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Abstract—Recent advances in machine learning (ML) have
spotlighted the pressing need for computing architectures that
bridge the gap between memory bandwidth and processing power.
The advent of deep neural networks has pushed traditional Von
Neumann architectures to their limits due to the high latency and
energy consumption costs associated with data movement between
the processor and memory for these workloads. One of the
solutions to overcome this bottleneck is to perform computation
within the main memory through processing-in-memory (PIM),
thereby limiting data movement and the costs associated with it.
However, DRAM-based PIM struggles to achieve high throughput
and energy efficiency due to internal data movement bottlenecks
and the need for frequent refresh operations. In this work, we
introduce OPIMA, a PIM-based ML accelerator, architected
within an optical main memory. OPIMA has been designed to
leverage the inherent massive parallelism within main memory
while performing high-speed, low-energy optical computation to
accelerate ML models based on convolutional neural networks.
We present a comprehensive analysis of OPIMA to guide design
choices and operational mechanisms. Additionally, we evaluate the
performance and energy consumption of OPIMA, comparing it
with conventional electronic computing systems and emerging
photonic PIM architectures. The experimental results show that
OPIMA can achieve 2.98x higher throughput and 137X better
energy efficiency than the best-known prior work.

Index Terms— Photonic memory; processing-in-memory; silicon
photonics; ml acceleration ; convolutional neural networks

I. INTRODUCTION

For emerging machine learning (ML) models being used
across application domains [1]-[3], the exponential growth in
their computational demands has significantly outpaced the rate
of advances in traditional computing architectures [4], [S]. The
resulting “Von Neumann bottleneck” that alludes to the
memory wall problem [6], is a critical challenge to overcome,
to support modern ML workloads. In response to the limitations
posed by the Von Neumann architecture, various alternative
paradigms are being explored by industry and academia. A
promising alternate computing paradigm involves in-memory
computing or processing-in-memory (PIM) [7]. PIM
architectures propose a departure from traditional designs by
integrating processing capabilities within the memory
subsystem. This integration aims to minimize data movement,
reduce latency, and minimize energy consumption associated
with processing applications.

Given that dynamic random-access memory (DRAM) is the
standard main memory technology today, it is an obvious

candidate for PIM. Several prior efforts have focused on
architecting DRAM-PIM [8]-[10]. However, conventional
DRAM-based PIM systems have encountered challenges in
achieving high throughput and energy efficiency. These
challenges arise primarily due to internal data movement
bottlenecks and the necessity for frequent memory refreshes. To
address the energy and latency concerns associated with
refreshes, non-volatile memory (NVM) technologies, such as
ReRAM [11], [12], Spin-Transfer Torque RAM (STT-RAM)
[13], and Phase Change Material (PCM) memories [14]-[16],
have been considered. However, ReRAM and STT-RAM
technologies face fabrication challenges and endurance issues
[17], [18]. ReRAM additionally suffers from resistance drift
over time, which impacts data readout accuracy [17].

PCMs offer better energy efficiency, bit density, and
bandwidth than other NVMs. They can switch between two
physical states: amorphous and crystalline. This switch results
in a contrast in electrical resistance, allowing these materials to
encode information based on varying resistance levels. In the
context of electrically controlled PCM (EPCM) devices, these
phase changes are induced by applying current through
microheaters. It is possible to precisely regulate the phase shift
from amorphous to crystalline, enabling the creation of multi-
level cells (MLCs) to store more data by adjusting the extent of
the material’s crystallization. However, utilizing the resistance
in PCMs to encode data poses challenges as the resistance
values that PCMs attain depend non-linearly on the applied
write voltage [19].

To address these challenges, optically programmed PCM
(OPCM) cells can be considered [23]. OPCM cells are
fabricated with PCM deposited on top of a photonic waveguide
and are programmed through laser pulses. Here, in place of
resistance, the refractive index of the PCM is the physical
property used to represent data. OPCMs can be programmed
using laser pulses guided to them through on-chip waveguides.
This makes them ideally suited for integration onto silicon
photonic platforms. OPCMs are based on silicon photonics,
which is an emerging field that integrates photonic systems with
electronics. This platform offers several advantages over
traditional electronic circuits, including high throughput and
low energy consumption, for specialized computation tasks
[19]-[22]. Merging this computational capability with an
OPCM main memory could allow for high-speed in-memory
computation without the data movement and refresh
bottlenecks seen in DRAM-PIM.


mailto:@colostate.edu

In this paper, we explore how to architect a photonic main
memory, to enable ML acceleration through PIM. We utilize
the OPCM-based main memory from [23] as the backbone for
our architecture and make several changes to it to support PIM.
We have named our photonic PIM architecture for ML
acceleration, OPIMA. We use convolutional neural networks
(CNNs) to showcase the effectiveness of OPIMA for ML
inference acceleration. The proposed PIM architecture is
characterized by multi-bit density per cell enabling multiply
and accumulate (MAC) operations to be performed directly
within memory. This capability along with architecture-level
innovations allows OPIMA to outperform the state-of-the-art in
terms of ML inference throughput and energy efficiency. In
summary, the novel contributions in this paper include:

e Scattering and back reflection-aware OPCM cell design to
maximize bit-density and minimize read errors per cell;

e Full system design of an OPCM-based PIM architecture
that can operate as a main memory while performing PIM;

e Comprehensive comparison of operational efficiency of
OPIMA with state-of-the-art accelerators.

II. BACKGROUND AND RELATED WORK

Before we discuss our PIM architecture and associated
techniques, we review some fundamentals and background on
PCMs, OPCM main memories, and photonic computing.

A. Phase Change Materials (PCMs)

PCMs possess the ability to shift between amorphous and
crystalline states, depending on the level of thermal energy
applied. This energy must be sufficient to alter the material’s
temperature to either its melting temperature (7;; for
transitioning to the amorphous state) or its crystallization
temperature (T,; for shifting to the crystalline state).
Transitioning to the amorphous state consumes more energy
because its required melting temperature exceeds the
crystallization temperature. It should be noted that it is possible
to induce partial phase changes within PCMs, creating
intermediate states by converting only a fraction of the material
to either state. These transitions can be initiated through
electrical or optical means. Electrical heating can be provided
through PN junctions whereas optically achieving phase
changes requires a laser pulse, whose power and duration must
be tailored to the material’s specific transition energy needs.
Common materials used for PCM applications include
Ge,Sb,Tes (GST), GeShySesTe (GSST), and Sb,Ses [24].

The change in a PCM phase brings with it a change in the
electrical and optical properties of the material. PCM’s states
have different electrical resistances and different optical
refractive indices. These differences in characteristics can be
leveraged for data representation, including multi-bit data
representation, enabling dense PCM-based memories and as
discussed in this paper, PIM architectures.

For EPCM applications, the high-resistance amorphous
state is used to represent a binary 0, and the low-resistance
crystalline state is used to represent a binary 1. This non-volatile
change in resistance allows the PCM cell to be paired with an

access transistor to form a 1TIR EPCM memory cell and a
corresponding memory array of these cells, as described in
many prior works (e.g., [26]-[29]). However as discussed
earlier, EPCM memories face many challenges, such as
asymmetric and high write latencies [30], non-linear response
to write voltages, and resistance drift.

OPCM memories rely on shifts in the material’s refractive
index to modulate optical transmission, enabling data storage
and retrieval [24]. A deep understanding of a PCM’s optical
properties is crucial for the effective deployment of OPCM
memories. A significant refractive index contrast, ensuring a
clear distinction in optical transmission between phases, is vital
for reducing optical signal losses and noise [25], which could
otherwise lead to readout errors. Similar to the importance of
resistance contrast in EPCM memories, a high refractive index
contrast improves the signal-to-noise ratio (SNR) during data
readout. This is extremely important not just from a data fidelity
standpoint but also from a photonic PIM standpoint, as we must
ensure error-free data readouts to ensure error-free calculations
in the analog domain where photonic computations occur.

B. OPCM Memory

A main memory architecture should have the ability to store
large amounts of addressable data, which can be effectively
retrieved and modified, whenever needed by the computing
system. DRAMs achieve this by having row- and column-
addressable memory cells, arranged into mats of cells, which in
turn get organized into subarrays, and then banks. Collections
of banks form memory chips, which are arranged into dual in-
line memory modules (DIMMs) or 3D high bandwidth memory
(HBM) architectures. Modern memory addressing schemes and
memory controllers expect this style of data storage and
management to be interfaced with them. So, it is prudent to
consider a similar style of data storage with OPCM memory as
well. A few recent works have tackled the challenge of building
an addressable OPCM memory [23], [31], which can be used
for the DRAM-like memory organization described above.
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Fig. 1: OPCM memory cells proposed in (a) COSMOS [31]; (b)

Photonic tensor core [15]; (c) COMET [23]. WG: Waveguide; DC:
Directional Coupler; MR: Microring Resonator.

The work in [31] introduced a straightforward design for a
crossbar-based cell, illustrated in Fig. 1(a), in which the OPCM
is strategically positioned atop waveguide intersections. This
cell design underpins the core of a main memory architecture
called COSMOS. In this COSMOS OPCM memory, the
mechanism for accessing data is facilitated by specific row and
column access signals that operate on distinct optical
wavelengths. These signals are required to be activated
simultaneously to enable successful write operations within the
memory structure. COSMOS also adopts a subtractive read



technique. This method involves initially performing a read
operation across an entire subarray. Subsequently, a reset signal
is dispatched specifically to the row selected for reading, which
clears its contents. Following this reset, the subarray undergoes
another read operation. By executing this sequential reading
and resetting process, it is possible to extract the data from the
intended row. The two obtained readouts are subsequently
processed through subtraction at the memory controller (MC).
This intricate process, when combined with the assumption that
each cell can store up to 4 bits of information, significantly
amplifies the bit density achievable by this architecture,
presenting a substantial advancement in memory design aimed
at enhancing data storage efficiency and capacity. However,
this architecture is inherently susceptible to optical crosstalk as
the data storage mechanisms end up interfering with one
another. It is especially susceptible to thermal crosstalk from
write operations from adjacent rows, especially when multi-bit
storage is assumed, as shown in [23].

The work in [15] showcased an OPCM cell, originally
devised for photonic tensor core operation, but deserves
discussion as it has been used in [32] for their OPCM memory-
based ML acceleration work. The architecture has a crossbar
structure to allow signals from orthogonal directions to interact
with each other, enabling a wavelength-division multiplexing
(WDM) based broadcast and weight computation technique
[33]. The OPCM cell itself, however, is placed away from the
waveguide crossing and can interact with a wavelength
propagating along the horizontal waveguide. This interaction is
enabled by the coupler on which the OPCM cell is fabricated.
The coupler, as the name suggests, is a passive device designed
to enable coupling between the WDM signal on the horizontal
waveguide and the OPCM and does not offer wavelength
selection like other photonic devices (e.g., a microring
resonator (MR)). The work in [15] carefully designed this cell
array to perform matrix-vector multiplications (MVM), where
the matrix will be stored within the OPCM crossbar array, and
individual elements of the vector are encoded per WDM signal
batch in the horizontal waveguide. Each coupler has a splitting
ratio associated with it, which is designed to ensure that the
same fraction of signal from each wavelength reaches the GST
OPCM, which is wavelength agnostic in the C-band of
frequencies. So, in effect, each cell performs:
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where, W,,; is the weight stored in the OPCM, A is the
activation value imprinted onto the wavelength A;, n is the
WDM degree (i.c., the number of wavelengths in the WDM
batch) that corresponds to the number of cells per row. This
operation makes it an excellent MVM engine, with low latency
and energy-efficient operation. Additionally, this cell (Fig.
1(b)) is compact and solves the interference and crosstalk issues
that plague the COSMOS architecture [31] discussed earlier
and would appear to be a good candidate for an OPCM-based
PIM. However, the architecture is not column addressable,
making it not a good choice for memory architecture. To
consider this cell for a memory architecture and then a PIM

architecture, column addressability to cells is essential.

To address these issues, the work in [23], COMET, designed
a row and column addressable OPCM memory cell (Fig. 1(c)),
which is also isolated from other cells to avoid data corruption
due to crosstalk. This memory cell makes use of GST for data
storage, with two MRs acting as the access control, electro-
optically. The MRs are electrically tunable using a PN junction
and are hence active when they are in resonance (turned on). In
this active state, they allow signals propagating through the
vertical waveguide on the left to access the OPCM cell. The
data is imprinted onto the signal and is passed to the readout
waveguide on the right (Fig. 1(c)). While the proposed cell is
not as compact as the one suggested in [15], it offers more
reliable data readouts, without crosstalk-induced errors.
Further, the GST in the cell was designed to allow for improved
energy efficiency in write operations. The subarray architecture
also had provisions to ensure loss correction through
intermittent semiconductor optical amplifier (SOA) arrays.
There are several desirable characteristics that make COMET a
suitable backbone for a PIM architecture, but there are also
several challenges, as will be discussed in Section III.

C. Photonic Computation

The previous subsection discussed the characteristics
required to realize an OPCM main memory. In this subsection
we discuss principles of photonic computation, which are a
precursor to realizing a PIM solution with OPCM memory.

Photonic computation can be performed through either
coherent or noncoherent (aka incoherent) analog computation
methods [19]. Coherent photonic computation utilizes the phase
of light waves in a controlled manner, enabling the encoding
and manipulation (e.g., multiplication) of data via interference
patterns. This approach takes advantage of the coherent
properties of light, such as phase coherence and superposition,
to perform complex mathematical operations rapidly and with
high precision. Computing architectures that leverage coherent
computing often make use of Mach-Zehnder interferometers
(MZIs) for data manipulation through constructive or
destructive interference with a single wavelength.

Noncoherent photonic computation, on the other hand, does
not rely on the phase information of light, conventionally [33].
Instead, it involves manipulation of the intensity or amplitude
of light waves to perform computations, making it less sensitive
to phase fluctuations and coherence issues that might affect
coherent systems. Noncoherent approaches are simpler in terms
of data encoding and more robust as they do not have as many
noise sources to deal with. This makes them suitable for a wide
range of applications that require optical signal processing, such
as image processing and sensor data analysis, and fundamental
arithmetic operations. Additionally, they allow performing
arithmetic operations at a very large scale, through the usage of
WDM, making noncoherent photonics an attractive option for
MVM and general matrix multiply (GEMM) operations. To
leverage WDM signals, the photonic device used in
noncoherent computation systems must be wavelength
sensitive, which makes wavelength selective MRs popular
candidates for the fundamental devices in these architectures.



An MR is an on-chip optical resonator, which resonates
when it encounters an optical wavelength that matches its
resonant wavelength (4,z). Through tuning mechanisms, A,z
can be altered, increasing losses to the encountered wavelength,
thus enabling amplitude modulation, and hence forming the
basis for noncoherent computation. There are two main tuning
mechanisms used: thermo-optic tuning and electro-optic
tuning. Both these mechanisms can change the effective
refractive index (n, ff) of the bulk of the MR, thereby affecting
(Amr= 2mn.prR; R=MR radius). Thermo-optic (TO) tuning
achieves this by heating the MR through microheaters, and
electro-optic (EO) tuning achieves the same through free carrier
injection via a PN junction fabricated across the MR [19].

Several noncoherent computation architecture in prior work
[20]-[22] rely on MR operation for high throughput, reliable,
low energy ML inference acceleration, through the computation
technique called broadcast and weight (B&W) [33]. Here, MRs
are tuned to reflect a stationary matrix, and vectors are
introduced either as amplitude-modulated wavelengths or via a
subsequent array of tunable MRs downstream from the initial
MR array’s output. The interaction of light with the MRs
modifies its amplitude to reflect a multiplication operation.
Several of these light signals can be summed using a
photodetector, achieving n multiply and accumulate (MAC)
operations simultaneously. Here, n is the WDM degree of the
signal and should correspond to the size of the MR array.

From the discussions in Sections 11.B, the OPCM memory
cell in Fig. 1(c) is a potential candidate to be part of noncoherent
architectures that perform computation operations. The OPCM
cells can represent the stationary matrix/vector element, while
the incoming light signal or one of the access control MRs can
represent the changing vector. At this point, performing a
memory read operation through the OPCM cell will achieve a
multiplication operation. However, to achieve effective large-
scale noncoherent computation via PIM, several challenges
must be addressed, as discussed in the next Section.

III. RE-ARCHITECTING OPCM MAIN MEMORY FOR PIM

In this section, we take a brief look at the COMET OPCM
main memory architecture and why it cannot be used as is for
effective noncoherent computation within a PIM solution.

The basic architectural component of the COMET main
memory architecture is the OPCM memory cell depicted in Fig.
1(c). This memory cell is tiled to form an array, where each cell
can be isolated from each other, while access is enabled through
a wavelength assigned per column of the memory cells in the
array. Row access is provided by turning on the access control
MRs through EO tuning, thereby allowing the light signals
access to the OPCM cell. N X N of these cells can form a
subarray and S X S of these subarrays form a memory bank. A
collection of B memory banks constitute the main memory.

There are four major challenges that must be overcome to
adapt the COMET OPCM memory architecture for PIM:

e Accessing all the cells in the same row across subarrays
and banks requires B X S X N wavelengths, which would
be too energy- and power-expensive for a main memory of

any reasonable size. During data read/write operations, the
light signals are given access only to the subarray in which
the corresponding row resides. This is achieved through the
usage of GST-based waveguide switching, rather than
splitting the WDM signal into multiple subarrays
unnecessarily. It should be noted that using optical splitters
and couplers would essentially multiply the laser power
needed, and this must be avoided.

o COMET was architected with specific power consumption
constraints, and hence many architectural choices were
made to enable a power consumption of under 10W for the
main memory operation, as discussed earlier. This power
constraint allows it to operate in a similar power point to
electronic main memory architectures such as DDRS.
However, from a PIM perspective, these choices pose a
problem. Having limited access to subarrays, and hence
OPCM cells, per read/ write operation severely limits the
achievable parallelization of computation operations. So, it
is necessary to find a solution that enables multi-subarray
access, without disrupting the optical main memory
operation. Note that we cannot rely on increasing WDM
degree or splitting signals from the source across multiple
subarrays, as the power consumption this incurs will be
many times higher than the 10 W constraint, reflecting the
previous challenge.

e  Optical signals can interact with each other in the readout
waveguides. Increasing the WDM degree to avoid using
splitters carries with it the risk of increased crosstalk and
errors, especially when using OPCM cells at higher bit
densities. So, careful orchestration of access and readout is
necessary to achieve reliable and error-free computations.

e [tis also important to consider the impact of bit density per
cell on PIM operations. In COMET, a 4-bit per cell bit
density was considered to ensure reliable memory
operation. This limits possible neural network parameter
sizes to 4-bit if there is a need to perform one-shot
operations (e.g., multiplications) as discussed at the end of
Section II. Without careful architectural considerations, it
will be impossible to handle higher parameter sizes for
computation within COMET.

In summary, there are several challenges associated with
enabling PIM within an OPCM main memory. In our proposed
OPIMA architecture, described in the next section, we address
all these challenges via novel and significant alterations to an
OPCM main memory architecture, to enable PIM within the
memory platform, while still allowing it to retain its core
functionality as a main memory solution.

IV. OPIMA ARCHITECTURE
This section discusses the proposed OPIMA architecture
and how it achieves PIM-based ML acceleration.
A. Maximizing OPCM Memory Cell Efficiency

The OPIMA architecture is a PIM architecture that
significantly expands the capabilities of the COMET main
memory architecture. COMET explored how effective
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Fig. 2: Design-space exploration of GST-based OPCM memory cell, (2) Optical transmission changes due to scattering and
back-reflections of the light (4Ty) in the crystalline state, (b) AT, in the amorphous state, (c) Optical transmission contrast
between amorphous and crystalline states (AT). Observe that for the chosen design point (highlighted with X”), the AT for
both crystalline and amorphous states is less than 5% while the AT is at its maximum with 96%.

refractive index (n.sr) and optical absorption (k) can be
optimized for maximum energy efficiency in OPCM cells.
Based on this analysis, the authors had selected GST as the best-
suited OPCM material for the C-band of frequencies.

In this work, we consider more detailed factors influencing
the behavior of OPCM-based memory cells, particularly the
unwanted changes in the optical transmission of the cells
because of the scattering and back-reflection of light when
interacting with PCMs. The refractive index of the PCMs in
crystalline and amorphous states is significantly higher than the
refractive index of the waveguide material. Therefore, the
propagating light can be scattered and reflected within the
waveguide when interacting with the PCM on top of the
waveguide. Such a scattering effect leads to unwanted optical
transmission changes at the output of the OPCM memory cell.

To tackle this limitation, we performed a design-space
exploration using GST on top of silicon waveguide to select the
most optimal geometry that offers minimal transmission change
due to light scattering and maximum transmission contrast due
to phase change. To capture the optimal design with minimized
scattering of the light, we use the following model:

Tour = Tin — AT — Py s (2)

where T,,,; is the output transmission of the cell, T;,, is the input
power, AT, is the optical transmission change due to light
scattering and back-reflections, and P, is the total fraction of
the power that is absorbed in the PCM cell (all in dB). We
perform a design-space exploration of the PCM memory cell to
minimize AT; to minimize read errors stemming from the
scattering effect of the light. For maximizing data signal
strength, ATy must be minimized so that the signal change due
to written data (P,;,¢) is well represented in T,,;:

Tour = (Tin - Pabs) - AT, = 0. (3)

This model is applicable to both amorphous and crystalline
states of the cell. In addition, the desired OPCM memory cell
should offer 1) high optical transmission which originates from
the low power absorption in the amorphous state, and 2) high
absorption and hence low optical transmission in the crystalline
state. Consequently, the optimum design point should offer
minimized light scattering and back-reflections at both

crystalline and amorphous states while leveraging the high
controlled optical transmission contrast. Therefore, the AT, and
the total optical transmission contrast between amorphous and
crystalline states (AT =T, —T,.) can be used as a figure-of-
merit to find the optimal design for the GST-based OPCM
memory cell. This optimal design should offer a low ATy in the
amorphous and crystalline state and a high optical transmission
contrast (AT between amorphous and crystalline states.

The design space exploration results for a 2-um long GST
cell that we designed are reported in Fig. 2. Observe that for the
design point which offers the highest optical transmission
contrast (AT) highlighted in Fig. 2(c), the transmission changes
due to light scattering and back-reflections is always less than
5% in the crystalline state (Fig. 2(a)) and the amorphous state
(Fig. 2(b)). In addition, GST offers a high controlled optical
transmission contrast (~96%) for the optimal design point
shown in Fig. 2(c) which corresponds to a width of 0.48 um and
thickness of 20 nm. This higher contrast in transmission also
allows us to program 16 levels of transmission per cell,
allowing a bit density of 4 bits/cell.

The OPCM memory cell that we designed and optimized
forms the building block of the OPIMA architecture that is
designed for efficient data storage and access, as well as for
performing in-situ multiplication operations. For the sake of
maintaining row and column addressability, and hence main
memory operation, we combine this OPCM memory cell with
double MRs for optical access control.

B. OPCM Memory Operation

An overview of how OPIMA is designed to operate as a
memory interfaced with an external general-purpose electronic
CPU is shown in Fig. 3. A controller unit that handles the
electro-optical interfacing requirements must reside between
the CPU and OPIMA, as depicted in the figure. This controller
unit interprets memory commands from the host CPU, enabling
main memory operation. It also supports data caching for read
data to be sent to the CPU or data to be written to the OPCM
memory. In the latter case, the data is encoded via optical
signals derived from the laser source.
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Fig. 3: Architectural overview of OPIMA

The isolated OPCM cells within OPIMA make read/write
operations quite straightforward. For both operations, the row
ID and subarray ID must be deciphered from the physical
address. Once this has been done, laser signals are sent to the
corresponding OPCM bank. The read process (Fig. 4(b))
happens as the signal passes through the memory cell and is
modulated by the OPCM’s optical transmission. The read data
is sent back to the E-O-E controller where it is demodulated
using an MR array. Then this data can be translated to the
electronic domain and passed on to the CPU. The write process
(Fig. 4(a)) requires much higher energy as it requires inducing
partial phase transition in the OPCM memory cells. This
necessitates more laser power to achieve the phase transition
across multiple OPCM cells, based on the data to be written.

During the read and write operations, data integrity is a
critical concern, especially considering the loss tolerance in
signal transmission. OPIMA incorporates semiconductor
optical amplifiers (SOAs) within and outside the banks and
subarrays to maintain signal quality. We employ row-wise loss-
aware signal amplification to counteract potential degradation.
The banks and subarrays, once designed, have constant losses,
facilitating this correction approach.

C. OPIMA PIM Architecture

As discussed earlier, the optical transmission of an OPCM
cell modulates the optical signal passing through it. If the access
control MR is tuned to represent the second parameter, the
successive modulations from the MR and the OPCM can
achieve a multiplication operation. However, since we need all
the MRs in a row to behave identically to facilitate row access,
it is better to tune the incoming laser signal to represent the
second parameter. To achieve an accumulate operation, we
must let two signals of the same wavelength, modulated to
reflect products, interact with each other. To perform this step,
we need to involve products from another subarray sharing the
same readout waveguide bus. Within the readout waveguide
bus, these signals interfering with each other generate the sums.
This is desirable from a PIM perspective but will lead to
erroneous readouts from a main memory perspective. Hence,
for achieving this goal and thus realizing the PIM operations for
ML inference acceleration, we need several architectural
changes to the main memory architecture, as discussed next.

E-O-E Control Unit OPCM Array

2
Electrical row 3
1 lecti ienal OPCM row
Receive row selection signa open
generation

& column
&P Optical sub-
array signal
selection -
4 . . . .
Receive write 63 ptical signal OPCM row
data modulation write operation|
E]
OPCM row
open

(a)
5
MDL pulse
generation
JOPCM row

readout
operation

address

L Electrical row
selection signal
generation

Receive row
& column

4
address Optical sub-array

signal selection |
||

5
Readout pulse
generation

Convert 7 6
received data Read wavelength peum

s ; aggregation/
to voltage optical intensity buffering

=== Read-specific
operations

(b)
Fig. 4: Memory (a) write and (b) read operation in OPIMA;
OPIMA utilizes multiple read signals simultaneously to perform
computation operations. The differences in control flow
between a memory read operation and performing in-memory
computation are highlighted in (b).

= Compute-specific
operations

=—p COommon

operations

To realize high throughput and error-free PIM operation in
OPIMA, we need to address four major challenges: (1) We need
to leverage additional mechanisms to increase memory access
and computation parallelism beyond those offered by WDM;
(2) reads should be supported from a selected subarray or a
group of subarrays as needed, without interrupting the main
memory operation; (3) When simultaneously read out, the data
from computation outputs and main memory accesses must not
interfere with each other in an undesirable manner; and (4) the
architecture should support PIM operations between parameters
(e.g., CNN weights and activations) of any size, irrespective of
the specific bit density used in the OPCM cells.

1) Implementing MDM for improved parallelism

To address challenge (1), within OPIMA, we design the
multi-bank OPCM memory organization to go beyond WDM
and additionally use mode-division multiplexing (MDM) to
enable parallel access across banks (Fig. 5(a)). MDM involves
exciting higher order modes in a MDM waveguide bus, where
each of the modes of a wavelength can then be used for
supporting parallel data transfers and computations. Note that
multiple wavelengths co-existing in the waveguide bus (WDM)
provide further parallelism for data transfers and computations.
Increasing the number of modes comes at the cost of increased
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width of the individual waveguide to allow the higher order
modes to be excited and propagated, as well as increased
crosstalk. Thus, determining the optimal number of modes
(MDM degree) requires a careful trade-off analysis.

We inverse designed photonic mode convertors based on
[34] to exploit the first four modes of TE polarization.
Compared to conventional mode convertors based on tapered
structures or thickness changes to induce the required index
changed, the inverse designed mode convertors offer a compact
footprint and minimal loss. Note that exciting more than four
modes in the waveguide at the same time is physically
challenging as it requires extremely wide waveguides that
significantly increase memory area. In addition, higher order
modes suffer from intermodal crosstalk due to the overlap of
the modes [35], [36]. Based on our MDM propagation analyses,
we decided to keep the MDM degree to four, which limits the
number of banks in the architecture to four. These MDM signals
can be filtered by mode-sensitive MRs to their respective banks
and be routed to their respective subarrays through GST
switches, enabling parallel read/write operations across banks.
However, there is a need to improve parallelism further to
achieve higher PIM throughput. Additionally, while it is
technically possible to perform a MAC operation by reading
from two OPCM cells, this operation will be limited to 4-bit
parameters under the configuration discussed here.

2) Redesigning banks for concurrent PIM and memory access

A memory bank within the OPIMA architecture is composed
of RxC OPCM cells (Fig. 5(g)), offering a total capacity
determined by the product of the number of cells and the bit
density of each OPCM Multi-Level Cell (MLC). To enhance
energy efficiency, banks are divided into subarrays. The

OPIMA architecture employs electrically controlled GST-based
waveguide switching to facilitate efficient subarray access (Fig.
5(e)), markedly reducing the laser power requirements. The
GST switch introduces minimal losses and is pivotal for the
energy-efficient operation of the system. We need to make
changes to this organizational structure and provide additional
access mechanisms to address challenge (2).

Data within OPCMs cannot be sensed in the same manner
as charge-based storage in DRAM. Accessing data in OPCM
cells necessitates external laser signals, which must overcome
several losses in propagation, to be rerouted to the subarrays
within which the OPCM cell resides. This leads to high power
consumption, to overcome the losses and the signals being split
into several destinations. To circumvent this, we propose the
addition of local laser sources to subarrays, which can be
triggered as needed for reads. Fortunately, unlike OPCM write
operations, OPCM read operations are not energy intensive [23]
and hence we can employ low-power lasers.

For OPIMA we opted for low-power microdisk laser (MDL)
arrays (Fig. 5(c)), which can be integrated with every subarray.
Each subarray uses C MDLs in its subarray, reflecting the
column number per subarray. The laser output from the MDL
array can be coupled onto the signal input waveguide of the
corresponding subarray, using directional couplers. Using the
MDL arrays, we can access any row within a subarray, without
the involvement of the external laser source which drives the
main memory operation. Additionally, since the MDL arrays
are independent of each other, multiple of them can be activated
simultaneously to read from multiple subarrays without having
to reroute or incur additional losses.

Moreover, to ensure that we can read for PIM while main
memory operations happen in parallel, the subarrays are divided



into several groups (Fig. 5(b)). One row of subarrays per group
can be employed for PIM at a time, while the rest of the
subarrays can be used for main memory read/write operations.
This ensures significant parallelism in MAC operations that can
be executed simultaneously per bank, offering simultaneous
solutions to challenges (1) and (2).

3) Reducing output interference

Now that we have several MAC operations being supported
simultaneously, we must ensure that their results can be
aggregated without interfering with each other or the main
memory readout operations, to address challenge (3). It should
be noted that the subarrays make use of WDM signals which
can interfere with each other constructively or destructively.

To avoid computation signals interfering with memory read
operations, we employ a series of computation-specific
waveguides. Computed data is rerouted to the computation
waveguides rather than the data-out waveguide using coupling
MRs which can be activated alongside the MDL array (Fig.
5(c)). The computation waveguide is used to move the data to
the aggregation unit in the bank. To prevent losses and the
computed signal from interfering with orthogonally traveling
data signals, all the waveguide crossings in the computation
waveguide have been carefully designed to be as leakage-free
as possible (Fig. 5(d)).
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Fig. 6: Low-loss waveguide crossing designed with inverse
design methodology (left) and its loss profile for C-band (right).

To achieve the optimized waveguide crossing design, we
used a photonic inverse design technique to minimize the loss
and crosstalk of the waveguide crossings. The Lumerical FDTD
solver [37] with the LumOpt [38] inverse design library was
used to perform the geometry optimization of the waveguide
crossings. The optimized geometry of the waveguide crossing
is shown in Fig. 6. Note that the transmission of the
fundamental TE mode was used as a figure-of-merit in our
inverse design optimization of waveguide crossing. We can
observe from the figure that the inverse-designed waveguide
crossing offers the maximum transmission at the C-band with
less than 0.001% of the input optical signal being lost due to
optical insertion loss. Note that the optimized waveguide
crossing offers minimal -40 dB of the crosstalk in the C-band.

As the data reaches the aggregation unit, they have to be
merged. Here again, interference between signals can be an
issue. As discussed earlier in this subsection, we can make use
of up to four modes without significant crosstalk between the
signals. We can reuse the orthogonality of modes here again.
Each subarray group can be assigned a mode using a mode
converter (MC), before it merges with the waveguide carrying

the signals to the aggregation unit’s demultiplexer (demux).
These changes to the architecture solve challenge (3).
4) Addressing bit size mismatches

OPCM cells within the photonic memory can be designed to
have different bit densities, e.g., 1 bit/cell, 2 bit/cell, 4 bit/cell,
etc. However, the parameters in an ML model like a CNN can
be 32 bits in size without quantization. They can also be
quantized to lower bitwidths such as 16 bits, 8 bits, or 4 bits to
reduce storage requirements and to reduce computation latency
and energy. In scenarios where there is a mismatch between
OPCM cell bit density and the CNN parameter size (e.g., 4
bits/cell bit density with 8-bit CNN parameters), the one-shot
multiplication operation achieved by reading the OPCM cell, as
discussed earlier, is not feasible.

To support different bitwidth scenarios and tackle challenge
(4), we make use of a time division multiplexing (TDM) based
approach. For higher bit densities per cell than 4-bits (i.e., a
nibble), each nibble will have to interact with every nibble of
the other parameter. This can be achieved without significant
loss in throughput because of solutions for challenges (1)-(3)
which offer high parallelism in MAC operations, while the
signals can stay disentangled from each other. However, we still
have to perform shift-and-add operations to obtain the true
results for these operations [39]. These necessary operations are
facilitated within the aggregation unit (Fig. 5(b)). This results
in an overall drop in throughput, but facilitates flexibility in
operation, unconstrained by the OPCM MLC bit-density.

The aggregation unit is essential to address challenge (4),
but it also provides some additional benefits. The photodetector
(PD) based conversion to the electrical domain acts as a noise
filtering mechanism. The wavelength-specific PDs offer
disentanglement from crosstalk between wavelengths,
improving SNR before the longer transmission to the E-O-E
control unit. Additionally, the parameters can be stored within
the SRAM cache within the aggregation unit, for additional
accumulation operations if needed. We also consider 5-bit
ADC:s so that the data can be translated to the electrical domain
with any carries from the operations. Finally, the readout
signals for the MAC operations which were generated using
low-power MDLs will be regenerated through DACs and
vertical cavity surface emission lasers (VCSELs) for better
fidelity before they reach the E-O-E controller which handles
further aggregation and applies non-linear activation functions
(see Fig. 3) for ML inference operations.

D. CNN Mapping and Inference in OPIMA

The architectural design choices discussed in the previous
subsection allow the OPIMA architecture to realize high power
consumption efficiency and high integrity large-scale parallel
MAC operations and main memory accesses in the optical
domain. From a CNN inference perspective, this offers two-
fold benefits. Firstly, MAC operations are fundamental
operations in CNNs and OPIMA can perform them with high
degrees of parallelism. Secondly, CNNs in general require
significant storage and data movement between layers, but this
can be significantly reduced as the processing occurs within the



memory where model parameters and activation feature maps
are stored.

To leverage the parallelism offered by the PIM substrate in
OPIMA for CNN inference, we need to efficiently map CNNs
onto the OPCM arrays. For CNNs, this involves mapping the
parameters from both convolutional layers and fully connected
layers. Operations for both types of layers can be mapped into
MVM operations. For convolutional layers, we adopt an input
stationary dataflow approach, where the input data can stay in
its native storage location while we drive the smaller weight
matrices (decomposed as vectors) through them. Because of the
large row sizes within the subarrays, we will be able to drive
several kernels simultaneously. The feature map must be
divided across subarrays, so that we can access subsequent rows
of the map from neighboring subarrays. The kernels rows which
must operate on the feature map can be encoded into laser
signals through MDL tuning and be introduced into the
subarrays. Additionally, we can achieve several parallel MAC
operations through in-waveguide interference of WDM signals,
from multiple subarrays within the same subarray group.

Let us consider a simple example with a 2x2 kernel, a
feature map (F) with a row size of 4 elements, and MDL array
generating wavelengths {14,1,, ..., A¢} (C=number of columns
per subarray). The kernel can be broken down into two vectors
and mapped to MDL wavelengths: k; = {kqo, ko1} = {41,4,} and
k, = {kyg, k11} = {11, 2,}. Similarly the rows in F can be broken
down into vectors and mapped to subarrays: {fo0, fo1, foz, fo3} =
Subarray, and {fio, fi1, fiz, fi3} = Subarray,. Both subarrays
must be within the same subarray group to facilitate the MAC
operation. If we now enable access to the rows containing these
vectors and simultaneously send the k; and k, signals from the
MDLs through the subarrays, we shall obtain the following in
the common readout waveguide bus {(kgo X foo, k10 X
f10), A} {Ckor X for, k11 X f11), 42}

Because signals of the same 4; interfere with each other, this
in turn generates: (koo X foo + K10 X f10), (Kot X for + kqq X
fi1), which is one addition away from generating the first
element of an output feature map. This addition can be
performed at the aggregation unit. The kernel can be moved
across the MDL array to reflect the stride operation and further
outputs can be obtained. Additionally, multiple kernels can be
deployed simultaneously over F, across different wavelengths,
reducing overall processing time requirement. This mapping
process scales easily with kernel sizes as well, if the kernel sizes
do not exceed the subarray row size.

For fully connected layers we opt for a weight-stationary
approach. In both cases, the stationary matrix must be
distributed across subarrays to ensure parallelism in operations.
Once this mapping process is done, OPIMA’s PIM-specific
architecture (Fig. 5), as described in this section, can be utilized
effectively to achieve inference operation.

V. EXPERIMENTS

In this section, we discuss the evaluation of the performance
of OPIMA for PIM-based CNN inference acceleration. OPIMA
adopts a main memory configuration of 4 banks, 64x64
subarrays per bank, with 256xX512 OPCM elements and 256

MDLs per subarray. For evaluating OPIMA we rely on a
modified NVMain 2.0 [61] for memory simulation followed by
a Python-based performance analyzer, which makes use of the
loss and energy parameters from detailed physics simulations
and fabricated device characterizations summarized in Table 1.

We compare OPIMA against several electronic and optical
acceleration platforms along with the current state-of-the-art
photonic PIM. For photonic accelerator systems, we consider
the work in [32], named PhPIM in our comparison studies,
which proposed a PIM adjacent system, and CrossLight [41], a
photonic CNN accelerator. CrossLight and PhPIM are modeled
using the parameters in Table 1, and considering 8GB DDRS
DRAM, with 4800 megatransfers per second (MTS) data
transfer rate as its main memory.

We also consider Nvidia P100 GPU (referred to as NP100
in results), AMD EPYC 7742 CPU (referred to as E7742 in
results), and Nvidia Jetson ORIN (a low-power embedded GPU
for edge Al applications; referred to as ORIN in results), as our
electronic platform comparison points. Additionally, we
consider the ReRAM based PIM CNN accelerator PRIME [11]
for comparison.

TABLE I: OPTICAL LOSS AND POWER PARAMETERS
CONSIDERED FOR OPIMA

Loss parameters Values
Directional coupler loss 0.02 dB [42]
MR drop loss 0.5 dB [43]
MR through loss 0.02 dB [44]
Propagation loss 0.1 dB/cm [45]
Bending loss 0.01 dB/90° [46]
EO tuned MR drop loss 1.6 dB [47]
EO tuned MR through loss 0.33 dB [47]
SOA gain 20 dB
Energy parameters Values
OPCM read 5 pJ [23]
OPCM write 250 pJ [23]
EPCM write 860 nJ [48]
DRAM access 20 pJ/bit [49]
ADC 24.4 f)/step [50]
DAC 2.0 pJ/bit [51]

A. Subarray grouping

The first experiment explores the OPIMA design space to
determine the number of subarray groups, which in turn will
determine the number of operations that can be performed per
cycle, in OPIMA. This increase in parallelism trades off with
the power consumption of the architecture. As the number of
groups increases, the complexity of the interface required at the
aggregation unit also increases, along with the laser power
requirement to perform the operations. Simultaneously, we
would like the maximum number of subarray rows to be
accessible for main memory operations.

The OPIMA memory organization has 64 rows of subarrays
per bank as mentioned earlier, which must be grouped as per
the criteria discussed above. While considering the groups, we
would like to avoid the extremes i.e., the case with a single
group or the case with each subarray row belonging to an
individual group, resulting in 64 groups. A single group
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TABLE II: VARIOUS MODELS CONSIDERED FOR OPIMA EVALUATION AND THEIR ACCURACY ACROSS QUANTIZATION LEVELS
FOR CLASSIFYING THE SPECIFIED DATASETS.

Model Dataset Accuracy (fp32) Accuracy (int8) Accuracy (int4) Parameter count
Resnet18 CIFAR100 [57] 75.3% 74.2% 72.6% 11584865 (11.6 M)
InceptionV2 SVHN [58] 81.5% 80.8% 75.9% 2661960 (2.6 M)
MobileNet CIFARI10 [57] 88.2% 87.5% 83.5% 4209088 (4.2 M)
SqueezeNet STL-10[59] 92.5% 90.3% 86.5% 1159848 (1.1 M)
VGG16 Imagenette [60] 98.96% 96.25% 93.7% 134268738 (134.3 M)

severely limits parallelism, and 64 groups imply that all 64 rows
will be engaged in PIM operations, essentially preventing any
main memory read/write operations.
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Fig. 7: Subarray group selection for OPIMA architecture.

Fig. 7 shows the normalized power, MAC throughput, and
rows available for main memory operation, with changing
number of subarray groups (x axis). It can be observed that a
configuration with 16 groups strikes a balance between
achievable compute parallelism with reasonable power
consumption and sufficient memory access without starvation.
Additionally, 16 subarray groups enable the maximum
throughput efficiency (MAC/Watt) from OPIMA.

Our earlier analysis on mode conversion pointed to the fact
that we can only have a maximum of four modes in our
waveguide at the aggregation unit. Since we must rely on four
modes only, to meet the demand of 16 groups, the modes can
be reused. For enabling mode reuse, we use the same mode
converter designs along the computation waveguides (Fig.
5(b)). Additionally, to prevent the same modes from interacting
with each other, each of the four modes is assigned a separate
multimode waveguide for transferring to the demux unit within
the aggregation unit.

47.6%

1.2%

B Main mem. op.
1 ADC
@ SRAM
@ DAC
. VCSEL
. MDL
0.3%

mm Other
\ 1.8%
7

~ - 0.4%

16.0%

32.7%

Fig 8: Power breakdown for OPIMA architecture.

B. OPIMA power breakdown

The power consumption breakdown of the resulting version
OPIMA is shown in Fig. 8. From this plot we can observe that
the maximum power consumption is contributed by the MDL
array and the electrical-optical interface, leading to a maximum

power consumption of 55.9 W, for both main memory and PIM
operations running simultaneously.

C. CNN workload accuracy and latency analyses

For workloads we considered four CNN models: ResNet18
[53], InceptionV2 [54], MobileNet [55], and SqueezeNet [56].
The inference is performed for image classification of datasets,
details of which are provided in Table II. We have considered
4-bit integer quantization using TensorRT, as this is the
baseline MLC capacity. As the table shows this level of
quantization results in at most 6% loss in accuracy, in the
considered models. But this accuracy drop is model
architecture-dependent, as can be seen in Table II. To showcase
OPIMA'’s flexibility in handling parameter sizes, we have also
considered 8-bit variants of the same models (Table II).

Before we go into further comparisons, we first analyze the
performance of OPIMA using both the 4-bit and 8-bit quantized
variants of the CNN models. A breakdown of OPIMA’s latency
in ms, as it processes these models, is provided in Fig. 9.
Processing latency is the total time for processing the necessary
MAC operations and the aggregation unit operation, i.e. all in-
memory processing operations. The writeback latency refers to
the latency incurred while applying the non-linearities and
writing back the results, i.e. output feature maps, back into
OPIMA’s main memory architecture.

It can be observed that writeback is a significant contributor
to latency in OPIMA. The PIM operations can leverage data
within the memory and the high processing parallelism, leading
to remarkably low processing times. However, the latency for
the OPCM write operations needed to make the output feature
maps available within the memory for further processing far
outweighs the latency savings from the PIM operations. So,
even though OPIMA can handle a variety of parameter sizes,
given the OPCM write latencies, it is prudent to rely on 4-bit
quantized models, while suffering some loss in accuracy, if
throughput is significantly more important.

It can also be observed that OPIMA does not perform as one
would expect for the far smaller InceptionV2 and MobileNet
models when compared to ResNet18. Both models have higher
processing latencies, with MobileNet having significantly
higher processing latency than ResNetl8. This is attributed to
the 1x1 kernel in these models, which pose problems for the
WDM-based MAC parallelization within OPIMA. Since the
results from these operations do not have any further
accumulation to be performed on them, they prevent the totality
of the subarray row from being used. If more operations are
performed, they will interfere with the results from the 1x1
kernel, leading to erroneous results. So, when these are



encountered, OPIMA loses a significant portion of its parallel
processing capabilities, especially when they are sequential in
the CNN execution graph, like in the case of InceptionV2.
MobileNet, though a larger model, offers higher parallelization
opportunities, and hence performs at a similar latency, despite
being ~4X the size of InceptionV2.
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Fig. 9: Latency breakdown for OPIMA’s 4-bit (4b) and 8-bit
(8b) variants across the models from Table II.

Similarly, writeback is a significant contributor to overall
latency as discussed earlier. However, this is proportional to the
sizes of the output feature maps generated by the model and not
the computational complexity of the model. This is the reason
MobileNet has lower writeback latency than processing
latency, in comparison, and why InceptionV2 has an overall
lower latency than ResNet18.

I Processing latency [ Writeback latency [ Data movement latency

4.0

tency (m:
[
=)

515
1.0

0.5

0.0

Resnet18

InceptionV2 MobileNet VGG16
Fig. 10: Latency breakdown of CNN model inference across
photonic architectures OPIMA (O), CrossLight (C), and PhPIM

(P), for model-dataset pairs from Table II.

SqueezeNet

To further characterize the latency benefits of OPIMA, we
compare it against the latency for the other photonic computing
architectures we have considered, as shown in Fig. 10. The
OPCM-based architectures (OPIMA, PhPIM) have better
performance than CrossLight, because of the higher parallelism
achievable in these architectures. PhPIM leverages the photonic
tensor core operation from [15], along with an external DRAM
acting as the actual main memory. PhPIM has opted for the
faster yet energy-intensive electrical PCM programming
mechanism, but the tensor core operation is still in the optical
domain. The reprogramming, or writeback as we call it for an
OPCM PIM, is significantly faster for PhPIM. However,
OPIMA leverages much higher parallelism inherent to a main
memory, and available to a PIM architecture, enabling faster
processing times. Additionally, OPIMA does not have to access
an external DRAM to access data needed for processing hence
it does not have any external data movement latencies
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associated with its operation. Note that the internal data
movement latencies are factored into our writeback latency.
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D. Comparison studies

In this section, we compare OPIMA against the various
photonic and electronic acceleration platforms in terms of
energy per bit (EPB) and throughput efficiency (FPS/W;
FPS=frames per second).

On average OPIMA achieves 78.3%, 157.5%, 1.7X, 4.4%,
2.2x and 137X better performance in terms of EPB over
NP100, E7742, ORIN, PRIME, CrossLight, and PhPIM
respectively (Fig. 11). It should be noted that P100 can
outperform OPIMA in terms of raw throughput, especially in
the case of InceptionV2 and MobileNet, where the GPU threads
are not constrained by the interference limitations of our WDM-
based parallelization of operations. But OPIMA consumes
significantly less power, which also leads to overall better
throughput efficiency. In terms of FPS/W, OPIMA achieves
6.7x, 15.2%, 8.2X%, 5.7%, 1.8%X, and 11.9X better performance
over NP100, E7742, ORIN, PRIME, CrossLight, and PhPIM
respectively (Fig. 12).

It can also be noted that though OPIMA and PhPIM had
comparable latencies (Fig. 10), OPIMA is able to outperform
PhPIM in these metrics. This is because of the energy-intensive
EPCM write processes that accompany PhPIM operation (nJ),
as opposed to OPIMA’s OPCM reprogramming process (pJ).

VI. CONCLUSIONS

In this work, we presented OPIMA, a high throughput, low
latency, highly energy efficient OPCM PIM architecture.
OPIMA showcases how an OPCM main memory architecture
can be rearchitected to achieve photonic PIM. Through device-
level design to enhance efficiency and various architectural
innovations, OPIMA compares remarkably against electronic



and photonic ML acceleration platforms. On average OPIMA
outperforms the considered architectures by 83.1X in terms of
EPB and 27.5X in terms of FPS/W. It outperforms the state-of-
the-art photonic PIM architecture PhPIM by 186X and 55.3%
in these metrics, while achieving lower average latency, across
several CNN models. OPIMA also opens the door for possible
system-level integration of photonic PIM with dedicated
photonic accelerators such as those described in [20]-[22], [41].
Such a system can benefit from both the higher bandwidth that
OPIMA’s main memory can provide along with computation

support through PIM.
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