These tests demonstrate our algorithm’s
effectiveness, particularly under limited data availability.

Index Terms—data augmentation, smart grid, line outage,
CNN, SVM, Naive Bayes

I. INTRODUCTION

In the past ten years, power systems have become frequent

targets of cyber and physical attacks. Examples range from

the 2015 attacks on the Ukrainian power grid to disabled

substations in the United States [1]. Ensuring the safety and

security of this vital infrastructure is crucial for protecting all

other critical infrastructures. Transmission line outages are of

particular interest for three reasons: (i) their statuses can be

monitored and controlled remotely by off-the-shelf computing

devices, (ii) their high operating voltages can quickly introduce

physical vulnerabilities, and (iii) operating close to their ther-

mal limit can lead to severe physical disruptions [2]. A lack of

situational awareness of the transmission systems can lead to

protective measures that exacerbate outages [3]. Detecting and

locating a line outage can speed response and recovery while

preventing broader power system failures. Due to their lack of

physical security, transmission lines are vulnerable targets for

causing extensive damage to the power grid.

Like many other power grid applications, line outage de-

tection methods continue a transition from model-based ap-

proaches to data-driven ones. Model-based line outage detec-

tion determines physical violations, e.g., overloading, based on

accurate system state from the calculation on a physical model

using methods like system identification [4], optimization [5],

or Markov-chains [2]. These methods require an accurate

system model, which can be challenging as topology changes

due to outages. Alternatively, data-driven approaches leverage

the growing amount of measurement data to make inferences

of line outage outcomes [6], [7]. When properly trained, these

methods perform accurate detection without requiring a system

model. However, the performance of the data-driven methods

heavily relies on the training quality.

This paper proposes an original prediction-based data aug-

mentation method customized for the unique features observed

in line outages. The objective is to significantly increase

the training quality of data-driven line outage methods with

negligible overheads. We achieve this objective by adjusting

training procedures according to three critical aspects of

current data-driven line outage methods, i.e., the continuously

changing operating conditions, the measurement availability,

and the adopted classification methods. These designs are

motivated by a previous study, which uses predicted load

demands to enhance the training of data-driven fault detection,

[8]. The algorithm presented combines both historical and

predicted load demands to train machine learning models,

which can be equipped with the knowledge of future operating

conditions and enhance the relevance of training data for bus

fault detection. However, when directly applying this method

to line outages, we fail to observe the same improvements.

We hypothesize that specific anomaly detection applications

can affect the training quality. Line outages differ from bus

faults in at least two aspects: (i) line outage causes more minor

disturbances than faults, making it more challenging to detect

based on measurement data and data-driven methods; (ii)

transmission line vulnerabilities make a more attractive target

for cyberattacks. Compared to bus faults, transmission lines

comprise large attack surfaces and high impact potential in the

grid. This hypothesis motivates us to design two new modules

in the proposed data-augmentation method that differ from

previous work: (i) a systematic procedure to create various

training datasets based on the power system’s measurement

availability and (ii) different machine learning methods based

on their design philosophy. Critically, these enhancements

present an in-depth understanding of the construction of train-

ing data and its impact on machine learning techniques.

Our design addresses critical shortcomings in the current

prediction-based data augmentation method. First, we leverage

measurement availability analysis in power grids to guide

the creation of training data sets with different sizes and
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observability conditions, which can be used to empirically

study its impact on the performance of the data augmentation

method. Second, we exploit line outage attacks as anomalies

instead of electrical faults. Third, we select representative

machine learning methods, including support vector machine

(SVM), naive Bayes (NB), and convolutional neural networks

(CNN), to understand the impact of learning methods on the

proposed data augmentation method.

This paper shows that the enhanced data augmentation im-

proves the classification accuracy of line outages in the IEEE

39-Bus model by 4.19% on average as compared to historical

only training. Moreover, unlike model-based methods, data-

driven methods can still make inferences when measurement

availability is limited. Our experiments show that prediction-

based data augmentation improves accuracy by 4.23% when

bus measurement availability is reduced to 50% or less.

Based on our experiments, data augmentation is most effective

when there is insufficient historical data. Significantly, data

augmentation improves classification accuracy for line outage

detection regardless of the data-driven classification method,

often exceeding the accuracy obtained from increasing histor-

ical data alone.

The remainder of the paper is organized as follows, Sec-

tion II introduces related research in data augmentation and

line outage detection. Section III outlines the design of the

enhanced prediction-based data augmentation algorithm. Ex-

perimentation and results are presented in Section IV, and

conclusions are drawn in Section V.

II. RELATED WORKS

Timely detection of line outages is of the utmost importance

in ensuring effective energy management since there exists the

potential to change the power system’s topology significantly.

Extensive research developed effective strategies for promptly

detecting outages to maintain lines or predict line outages

before they occur [9]–[11]. However, unexpected events such

as cyberattacks can also cause line outages, making those ap-

proaches less effective. A coordinated attack model presented

in [12] includes a cyberattack on the communications network

and a physical attack on transmission lines. Our research

concerns the detection of an outage after it has occurred and

when there is not enough historical data to make the correct

inferences.

The state of data-driven algorithms for smart grid applica-

tions continues to evolve. Machine learning appears ubiquitous

in the line outage detection literature. Abdelaziz et al. study

parameter selection for SVM to detect outages in the IEEE 14-

Bus model under six different load conditions [13]. Detection

of distribution system line outages proves successful with

SVM in [14]. Probabilistic models with Bayesian inference

networks detect line outages in [3], and optimization and

Bayesian regression allow for the detection of line outages

after a cyberattack in [5]. Additionally, deep learning continues

to increase in prevalence as computational power expands. A

hybrid learning approach includes a long short-term network

(LSTM) leading a CNN to prevent overfitting in detecting

power line outages in [15].

We propose data augmentation to enhance data-driven ap-

plications in smart grids by exploiting domain-specific knowl-

edge instead of changing the probability distribution of input

data (like the methods used in image classification). Maalej et

al. showed that data augmentation benefits load forecasting by

adding Gaussian noise to sensor data to enlarge the training

set [16]. To increase the performance of data-driven fault

detection, Rogers et al. leveraged load prediction to equip

training data with knowledge about future operating condi-

tions [8]. In this work, we significantly advance the range of

“prediction-based data augmentation” in [8] by considering

ad-hoc features in line outage detection, e.g., measurement

availability and diverse machine learning models.

While prediction-based data augmentation should benefit

data-driven approaches generally, this area remains unstud-

ied. We implement three different data-driven methods for

transmission line outage detection and location tasks to study

the effects of prediction-based augmentation. The data-driven

methods implemented are prevalent in the literature for line

outage detection and serve as a representative sample of

machine learning approaches.

III. PREDICTION BASED DATA AUGMENTATION

Fig. 1 presents the components of the prediction-based data

augmentation algorithm for data-driven line outage detection,

enhanced from the preliminary design in [8]. Indicated in

black boxes are the preliminary design components, including

the collection of historical data, load prediction, and physical

simulation to generate training data. The preliminary design

focused on bus fault conditions and used a convolutional neural

network as the anomaly detection method.

In this work, we enhance the design in three aspects, each

with significant practical implications. First, we introduce a

module for bus selection, making the augmentation relevant

to the actual measurement availability of smart grids. This

change not only improves the algorithm’s performance but also

provides insights into the data size and location requirements

for prediction-based data augmentation. Second, we update the

algorithm to implement line outage simulation as our anomaly

type, a more common and difficult to detect anomaly. This

change allows us to more accurately assess the effectiveness

of prediction-based data augmentation in real-world scenarios.

Lastly, we add a model selection module to the algorithm

based on the needs of real utilities, demonstrating the adapt-

ability and versatility of our approach.

A. Measurement availability

Data-driven methods, including line outage detections, are

often adopted when there is insufficient measurement data,

and the observability requirements may no longer hold for

model-based methods. Consequently, we strategically reduce

the number of measurement data used in line-outage detection

and assess the impact of measurement availability on the

performance of prediction-based data augmentation. Specifi-

cally, the measurement availability module shown in Fig. 1
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Fig. 1: Components of augmented data-driven line outage

detection.

includes three strategies to reduce measurement data. In the

first random selection strategy, we randomly select 25% or

50% of buses and transmission lines and use the measurements

from those buses and lines to perform line outages. In the

second topological region strategy, we randomly select a

region that includes up to 50% of buses and completely

remove the measurements from that region from the data

set. Unlike the first strategy, in which reduced measurements

are evenly distributed in different areas, this strategy focuses

on geographically interconnected measurements. In practice,

this measurement reduction strategy can represent a scenario

where a stealthy and opportunistic adversary launches a line

outage attack when he observes measurements missing from

a region due to accidents or data attacks (e.g., configura-

tion errors in a communications network) [17]. In the last

targeted measurement strategy, we only target a critical set

of measurement data that are necessary to calculate system

states. This specific set of measurements can be determined

by optimizing PMU placement, as shown in [18]–[20]. Unlike

the first two strategies, the last measurement reduction strategy

will focus on targeted measurements by removing redundant

measurements, which are critical for model-driven methods to

remove noises or errors from the collected measurements.

B. Line Outage

Line outages happen when a transmission or a distribution

line is out of service in a power grid. In general, line

outages introduce milder consequences than electrical faults.

Electrical faults introduce short circuits to physical devices,

requiring timely and instant remedy procedures to prevent

permanent damage. On the other hand, a line outage does

not directly cause physical damage; it introduces regional

power generation-consumption imbalance in a power grid.

Because other delivery devices reroute power, overloading

may occur in other transmission lines, automatically tripping

protection relays and ultimately leading to a blackout through

cascading events. Cyberattacks can manipulate line outages,

as demonstrated during the attacks disrupting Ukraine power

plants. The large number of lines serving as possible attack

targets makes it difficult to analyze thoroughly in advance.

C. Data-driven Model Selection Overview

The model selection module uses three representative data-

driven methods for line outage detection: support vector ma-

chines (SVM), naive Bayes (NB), and convolutional neural

networks (CNN). SVM and NB use hyperplanes and proba-

bilities, respectively, and constitute traditional machine learn-

ing approaches. By contrast, CNN is a deep-learning neural

network. The methods provide a study of the generalization

of prediction-based data augmentation because they possess

different learning philosophies. All three have been applied to

the line outage detection problem in previous research efforts

(some examples were presented in Section II), including

our previous work leveraging CNN for bus fault detection.

By adding this model selection module, we can provide an

insightful understanding of the proposed data augmentation

method across representative learning approaches. In practice,

utilities may select the most suitable data-driven approach for

their needs.

IV. EVALUATION

A. Experiment Set up

This section presents the evaluation of the enhanced

prediction-based data augmentation method in the IEEE 39-

Bus system [21]. To provide various operating conditions,

we built six evaluation cases randomly extracted from the

ACTIVSg2000 data set to represent realistic load variation at

different times in a year period [22]. Table I outlines the days

and months that each evaluation case represents, demonstrating

variability in days/season representation within the cases.

TABLE I: Evaluation cases.

Case Starting Day /Time Ending Day/Time Month

Case 1 Friday 0000 Tuesday 0300 January

Case 2 Thursday 1900 Monday 2300 January

Case 3 Sunday 0400 Friday 2300 March

Case 4 Wednesday 1600 Sunday 1900 June

Case 5 Tuesday 1600 Saturday 1900 October

Case 6 Tuesday 2000 Saturday 2300 December

Performance evaluation using different training data sizes

and compositions helps determine the impact of prediction

data versus simply increasing the amount of historical data.

Each evaluation case undergoes testing under six training

compositions, summarized in Table II. We established a min-

imal historical data set called H40, consisting of 40 hours

of historical data. P20 refers to 20-hour prediction data.

After augmentation, H40+P20 refers to H40 enhanced with

the prediction data. Similarly, H60 comprises 60 hours of

historical data, whereas H60+P20 indicates a blend of H60

and P20. Finally, the two extremes of the training sets: P20

composed solely of 20-hour prediction data and H80 of 80-

hour historical data, representing the maximum amount of

historical data available. Details for data set creation are

provided in the next section.

B. Enhanced Prediction-Based Data Augmentation Implemen-

tation

Measurement Availability. We study ten partial measure-

ment availability conditions based on the three strategies

3
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TABLE II: Training scenarios.

Scenario Composition of Training Data

P20 20 hrs predicted data

H40 40 hrs historical data

H40-P20 40 hrs historical data + 20 hrs predicted data

H60 60 hrs historical data

H60-P20 60 hrs historical data + 20 hrs predicted data

H80 80 hrs historical data

presented in Section III: random selection, topological regions,

and targeted measurements. In the first strategy, two availabil-

ity conditions result from a random selection of 50% of buses,

while an additional two conditions contain 25% of buses,

selected from the first two. Three measurement availability

conditions based on the second strategy, topological regions,

include approximately 50% of the system. The interconnected

nature of the measurements in this strategy would lead to

system observability difficulties that could impact data-driven

method performance. In the last measurement selection strat-

egy, the available measurements consist of targeted bus mea-

surements presented in the literature as optimized placement

to achieve full system observability with a minimal number of

phasor measurement units. A summary of bus selections under

each strategy and associated measurement saturation appears

in Table III.

TABLE III: Buses utilized for availability conditions.

Source Measurement Buses used

Availability %

Random Subset 1a 50% 2,3,4,5,6,8,9,10,16,20
22,23,25,26,29,31,32,35,39

Random Subset 1b 25% 4,6,8,9,10,22,26,31,32

Random Subset 2a 50% 3,4,6,8,9,12,13,16,19,22
23,25,26,30,31,32,35,37,39

Random Subset 2b 25% 3,4,8,16,22,26,32,37,39

Topological Region 1 50% 1,2,3,4,5,6,7,8,9,10
11,12,17,18,25,30,31,37,39

Topological Region 2 50% 13, 14,15,16,19,20,21,22,23,24
26,27,28,29,32,33,34,35,36,38

Topological Region 3 50% 1,2,3,4,14,15,16,17,18,21
25,26,27,28,29,30,37,38,39

Targeted 1
[18] < 25% 3,8,16,23,29,32,34,37

Targeted 2
[19] < 50% 2,4,6,9,10,13,16,17,19,20

22,23,25,29

Targeted 3
[20] < 50% 4,8,12,16,17,19,20,23,29,30

31,32,35,37,39

Load Prediction. As in [8], this research uses LSTM

to predict the upcoming loads in the IEEE 39-Bus model.

Historical load data obtained from the ACTIVSg2000 data set

and normalized for the IEEE 39-Bus model represents the

normal variation of loads in time. Specifically, 80 hours of

historical data make up the training data used by an LSTM

for predicting loads in the upcoming 20 hours.

Simulation and Line Outage Injection. Power grid sim-

ulations using MATPower supplied normal and anomalous

conditions. For every hour of data, we simulated an outage on

each of the forty-five transmission lines. Optimal power flow

provided the bus voltage magnitude and phase after the line

outage. With 80 operating conditions, the resultant historical

data set contains 3,680 samples. The test and prediction data

sets contain 920 samples each.

Data Driven Anomaly Detection. The data-driven line

outage detection module includes three methods: SVM, NB,

and CNN, to demonstrate that the prediction-based data

augmentation can benefit various machine learning methods.

All three implementations used bus voltage phasors as input

features and output a label indicating the location of the line

outage.

Support Vector Machine. The SVM, implemented with

Scikit-learn libraries [23], did not include hyperparameter

tuning. Tuning the parameters could provide high detection

accuracy but proved computationally expensive to perform on

each training case, making it infeasible in practice.

Naı̈ve Bayes. The naive Bayes Gaussian classifier is de-

signed to handle non-integer, real-valued inputs such as bus

measurements. As with the SVM, Scikit-learn libraries provide

the NB implementation.

Convolutional Neural Network. The CNN implementation

follows [8], which contains two feature layers with three

convolutional layers each. In this research, we study the CNN

performance with a batch size of 64, using Pytorch.

C. Results

Line outage detection accuracy represents a percentage of

samples where the predicted label, indicating one for a line

outage or zero for no outage, matches the true label. Since

295 tests took place, an average result is usually presented. The

discussion in the next section will indicate whenever the results

were averaged across a parameter, i.e., method, measurement

availability, or evaluation case.

Fig. 2: Average line outage detection accuracy, grouped by

method, under different training scenarios.

Fig. 2 provides the results by detection method and training

composition. In this figure, the results present the average

across all measurement availability conditions and cases. In

general, augmentation improves line outage detection accuracy

by 4.19% over historical only training, as seen by comparing

augmented training scenarios to the associated base histor-

ical training. Including prediction data can better represent

the testing condition compared to increased historical data,

evidenced by comparing H40+P20 to H60; training data sets

with the same size but different compositions. By including

the prediction data in the training of the SVM and NB, the

line outage detection accuracy of H40+P20 is 3.3% higher on

average over the H60 data set. With 60-hour historical data
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available, augmentation can gain 3.5% accuracy and have com-

parable performance to the H80 training. While performance

gains are less pronounced when using the CNN, H40+P20 still

marginally outperforms H60. This important finding indicates

the relevance of the training data to future operating states has

a more significant impact on outage detection accuracy than

simply increasing the data size with more historical data.

The benefits of prediction-based augmentation appear more

pronounced with less historical data available. While extended

historical data has a marginal performance edge over mixed

training in this larger set, more historical data will not always

be available, and augmentation provides a good alternative.

Although augmentation did not achieve the performance of

H80, including the prediction data did improve accuracy by

5.1% in the H40 scenario and 3.5% in the H60 scenario. When

gathering more historical data becomes infeasible, augmenta-

tion improves the detection performance in all classification

methods.

Of note, P20 training shows comparable average accuracy

performance to the other training scenarios in SVM and NB

results. More explicitly, the P20 performs better than the

more extensive historical data set, H40, and similarly to the

H60 training, with significantly less data. On average, P20

outperforms the other scenarios by 2.3% with SVM and 4%

with NB. However, the performance of training with P20

proves inconsistent across different cases. Furthermore, the

cases that exhibit this outcome vary among classification

methods. Since prior knowledge about the cases can not be

known, it would be inadvisable to use P20 unless there is no

historical data with which to train.

D. Partial Measurement Availability

Although the reduction of measurement availability led to a

decrease in the average detection accuracy for all methods and

cases, we still noticed consistent trends in the performance of

augmentation. In Fig. 3, we compare the average results under

different availability conditions and make some interesting

findings.

Fig. 3: Comparisons of line outage detection accuracy under

different training scenarios for various measurement availabil-

ity conditions.

Including the augmentation to the H40 data set increases

accuracy above that achieved by H60, a historical-only data set

of the same size, regardless of measurement availability condi-

tion. When the base historical data set increases, augmentation

improves the accuracy but not enough to surpass the H80 data

set. With the exception of 25% availability, where H60+P20

outperforms H80. The implication suggests that augmentation

becomes increasingly crucial when data is scarce. Detection

accuracy from the H40+P20 data set with 25% availability

outperforms that of H40 with 50% availability. In the instance

of only 25% measurements availability, augmentation can

deliver superior outcomes compared to historical only data

with higher availability.

When the available measurements consist of a topological

region, detection accuracy further declines. Though each re-

gion consisted of 50% bus measurements, Fig. 3 evidences

that the interconnected nature of buses provides less robust

information about the system than the dispersed 50%. Despite

this decrease in performance, regionally observed H40+P20

achieves comparable results to H40 under the dispersed 50%

condition. Whether prediction-based data augmentation can be

used to offset the losses of partial observability will be left to

future work.

E. Comparison to Bus Fault Results

To compare this work with previous work on smart grid

data augmentation [8], we implemented the SVM and NB on

the high-fidelity bus fault data used in those experiments. The

following results compare the data augmentation algorithm

performance for bus faults and line outages using all three

presented classification methods.

Fig. 4: Comparisons of bus fault and line outage detection

accuracy performance gains as compared to the base historical

only training amount.

Fig. 4 shows the performance gains achieved through

prediction-based augmentation for bus faults and line outages.

The performance gain metric compares each augmented train-

ing set to its base historical data, e.g., H40+P20 compared to

H40. The bars represent the variability across the evaluation

cases and training scenarios. The measurement availability

conditions and CNN batch sizes have been averaged. The

CNN Bus Faults category contains the results from previous

works. Except for the NB implementation for bus faults, which

will be discussed next, augmentation improves the detection

accuracy by up to 26.6%. Our experiments using SVM and

CNN methods show that including prediction data leads to

more accurate detection of both bus faults and line outages.

However, the NB only consistently benefits from augmentation

when detecting line outages.

5
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The NB implementation for bus faults shows less consistent

results, as noted by both positive and negative values in the

figure. In some cases, the augmentation reduced performance.

The poor detection accuracy using NB for bus faults, below

50%, should be noted. Bus fault data generation occurred

in a high-fidelity environment. The data consisted of closely

correlated, high-dimensional, time series information. The NB

is not well suited for the classification of such data, and

the results indicated as much. Adding more correlated data

through prediction augmentation could have a negative impact.

V. CONCLUSION

This paper enhances the previously introduced prediction-

based data augmentation method in three ways. First, a mea-

surement availability module enables the creation of data sets

based on power systems’ measurement conditions. In doing

so, we study the effects of measurement availability on line

outage detection accuracy and the impact of prediction-based

data augmentation results under realistic scenarios. Second,

we simulate line outages as the anomaly type because of their

risk factors and impacts. Lastly, we add a data-driven model

selection module to allow for the generality of the algorithm

to machine learning methods that best suit the data available.

Augmentation can result in substantial performance gains

in some cases, up to 26%, but 4.19% on average. In general,

augmentation improves line outage detection accuracy when

the method is well-suited for the data. Prediction data can

be incorporated into the available training data to improve

accuracy beyond that achieved by more historical information,

with little adverse effect. Future work is needed to understand

the impact of the prediction quality and quantity included in

the training.

Our results indicate that augmentation has the most sig-

nificant impact when historical data are scarce, particularly

in scenarios with partial measurement data. In such cases,

augmentation can boost performance beyond what a more

comprehensively observed system would achieve. Further re-

search is needed to determine if prediction-based augmentation

can offset lost or compromised data.
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