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Abstract: The kinetostatic compliance method (KCM) models protein molecules as nanomechanisms

consisting of numerous rigid peptide plane linkages. These linkages articulate with respect to

each other through changes in the molecule dihedral angles, resulting in a kinematic mechanism

with hyper degrees of freedom. Within the KCM framework, nonlinear interatomic forces drive

protein folding by guiding the molecule’s dihedral angle vector towards its lowest energy state in a

kinetostatic manner. This paper proposes a numerical integrator that is well suited to KCM-based

protein folding and overcomes the limitations of traditional explicit Euler methods with fixed step size.

Our proposed integration scheme is based on pseudo-transient continuation with an adaptive step

size updating rule that can efficiently compute protein folding pathways, namely, the transient three-

dimensional configurations of protein molecules during folding. Numerical simulations utilizing the

KCM approach on protein backbones confirm the effectiveness of the proposed integrator.

Keywords: kinetostatic compliance method; nanomechanisms; kinetostatic robot models; protein

folding; numerical integrators; hyper degrees of freedom

1. Introduction

Kinetostatic modeling is a cornerstone in the design, analysis, motion control, and
optimization of robotic systems [1]. This approach has proven effective in such diverse
robotics applications as design of underactuated origami grippers [2], tendon-driven
parallel continuum robots [3], and concentric push–pull robots [4].

Kinetostatic modeling has also proven remarkably effective in determining the tran-
sient and final three-dimensional structures of proteins during folding [5–7]. The kine-
tostatic approach to protein folding leverages the fundamental concept that proteins can
be represented as nanomechanisms consisting of rigid peptide plane linkages (see, e.g., [7–13]).
These linkages form a kinematic chain with hyper degrees of freedom; for instance, even a
very small synthetic protein such as chignolin has nine peptide planes, corresponding to
eighteen degrees of freedom in the backbone chain [14]. This allows them to articulate with
respect to each other through rotations in dihedral angles centered at alpha-Carbon atoms,
as illustrated in Figure 1 (see Section 2.1 for further details). Hence, it should be no surprise
that techniques from robotic motion planning [11,15,16] and control theory [12,13,17–19]
have been utilized to investigate the problem of protein folding/unfolding.

When modeling proteins as kinematic nanomechanisms, the kinetostatic compliance
method (KCM) views protein folding as a process where the molecular configuration
changes due to electrostatic and van der Waals nonlinear interatomic forces [20]. In this
model, the peptide linkages articulate with respect to each other through dihedral angle
rotations. Since its introduction, the KCM has proven to be a valuable tool for understand-
ing hydrogen bond formation and its impact on protein mobility [21]. Furthermore, it
has enabled the design of peptide-based nanorobots and nanomachines [22–25]. Indeed,
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KCM-based folding simulations can provide quantitative prediction of mobility and range
of motion in protein-based nanomachines such as parallel nanorobotic platforms [26].

Figure 1. The kinematic structure of the protein backbone chain is similar to that of robotic mech-

anisms with hyper degrees of freedom. Specifically, C³ atoms play the role of hinges connecting

peptide planes together. These C³ atoms are kinematically the same as universal joints with two

degrees of freedom. In kinetostatic protein folding, the peptide linkages articulate with respect to

each other through dihedral angular variations facilitated by the C³ atoms.

To predict and control robotic system trajectories, roboticists typically employ dynamic
models expressed as ordinary or partial differential equations. Therefore, devising an appro-
priate integration scheme considering a robot’s specific equations of motion and application
is crucial. Table 1 provides a sample overview of numerical integration algorithms used in
the robotics literature, ranging from implicit Euler methods for tendon-driven robots to Lie
group variational integrators for underwater autonomous vehicles.
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Table 1. Sample overview of numerical integration schemes utilized for diverse robotic sys-

tems/applications.

Reference Numerical Integrator Application Area

[27] Testard et al. (2023) Implicit Euler integrator Elastic tendon-driven robots
[28] Gibson & Murphey (2010) Variational integrator Orbital docking of Canadarm and the ISS
[29] Pekarek & Marsden (2008) Variational collision integrator Legged robotic locomotion
[30] Fan et al. (2018) Higher-order variational integrators Robot trajectory optimization
[31] Braun & Goldfarb (2012) Explicit DAE integrator Constrained mechanical systems
[32] Fang et al. (2023) Half-implicit integrator Index three DAEs in multibody dynamics
[33] Till et al. (2019) Runge–Kutta (RK4) integrator Continuum and soft robots
[34] Nordvik & Sanyal (2010) Lie group variational integrator Underwater autonomous vehicles

[12] Mohammadi & Spong (2022) Explicit Euler integrator
Protein molecules modeled as nano-mechanisms
with hyper degrees of freedom

While the KCM approach offers computational advantages for simulating kinetostatic
protein folding, its reliance on explicit Euler integration with a fixed step size hinders its
efficiency. Indeed, each integration step necessitates intensive calculations of interatomic
forces, incorporation of physical constraints, and conversion to kinetostatic input torques.
Consequently, the explicit Euler method’s convergence to a folded conformation is often
computationally expensive due to the excessive number of required iterations. To overcome
these limitations, a fast and stable numerical algorithm is essential for accelerating large-
scale KCM-based protein folding simulations.

In this paper, we develop an effective numerical integration technique for KCM-based
protein folding. Our proposed integrator relies on the explicit pseudo-transient continua-
tion framework (ΨTC, our choice of ΨTC for abbreviating “pseudo-transient continuation”,
follows the pioneering work of Kelley, Coffey, and collaborators; see, e.g., [35,36]). ΨTC
is an efficient numerical method for calculating steady-state solutions of systems arising
from ODE- or PDE-based transient dynamics [35–40]. The technique adapts the step sizes
base on the underlying dynamics and proximity to the steady state. These updates are
rooted in variations of the switched evolution relaxation (SER) method by Mulder and van
Leer [41]. Thanks to its robust convergence and stability properties, ΨTC has been applied
in diverse fields such as fluid dynamics [42], radiation transport [43], and magnetohydro-
dynamics [44].

Contributions of the Paper: The present paper advances the KCM-based protein folding
framework by introducing an explicit ΨTC numerical integrator equipped with adaptive
step-size control tailored to kinetostatic protein folding. Unlike previous KCM studies that
exclusively relied on explicit Euler integrators with a fixed step size, our approach offers
enhanced efficiency and accuracy. We provide rigorous analysis of the numerical stability
and convergence properties of the explicit ΨTC integrator within the kinetostatic protein
folding context. Leveraging these properties, our method converges to folded protein
conformations with fewer computational steps than traditional KCM approaches. Hence,
the proposed method results in a significant reduction of the computational cost associated
with KCM-based folding numerical simulations. Furthermore, our proposed numerical
integration technique has potential beyond kinetostatic protein folding. Leveraging the
similarity between the protein kinematic structure in the KCM framework and robotic
manipulators with hyper degrees of freedom [45], our method is also applicable to multi-
section continuum robots [46,47]. Moreover, its potential for fast numerical integration
makes it a strong candidate for real-time implementation of model predictive controllers in
soft robotic arms [48].

This paper significantly expands upon a preliminary version presented as a conference
poster [49]. In this paper, we delve deeper into the ΨTC numerical integration algorithm by
providing a detailed description and discussing its numerical properties in the context of
kinetostatic protein folding. Additionally, we present a detailed analysis (absent from the
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conference poster) investigating the stability and convergence properties of the proposed
ΨTC numerical integrator. Finally, the algorithm effectiveness is rigorously assessed
through more extensive numerical simulations on protein backbone chains with many
degrees of freedom.

The rest of this paper is organized as follows. First, in Section 2 we provide an
overview of the kinematics of protein molecules and the KCM framework for modeling
the protein folding process. In Section 3, we present the problem statement and elaborate
the computational needs of kinetostatic protein folding. Next, in Section 4 we present
our explicit ΨTC integration scheme and an adaptive step-size control strategy for the
underlying kinetostatic protein folding process. After presenting the numerical simulation
results in Section 5, we conclude the paper with future research directions and final remarks
in Section 6.

Notation: We denote the set of all non-negative real numbers by R+. Given a vector x

in R
M and a real constant p g 1, we denote its p-norm by |x|p. Given an integer M and

matrix A in R
M×M, we let ó(A) denote the spectral radius of A. We say that a sequence

{xk}
∞
k=1 ¢ R

M converges q-linearly to L if there exists » * (0, 1) such that lim
k³∞

|xk+12L|
|xk2L| = ».

2. Background

In this section we provide a summary of the KCM framework for modeling the
kinetostatic folding of protein molecules in vacuo. To prevent ambiguity, we note that
“conformation” is the established term in the field of biochemistry for denoting the spatial
arrangement of a protein molecule’s kinematic structure; conversely, the field of robot
kinematics predominantly employs “configuration” for the same concept. In this paper, we
utilize “conformation” and “configuration” interchangeably.

2.1. Nano-Linkage-Based Kinematic Model of Protein Molecules

Proteins are macromolecules with complex structures and intricate dynamics. These
long molecular chains consist of peptide planes that are interconnected by chemical bonds.
The functionality of protein molecules depends critically on their three-dimensional (3D)
structure (i.e., their conformation), which can be directly deduced from the linear sequence
of amino acids forming their polypeptide chain. For brevity, the following presentation is
confined to the protein backbone.

A schematic of the protein polypeptide backbone chain is depicted in Figures 1 and 2.
As can be seen from the figure, each individual peptide plane is formed by six coplanar
atoms that are covalently bonded (visualized as red lines in Figure 2). The coplanarity
assumption about the ³-carbon C³, carbonyl CO, amide nitrogen NH, and another ³-
carbon is motivated by the wealth of related high-resolution X-ray crystallographic data
(see, e.g., [50]). This fundamental assumption underpins the conceptualization of pro-
tein molecules as intricate nanomechanisms with numerous degrees of freedom (see,
e.g., [5,8,12,13,51]). Accordingly, the key building blocks of the protein kinematic chain are the
rigid peptide planes, which function as rigid nanoscale linkages (see Figures 1 and 2).

As illustrated in Figures 1 and 2, the rotation of the nano-linkages in the protein
kinematic chain with respect to each other is facilitated by the central carbon atoms, which
are denoted by C³ and commonly known as the alpha-Carbon atoms. Indeed, C³ atoms
play the role of hinges connecting peptide planes together; C³ carbon forms chemical bonds
with four distinct constituents: the nitrogen, hydrogen, and carbonyl carbon atoms of the
peptide bond and a variable side chain represented by SR. The first and last C³ atoms
are bonded to an N-terminus (an amino group)–peptide plane pair and a C-terminus (a
carboxyl group)–peptide plane pair, respectively.
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Figure 2. Modeling protein backbone chains as nano-kinematic structures in which peptide planes

act as rigid links interconnected by revolute joints centered at the alpha carbon atoms, each offering

two degrees of freedom. The nano-kinematic chain can rotate about the unit vectors uj, 1 f j f 2N,

which align with the C³ 2 C and N 2 C³ bonds. The body vectors, denoted by bj and 1 f j f 2N,

comprehensively define the relative spatial arrangement of coplanar atoms within each peptide

plane. The body and unit vectors act in concert to provide a comprehensive description of the protein

molecule’s 3D configuration as the dihedral angles »j and 1 f j f 2N rotate under the influence of

interatomic forces.

Protein Configuration Vector: The nano-kinematic structure of a protein molecule compris-
ing N 2 1 peptide planes can be comprehensively represented by a set of bond lengths and
dihedral angle pairs. Considering the ith peptide plane 1 f i f N 2 1, each pair of these
dihedral angles represent rotations about the covalent bonds N 2 C³, namely, »2i+1, and
C³ 2 C, i.e., »2i+2 (Figure 2). Additionally, the dihedral angle vector

»»» :=
[

»1, · · · , »2N ]
¦ (1)

represents the configuration of the backbone chain. Therefore, the vector »»» encompassing
the dihedral angles resides within the 2N-dimensional configuration space Q. This space,
formally defined as Q := S1 × · · · × S1, represents the Cartesian product of 2N individual
unit circles S1, each corresponding to a single dihedral angle within the backbone chain.

Each dihedral angle in the conformation vector »»» in Equation (1) corresponds to a
single degree of freedom in the protein molecule’s kinematic chain. For each degree of
freedom, we can define a unit vector uj, 1 f j f 2N. These vectors align with the axes
of rotation around which the nano-kinematic chain can rotate. As illustrated in Figure 2,
the unit vectors u2i and u2i+1 represent the directions along two crucial bonds within the
ith peptide plane: the C³ 2 C bond and the N 2 C³ bond. These bonds define the primary
rotation axes within the chain’s segments. Serving as key structural references, u1 and u2N

denote the unit vectors associated with the amino terminus (N-terminus) and carboxyl
terminus (C-terminus), respectively, of the polypeptide chain. These termini define the
endpoints of the entire nano-kinematic chain. As illustrated in Figure 1, the N-terminus
and C-terminus can be considered as the base and end-effector, respectively, of the protein
nano-kinematic mechanism.

While dihedral angles define the rotational degrees of freedom within a protein’s
kinematic chain, additional information is necessary to fully capture the spatial orientation
of the rigid peptide nano-linkages. This information comes in the form of body vectors,
denoted by bj, 1 f j f 2N. These vectors comprehensively define the relative spatial
arrangement of coplanar atoms within each peptide plane. Consequently, any relative
positional relationship between two atoms within a plane can be mathematically expressed
as a linear combination of their corresponding body vectors, i.e., k1mb2i + k2mb2i+1, where
the coefficients k1m and k2m, 1 f m f 4 are constants specific to the atom pair and are
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identical throughout the peptide chain (see, e.g., [5,6] for more details). The body vectors
bj and unit vectors uj act in concert to provide a comprehensive depiction of the protein
molecule’s conformation as it dynamically varies with respect to the vector »»», which
encompasses the dihedral angles.

Protein Forward Kinematics: The intricate interplay between the dihedral angle vector
»»» and a protein’s kinematic structure can be elegantly described through a framework
of rotational matrix transformations [8,52]. This formalism offers a comprehensive and
computationally efficient approach for representing protein conformation as a function of
its internal torsional degrees of freedom. A reference configuration, designated by »»» = 0

with reference unit vectors u0
j and reference body vectors b0

j , 1 f j f 2N, serves as the

starting point for the following transformations:

uj(»»») = X(»»», u0
j )u

0
j

bj(»»») = X(»»», u0
j )b

0
j

(2)

which compute the mapping from the dihedral angle space to the protein kinematic config-
uration. Each of the transformation matrices X(»»», u0

j ), 1 f j f 2N in (2) is defined using

sequential matrix multiplication:

X(»»», u0
j ) :=

j

∏
r=1

R(»j, u0
j ) (3)

where the rotation matrix R(»j, u0
j ) describes the rotation about the vector u0

j with angle »j

and the matrix Ξ(»»», u0
j ) determines the molecule kinematic structure using the dihedral

angle conformation vector »»». In Equation (3), the rotation matrix R(»j, u0
j ) * SO(3) describes

the rotation about the direction provided by the unit vector u0
j with an angle equal to »j.

We remark that the special orthogonal group SO3 is the set of all rotational matrices about
the origin of three-dimensional Euclidean space; furthermore, any rotation matrix R(³, v̂),
where ³ is an angle and v̂ = [v̂x, v̂y, v̂z]¦ is a unit vector, can be written as

R(³, v̂) =

þ

ø

v̂2
xV³ + C³ v̂x v̂yV³ 2 v̂zS³ v̂x v̂zV³ + v̂yS³

v̂x v̂yV³ + v̂zS³ v̂2
yV³ + C³ v̂yv̂zV³ 2 v̂xS³

v̂x v̂zV³ 2 v̂yS³ v̂yv̂zV³ + v̂xS³ v̂2
zV³ + C³

ù

û, (4)

where V³ := 1 2 cos(³), C³ := cos(³), and S³ := sin(³).
Subsequent to the computation of body vectors bj(»»») (Equation (2)) and anchoring

the N -terminal atom at the origin, the Cartesian coordinates of the kth-peptide plane atoms
can be determined by

ri(»»») =
i

∑
j=1

bj(»»»), 1 f i f 2N 2 1, (5)

where the indices i = 2k 2 1 and i = 2k correspond to the nitrogen and C³ atoms, respectively.

2.2. Kinetostatic Compliance Folding

The KCM framework leverages the established experimental observation that it is pos-
sible to capture the essence of protein folding dynamics while neglecting inertial forces (see,
e.g., [18,19,51,53]). According to the KCM, protein dihedral angles evolve kinetostatically
under the influence of interatomic force fields.

Interatomic Force Fields Responsible for Kinetostatic Folding: Consider a peptide chain
composed of Na atoms and N 2 1 peptide planes. The dihedral angle vector, denoted by »»»
defined in Equation (1), encodes the conformational state of the chain. The Cartesian coor-
dinates of any two atoms ai, aj within the chain are represented by ri(»»»), rj(»»»), respectively
(Equation (5)). Their Euclidean distance, a fundamental metric for characterizing inter-
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atomic interactions, is then calculated as dij(»»») := |ri(»»»)2 rj(»»»)|2. The specific parameters
pertaining to atom charges, van der Waals radii, interatomic distances, dielectric constant,
potential well depths, and force weights are available in [6] and the provided references.

Within this framework, the total free energy responsible for protein folding, denoted
by G(»»»), decomposes into electrostatic and van der Waals contributions as expressed in

G(»»») := Gelec(»»») + Gvdw(»»»), (6)

where Gelec(»»») and Gvdw(»»») represent the protein’s electrostatic potential energy and van
der Waals interatomic potential energy, respectively (detailed expressions can be found
in [5]). Consequently, the net forces acting on each atom ai, 1 f i f Na due to Coulombic
and van der Waals interactions can be obtained through negative gradients of the respective
individual energy terms: Felec

i (»»») = 2'ri
Gelec and Fvdw

i (»»») = 2'ri
Gvdw.

Kinetostatic Folding Torque Vector: The KCM-based modeling framework [5] necessi-
tates calculation of the resultant forces and torques acting on each of the N 2 1 peptide
planes within the protein molecule. These computed forces and torques are subsequently
concatenated into a 6N-dimensional vector F (»»»), which serves as the generalized force
vector driving the protein folding process. However, in order to direct the actual changes
in the protein’s configuration, the vector F (»»») needs to be mapped to an equivalent 2N-
dimensional torque vector, denoted as ÇÇÇ(»»»). This mapping translates the generalized force
vector into the specific torsional modifications exerted on the dihedral angles, ultimately
governing the process of kinetostatic protein folding. The mathematical expression for the
kinetostatic folding torque vector is expressed by

ÇÇÇ(»»») = J ¦(»»»)F (»»»), (7)

where J (»»») * R
6N×2N represents the molecule chain Jacobian at conformation »»». This

matrix, acting as a bridge between generalized forces and torques, translates the 6N-
dimensional force vector into the corresponding 2N-dimensional torque vector dictating the
dihedral angle modifications (see [5] for detailed derivations). Consequently, the changes
in dihedral angles at each protein conformation take place under the direct influence of the
kinetostatic folding torque vector acting on the peptide backbone. Specifically, the vector
ÇÇÇ(»»») * R

2N , which aligns with the steepest-descent direction of the total free energy G(»»»)
in the protein conformation landscape, guides the dihedral angle variations during folding.

Folded Protein Conformations: Within the context of protein folding, at each local mini-
mum »»»7 of the aggregate free energy function G(»»») defined in Equation (6), the correspond-
ing torque vector ÇÇÇ(»»»7) vanishes identically; this signifies the protein molecule’s kinetostatic
stationarity at folded conformations, where the absence of net kinetostatic torque reflects
the balanced internal forces within the protein structure. Equation (7) specifies the torque
vector ÇÇÇ(»»») aligned with the steepest-descent direction of the free energy gradient in the
conformational landscape of the protein molecule. As described below, Kazerounian and
colleagues [5,8] in their pioneering KCM framework leveraged a normalized kinetostatic
folding torque vector in an iterative manner.

Successive Kinetostatic Folding Iteration: Within the KCM framework, dihedral angles
evolve kinetostatically under the influence of the kinetostatic folding torque vector result-
ing from the interatomic force fields. In particular, given an unfolded protein molecule
conformation »»»0, the established kinetostatic compliance method relates joint torques to
dihedral angle changes via the following numerical scheme (see, e.g., [5,51]):

»»»k+1 = »»»k + »0
ÇÇÇ(»»»k)

|ÇÇÇ(»»»k)|∞
, k * Z0+ (8)

where Z0+ denotes the set of non-negative integers, the ∞-norm of ÇÇÇ(»»»k) is defined as
|ÇÇÇ(»»»k)|∞ := max

i
|ÇÇÇi(»»»k)|, and ÇÇÇ(»»»k) = J ¦(»»»k)F (»»»k) according to Equation (7).
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In the dihedral angle update iterations provided by (8), the normalized torque vector
ÇÇÇ(»»»k)

|ÇÇÇ(»»»k)|∞
governs the incremental updates to the dihedral angles at each conformation »»»k.

As demonstrated by [12], the iteration provided by Equation (8) can be considered
as an explicit Euler integration with time step »0. Crucially, the integration time step »0,
which is determined through a heuristic procedure, has to be chosen sufficiently small
to prevent extensive angle variations (see Section 2.3 for the resulting computational
implications). Finally, we remark that the interaction between joint moments and dihedral
angle variations in the kinetostatic folding process can theoretically lead to redundant
calculations if not handled properly. However, our proposed method in this paper avoids
this issue through the use of the explicit pseudo-transient continuation (ΨTC) integrator
incorporating an adaptive step-size updating rule. This adaptive step size ensures that
the step size increases as the system approaches a stable conformation, helping to avoid
unnecessary iterations and redundant recalculations of joint moments. This also reduces
the computational complexity, as the system requires fewer torque evaluations in regions
of the energy landscape near equilibrium.
Convergence Criterion: The iterative process governed by Equation (8) continues until the
molecule’s aggregated free energy G(»»») converges to the vicinity of a local minimum within
the free energy landscape. Convergence is achieved numerically when the kinetostatic
folding torque vector norm falls below a predefined tolerance Çtol > 0, i.e., when |ÇÇÇ(»»»k)|2 <

Çtol, where |ÇÇÇ(»»»k)|2 denotes the Euclidean norm of ÇÇÇ(»»»k).

2.3. Computational Burden of Kinetostatic Folding Iterations

A flowchart of the successive kinetostatic folding iteration is depicted in Figure 3.
The most computationally intensive procedure at each conformation of the protein molecule
(highlighted in red) consists of the electrostatic and van der Waals force computations.
If exact interatomic force calculations are desired, then the computational complexity
of this step for a molecule with Na atoms is quadratic (i.e., of order O(N2

a )) [5]. The
computational complexity of numerical algorithms can be defined using big O notation, as
follows: consider any two real-valued functions h1(·) and h2(·); if there exist a real number
a0 > 0 and real number z0 such that the inequality |h1(z)| f a0|h2(z)| is satisfied for all
z g z0, then we say that h1(z) = O(h2(z)). Moreover, to encode more physical constraints in
protein folding numerical simulations, such as entropy-loss constraints [12], it is necessary
to solve a box-constrained convex quadratic program (QP) at each conformation of the
protein molecule. The computational cost of such a convex QP using a state-of-the-art
interior-point QP solver is of order O(N3) [54], where there are N 2 1 peptide planes in the
protein backbone chain.

The variation of dihedral angles in the flowchart (the dashed border) needs to be
governed by a proper kinetostatic folding update rule. For the conventional KCM iteration,
the dihedral angle update rule governing the kinetostatic folding is provided by Equa-
tion (8). However, preventing numerical instability and large dihedral angle variations
requires choosing sufficiently small values for the integration time step »0. This inevitably
results in an excessive number of iterations for convergence to a folded protein molecule
configuration. Consequently, there is a need for departure from explicit Euler integrators using
fast and stable numerical algorithms for accelerating large-scale KCM-based protein folding
simulations.
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Figure 3. Flowchart of the conventional kinetostatic folding iteration. The variation of dihedral angles

in the flowchart (within the dashed borders) is governed by Equation (8). The most computationally

intensive procedure at each conformation of the protein molecule (highlighted in red) consists of the

electrostatic and van der Waals force computations.

3. Problem Statement: Protein Folding Pathway Computation Problem (PFPCP)

In this section, we consider the kinetostatic folding of protein molecules and formulate
the main problem addressed in the paper.

Protein Folding Pathway Computation Problem (PFPCP): Consider a protein backbone
chain with N 2 1 peptide planes and dihedral angle vector »»», as provided by Equation (1).
Furthermore, consider the KCM-based dynamics of protein folding provided by the follow-
ing initial value problem:

»̇»» = F cl(»»»), »»»(0) = »»»0 (9)

where F cl(»»») := ÇÇÇ(»»»)
|ÇÇÇ(»»»)|∞

, in which the kinetostatic folding torque vector ÇÇÇ(»»») is provided by

Equation (7). Moreover, the dihedral angle vector »»»0 is an unfolded initial conformation
that belongs to the domain of attraction of a folded conformation »»» f . We devise a numerical
integration scheme to integrate Equation (9) to the steady state, namely, the folded confor-

mation »»» f , and obtain the sequence of protein folding pathway samples
{

»»»k

}Ns

k=0
, where Ns

is the smallest integer satisfying |F cl(»»»k)|2 < Çtol, for all k g Ns.

Remark 1. As discussed in Section 2.2, any folded protein conformation »»» f is an asymptotically
stable equilibrium point of the KCM nonlinear dynamical system in Equation (9) (see, e.g., [5–7]).
This signifies the protein molecule’s kinetostatic stationarity in folded conformations, where the
absence of net kinetostatic torque reflects the balanced internal forces within the protein structure.
Therefore, at any folded conformation »»» f , we have

F cl(»»» f ) = 0, (10)
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which provides a convergence criterion for KCM iterations. Specifically, given a desired tolerance
Çtol, if Ns is the smallest integer that satisfies

|F cl(»»»k)|2 < Çtol, for all k g Ns, (11)

then Ns represents the terminal iteration step number in Equation (8) at which the aggregated free
energy of the molecule converges to a sufficiently close vicinity of a free-energy-landscape local
minimum. The tolerance should be chosen according to the accuracy required for the protein’s folded
structure and the computational efficiency; too high a value could result in premature convergence
before the protein reaches its stable conformation, while too low a value could unnecessarily prolong
the computation time.

In this paper we use the norm of the vector |F cl(»»»k)|2 to assess convergence. As the
theoretical justification for such a convergence criterion, we remark that many gradient-
based optimization methods (see, e.g., [55]) have relied on the norm of the gradient as a
widely used criterion to determine convergence. This criterion is based on the principle
that at a local minimum, the gradient of the objective function should approach zero.
Similarly, in our method we use the norm |F cl(»»»k)|2 to assess convergence. When this
norm becomes sufficiently small (below a predefined threshold Çtol), it indicates that the
system has reached a point where further changes in the dihedral angles are negligible,
signaling that the protein has reached its folded state. The value of Çtol is selected to
balance computational efficiency and accuracy while avoiding premature termination of
the iterations.

The conventional approach [5,6,12,51] for solving PFPCP relies on using the explicit
Euler integration scheme with a fixed step size »0, resulting in the successive kinetostatic
folding iteration in Equation (8). As discussed in Section 2.3, selection of the step size »0 in
Equation (8) dictates a tradeoff between the accuracy and stability of the predicted folding
pathway samples and the number of integration steps.

To prevent numerical instability and large dihedral angle variations, in the explicit
Euler scheme it is necessary to choose a sufficiently small integration time step »0. This
inevitably results in an excessive number of iterations, requiring kinetostatic folding torque
computations with a large computational burden; in other words, the larger the number
of iterations Ns for convergence to a folded conformation of a protein molecule with Na

atoms, the larger the needed number of interatomic electrostatic and van der Waals force
calculations, which is of order O(Ns · N2

a ) (see Section 2.3 for further details). Moreover, to
encode more physical constraints in protein folding numerical simulations, it is necessary
to perform more calculations in each iteration, which grows with the number of steps
Ns for convergence to the folded conformations. For instance, to encode entropy loss
constraints [12], it is necessary to solve a box-constrained convex QP at each conformation
of the protein molecule. The computational cost of such a convex QP using a state-of-the-
art interior-point QP solver is of order O(N3) [54]. Therefore, the computational cost for
encoding the entropy loss constraints through the whole kinetostatic folding simulations
will be of order O(Ns · N3).

To address this issue in PFPCP, we present our ΨTC-based numerical integration
scheme in the next section.

Remark 2. In all-atom molecular dynamics simulations of protein folding, symplectic integra-
tors [56,57] offer numerical stability and geometric advantages over methods that rely on a fixed
step size. However, their application is impeded in KCM-based folding simulations due to the KCM
framework’s reliance on the negligible role of inertial forces compared to electrostatic and van der
Waals interactions [18,19,51,53]. The absence of inertial effects renders symplectic integrators
inapplicable in this context.



Robotics 2024, 13, 150 11 of 20

4. Explicit ΨTC Numerical Integration for KCM-Based Protein Folding

Our goal in this section is to solve the PFPCP problem outlined in Section 3. We
introduce an explicit ΨTC numerical integration scheme with an adaptive step size tailored
to KCM-based protein folding to solve the PFPCP. We begin by presenting the explicit ΨTC
solution to the PFPCP under a fixed step size and analyzing its convergence as well as
stability properties in Section 4.1. Thereafter, in Section 4.2 we develop a step size adaptation
rule based on the widely used switched evolution relaxation (SER) technique [41]. The
flowchart of our ΨTC scheme is depicted in Figure 4 and elaborated in Sections 4.1 and 4.2.

Figure 4. Flowchart of the proposed explicit ΨTC integrator for computing protein folding pathways

in kinetostatic folding simulations. The ΨTC algorithm consists of four main steps: (Step 1) Initiation;

(Step 2) Predictor–Corrector Computations; (Step 3) Checking Convergence; and, (Step 4) SER-based

Step Size Update. In the ΨTC integration scheme with a fixed step size, (Step 4) is skipped.

4.1. Explicit ΨTC Numerical Integration with Fixed Step Size

Let us consider the initial value problem in Equation (9) associated with the PFPCP
formulated in Section 3. The explicit ΨTC integration with fixed step size for solving the
PFPCP can be described using the following steps (see the flowchart in Figure 4).

(Step 1) Initiation: We start with choosing a step size ·0, a positive constant ÷, and a given
tolerance Çtol. Next, we consider the iterator k and set it equal to 0. Moreover, we initiate
the internal state of the ΨTC scheme by assigning ·0F

cl(»»»0) to Z0. Note that Zk is the ΨTC
internal state vector in the kth, k g 0, iteration which is updated along with the protein
molecule configuration vector »»»k.
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(Step 2) Predictor–Corrector Computation: After initiation, we run the ΨTC scheme
through the following predictor–corrector numerical iteration:

»»»0
k+1 = »»»k + Zk, (12a)

Zk+1 = Ëk

(

÷ F cl
(

»»»0
k+1

)

+ Zk

)

, (12b)

»»»k+1 = »»»k + Zk+1, (12c)

where
Ëk := ·k

÷+·k
for all k g 0. (13)

In the ΨTC scheme with a fixed step size, where ·k = ·0 and Ëk =
·0

÷+·0
, the step size

·k is fixed for all iterator values k; see Section 4.2 for updating the step size at each iteration
using an adaptive strategy. In other words, the SER update step (Step 4 in Section 4.2) is
skipped in the ΨTC integration with a fixed step size. Additionally, note that there is only
one folding vector field F cl(·) computation at each predictor–corrector step of the ΨTC
iteration in (12).

(Step 3) Checking Convergence: After each iteration, the convergence criterion is checked
by comparing Ã :=

∣

∣F cl(»»»0
k+1)

∣

∣

2
against the given desired tolerance Çtol. The iteration is

terminated when Ã < Çtol.

Convergence Properties of the Explicit ΨTC Scheme with Fixed Step Size: Considering
the kinetostatic protein folding dynamics in Equation (9) and the asymptotic stability of
the folded conformation »»» f , our proposed ΨTC numerical integrator computes the protein
folding pathway from a given initial unfolded conformation »»»0 in the dihedral angle space.
To establish the convergence properties of the explicit ΨTC scheme in (12), we leverage the
following key properties of the underlying KCM-based folding dynamics as detailed in the
literature (e.g., [5,6,12,13,51]):

P1 Any folded conformation »»» f is a locally asymptotically stable equilibrium for (9).

P2 Given any folded conformation »»» f , the folding vector field F cl(·) is uniformly bounded
and uniformly Lipschitz continuously differentiable in a neighborhood N»»» f

of »»» f .

Under Properties P1 and P2 and according to Theorem 2.1 of [38], the explicit ΨTC
scheme for Equation (9) with fixed step size enjoys the following properties:

C1 For any given positive constant ÷ in the explicit ΨTC scheme with fixed step size, any
∆0 > 0, and for any sufficiently small fixed step-size ·0 > 0 in (12), there is an integer
Ns such that |»»»Ns 2 »»» f |p < ∆0, |»»»0

Ns
2 »»» f |p < ∆0, and |ZNs |p < ∆0, where | · |p is an

arbitrary p-norm on R
2N (where p g 1). Furthermore, F cl(»»»k) is uniformly bounded

for all 0 f k f Ns.
C2 If, in addition to P1 and P2, the Jacobian of the folding torque vector field F cl(·) has

negative real eigenvalues at the folded conformation »»» f , and if the positive constant ÷

also satisfies ÷ó
(

"F cl

"»»» (»»» f )
)

<
4
3 , then there exists a p7-norm, namely, a norm | · |p7 on

R
4N , such that [»»»k, Zk]

¦ converges q-linearly to [»»» f , 0]¦ (see the Notation in Section 1).

Property C1 guarantees that for any given prescribed accuracy ∆0 it is always possible
to choose a small enough step size ·0 such that the protein configuration converges to an
arbitrarily small vicinity of the folded molecule conformation determined by ∆0. Further-
more, the internal state of the integrator is guaranteed to remain bounded. Additionally,
according to Property C2, if a certain spectral radius inequality condition is satisfied, then
the protein configuration computed by the numerical integrator is guaranteed to converge
to the folded conformation with a q-linear rate (see the Notation in Section 1).

4.2. Switched Evolution Relaxation (SER) Step Size Adaptation Rule

To dynamically change the step size of the ΨTC integrator in each iteration, we adopt the
SER method originally introduced by Mulder and van Leer [41] and subsequently employed
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within the ΨTC framework [35,36]. The intuition underlying the SER step size adaptation rule
is that when the initial step sizes are small, the integration is close to the explicit Euler scheme
with fixed step size. When near the folded protein configuration »»» f , the time step safely grows
while keeping the protein molecule conformations within the domain of attraction of »»» f . The
details of the SER step size update rule can be stated as follows:

(Step 4) Step Size Update: We monitor the logarithmic change in the folding vector field
F cl(·) from each iteration k to the next one k + 1 by computing the logarithmic growth
monitoring variable Ãk according to

Ãk = log
∣

∣F cl(»»»k+1)
∣

∣

2
2 log

∣

∣F cl(»»»k)
∣

∣

2
. (14)

If the logarithmic change in the folding vector field satisfies Ãk > 2 1
2 , then we update

the integrator step-size using

·k+1 = min

(

·max, ·k

∣

∣F cl(»»»k)
∣

∣

2
∣

∣F cl(»»»k+1)
∣

∣

2

)

, (15)

where ·max > 0 is a design parameter that sets an upper limit on the growth of step sizes
in the explicit ΨTC algorithm. On the other hand, if the logarithmic change in the folding
vector field satisfies Ãk f 2 1

2 , then we do not update the step size. ·
Step 4 dynamically adjusts the step size ·k at each iteration. In particular, it requires

that the logarithmic change in the protein folding vector field F cl(·) be monitored. When
this logarithmic change satisfies the inequality in (14), then the step size ·k is updated.
Accordingly, the parameter Ëk provided by (13) is adjusted. This parameter is then utilized
in the correction step of the predictor–corrector computations in (12b).

The SER step size update strategy prioritizes capturing critical transient conforma-
tions early in the protein folding process while gradually increasing the step size as the
molecule approaches the folded conformation »»» f . In the SER update rule provided by (15),
comparison with ·max safeguards the step size ·k against becoming too large. Furthermore,
the logarithmic monitoring variable Ãk prevents the steps from very rapid oscillations.
Additionally, as stated in the proof of Theorem 2.1, the early iterations of the ΨTC scheme
in [38] differ from its explicit Euler counterpart by O(·2

0), where the constant in the O-term
is merely dependent on the folding vector field F cl(·) in a neighborhood of the initial
unfolded conformation »»»0.

Remark 3. The proposed ΨTC method in this paper falls within the category of explicit ΨTC
schemes (see, e.g., [38,39]). Explicit ΨTC schemes are generally preferred over implicit ones for
protein folding pathway computations because they circumvent the need to solve linear systems.
In contrast, implicit ΨTC schemes (see, e.g., [35,36]) require solving such systems, which is
computationally expensive in this context due to the necessity of calculating the Jacobian of the
nonlinear folding torque vector field F cl(·) at each conformation along the pathway.

5. Numerical Simulations

In this section, we present kinetostatic protein folding simulation results that validate
our proposed ΨTC numerical integration scheme for computing both transient and final
protein conformations during the kinetostatic folding process. The simulations benchmark
the performance of our ΨTC integrator against the explicit Euler integration scheme, which
is the only integrator used thus far in the kinetostatic folding literature [5,6,12,51]. Our
kinetostatic folding simulations examine how unfolded protein conformations converge
towards ³-helix secondary structures [58]. The ³-helix structure is characterized by a tightly
coiled arrangement of the amino acid chain, which is a prevalent structural motif in proteins.

We conducted our simulations following the guidelines of Protofold I [6,51], utilizing
an Intel® Core™ i7-6770HQ CPU at 2.60GHz. In our simulations, we considered three
scenarios with protein molecule backbone chains consisting of 15, 30, and 50 peptide planes.
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These choices result in dihedral angle spaces with 32, 62, and 102 dimensions, respectively.
These three protein backbone chains have Na = 78, Na = 153, and Na = 253 atoms,
respectively. As elaborated in Section 2.2, we let the backbone chain fold kinetostatically
under the influence of the interatomic force vector field associated with the initial value
problem provided in Equation (9).

Using the three aforementioned protein backbone chains, we carried out two distinct
groups of kinetostatic protein folding simulations associated with ΨTC and explicit Euler
integrator schemes. In the first set, we simulated the folding pathways of the three protein
backbone chains using the explicit ΨTC integrator described in Section 4. The integration
scheme for ΨTC is illustrated in the flowchart in Figure 4. The ΨTC integrator design
parameters were ÷, ·0, and ·max, which are provided in Table 2.

Table 2. Parameters of the integration schemes associated with the kinetostatic protein folding

simulations.

dimQ ΨTC (·0) ΨTC ( ·max

·0
) ΨTC ( ·0

÷
) Euler-1 ( »0

·0
) Euler-2 ( »0

·0
)

32 2 × 1024 5 2 × 1024 1 0.5

62 1 × 1024 5 1 × 1024 1 0.5

102 1 × 1024 5 1 × 1024 1 0.5

Figures 5–7 present the kinetostatic folding simulation results from the explicit ΨTC
integration schemes applied to each of the three protein backbone chains. These figures
show the free energy G(»»») in kcal/mol for the backbone chain of protein molecules with
dihedral angle vectors of dimensions 32, 62, and 102, respectively, along with their transient
conformations along the folding pathway. Additionally, the figures illustrate the step
size evolution ·k for the explicit ΨTC scheme in each of the three cases. The step size
·k was updated according to the SER update rule provided by Equation (15). As the
protein molecules approach their final folded conformations, the step size ·k increases and
eventually saturates at ·max, which is the safeguard design parameter in the SER update
rule.

Next, we performed kinetostatic folding simulations on the aforementioned three
backbone chains using the explicit Euler scheme provided by Equation (8) with two different
sets of fixed step sizes »0. The initial protein conformations were all chosen to be the same
pre-coiled backbone chains as their counterparts in the ΨTC-based numerical simulations;
in other words, to guarantee uniform starting conditions across both groups of numerical
integration schemes, identical initial conformations for the protein backbone chains were
adopted as pre-coiled structures near the ³-helix configurations.

Figure 5. Simulation results associated with the ΨTC integrator. The free energy of the backbone chain

of a protein molecule with a 32-dimensional dihedral angle vector (blue curve; G(»»») on the right axis),

its transient conformations along the folding pathway, and the step size of the explicit ΨTC scheme

(black curve; ·k on the left axis). From left to right, the five plotted protein backbone chain conformations

correspond to iteration numbers k = 100, k = 300, k = 500, k = 1000, and k = 1400, respectively.
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Figure 6. Simulation results associated with the ΨTC integrator. The free energy of the backbone chain

of a protein molecule with a 62-dimensional dihedral angle vector (blue curve; G(»»») on the right axis),

its transient conformations along the folding pathway, and the step size of the explicit ΨTC scheme

(black curve; ·k on the left axis). From left to right, the five plotted protein backbone chain conformations

correspond to iteration numbers k = 100, k = 300, k = 500, k = 1000, and k = 1400, respectively.

Figure 7. Simulation results associated with the ΨTC integrator. The free energy of the backbone chain

of a protein molecule with a 102-dimensional dihedral angle vector (blue curve; G(»»») on the right axis),

its transient conformations along the folding pathway, and the step size of the explicit ΨTC scheme

(black curve; ·k on the left axis). From left to right, the five plotted protein backbone chain conformations

correspond to iteration numbers k = 100, k = 300, k = 500, k = 1000, and k = 1400, respectively.

We compared the obtained results from our proposed ΨTC scheme against the explicit
Euler integrator method with a fixed step size. Two different step sizes were chosen for the
explicit Euler schemes; the first one was set equal to the initial step size for the explicit ΨTC
scheme, namely, »0

·0
= 1 (see the Euler-1 column in Table 2), while the second step-size was

set equal to half of the initial step-size for the explicit ΨTC scheme, namely, »0
·0

= 0.5 (see
the Euler-2 column in Table 2). As discussed in Section 2.3, the size of »0 in the explicit Euler
integrator dictates a tradeoff between the stability and accuracy of the obtained folding
pathways and the convergence speed of the explicit Euler schemes.

The plots in Figure 8 illustrate the free energy G(»»») in kcal/mol of the backbone
chain of these protein molecules with dihedral angle vectors of dimension 32, 62, and 102,
respectively. As can be seen from the figures, in the case of »0

·0
= 1 (i.e., explicit Euler with a

larger step size), the oscillations and instability in the protein free energy profile computed
from the explicit Euler scheme (the continuous curves) are due to the large step size chosen
for this method. In the case of »0

·0
= 0.5 (i.e., the explicit Euler with a smaller step size),

the protein free energy (the dash-dot-dashed curves) does not suffer such oscillations, but
struggles to converge to the local minimum associated with the ³-helix folded structure
even after 1800 iterations. These results are in contrast to the stable and faster convergence
of the ΨTC-based results, where convergence takes place around iteration k = 1400.
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Figure 8. Comparison of the results obtained from our proposed ΨTC scheme against the explicit

Euler integrator method with a fixed step size. The free energy of the backbone chain of protein

molecules obtained from the explicit ΨTC scheme (dashed curve), explicit Euler scheme with step

size satisfying »0
·0

= 1 (continuous curve), and explicit Euler scheme with step size satisfying »0
·0

= 0.5

(dash-dot-dashed curve). In the case of »0
·0

= 1, the oscillations and instability in the protein free

energy profile computed from the explicit Euler scheme (the continuous curves) are due to the large

step size chosen for this method. In the case of »0
·0

= 0.5 (the dash-dot-dashed curves), the protein

free energy does not suffer such oscillations, but struggles to converge to its local minimum even

after 1800 iterations.

Finally, another notable fact in the simulations is the proximity of the obtained results
during the first few steps of these three different numerical schemes. Indeed, using the
proof in [38], Theorem 2.1, we can state that the early iterations of the ΨTC scheme differ
from its explicit Euler counterparts by O(·2

0), where the constant in the O-term is merely
dependent on the folding vector field F cl(·) in a neighborhood of the initial unfolded
conformation »»»0. The relationship between the accuracy of the iterative computation and
the speed of convergence in our ΨTC method is closely tied to the adaptive step size
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mechanism. Higher accuracy requires smaller values of the stopping threshold Çtol, which
increases the number of iterations. However, our adaptive step size approach dynamically
adjusts the step size to accelerate convergence in the early stages and ensure accuracy in
later stages, balancing the tradeoff between accuracy and computational efficiency.

6. Conclusions

In this paper, we have considered protein molecules modeled as nanomechanisms with
hyper degrees of freedom consisting of numerous rigid peptide plane linkages. To compute
the protein transient and final folded conformations during kinetostatic folding, we propose
an explicit ΨTC numerical integration technique with step size adaptation tailored to the
underlying kinetostatic folding. Our proposed numerical scheme departs from the established
literature on the KCM framework, where numerical simulations of kinetostatic protein folding
have exclusively relied on explicit Euler schemes with a fixed step size. Moreover, this paper
provides the numerical stability and convergence properties of the developed explicit ΨTC
numerical algorithm in the context of kinetostatic protein folding. Thanks to its convergence
and stability properties, our proposed ΨTC numerical algorithm can reduce the computational
burden on kinetostatic folding numerical simulations.

Our current simulations focused primarily on in vacuo scenarios and excluded protein
side chains, which simplifies the model. Future work will look to include these aspects
in order to better capture the full dynamics of protein folding. Additionally, while our
method improves computational efficiency, its performance in real-life applications for
very large protein systems could be further optimized. We intend to explore this in our
future studies, particularly examining the performance of the integrator in solute to mimic
more realistic biological conditions. As future research directions, we envision that the
proposed methodology will have potential applications for efficient numerical investigation
of kinetostatic protein folding under solvation effects and entropy loss constraints as well
as in the design and numerical simulation of protein-based nanorobots/nanomachines.
Another direction for future research includes investigating the ³-pleated sheet structure,
which plays a crucial role in protein folding by facilitating the reorientation of the polypep-
tide chain. Remarkably, even small proteins such as chignolin, a synthetic mini-protein
consisting of just ten amino acids, can demonstrate robust beta-hairpin folding.

In addition to kinetostatic protein folding, our proposed ΨTC-based scheme has potential ap-
plications for developing high-fidelity numerical integrators for soft robotic mechanisms [59–61].
A frequently encountered issue in soft robot arms and cable-driven soft locomotive mech-
anisms involves numerical integration of the implicit nonlinear differential equations
resulting from their elastica models (see, e.g., [60,61]). Remarkably, the protein kinematic
structure in the KCM framework is exactly the same as robotic manipulators with hyper
degrees of freedom, as described in the work of Mochiyama et al. (see, e.g., [45]). This
type of kinematic modeling has also been used for multisection continuum robots (see,
e.g., [46]). Therefore, the methodology developed in this paper is also applicable to such
multisection continuum robotic mechanisms with nonlinear and high-dimensional joint
space dynamics, provided that their closed-loop dynamics satisfy the same continuity and
boundedness properties as the KCM-based protein folding vector field discussed here. The
potential of this integrator in robotics and control systems is particularly promising, but
relatively unexplored thus far. To date, apart from the work presented in this paper, one
notable application in the robotics domain has been detailed in [62]. Their study conducted
numerical simulations on the model predictive control (MPC) of a quadrotor, The results
highlight the ability of our proposed ΨTC integrator, which can significantly reduce com-
putational times compared to the traditional quadratic programming solvers utilized in
MPC schemes.
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