PUSHING THE BOUNDARIES: INVESTIGATING PHYSIOLOGICAL LIMITS OF INVASIVE SPECIES AND eDNA DETECTION METHODS

By
Emily Rose
Lancaster

B.S. Pepperdine University, 2016

M.S. California State University, Monterey Bay, 2020

A DISSERTATION

Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Marine Science

The Graduate
School The
University of
Maine
August 2024

Advisory Committee:

Markus Frederich, Professor of Marine Sciences, Advisor Damian C Brady, Professor of Oceanography, Advisor Doug B Rasher, Senior Research Scientist, Advisor Erin K Grey, Assistant Professor of Aquatic Genetics

Rhian G Waller, Senior Lecturer/Associate Professor

Copyright page

Land Acknowledgement page

Abstract Page

Invasive species are organisms moved from one region to another by humans. Although they are not always harmful to the recipient community, their lack of evolutionary history with their new community can set the stage for destruction. In a world of increasing interconnectivity and warming waters, we expect invasive species will continue to be introduced and that their ranges will expand as more areas become suitable habitats. At this critical point in our planet's natural history, the need to understand where invasive species can survive and how to detect them are important. Here, I begin with a review of invasive species physiology measurements using species identified as invasive through the Marine Invader Monitoring and Information Collaborative. These data points highlight inconsistencies in measurement technique as well as the importance that acclimation temperature and life stage play on thermal thresholds. Based on the noise in the data, I recommend laboratory experiments to understand the absolute maximum and minimum survivable temperatures for each species, followed by field observations of temperatures needed to grow and reproduce. Then, using a newer invader to Maine Hemigrapsus sanguineus, I measured thermal thresholds for summer and winter-acclimated crabs and found shifts in thermal thresholds as well as evidence that winter temperatures are stressful for these crabs. Lastly, to effectively detect invasive species early, I tested and designed assays for environmental DNA (eDNA) detection of 9 invasive or nuisance species in the Gulf of Maine. Using laboratory experiments and a two-year time series in a local tide pool, I found that not all of the studied invertebrate species can be detected equally. Some organisms with soft, exposed tissues shed eDNA consistently with their abundance, while organisms with exoskeletons or shells do not. This trend does not hold true for all of the studied taxa, but this premise alongside an understanding of natural history and morphology helps clarify the observed trends. Thus, eDNA techniques should not be applied equally across all taxa for management purposes without a clear understanding of the message of the signal. Overall, I made recommendations to better predict suitable habitats for invasive species, characterized thresholds for an understudied invasive species in New England, and continued building upon the challenges of detecting invertebrates with eDNA.

DEDICATION

First, I want to thank my advisor, Markus, for taking a chance on me when we met in Austin, Texas. I was ready to leave academia, but our short conversation and your offer to come work with you gave me the motivation to keep researching! I will forever be grateful for the home you created for me in your lab which has been so redemptive and fun. Also, thank you to Damian for allowing me to call or text you about anything, for writing and technological support, and for just being an excellent friend and mentor to so many through this process. All 400 members of the Brady Bunch are thankful for you! To Doug, thank you for your feedback and support through the process. To Rhian, thank you for sticking around on my committee despite moving to Europe, and for attending our meetings which were never at convenient times for you. Lastly, Erin, thank you for including me in so many wonderful projects and for always being willing to help. In every interaction we had, you offered so much to help me grow and have new experiences and my time at UMaine would not have been the same without you. This committee has been an absolute dream team and I feel so lucky to have had you all along for the ride on this journey.

Next, thank you so much to my family, who always allowed me to be myself. I was always a weird kid, bringing home snails, frogs, pieces of trees, and it never phased you. There was never any pressure to follow in your footsteps and work in the medical field, you always let me pursue my own interests. Mom, thank you for talking to me on the phone every day and for reading drafts of every paper and job application letter. Dad. Thank you for financially helping me out and always enthusiastically responding to every picture of a slug I sent you. To my sister Natalie and your family, thank you for comedic relief and chaos! My in-laws, Ted and Diane, for allowing me to steal your son to move to the east coast in the middle of a pandemic.

Thank you so much to all my friends I've made through Maine-eDNA and UNE in research, outreach, and social events. At UNE, Ariella, Aubrey, Melissa, Alexa, Kai W, Kai A, Harrison, and B, we had some long days in the lab and so many excellent laughs. We also shared rough days, self-deprecating memes, and a LOT of caffeine. My time at UNE would not have been the same without all of you. From a staff perspective, Lindsay, Tim, Chris, Matt, and Shannon, thank you so much for welcoming me into your circle of weirdness. Not being a real UNE student and also not being faculty left me in a weird spot, but you all made it feel like home. Within Maine-eDNA I've been able to make so many friends, Zach, Sam, Aaron, Julia,

Kyle, Heather, Beth, Sam... and so many other amazing students. Although we never had enough time to hang out (thanks to COVID and distance) every zoom meeting we had together was an absolute pleasure. Lastly the staff at the EPSCoR office and Maine-4H, specifically Sarah Sparks, Dan Timmerman, and Beth Campbell, who helped us reach so many youth and make real differences.

Lastly, I'm grateful for the smaller family I've created. To my husband, Stephen, for convincing me we should move to Maine in the middle of the pandemic and for always allowing me to chase my dreams. For supporting us financially and making sure I always had enough coffee in the morning and water throughout the day. For reminding me to look up from work every so often. And of course, for celebrating every victory and mourning every loss alongside me. Oh, and also for putting up with field work at odd times and every weather condition. Importantly, this dissertation is dedicated to my dog, Tahoe, who was my present for surviving comprehensive exams and has brought so much joy and sunshine to our lives. He has been the best lab assistant and the snuggliest writing buddy, and I'm so grateful to be his mom.

Acknowledgements page

Table of contents page

Introduction

Invasive species impacts in the Gulf of Maine

The Gulf of Maine (GoM) is a highly productive body of water with diverse ecosystems, oceanography, a growing aquaculture industry, and proximity to several large shipping ports. Due to climate change, the GoM is warming, with record high temperatures in 2012, 2016, and 2018 (Pershing et al., 2015). 2015-2020 was the warmest 5-year period for the Gulf, a trend that is predicted to continue under climate change projections (Pershing et al., 2021). These oceanographic differences between regions in the gulf likely serve as some protection towards invasive species northward progress, but the strength of the currents varies seasonally and annually (Pettigrew et al., 2005). The GoM is dominated by two strong current systems, the Eastern Maine Coastal Current and the Western Maine Coastal Current. The northern GoM is cooler and well mixed due to nutrient rich, cool waters from the Scotian shelf and continental slope (Goode et al., 2019; Pettigrew et al., 2005; Townsend et al., 2006; Townsend et al., 2015). To the south, the Western Maine Coastal Current is warm and stratified, driven by freshwater input and wind.

The overall warming temperatures, together with overfishing, are affecting some of the most profitable fisheries in the GoM, such as lobster (Mountain and Kane, 2010; Mills et al., 2013). Alongside climate change and the rate of warming in the Gulf of Maine, marine heat waves are events that "last for five or more days, with temperatures warmer than the 90th percentile based on a 30-year historical baseline period" (Hobday et al., 2016). The frequency of marine heatwaves is increasing and could have disastrous impacts on the already stressed native communities in Maine (Oliver et al., 2018). Warming temperatures are partially blamed for the decline of the cod fishery and changes in distribution and abundances of lobsters (Mills et al., 2013; Nye et al., 2009; Pinsky et al., 2013; Pershing et al., 2015). While here we discuss the overall implications of warming, it is important to note that warming is not affecting the oceans at a constant velocity.

Invasive species in the GoM compound other stressors, putting endemic communities at risk. An invasive species is defined here as a species transported by humans, directly or indirectly, which establishes in a new environment. Although invasive species are not always harmful to their recipient communities, they usually do not share an evolutionary history with recipient community members, leading to novel interactions which may affect either species

negatively (Sorte et al., 2010). Recently, the rate of invasion has increased dramatically due to increased global connectivity, and our increased ability to detect these species (Lockwood et al., 2013; Richardson and Pyšek, 2008). In marine ecosystems, many invasive species arrive in an area with ballast, on the hulls of boats, with the aquarium trade, or through aquaculture practices (Ruiz et al., 1999; Dijkstra et al., 2007; Lord and Williams, 2017; Marraffini et al., 2017; Weigle, 2007).

Ocean temperatures generally decrease at higher latitude along the coast of Maine and higher densities of invasive species have been observed in southern Maine due to temperature, currents (see above), and higher introduction rate (McNaught and Norden, 2011). Due to climate change, the intensity and scale of these biotic invasions are shifting. For example, between 1979 and 2005, the average cover of invasive ascidians on settlement plates deployed in southwestern Maine increased from 6% to 11% (Dijkstra et al., 2007). Ascidians are not the only non-native species proliferating; European green crab, *Carcinus maenas*, expanded their range from New Jersey to Newfoundland (1800 km) in just over 100 years (Klassen and Locke, 2007). An even newer invader, *Hemigrapsus sanguineus* has outcompeted *C. maenas* in the southern GoM due to its aggressive nature, higher feeding rates, and stronger claws (Jensen et al., 2002; DeGraaf and Tyrrell, 2004; Payne and Kraemer, 2013; Lord and Williams, 2017). There are at least fifteen readily identifiable invasive invertebrate species of concern in New England, though more are likely present and undetected (MIMIC, Rouget et al., 2016).

While understudied, the impacts of some invasive species on Northwest Atlantic ecosystems have been described. The European green crab, *C. maenas*, is one species whose impacts (such as habitat destruction and aggression) have been well classified in the GoM. For example, foraging by *C. maenas* triggered a decline of eelgrass beds in the Gulf of Saint Lawrence, leading to changes in food web dynamics and decreases in Canadian geese staging for migration (Garbary et al., 2014). Eelgrass meadows are predicted to decline in density with anthropogenic climate change, so *C. maenas* may exacerbate the loss of this habitat in the GoM (see Duarte, 2002; Goode et al., 2019). Similar observations of *C. maenas* and eelgrass interactions have been made on the Pacific coast of the United States (Howard et al., 2019). Eelgrass beds are important ecosystems for coastline protection, a source of blue carbon, and can serve as nursery habitats for young fish such as Atlantic cod (*Gadus morhua*) (Duarte, 2002; Gotceitas et al.,1997). *C. maenas* are also known to be aggressive towards juvenile American

lobster, *Homarus americanus* (Rossong et al., 2006). Lastly, *C. maenas* are potentially voracious predators of juvenile blue mussels, *Mytilus edulis*, and littorinid snails, both of which are important members of intertidal and subtidal Atlantic communities (Ebling et al., 1964; Lubchenco and Menge, 1978). The impacts of *C. maenas* are well studied due to the time since invasion and the pervasive nearshore effects on fisheries and habitats.

Despite fewer studies focusing on their impacts, several other invasive species have also been documented negatively affecting the GoM. *Didemnum vexillum*, the carpet tunicate, was introduced in the Damariscotta River estuary through aquaculture in the 1970s (Dijkstra et al., 2007). Since its introduction, it has spread rapidly throughout the GoM and now covers 230 km² of George's Bank, an important fishing ground and nursery habitat in the Northwest Atlantic (Valentine et al., 2007). This colonization is impacting the scallop fishery by decreasing available space for juvenile and adult scallops on gravel habitat and overgrowth of the scallops by the tunicate (Dijkstra and Nolan, 2011; Kaplan et al., 2017). Changes to benthic substrate may also affect survival of juvenile cod, *Gadus morhua* and haddock, *Melanogrammus aeglefinus* (Lengyel et al., 2009) by decreasing food availability as only about 10% of *D. vexillum* tissue contains nutritional value (Valentine et al., 2007).

Clearly, invasive species are already impacting the GoM and we are just beginning to understand their impacts on native ecosystems. As temperatures continue to rise, invasive species will continue to spread and native species will shift poleward (Goode et al., 2019; Parmesan and Yohe, 2003). These species shifts could lead to more novel species interactions, exacerbating the effects of the invasive species and creating novel species assemblages (Aronson et al., 2015; Goode et al., 2019; Sorte et al., 2010). To detect and respond to these shifts, effective monitoring strategies will be crucial.

Environmental DNA to detect invasive invertebrates

Ficetola and colleagues in 2008 detected DNA from American bullfrogs in the lab and field through the extraction of DNA from environmental samples. This DNA, referred to as environmental DNA or eDNA, opened the door for detection of species without capture of the organism. Environmental DNA has been used in a variety of applications including freshwater (Biggs et al., 2015 [newt detection with community science]; Dejean et al., 2011 [American bull frog and Siberian sturgeon]; Eichmiller et al., 2016 [common carp]; Eiler et al., 2018 [pool frog]; Laramie et al., 2015 [Chinook salmon]; Pilliod et al., 2014 [Idaho giant salamanders]; Pont et al.,

2018 [comparing electrofishing surveys with eDNA metabarcoding]; Stoeckle et al., 2015 [fish commmunity metabarcoding]; Takahara et al., 2012 [common carp]; Turner et al., 2015 [bigheaded Asian carp]), ice (Willerslev et al., 2004 [ancient bacterial DNA]), air (Banchi et al., 2020 [airborne fungi and plant DNA]; Lynggaard et al., 2022 [zoo animal detection]), soil (Levy-Booth et al., 2007 [DNA cycling]; Pietramellara et al., 2009 [review of microbial impact on soil DNA]), and salt water (Ardura et al., 2015 [European mudsnail ballast transfer; Kelly et al., 2014 [metabarcoding of a mesocosm]; Kelly et al., 2018 [tidal effect on eDNA detection]; Thomsen et al., 2016 [deepwater fish detection versus trawl data]). These studies demonstrate that species detection using eDNA is possible, even if we do not directly capture or observe the animal. In cryptic species such as amphibians, eDNA provides scientists a glimpse into population sizes and distribution, which can be critical for monitoring (Biggs et al., 2015).

The sensitivity of eDNA methods allows for the detection of invasive species as well. Invasive species are easier to manage when they are in low abundance, so early detection may be the key to eradication (see, for example, Vander Zanden et al., 2010). The Laurentian Great Lakes are now home to several damaging invasive species, including several carp species and zebra mussels. Environmental DNA was able to detect the presence of bighead and silver carp (*Hypophthalmichthys nobilis* and *Hypophthalmichthys molitrix*, respectively) before the fish were caught upstream of electrical barriers to keep the fish out of the lakes (Jerde et al., 2011; Jerde et al., 2013). Zebra mussels, *Dreissena polymorpha*, and quagga mussels, *D. rostriformis*, have been detected using eDNA in the Great Lakes and in Europe, where eDNA was used to quantify the level of infestation in lakes where traditional survey methods, such as larval counts, failed (Clusa et al., 2017; Klymus et al., 2017; Peñarrubia et al., 2016; Williams et al., 2017). These examples highlight the strength of eDNA in detecting invasive species early, which is critical to decrease the risk of establishment.

Some suggest interpreting eDNA with caution; that we cannot trust the results if we cannot see the animal and that the DNA could be coming from other sources (Jerde, 2021). Despite pushback from managers and the public, eDNA methods for some species were found to be more reliable and less expensive than traditional methods. Asian carp species are challenging to detect with traditional methods, especially in low density, so eDNA survey methods are likely more precise (Jerde et al., 2011). Invasive species management in the United States costs more than \$120 billion annually and false positive detections could lead to an inefficient distribution of

limited resources (Pimentel et al., 2005). All survey methods are subject to error, and error in invasive species detection can have costly consequences, whether those methods are traditional survey methods or eDNA based methods. For example, conventional capture methods can suffer from misidentification, low detection probabilities, insufficient effort, or temporal mismatch in sampling effort (Jerde, 2021). Sources of error in eDNA studies can come from genetic misidentification, hybridization, contamination, DNA persistence, seasonal or temporal mismatch, inhibitors, or molecular failure. Some of these error sources are similar across methods so proper background information (i.e. when is the animal present in the ecosystem?) can reduce error across methodologies.

Although eDNA methods are constantly improving, guidelines have been developed to ensure that eDNA assays (primer and probe set) have been sufficiently validated for management purposes. One of these guidelines is the "Minimum Information for Publication of Quantitative Real-Time PCR Experiments" (MIQE). An assay designed following the MIQE guidelines will have information on the limit of detection, primer specificity, inhibition testing, and other factors that can lead to differences between laboratories and locations (Bustin et al., 2009). The overall goal of these guidelines were to increase the value of reported qPCR experiments, allow editors and reviewers to assess the quality of submitted qPCR publications, and to help experiments be replicable to reduce redundancy in assay design. Thalinger et al. (2021) built upon the MIQE guidelines to create a set of guidelines specific to eDNA assays. Many of the requirements from MIQE remain in place, but they include validating eDNA samples at multiple sites and quantifying detection probabilities (Thalinger et al., 2021). The use of these guidelines as well as strong scientific communication should increase confidence in eDNA techniques for monitoring invasive species (Jerde et al., 2021).

An area of eDNA study that requires more attention is the relationship between abundance and detectable eDNA. Factors such as mixing and flowing of water (Foote et al., 2012; Stoeckle et al., 2015), degradation caused by UV, temperature, or bacteria (Pilliod et al., 2014; Strickler et al., 2015; Tsuji et al., 2017), and potentially, body plan of the animal. Studies in fish and some amphibians have found a correlation between biomass and detected eDNA in the laboratory and in field or mesocosm studies (Kelley et al., 2014; Klymus et al., 2015; Lacoursière-Roussel et al., 2016; Maruyama et al., 2014; Pont et al., 2018; Takahara et al., 2012; Thomsen et al., 2016). Both single species and metabarcoding studies have questioned whether

eDNA reads correlate with the amount of organisms present depending on primer set and morphology (Crane et al., 2021; Danziger et al., 2022; Grey et al., 2018; Thomas et al., 2016).

Here, I use eDNA to detect nine species of invasive invertebrates. These species range in body plan from fleshy, exposed tissues (squishy), to organisms covered in a shell or exoskeleton (crunchy). I predict that there will be a difference in effectiveness of quantitative eDNA detection between these groups of species, where more exposed organisms will shed more eDNA and move covered organisms will shed less eDNA.

Physiology of invasive invertebrates

Physiological plasticity is a leading hypothesis for the success of invasive species. Ability to survive in a variety of environments has allowed European green crab, C. maenas, to colonize every continent except Antarctica (Compton et al., 2010, Darling et al., 2008). For example, C. maenas can live in a wide range of temperatures, from lower than 0 °C to nearly 36 °C (Jost et al., 2012; Tepolt and Somero, 2014; Frederich and Pierce, 2024). They can live in estuaries with low salinity by increasing their urine output (Binns, 1969). As generalists, they can eat most foods they encounter and some populations have strengthened their claws to more effectively prey upon littorinid snails (Edgell and Hollander, 2011; Seeley, 1986). Finally, their larvae can develop at a variety of temperatures by increasing planktonic duration, allowing them to disperse further (deRivera et al., 2007). These characteristics have allowed C. maenas to spread far from its home range and outcompete native species to become a dominant part of many nearshore ecosystems. These characteristics of plasticity are likely true of other invasive species in the GoM, but extensive studies of C. maenas have occurred due to the prevalence of this invasive species around the world. Chapters 1 and 2 will explore what is known about physiological tolerance for other GoM invasive invertebrates and measure physiological frameworks for Asian shore crab, *H. sanguineus*, in greater detail, thereby enhancing our understanding of the role of physiological plasticity in invasion success.

Physiology of an animal becomes increasingly important as the climate changes; to predict where organisms will spread based on their physiological limits will allow for appropriate implementation of eDNA monitoring methods. Furthermore, our ability to detect an organism using eDNA methods may change under stress. Green crabs running on a treadmill increased the amount of detectable DNA in a laboratory setting, likely due to an increased metabolic rate (Danziger et al., 2022). Similar results have been seen in bluegill sunfish, *Lepomis macrochirus*,

where juvenile fish released more eDNA than adults due to activity level (Maruyama et al., 2014). One study found unexplained, individual variation in eDNA shedding rates for Idaho giant salamanders; so much variation that a salamander who produced more than four times the amount of eDNA as the others had to be excluded from analysis (Pilliod et al., 2014). Organisms may also reproduce once water temperature reaches a certain level, so these factors must be taken into consideration for field eDNA studies with goals of quantification (see, for example, Peñarrubia et al., 2016). Due to the potential interaction between temperature and eDNA detection, these topics are important to examine before usage of eDNA in monitoring practices. *Study system and species of interest*

In the GoM, there are fifteen invasive invertebrate species currently being monitored by the Marine Invader Monitoring and Information Collaborative (MIMIC), which are already known to be established in New England. The purpose of MIMIC is to study the presence of easily-identifiable invasive species in the New England area through volunteer efforts. These invaders are representatives of multiple phyla from around the world. There are both solitary (Ascidiella aspersa, Styela clava) and colonial tunicates (Botrylloides violaceus, Botryllus schlosseri, Didemnum vexillum, and Diplosoma listerianum), bushy (Bugula neritina and Tricellaria inopinata) and encrusting bryozoans (Membranipora membranacea), a variety of crustaceans (Carcinus maenas, Hemigrapsus sanguineus, Caprella mutica, Palaemon elegans), the orange striped anemone (Diadumene lineata), and the European oyster (Ostrea edulis). These species were chosen because they are easy to identify with little guidance for trained volunteers, not because they are necessarily the most damaging. While not currently monitored by MIMIC, Ciona intestinalis is considered exotic or cryptogenic in the GoM and will be considered as an invasive species in this study (Leblanc et al., 2020; Martin et al., 2011; McNaught and Norden, 2011; Ramsay et al., 2008).

These species have been introduced to the GoM in a variety of ways. Green crab, *C. maenas*, was one of the first recognized invasive species in the GoM, likely first traveling in the early 1800s to New Jersey in ballast rocks, gravel, and sand (Darling et al., 2008; Edgell and Hollander, 2011). The tunicate *B. schlosseri* also arrived in the 1800s when it was described in a book, but there is no information about transportation vectors (Gould, 1870). *B. violaceus* and *D. vexillum* were transported through oyster aquaculture to the Damariscotta river in the 1970s (Dijkstra et al., 2007). *H. sanguineus* likely arrived via ballast water and due to the genetic

diversity of the invasive populations, has been introduced more than once (Epifanio, 2013; Lord and Williams, 2017). *M. membranacea* first appeared on kelp in New Hampshire from Europe, though the vector of transport is also not known (Lambert et al., 1992). *C. mutica* rapidly invaded Europe through hull fouling and was likely transported to the GoM in a similar fashion (Cooke et al., 2007). The last species with a clear path and timeline for invasion of the species studied here is *O. edulis*, which was intentionally introduced in the 1950s in a failed aquaculture attempt (Loosanoff, 1955). Each of these species, and more, are well established in the GoM and moving northward with climate change. Detection using eDNA can help us better understand their distribution and mitigate the effects of shifting invasive species on native communities.

This study primarily took place in the laboratory and at Biddeford Pool, Maine (43.44203° N, 70.34096° W). Biddeford Pool is home to more than nineteen species of shorebirds, both migratory and resident, which utilize the diverse habitats from saltmarsh to rocky intertidal in the area (Humphrey et al., 1995). The University of New England Crustacean Research Laboratory has a longstanding dataset including abundances of invasive crabs in this area and it is also a MIMIC site which is sampled visually monthly. Together with eDNA sampling, this long-term dataset will help assess seasonal variation in species presence, and perhaps abundance, in this ecologically diverse ecosystem.

Dissertation structure

In this dissertation I link physiology with ecology of invasive species through environmental DNA detection. The first chapter will be a review of invasive species thermal tolerances in the GoM. Chapter two will focus on *H. sanguineus* as a model organism for measuring different thermal tolerance frameworks and discovering which framework best predicts species spread. I will also determine whether that framework can be appropriately measured for other invasive species in the GoM. Chapter three will tie together the physiology and the eDNA, investigating eDNA shedding rates with different biomass and under physiological stress to better understand what an eDNA signal confers. Chapter four will bring eDNA detection to the field, comparing detectable eDNA from invasive species over three field seasons at Biddeford Pool to see whether biomass and seasonal variability correlate with detectability. This dissertation will provide guidance for the use of eDNA to detect invasive invertebrate species by enhancing species distribution predictions, clarifying the meaning of an eDNA signal, and providing long term monitoring data.

Chapter 1 | In Hot Water: Current Thermal Threshold Methods Unlikely to Predict Invasive
Species Shifts in the Northwest Atlantic

Abstract

As global temperatures continue to rise, accurate predicted species distribution models will be important for forecasting the movement of range-shifting species. These predictions rely on measurements of organismal thermal tolerance, which can be measured using classical threshold concepts such as Arrhenius Break Temperatures and Critical Thermal Temperatures, or through ecologically relevant measurements—such as the temperature at which reproduction and growth occur. Many species, including invasive species, exhibit thermal plasticity, so these thresholds may change based on ambient temperature, life stage, and measurement techniques. Here, we review thermal thresholds for 15 invertebrate species invasive to the Gulf of Maine. The high degree of variability within a species and between applied conceptual frameworks suggests that modeling the future distribution of these species in all ecosystems, but especially in the rapidly warming Northwest Atlantic and Gulf of Maine, will be challenging. We suggest a standardization of measurements to increase the applicability of physiological thermal tolerances in order to address real world problems.

Introduction

Anthropogenic climate change driven by greenhouse gas emissions has led to unprecedented rates of warming (IPCC, 2022). Marine heat waves, which occur when temperatures reach the 90th percentile for five or more days, are also increasing in frequency as climate change continues (Hobday et al., 2016; Laufkötter et al., 2020; Oliver et al., 2018). Warming temperatures are causing species to shift deeper in the water or poleward to find favorable thermal conditions (Perry et al., 2005; Sunday et al., 2012). Many marine organisms are ectothermic, whose temperature rely on external sources of body heat, and/or poikilothermic, whose temperature varies with environmental temperature. For these organisms, temperature changes alter their physiology and increase their metabolic rate, typically at a ratio of 2-3 times base metabolic rate for every 10°C change (Cossins and Bowler, 1987). At thermal extremes, metabolic rates begin to limit an organism's ability to survive. In order to understand how

climate change will affect ectothermic animals, accurate measurements of thermal tolerance thresholds must be made.

Several metrics are commonly used to measure thermal tolerance thresholds across the animal kingdom. One classical measurement is lethal dose 50 or LD50 (or LT50 for lethal temperature), which is derived from toxicology and is the temperature at which 50% of individuals perish (see Nagabhushanam and Krishnamoorthy, 1992). Arrhenius break temperatures (ABT) seek a break from linearity and, while originally described for enzymatic reactions (Arrhenius, 1889), are usually measured as heart rates at increasing or decreasing temperatures (Harrington and Hamlin, 2019). The concept of the Oxygen and Capacity Limited Thermal Tolerance (OCLTT) hypothesis describes two thresholds, the pejus temperature Tp, the temperature at which the animal's condition worsens, and the aerobic scope is limited (Frederich & Portner 2000), and the critical temperature, Tc, the temperature at which the animal's oxygen demand exceeds the oxygen supply due to failing circulatory and/or ventilatory systems, and the subsequent buildup of anaerobic end-products (Pörtner et al., 2017). Critical thermal maxima and minima (CT_{max} and CT_{min}) measure the point at which the animal loses controlled motion (Brett, 1956; Cowles and Bogart, 1944; Jost et al., 2012; Kelty and Lee, 2001). Lastly, the framework of Multiple Performances, Multiple Optima (MPMO) posits that organ systems, ion transport, and other processes within the animal fail at different temperatures for different species and avoids defining one general mechanism responsible for system failure at thermal thresholds (Städele et al., 2015; Clark et al., 2017).

Each of these frameworks outline valid thermal thresholds, but some are potentially more ecologically relevant than others. For example, temperatures measured in CT_{max} are so high that they are rarely experienced in the field, except perhaps for intertidal organisms which are exposed to the air (Stillman and Somero, 2000). If a threshold falls outside of water temperatures found in nature, it is not a helpful threshold for predicting species behavior. For modeling, the mechanisms behind MPMO vary widely between species, so it is unlikely to be useful for widespread use in modeling. Because MPMO is based on organ systems and other underlying mechanisms, there is no continuous variable that could drive species range shifts. Furthermore, not all invertebrate organisms have well defined organ systems, so MPMO would not broadly apply. Outside of ecological relevance, measurements vary greatly due to acclimation temperature, measuring styles, differences in populations, and even misinterpretation of

framework measurements (see for example McGaw and Whitley, 2012). These inconsistencies lead to challenges in interpreting the data in meaningful ways; a meta-analysis is impossible with invertebrate thermal tolerances. Meta-analyses are suited to data collected in a similar way to be analyzed together quantitatively by pulling the effect size and variance from a variety of studies, but the high level of variation between measurement techniques introduces too much noise and uncertainty for anything quantitative to be inferred. With different starting temperatures, acclimation temperatures, rates of temperature change, population differences, and no basis for statistical modeling (Forero et al., 2019).

Plasticity in thermal thresholds has been observed in many taxa at every life stage (see, for example, Padilla and Savedo, 2013). Geographic location can also influence thermal plasticity, which has been well documented for *C. maenas* whose CT_{max} values have a range of nearly 10°C based on acclimation temperature and location (Tepolt and Somero, 2014). Some life stages have different energy requirements, so this plasticity may be limited for developing larvae and reproducing females, among others (deRivera et al., 2007). Thus, any thermal threshold measured should contain records of where the organisms were collected, life stage, and acclimation temperature, at a minimum, to understand the validity of those measurements.

Despite the development of these frameworks, many studies instead focus on the temperature effects on factors such as larval development, survival, reproduction, or presence of a species. Although these measurements may help inform local abundance of organisms, accurate species distribution modeling will require broad physiological understanding of organisms to be applied over a broader scale, measured in precise and replicable ways. Thus, without the mechanistic understanding of physiological limitations, models may fall short. This is increasingly important as climate change and general warming move organisms towards the poles or deeper in the water column (Sunday et al., 2012). Furthermore, some studies use survival at the minimum and maximum regional temperature in the species range as temperature thresholds, which are likely underestimating the true limits of potential invaders (see for example Willis et al., 2009).

Invasive species (defined here as organisms moved from one area to another by humans) will only have a chance at success if the temperatures in the recipient community fall within the thermal thresholds of the species. In general, many marine invasive species have a wide range of thermal tolerance and are able to live in many areas they are introduced to. Diet generalism,

salinity tolerance, and high fecundity are also predictors of invasion success. For example, European green crab (*Carcinus maenas*) is native to Europe and Northern Africa, but has established invasive populations nearly worldwide, on every continent except Antarctica (Carlton and Cohen, 2003; Compton et al., 2010; Frederich and Lancaster, 2024). Fortunately, *C. maenas* is well studied in regard to thermal tolerance, so we can predict their future range expansion (see Frederich and Lancaster, 2023). Due to warming ocean temperatures and their extreme thermal tolerance (down to -1.8°C), there are few thermal limits to where *C. maenas* could spread (Tepolt and Somero, 2014). One area of particular concern is the Antarctic shelf, which is under threat of encroaching lithoid crabs and currently has no crushing predators (Aronson et al., 2015). Due to anticipated climate changes and increased connectivity between continents, knowledge of thermal tolerance for invasive species is important to generate species distribution models, which could inform management strategies.

Fouling communities are one of the most common habitats for benthic invasive species in harbors and on boats. Assemblages of fouling communities compared in the Great Bay Estuary in New Hampshire have shown a 33% difference in community members since the late 1970s (Harris and Dijkstra, 2007). Furthermore, increases in marine heatwave frequency will lead to more erratic temperature changes, which could alter invasive species communities (Sorte et al., 2010). This difference is likely due to newly introduced species and warming waters. Not all invasive species are transported through fouling species or ballast, other common methods of introduction are the pet trade and seafood industry (Rius et al., 2014; Weigel, 2007).

Here, we review thermal tolerances of fifteen ecologically important Gulf of Maine invasive species around the world to highlight the need for more consistent measurements to inform predictive species distribution models (Table 1). These studies report thermal thresholds from field observations and laboratory experiments from all continents, including Africa (4), Antarctica (3), Asia (28), Australia (24), Europe (127), North America (146), South America (5), and Worldwide (21), with the rest being either unlisted or multi-continent. The species list for this review was chosen from the Marine Invaders Monitoring and Information Collaborative (MIMIC), a community science project based in New England hosted by the Massachusetts Office of Coastal Zone Management. While these species are not necessarily the most harmful, they are the most easily identifiable, allowing trained volunteers to make observations across the area. These observations began in 2008 and continue to be collected, creating a distribution of

species over time. One species, *Ciona intestinalis*, is not listed on MIMIC surveys, but is considered cryptogenic in Maine (Hewitt et al., 2002) and thus was added to this analysis. The fifteen species represented here span five phyla (urochordata, arthropoda, bryozoa, mollusca, and cnidaria) and consist of a variety of bauplans and metabolic rates.

Table 1. A list of invasive species including their native and invasive ranges. Information compiled from the global invasive species database (GBIF) and the Smithsonian Marine Invasions Lab.

Species name	Phylum	Native range	Temperatur e in native range	Invasive range
Ascidiella aspersa	Chordata	Europe	Up to 26℃	Australia, Japan, New Zealand, North America, South America; possibly also India and South Africa
Botrylloides violaceus		Asia	-0.6 - 27.4℃	Australia, Europe, North America
Botryllus schlosseri		Europe	-1 - 30°C	Asia, Australia, New Zealand, North America, South America
Ciona intestinalis		Cryptogeni c	0 - 27℃	Asia, Africa, Australia, Europe, New Zealand, North America, South America
Didemnum vexillum		Asia	-2 - 24℃	Australia, Europe, New Zealand, North America
Diplosoma listerianum		Europe	2.2 - 30°C	Asia, Australia, Europe, Madagascar, New Zealand, North America, South America

Styela clava		Asia	-2 - 26.6℃	Australia, Europe, New Zealand, North America; possibly also in Africa.
Caprella mutica	Arthropod a	Asia	-2 - 28℃	North America, Europe
Carcinus maenas		Europe	-1 - 35℃	Asia, Australia, North America, South America
Hemigrapsus sanguineus		Asia	1.8 - 30℃	Europe, North America; possibly also Australia and India.
Palaemon elegans		Europe, Africa	2 - 25℃	North America
Bugula neritina	Bryozoa	Europe	2.2 - 30°C	Africa, Asia, Australia, New Zealand, North America, South America; possibly also Antarctica; present on several islands including the Galapagos and Vanuatu
Membranipora membranacea		Europe	-1.8 - 27℃	Africa, Asia, Australia, New Zealand, North America
Diadumene lineata	Cnidaria	Asia	0 - 27.5℃	Australia, Europe, New Zealand, North America, South America
Ostrea edulis	Mollusca	Europe	5 - 25°C	Africa, Australia, New Zealand, North America,

Studying these species in the Gulf of Maine is of particular importance due to the unprecedented rate of warming in this region (Pershing et al., 2021). This warming has

temporarily, positively affected the lobster fishery, but warmer temperatures may facilitate poleward movement of invasive species from lower latitudes (Duffy et al., 2017; Goode et al., 2019; Sorte et al., 2010). Depending on the rate of species spread, which is influenced by larval duration and transport, lifecycle, and bathymetric barriers (amongst other factors), high latitude ecosystems may face invasions sooner rather than later, especially as temperatures continue to climb. Due to the rate of warming in the Gulf of Maine, as well as the latitudinal gradient, this area is ideal for projecting how species distribution might change in other regions. While the rate of warming will affect species success, the extreme rate of warming in the Gulf of Maine serves as a "worst case scenario"; if organisms can survive this, they will likely be successful in other, less drastically changing areas. The implication of this study can be applied elsewhere, especially for forecasting studies which presently use field distribution to determine thermal tolerance (see, for example, Holland et al., 2021). In this context, we provide suggestions for future physiological studies to increase their applicability to species modeling.

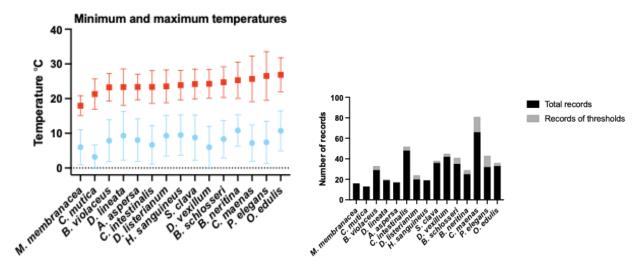


Figure 1: A) Summary of 450 measured thermal thresholds for all of the study species represented by means and standard deviations of the high (square) and low (circle) temperature measurements. Species are organized from lowest maximum high temperature to highest maximum high temperature on the x axis. B) Total number of records for each species and how many of those records measured classical thresholds (lighter gray). Most of the records analyzed studied the more ecologically meaningful measurements which lack a mechanistic understanding.

Characterization of thermal thresholds

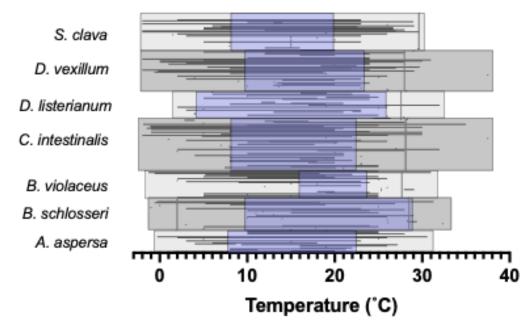
Using a variety of search queries (supplementary table 1), we collected records of thermal thresholds for the 15 species of interest. Although the search queries were based on the mechanistic frameworks, they also captured a variety of measurement techniques outside of the frameworks. Indeed, most of the studies included did not measure traditional thermal threshold metrics, but instead investigated factors such as survival, larval development, reproduction, or growth. Information recorded from each publication included the maximum or minimum temperature threshold and exactly what was measured. Per the discretion of the authors, many frameworks could be assigned to data if the framework was not explicitly listed in the publication. A table including which frameworks were assigned can be found in the supplementary material. Furthermore, some publications used a different title for a framework that was previously established and was reassigned for the purpose of this review. For example, in 2014 Tepolt and Somero studied cardiac function of C. maenas and measured CT_{max}, whereas by our definition this measurement might be ABT or MPMO (Tepolt and Somero, 2014). Other publications did not specify a framework but did measure relevant values and were captured in the "general" search queries, so a descriptive term was chosen from those studies for what was being measured (i.e., development, survival, reproduction).

This literature review scanned 450 thermal threshold records for the species of interest. Most of the records did not align with any of the classical thermal physiology models, but instead focused on what temperatures the organisms were reproducing in the field, the temperatures at which they grew, and general records of survival in an area with specific temperatures. A summary of the average upper and lower measurements can be found in Figure 1.

Physiology by phylum

Ascidian thermal thresholds

The largest group of organisms in our analysis are the ascidians. *A. aspersa, B. violaceus, B. schlosseri, C. intestinalis, D. vexillum, D. listerianum,* and *S. clava. A. aspersa, C. intestinalis,* and *S. clava* are solitary tunicates, whereas the others live as thin layer colonies. A breakdown of all measured thresholds can be found in Figure 2. This group is fairly well studied,


as *C. intestinalis* and others are used as model organisms. They are generally suspension feeders and are dominant members of fouling communities. In the Gulf of Maine, they have been introduced through equipment fouling and aquaculture (Carman et al., 2014; Lambert, 2009). They frequently outcompete other species in fouling communities and grow over native bivalves such as mussels, oysters, and scallops as well as eelgrass (Fletcher, 2013; Gittenberger, 2007; Long and Grosholz, 2015). *Didemnum vexillum* is particularly harmful to Gulf of Maine fisheries and ecosystems. At George's Bank, located in the center of the Gulf of Maine, over two hundred square kilometers have been colonized by *D. vexillum*, which is damaging nursery habitat for commercially valuable fish like cod (Valentine et al., 2007). Unfortunately, dredging, scraping, and trawling fragments ascidians, and many of those fragments can settle and start new colonies; so the issue is made worse by traditional fishing practices.

The invasive ascidians in Maine have wide temperature tolerances and are able to reproduce early in the year, allowing them to quickly dominate fouling communities in the spring. They inhabit a variety of ecosystems, from harbors and tide pools to large swaths of benthic area (Dijkstra et al., 2007; Sorte and Stachowicz, 2011; Valentine et al., 2007). Many species exhibit a lower thermal threshold that is below the temperatures required for reproduction. For example, *S. clava* requires a temperature above 15°C to reproduce, so it is not feasible for populations to exist if the maximum temperature does not exceed 15 even though the species can survive down to -2°C (Davis et al., 2007; Davis and Davis, 2008). Many species exhibit population level variation, which leads to differences in thermal maxima and minima. For example, larvae of *B. schlosseri* have been reared at 10°C (which took nearly 66 days), while other studies did not have successful reproduction at 13°C (Brunetti et al., 1984; Sabbadin et al., 1955). Whether this difference is from laboratory versus field observations or interspecific variation is unknown.

For *C. intestinalis* and others, temperature may affect life cycle length. Individuals growing in cooler temperatures live longer (2-3 years), while individuals in warmer waters may reproduce several times per year or produce up to four generations in one year and live shorter lives (Berrill, 1947; Dybern, 1965; Yamaguchi, 1975). *Botrylloides violaceus* in the Great Bay Estuary in New Hampshire now experience more than one reproductive cycle in a year, compared to the 1970s where cooler temperatures and shorter heat extremes limited their reproductive cycles to 0.7 annual reproductive cycles (Dijkstra et al., 2011). Multiple generations

per year could extend the impacted area and allow for increased genetic diversity, so understanding how temperature impacts the reproductive capacity of each species is important for modeling.

For each species studied in this group, there was a high amount of variability within measurements. Indeed, many studies only measured up to a certain temperature (usually 25-30°C) before ending an experiment prematurely, labeling the maximum temperature measured as a thermal maximum. Studies using the frameworks above, such as LD50 and CTmax, which elicit the maximum survivable temperatures, show that the maximum temperatures for all ascidians studied here are above 27°C, some falling well above 27.

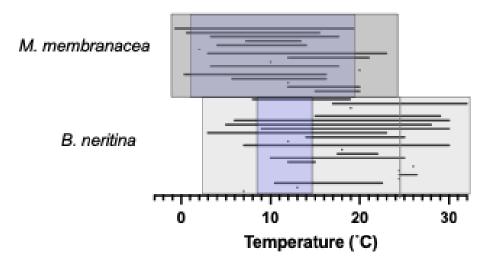


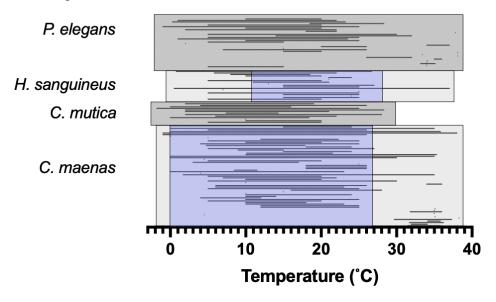
Figure 2: Measured thermal thresholds (dots) and ranges between thresholds (lines) for the ascidian species included in this study. Vertical lines in each gray rectangle indicate measured LD50 temperatures. For *A. aspersa*, none of the traditional thermal threshold measurements were taken, *C. intestinalis* has an ABT (21°C) and LD50 (27°C), *D. listerianum* has an LD50 (26.6±1.40°C), *D. vexillum* only has an LD50 (26.77±1.01°C), and lastly, *S. clava* has an LD50 of 29.5°C. Gray boxes indicate maximum and minimum measured thermal tolerance, purple boxes indicate a reproductive threshold.

Bryozoan thermal thresholds

The invasive bryozoans *Membranipora membranacea* and *Bugula neritina* can be found in fouling communities, but also exist in ecosystems that are less directly influenced by humans. A summary of their thermal thresholds can be found in figure 3. *Membranipora membranacea* is frequently found as a biofouler in kelp forests, where it grows over the kelp and leads to decreased flexibility, which causes breakage and increased mortality (Dixon et al., 1981; Førde et al., 2016; Saunders and Metaxas, 2008). Kelps are an excellent aquaculture food source that could be threatened by invasive bryozoans, and kelp forest composition in the Gulf of Maine is changing from tall canopies of brown kelps to short, dense, red algae (Witman and Lamb, 2018). This species composition may change habitat function, as kelp forests are usually considered nursery habitats due to their complex structure and wave-damping properties. Furthermore, kelp aquaculture is an emerging field in the Gulf of Maine in the winter, but warming temperatures may increase biofouling risk at this time of year (Forbord et al., 2020; Førde et al., 2016).

These two species usually inhabit different parts of nearshore ecosystems. Whereas *B. neritina* is an upright bryozoan that attaches to hard structures nearshore, *M. membranacea* is found where kelps are found in subtidal regions. According to the measurements, *M. membranacea* is able to reproduce across most of its thermal range, whereas *B. neritina* has a narrower range of reproduction closer to the bottom of its thermal range. Importantly, *M. membranacea* reproduces below the minimum threshold measured by some species, suggesting either population-level variation or vastly different measurement techniques.

Figure 3: Measured thermal thresholds (dots) and ranges between thresholds (lines) for the bryozoan species included in this study. *B. neritina* has a measured LD50 value (25.12±0.89°C) and *M. membranacea* has no classical measured threshold values in the literature. Vertical lines in each gray rectangle indicate measured LD50 temperatures. Gray boxes indicate maximum and minimum measured thermal tolerance, purple boxes indicate a reproductive threshold.


Arthropod thermal thresholds

Invasive arthropods in the Gulf of Maine include *Carcinus maenas, Caprella mutica, Hemigrapsus sanguineus,* and *Palaemon elegans*. They arrived here through ballast water or rocks, aquaculture, and fouled equipment (Ashton et al., 2007; Edgell and Hollander, 2011; McDermott, 1998). *Carcinus maenas* is one of the most damaging invasive species in the Gulf of Maine, but in southern regions such as New Jersey *H. sanguineus* has become the dominant invasive arthropod in the tide pools. These invasive species have documented impacts on nearshore ecosystems and prediction models must take thermal preferences into account for accuracy.

While arthropods have some of the widest thermal tolerances of the studied species, reproduction is a limiting factor at low temperatures, despite surviving at near freezing temperatures. One example of this is *C. mutica*, which survives down to 0°C in its native range, but in Scotland juveniles were not present in the winter at some sampling sites despite the low temperature only reaching 7.4°C (Ashton et al., 2010). Some research suggests that marine species ranges conform to their thermal tolerance; if they can survive the temperatures in an area, they likely inhabit it (Sunday et al., 2012). However, other oceanographic factors, such as wave intensity, may limit the distribution of certain arthropods, despite temperatures well within their survivable ranges (Hampton and Griffiths, 2007).

C. maenas is a worldwide invader with high thermal tolerance. Despite the survival of these crabs at exceptionally high and low temperatures, different populations of crabs may struggle at middling temperatures on a physiological level. For example, *C. maenas* from Helgoland, Germany, had lower oxygen consumption rates at medium temperatures (12-21°C) compared to crabs from Cadiz, Spain (Laspoumaderes et al., 2022). However, even with the differences in oxygen consumption rates, the crabs continued to eat and grow at similar rates at increasing temperatures. As one of the better studied organisms here (66 measured temperature

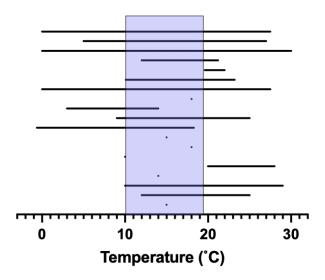

thresholds), population-level variation in thermal tolerance is well documented for *C. maenas*. Critical thermal thresholds range from water temperatures of 29.7 to 38.3°C based on haplotype and acclimation temperature.

Figure 4: Measured thermal thresholds (dots) and ranges between thresholds (lines) for the arthropod species included in this study. *P elegans* CTmax (34.08±3.01°C). Gray boxes indicate maximum and minimum measured thermal tolerance, periwinkle boxes indicate an estimated reproductive threshold, if one exists.

Cnidarian thermal thresholds

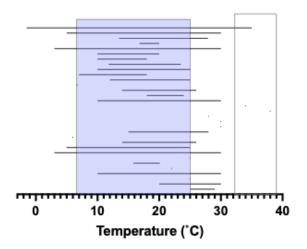
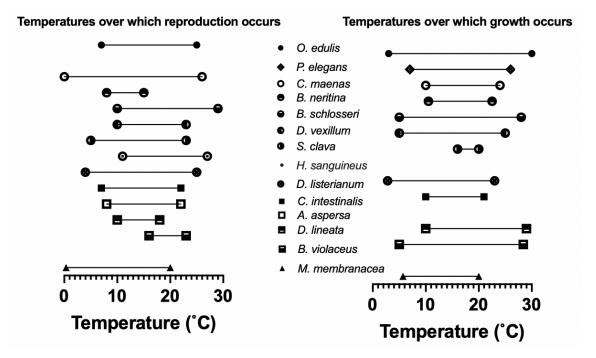

The only cnidarian included in this study is *D. lineata*, who has thermal thresholds ranging from -0.6°C to 30°C at the extremes. Peak reproduction falls in the middle of this thermal range. Although they can survive low temperatures, they do not start growing or reproducing as exually until water temperatures reach above 10° C (Ryan, 2017).

Figure 5: Measured thermal thresholds (dots) and ranges between thresholds (lines) and ranges for *D. lineata*. Box indicates temperature range over which reproduction is possible.


Molluscan thermal thresholds

For the only invasive mollusc in this study, acclimation temperature seems to have an impact on minimum reproductive temperatures for *O. edulis* across its native range. In Spain, oysters begin reproducing around 12°C, however, in Norway, spawning onset does not occur until water temperatures reach 14°C (Bromley et al., 2016; Colsoul et al., 2021). For adult oysters reaching sexual maturity, temperature has an effect on sex ratios, where the first gametogenesis usually produces sperm, but sequential reproductions can switch between egg and sperm production and are affected by temperature (Zapata-Restrepo et al., 2019). Thus, while certain temperatures may not prove lethal to the oysters, raised temperatures may affect spawning viability for certain populations.

Figure 6: Measured thermal thresholds (dots) and ranges between thresholds (lines) for *O. edulis* included LD50 measurements (34-38°C) and measurement of HSP70 expression, which begins at 25°C. Gray box indicates LD50 range, purple box indicates temperature range over which reproduction is possible.

Many of the species studied had well defined thermal reproductive ranges for sexual reproduction and growth (Figure 7). The widest reproductive range belongs to *C. maenas*, which reproduces year-round in the Gulf of Maine (Frederich and Lancaster, 2023). The organism requiring the highest temperature for reproduction is *B. violaceus*, whereas *M. membranacea* and *C. maenas* have the lowest reproductive temperatures, just above freezing. Of importance, colony growth through budding and asexual reproduction was not included as reproduction for the purpose of this study, so all of the reproduction here is from sexual reproduction. In the growth specific graph, *S. clava* has the narrowest range for growth and *O. edulis* has the widest. When comparing these ranges to the ranges in Figure 1, which ranked organisms from lowest to highest upper mean thermal threshold, there is no similar pattern in reproductive or growth thresholds. In other words, understanding just the temperature range over which an organism reproduces or grows in the field does not indicate what their maximum and minimum survivable temperature is.

Figure 7: A summary of the temperatures over which the organisms in this study reproduce and grow. The order species in this figure are the same as figure 1, which ranks species from low to high mean high temperature. *Membranipora membranacea* has the lowest mean high thermal thresholds and *O. edulis* has the highest mean high thermal thresholds. Based on the width of reproductive and growth thermal thresholds, there is no correlation between reproductive window and measured thermal thresholds. Thus, maximum, minimum, reproductive, and growth temperatures are all important in species survival in an area.

Which metric is most reliable and recommendations for the future

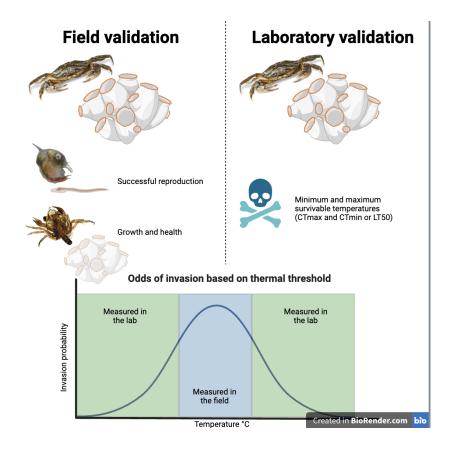
No matter what measurement method was used, all examples show high variance in thermal tolerance measurements within the same species. From a functional perspective, these data should only be considered useful in the region and season in which the measurement was taken. This lack of continuity has potentially alarming consequences for species distribution modeling in worldwide, dynamic ecosystems.

Frequent examples of genetic variation and local adaptation to acclimation temperatures cause different temperature thresholds in different regions. Some of the variation comes from acclimation temperature, the temperature at which the organism in question is used to in its environment. For example, an animal that lives in temperate and tropical regions has different

acclimation temperatures along the gradient of its distribution. Even in different temperate regions, *P. elegans* experience different osmoregulation capabilities at low temperatures, with Baltic Sea populations being better adapted to colder temperatures than populations near the UK (Janas and Spicer, 2010).

One point for further study is air exposure, at which organisms may experience warmer temperatures than in the water. Many of these species survive in the intertidal zone, and several studies have looked at the impact of dry heat exposure on survival (see for example, Helmuth et al., 2010). One example for *S. clava* found that exposure at warmer temperatures (15-29°C) was more damaging than exposure at 10°C and that body size played a role in survival under these conditions (Hillock and Costello, 2013). Asian shore crab *H. sanguineus* has a 4x higher metabolic rate out of the water at similar temperatures (Fletcher et al., 2022). Air temperatures in some regions may even reach lethal levels; in Australia coastal temperatures reach above 40 degrees, which is the LT50 for *C. maenas* (Garside and Bishop, 2014). Despite these temperatures, *C. maenas* are capable of evading unfavorable temperatures by moving into the shade, something that tunicates are unable to achieve. The same is true for Asian shore crabs, which can change their distribution in tide pools in Long Island Sound to escape air temperatures reaching above 40 °C (Kraemer et al., 2007). These extreme temperatures are usually temporary, but the length of time can also affect species survival at high temperatures, which is used to prevent spread of biofoulers (Piola and Hopkins, 2012).

Acknowledging that climate change is a very present threat, lower thermal thresholds should also not be overlooked. *Bugula neritina*, *C. intestinalis*, and *M. membranacea* have been seen near Antarctica or are predicted to invade (Avila et al., 2020; Convey and Peck, 2019). Though they have not established populations, invasions of Antarctica become more likely with climate change (Convey and Peck, 2019, Holland et al., 2021; McCarthy et al., 2019). These invasions are especially alarming when considering the current food web of the Antarctic Shelf, which currently has no durophagous, crushing predators, so the introduction of a crab such as *C. maenas* would be highly destructive (Aronson et al., 2015). Without the evolutionary history of a shell-crushing predator, many organisms evolved to have soft bodies or thin shells. Their ability to survive at very low temperatures pose *C. maenas* as an excellent candidate to negatively impact the existing ecosystem (Frederich and Lancaster, 2023). Lithoid crabs are already found


on the Antarctic slope and shelf, so this whole ecosystem will likely be threatened by crustaceans in the near future (Smith et al., 2012).

It is important in future studies to use consistent measurement strategies with larval and juvenile forms as well. In Maine and worldwide, invasive species are impacting the livelihood of fishermen, decreasing harvestable food from the oceans, and disturbing natural habitats. With climate change predicted to increase sea surface temperatures, an understanding of thermal tolerance for all species will be important for management and mitigation at a variety of developmental stages. At the same temperature, 21°C, larvae of *H. sanguineus* have different oxygen consumption rates as they develop (Marsh et al., 2001). Under different temperatures, larvae of *C. maenas* and other species take longer to develop in colder conditions (deRivera et al., 2007). For organisms able to reproduce sexually and asexually through fragmentation or budding, winter temperatures may limit larval development but still allow settlement of fragmented adults (VKM, 2023).

Of note, temperature isn't the only factor that dictates species presence. For example, in Nova Scotia, it was found that neither temperature nor salinity was predictive in *C. intestinalis* distribution. Some species, such as *H. sanguineus*, may also rely on metamorphic cues from nearby adult populations, dictating metamorphosis outside of temperature cues (Anderson and Epifanio, 2010). For *C. mutica* living in Scotland, some populations do not reproduce year round despite mild temperatures, suggesting another factor limiting their reproductive success (Ashton et al., 2010). Other factors, such as heavy metal pollutants or pesticides, may influence settlement or development success for certain species in anthropogenically impacted areas (Lange and Marshall, 2017; Rodrigues et al., 2015). These factors are important, as some invasions begin in harbors whose water quality is usually poor (Carlton, 1996; Schiff et al., 2007). So, even for studies that include temperature, species distribution models should never negate visual surveys (Murphy et al., 2019).

Based on the present study, there is so much inconsistency in the data that it is challenging to put species' thermal tolerance into perspective from an ecological and future projections standpoint. The first is understanding how growth and development are affected by temperature through in-field observations of gamete development, larval supply, settlement, and proliferation. The presence of these three parameters ensures population growth, cell turnover, and dispersal. Due to changing temperatures and local adaptations, simply reporting that an

organism can survive in a region is not enough for modeling their future spread. The second important factor requires a laboratory study that pinpoints the maximum and minimum survivable temperatures for multiple populations, which may be outside of the bounds of ecological relevance but can inform a true upper limit to survival. Rius and colleagues in 2014 do an excellent example of this, showing field abundances and investigating larval development, metamorphosis, and settlement in the laboratory. We summarize this recommendation in Figure 8. While physiological and metabolic signs of stress are important to understanding the mechanistic causes of organisms struggling at certain temperatures, these thresholds only provide limited information to predicting invasive range with climate change. Thus, focusing on the range in which an organism thrives enough to reproduce, grow, and remain healthy, as well as maximum and minimum survivable temperatures, reduces the minimum amount of critical information. Of course, traditional thermal thresholds do have importance on the cellular and molecular levels. Solely measuring survival in the field may gloss over physiological mechanisms and limitations that may hinder organism success. For example, at 20 $^{\circ}$ C, both H. sanguineus and C. maenas survive easily in the field, but respirometry showed that H. sanguineus respiratory rate per gram is twofold higher at higher temperatures, suggesting a greater energetic cost to fill basic survival needs (Jungblut et al., 2018).

Figure 8: Conceptual model outlining the recommended minimum information for modeling species distribution based solely on thermal thresholds. While use of the traditional thresholds is important for understanding mechanisms, for basic species distribution predictions this model outlines the fewest measurements needed to generate a thermal performance curve. We suggest measurements in the laboratory to deduce the maximum and minimum survivable temperatures and in the field for important milestones such as reproduction and growth.

Here, we highlight inconsistencies in thermal performance measurements and propose a solution to some of the noise within the data. A more integrative approach combining field and laboratory studies to capture the physiology as well as the ecology is required to forecast invasion probability. This study highlights the complexities of thermal thresholds and underscore the pivotal role of acclimation temperatures and consistent measurement techniques. By visualizing the existing data together, we pave the way for more accurate predictions of species distributions, ensuring we don't just scratch the surface but delve deep into the nuanced intricacies of potential invasive species spread in a changing climate.

Chapter 2 | Thermal Tolerance and Ecological Resilience: Investigating thermal thresholds in Hemigrapsus sanguineus

Emily R Lancaster, Damian C. Brady, Markus Frederich

Abstract

Hemigrapsus sanguineus is native to the western Pacific but was introduced to the United States east coast in the late 1900s. Along with other invasive species like Carcinus maenas, this grapsid crab has caused changes to nearshore ecosystems by outcompeting native species, eating a variety of prey, and disrupting food chains. In the southern reaches of their invasive habitat, H. sanguineus have outcompeted C. maenas due to their habitat utilization strategy, strength, and foraging strategies, but further north in the Gulf of Maine, H. sanguineus have not become dominant yet. Here, we describe the thermal thresholds of H. sanguineus in both the winter and the summer to assess physiological conditions which could limit their poleward spread. We describe a shift in thermal thresholds between summer and winter with higher heart rates, more HSP70 protein expression, and lower reaction times in the winter, coupled with behavioral modifications such as hiding under rocks enabling them to survive. Cold-acclimated crabs shifted their optimum temperatures in response to ambient temperatures. We discuss this metabolic cold adaptation in context of this species' ability to expand its invasive range further north and highlight the importance of measuring thermal thresholds at a variety of acclimation temperatures to understand physiological plasticity.

Introduction

The Asian shore crab, *Hemigrapsus sanguineus*, is native to southeast Asia, and was introduced to New Jersey as an invasive species in 1988 (McDermott, 1998). It has become a common tide pool crab in New England since its arrival; it was first detected at Woods Hole, Massachusetts by 1993 (Epifanio, 2013; McDermott, 1998). Similar to another invasive crab in New England, the European green crab (*Carcinus maenas*), Asian shore crabs utilize nearshore ecosystems and reproduce successfully in a variety of climates, making them a significant threat to fisheries and general diversity in New England (Bourdeau and Conner, 2003; Epifanio, 2013). *Hemigrapsus sanguineus* are generalist foragers with strong claws; for the first year of life male

H. sanguineus have stronger crushing strength than C. maenas (Payne and Kraemer, 2013). According to laboratory studies, they are capable of opening mussels and some clams (Mercinaria mercenaria) and will feed on macroalgae species (Bourdeau and O'Connor, 2003). Population genetics studies suggest that New England H. sanguineus are continuing to diversify with eight total haplotypes having been identified, 2 of which are newly described haplotypes and the other 6 are other introduced Asian haplotypes (Lord and Williams, 2017). From New Jersey to New Hampshire Asian shore crabs have surpassed green crabs as the dominant intertidal crab through effective habitat utilization (Lord and Williams, 2017). Green crabs were introduced nearly 200 years earlier than *Hemigrapsus sanguineus*, so this drastic shift in tide pool communities suggests that *H. sanguineus* is a strong competitor, whose impacts may overshadow those of C. maenas in other regions. At one field site in Biddeford Pool, Maine, USA, this shift from a green crab dominated ecosystem to an Asian shore crab dominated ecosystem has not yet happened (Frederich and Lancaster, 2024). Summer mean sea surface temperatures in their native range are between 13-30°C (Stephenson et al., 2009). Summer mean sea surface temperatures in the invasive range where *H sanguineus* is the dominant intertidal crab are above 20°C, whereas in northern New England summer mean temperatures drop to below 20°C. This leads to the question whether the Asian shore crab's poleward migration is limited by temperature in the Gulf of Maine.

The Gulf of Maine (GoM) is not only a highly dynamic ecosystem, it is also changing rapidly; the GoM warmed faster than 99% of the world's oceans between 2005-2020 (Pershing et al., 2015; Pershing et al., 2021). This warming has led to shifting kelp forest ecosystems, changes in lobster fishing grounds, and, amongst other factors, contributed to the collapse of the cod and haddock fisheries (Fogarty et al., 2008; Friedland et al., 2015; Pershing et al., 2015; Witman and Lamb, 2018). Though the GoM is warming, it is still relatively cold compared to other habitats that *H. sanguineus* experiences. In its native range in the western Pacific, temperatures range from 2 to 30°C. From New Jersey where they have become the dominant species, ocean temperatures range from 1 to 27°C (McDermott, 1998). Historically, the influence of the Gulf Stream has been limited due to its divergence offshore, but recently the Gulf Stream has been encroaching on the Tail of the Grand Banks, bringing warm and saline water into the GoM (Neto et al., 2021). This too is decreasing the influx of water from the cold Labrador Current into the GoM. The GoM is dominated by the Gulf of Maine Coastal Current in two parts,

the western Maine coastal current (WMCC) and the eastern Maine coastal current (EMCC) (Pettigrew et al., 2005). Furthermore, there is freshwater input from several rivers along the coast, leading to a highly variable water temperature in this region (Pettigrew et al., 2005; Townsend et al., 2015).

Temperature physiology for green crabs has been extensively studied (for review see Frederich and Lancaster, 2023, Tepolt, 2024). Part of the reason that these and other crustacean species are so successful is due to their extreme temperature tolerance; they survive temperatures below freezing and above 30°C, and are known to reproduce year-round in the GoM (Frederich and Lancaster, 2023). As ectotherms, a crustacean's energy budget is heavily reliant on ambient water temperatures. Thus, their bodily and cellular functions are dependent on their environment. Some of these processes can be modeled by the principle of Q10 (Van't Hoff rule), wherein with every 10°C temperature increase, the rate of biological processes increases by 2-3 at mid-range temperatures. At both ends of the temperature spectrum, the crabs may reallocate their energy expenditure from reproduction or growth to survival, lose motor function, and, at a point, they may die. Previous studies on green crabs have used a variety of physiological thresholds to measure temperature tolerance such as Arrhenius break temperatures (ABT), critical thermal maxima and minima (CT_{max} and CT_{min}), and the oxygen and capacity limited thermal tolerance (OCLTT) models (Cuculescu et al., 1998; Jost et al., 2012; Kelley et al., 2011). These thresholds are useful because they help standardize methods across studies, but they may not always measure an ecologically relevant threshold (for example, the measured threshold temperature may be well outside the range of expected values for the GoM).

These thresholds are derived from different measurement techniques and calculations measured in living individuals in experiments involving acute temperature stress. The concept of critical thermal maxima and minima applies to organisms across the animal kingdom, with the earliest examples being reptiles whose movement became haphazard at extreme temperatures (Cowles and Bogert, 1944). Generally, a short term exposure to these temperatures is non-lethal; fish exposed to their CT_{max} often remain alive when brought back to ambient temperatures (Brett, 1956). For many crustaceans, a popular measurement technique is to flip an organism on its back and look at righting time (Dayananda et al., 2017; MacMillan, 2019). Arrhenius break temperatures seek a deviation from linearity in mathematically transformed heart rate data, when a line plotting the natural log of the heart rate and the inverse of the temperatures in Kelvin

(multiplied by 10,000 to reach reasonable numbers) changes slope. This concept was first used for enzymes, looking at the thermal limits of their function (Arrhenius, 1889). Heart rates for crustaceans can be measured using electrical probes implanted into the animal, infrared detecting photodiodes, or visually for transparent organisms (Braby and Somero, 2006; Harrington et al., 2020; Depledge, 1984). Although ABTs are easy to measure, some have criticized their usefulness as crustaceans have an open circulatory system and an ABT measurement provides no mechanistic understanding of organismal failure at these temperatures (Frederich and Lancaster, 2024).

The Oxygen and Capacity Limited Thermal Tolerance hypothesis is more mechanistic and assumes that organisms have an optimal range of temperatures where they have enough energy to grow, reproduce, and function (see for review Pörtner et al., 2017). Outside of this range their scope for activity narrows and the animal's condition begins to worsen; this range is called the pejus temperature (Tp) (Frederich and Pörtner, 2000). Outside of the Tp is the critical temperature, Tc, where the animal switches to anaerobiosis—as it is unable to meet its oxygen requirements despite ample oxygen in the environment. This switch to anaerobiosis can be measured through anaerobic byproducts such as succinate in *Laternula elliptica* or lactate in many crustaceans (Frederich and Pörtner, 2000; Jost et al., 2012; Paul et al., 2004; Peck et al., 2004). As anaerobic metabolism ramps up, the organism may also experience an increase in gene or protein expression of heat shock protein 70 (HSP70) and/or AMP activated protein kinase to ensure a supply of ATP (Herzig and Shaw, 2017; Frederich et al. 2009; Jost et al., 2012). Lastly, the denaturation temperature or Td is likely closer to CT_{max}, where the proteins begin to denature (Pörtner et al., 2017).

For less well-studied animals, these measurements have not been performed. The current study has two objectives: First, to define thermal thresholds in the invasive *H. sanguineus* adapted to summer and to winter conditions, and second, to use the identified thresholds to estimate *H. sanguineus*' potential to expand its invasive range further north into colder waters. From these objectives, we hypothesize that using classical physiological measurements, we can explain the slowed dominance of *H. sanguineus* to the north. Furthermore, we hope to identify one traditional metric which best describes the current distribution of *H. sanguineus*. Though these measurements were taken from crabs in the Gulf of Maine, we hope that these findings can be applied to their invasive range elsewhere.

Methods

Animal collection and care

Hemigrapsus sanguineus individuals were collected between 2020 and 2023 from the intertidal zone in Biddeford Pool, Maine, USA (43.44207° N, 70.34098° W) in both the summer and winter. Ambient water temperatures ranged from 15-19°C or 3.5 to 6.5°C in the summer and winter, respectively. Crabs were held in a flow-through seawater system at the University of New England and fed a diet of mussels and mackerel *ad libitum* until use in experiments. Both male and female medium-sized (13-38 mm carapace width) hard shelled crabs were used. Gravid females were not used as *H. sanguineus* does not reproduce in the winter in Maine, and reproduction may impact thermal tolerance.

 CT_{max} and CT_{min}

Crabs were placed in a temperature-controlled seawater tank seawater and temperature was increased or decreased at 5°C per hour. Every 0.5°C, crabs were flipped onto their backs and their righting time was recorded. Animals were recorded as non-responsive if their righting time exceeded 120 seconds, and the recorded times were used for calculating means. The temperature at which the crab response began to slow down per breakpoint analysis was recorded as the critical thermal maximum or minimum temperature.

ABT

Arrhenius break temperature was measured using heart rates from crabs acutely warmed or cooled over the course of 4 hours. Photoplethysmographs (AMP03, Newshift, Leiria, Portugal were attached to the carapace using dental wax and super glue covering the heart and crab claws were immobilized using electrical tape to prevent wire damage (for more detailed methods, see Depledge, 1984 and Frederich & Pörtner, 2000). Voltages were read by a Pico Technologies oscilloscope (Scope 6404D 4 channel, 8-bit 500 MHz bandwidth) and analyzed using PicoScope 7 T&M software. Every 0.5°C, heart rate was recorded and averaged over 30 seconds of measurements in the winter. For summer acclimated crabs, measurements were taken every 1.5°C. To calculate the ABT, heart rates were transformed as the natural log and the inverse of the temperature in Kelvin was multiplied by 10,000, then used the breakpoint calculator described below to ascertain the ABT.

OCLTT

Oxygen consumption-

Oxygen consumption was measured using an intermittent flow closed-system respirometer (Qubit, Kingston, ON, Canada) with a volume of 250 mL. Animals were heated or cooled from ambient temperature to either 40°C or 0°C, respectively, over approximately 4 hours and oxygen consumption was recorded continuously. For heating experiments, the system was closed and water circulated for 10 minutes, followed by a 7 minute flush time. For cooling experiments, flow through the chamber was reduced and water was circulated for 8 minutes followed by a 3 minute flush time. Oxygen concentration never fell below 80% during the measurement cycles. Heating experiments continued until death, whereas cooling experiments ceased around 0°C due to ice buildup in the system. VO₂ was calculated from the difference between inflowing and outflowing oxygen concentration, the chamber volume, and the animal wet weight. Seawater oxygen content was adjusted for temperature and salinity.

Lactate-

Approximately 100 uL of hemolymph was collected from the arthropodial membrane of the last and second to last set of legs using a sterile 1 mL syringe l. Hemolymph was sampled from crabs at temperatures between 0 and 35°C every 0.5°C. Once a hemolymph sample was collected from a crab, the same crab was not used again for collection. Samples were stored in a -80°C freezer until extraction using perchloric acid (PCA) and neutralizing buffer following the spectrophotometric lactate measurement in duplicates by Bergmeyer (1985) described in detail by Frederich & Pörtner 2000.

HSP70-

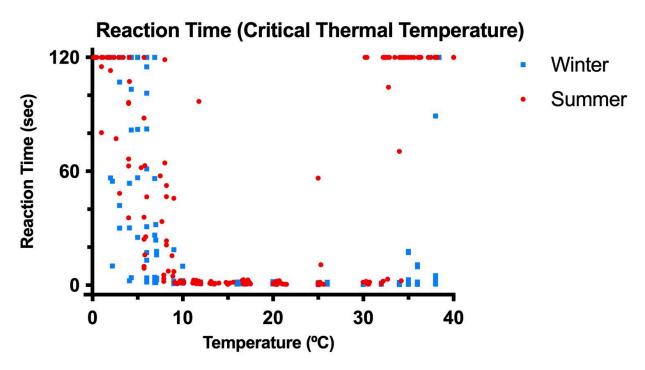
Heat shock protein 70 protein expression in heart tissue of *H. sanguineus* was quantified by western blots. Hearts were excised quickly from the crabs and flash frozen in liquid nitrogen, then stored in the -80°C until protein extraction. Tissues were homogenized using a bullet blender (NextAdvance Inc. Troy, NY) and cubic zirconia in a phosphatase inhibiting buffer as outlined in Frederich et al., 2009. Proteins were separated on a 7% polyacrylamide-SDS gel for 2 hours at 120 V. Proteins were transferred to a nitrocellulose membrane on a semi dry transfer chamber (BioRad) at 20 V for 20 minutes before the membrane was blocked with bovine serum albumin blocker diluted with Tris-buffered saline with Tween 20 (TBST), following an overnight incubation in the primary antibodies (Millipore Sigma (H5147). GAPDH was used as a loading

control (Invitrogen, 437000). The membranes were rinsed in TBST before the addition of secondary antibodies for goat anti-rabbit (IRDye 680LT) and donkey anti-mouse (IRDye 800CW). The membranes were scanned on a LI-COR Odyssey infrared laser imager and TIFF files of the scans were analyzed using ImageJ.

Citrate synthase-

To estimate the number of mitochondria from winter and summer crabs, we quantified citrate synthase activity in *H. sanguineus* hearts. Starting with a potassium phosphate buffer (pH 7.4), we added 2 μg of the homogenized protein, 3 μL DTNB solution (Millipore Sigma, D8130-1G), Triton X-100 (Millipore Sigma, T8787) and 10 μL acetyl coenzyme A (Millipore Sigma, A2181), followed by 10 μL oxaloacetate solution (Millipore Sigma, O4126) to catalyze the colorimetric reaction. As a standard, we used citrate synthase from porcine heart (Millipore Sigma, C3260). Immediately upon the addition of oxaloacetate, samples were placed into a spectrophotometer reading every 10 seconds at 412 nm for 2 minutes. Citrate synthase activity was calculated as units/mg protein from change in absorbance, the extinction coefficient for DTNB (13.6 mM⁻¹cm⁻¹), the pathlength and the protein content.

Breakpoint analysis


To analyze differences in intercept or breakpoints for physiological data, we used the R package RespR, which calculates deviations from linearity and was designed for aquatic respirometry (Harianto et al., 2019, Carey and Harianto, 2023). RespR runs a rolling regression and rolling average on the data, seeking out the breakpoints at high resolution, following the method described by Yeager and Ultsch (1989). The regression was generated using the broken stick regression model, which seeks the intersection of two linear regressions with the smallest sum of residual sum of squares when looking at two lines fitted to the data. This was used to calculate breakpoints for CT_{min} and Arrhenius break temperatures.

Reproductive timing-

We quantified *H. sanguineus* and *C. maenas* for the past 12 years in a year-round monthly 40 m2 transect from the high- to the low water mark at Biddeford Pool (43.44207° N, 70.34098° W). Within the transect, rocks and macroalgae are moved and all crabs are measured, sexed, and it is recorded whether a crab is newly molted (soft shelled) or gravid. Both *C. maenas* and *H. sanguineus* are collected, but here we present data only for *H. sanguineus*.

Results

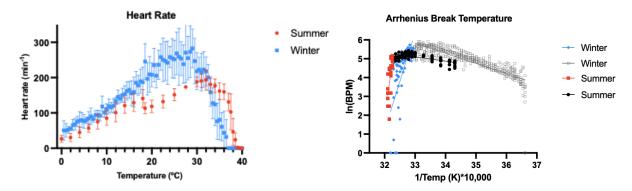
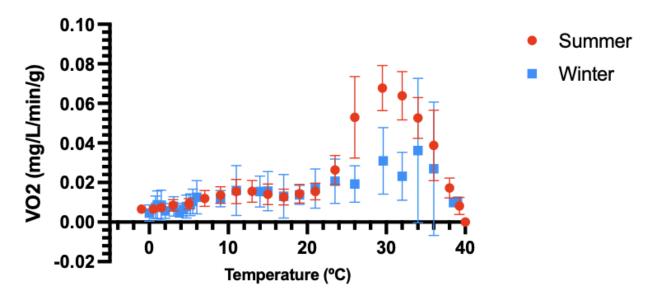

Reaction times of crabs were consistently low between about 10 and 30°C (Figure 1). At the tail end of the temperatures, both summer and winter acclimated crabs slow dramatically. Solely focusing on the lower threshold for understanding potential for poleward migration, the CT_{min} shifted from 9.8°C in summer acclimated crabs to 8.6°C in winter acclimated crabs. Evidence for metabolic cold adaptation suggests that cold acclimated crabs shift their thermal thresholds down in accordance with lower ambient temperatures.

Figure 1: Reaction time of *H. sanguineus* under acute cold and warm stress in summer and winter. Winter acclimated crabs (blue) were cooled and heated from an ambient temperature of between 3.5-6.5°C, summer acclimated crabs (red) were heated and cooled from an ambient temperature between 15-19°C. In the middle of this temperature range, reaction time was fast, slowing down dramatically at the more extreme temperatures. Breakpoint analysis identified where reaction time began to slow. At the colder end of the spectrum, CT_{min} shifted from 9.8 to 8.6°C for cold acclimated crabs, suggesting a small shift across seasons.


Heart rates were similar for summer and winter acclimated crabs between about 0-20°C before separating as temperatures increased. Between 20-30°C, winter heart rates were higher than summer heart rates. For heart rates analyzed using Arrhenius break temperatures, the ABT for

winter-acclimated crabs (32.5°C) was lower than for summer acclimated crabs (36.6°C) (Figure 2).

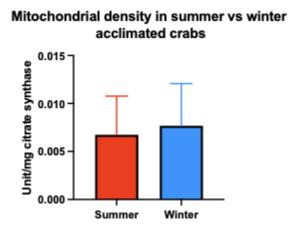


Figure 2. A. Heart rate data from winter acclimated crabs (blue) and summer acclimated crabs (red) are similar at lower temperatures. At warmer temperatures, there is a distinctive shift upward in winter acclimated crabs, suggesting physiological stress at warmer temperatures. B. Arrhenius plot for summer and winter-acclimated crabs, where black dots indicate measurements after the breakpoint for summer acclimated crabs, and open circles represent the measurements after the breakpoint for winter acclimated crabs. For winter acclimated crabs, their cardiac function is disrupted at 32.5°C, for summer acclimated crabs, this occurs at 36.6°C. There was no lower ABT, suggesting that cold temperatures are not leading to collapse in cardiac function for *H. sanguineus*.

Winter-acclimated crabs had lower oxygen consumption than summer-acclimated crabs in the upper temperatures. Between 0-20°C, oxygen consumption ranges were similar for both sets of crabs, as well as above 35°C. Summer-acclimated crabs had peak oxygen consumption around 30°C and winter-acclimated crabs peaked around 34°C, though not as drastically. This mismatch between heart rate and oxygen consumption in winter acclimated crabs led us to quantify mitochondria using a citrate synthase assay. There was no difference in citrate synthase activity for summer versus winter crab heart tissue (Figure 3).

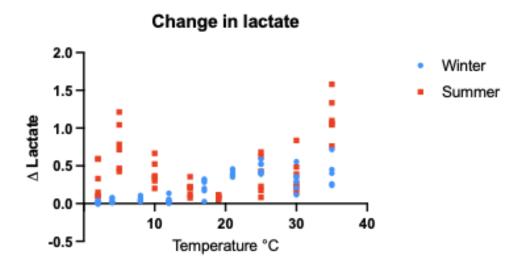
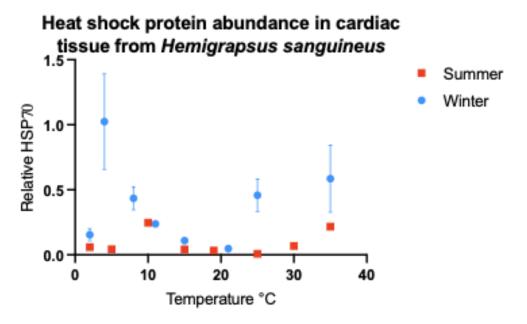
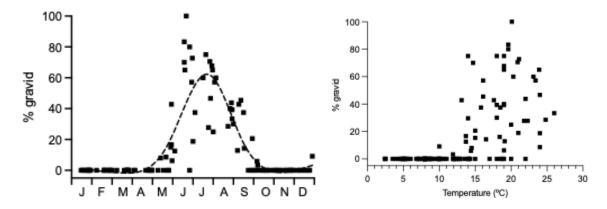

Figure 3: Oxygen consumption measured in summer versus winter-acclimated crabs. Winter acclimated crabs (blue) had generally lower oxygen consumption rates at high temperatures compared to summer acclimated crabs (red). In the lower range, there was no difference in oxygen consumption between warm and cold acclimated crabs.

Figure 4: Measured citrate synthase activity in summer versus winter-acclimated crabs from cardiac tissue. Summer acclimated crab's citrate synthase density is marked in red, winter acclimated crab's citrate synthase density is marked in blue. There was no significant difference in citrate synthase concentration in cardiac tissue from these crabs (t(10)=0.3861, p=0.71).


Summer and winter-acclimated crabs exhibit differences in lactate accumulation due to temperature stress. For example, they switch to anaerobiosis at different temperatures based on the season, suggesting that they are well adapted to the season they are in (Figure 5).

Winter-acclimated crabs do not increase their lactate concentration with lower temperatures, but it gradually increases with warmer temperatures. Thus, this one peak resulting from a gradual slope upward as temperature increases shows thermal stress only at the upper end of the gradient. Summer-acclimated crabs appear to have a thermal optimum around 18°C but enter anaerobiosis at colder and warmer temperatures, suggesting less plasticity in temperature tolerance in the summer. Summer and winter acclimated crabs accumulate lactate in very different patterns depending on their acclimation season.


Figure 5: Difference in hemolymph lactate concentrations for summer versus winter acclimated crabs. Winter acclimated crabs (blue) have an increase in lactate as temperature increases. Summer acclimated crabs increase their lactate concentration at high and low temperatures, suggesting that they experience anaerobiosis at most temperatures outside of their range.

Heat shock protein 70 protein expression was low at all temperatures for summer-acclimated crabs (Figure 6). Furthermore, there was little variation in HSP70 protein expression amongst all summer acclimated crabs. For winter-acclimated crabs, there are increases in HSP70 protein expression at low and high temperatures under acute thermal stress. Even at the ambient cold temperature in the winter, crabs were creating HSP70 in response to physiological stress, but this stress was not irreversible as protein expression decreased at milder temperatures. Heat shock protein 70 protein expression was much more variable for winter acclimated crabs, especially at more extreme temperatures.

Figure 6: Protein expression of HSP70 measured with western blot for summer and winter acclimated crabs. Winter acclimated crabs not only had higher HSP70 protein concentration, they also had higher variability in HSP70 concentration than summer acclimated crabs, who varied very little. For winter acclimated crabs, the highest HSP70 protein concentrations were at 5 and 35°C. There were slight increases to HSP70 concentration in summer acclimated crabs at 10 and 35°C. Error bars are covered up by the red dots due to their size.

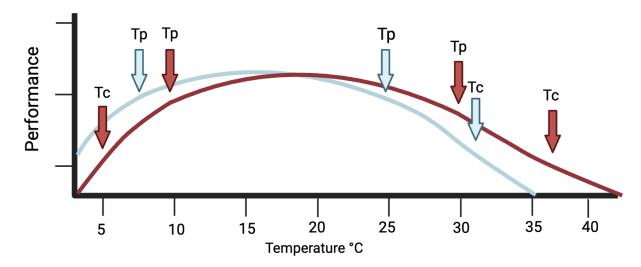

Asian shore crabs do not reproduce year-round in the Gulf of Maine (Figure 7). While green crabs can be found gravid in the Gulf of Maine in all seasons, Asian shore crabs do not become gravid until May, and instances of gravid crabs tapers off in the fall (Frederich and Lancaster, 2023).

Figure 7: Percentage of female *H. sanguineus* found gravid at Biddeford Pool from 2012-2023. On the left is the percent of female crabs found gravid for each season from 2012-2023 where

gravid crabs are found between April and October. On the right are the same data but with seawater temperature on the x-axis, gravid crabs are usually only seen above 12°C.

Combining these data, we can generate thermal performance curves for summer and winter-acclimated crabs, where the pejus temperature (Tp) is indicated by declining motor activity and increasing HSP70 protein expression and critical temperature (Tc) is where lactate accumulates (a switch to anaerobic respiration) and the heart rate hits a maximum (Figure 8). For winter-acclimated crabs, the Tp_{min} was around 8.6° C where motor function declines and HSP70 protein concentration begins increasing. Tp_{max} for winter-acclimated crabs was estimated to be 25° C, an average temperature between CTmax, lactate accumulation, and HSP70 protein expression maxima. Lactate did not increase with cold temperature for winter-acclimated crabs, so no Tc_{min} was determined, but a Tc_{max} was estimated as 32.5° C, consistent with the maximum heart rate. Using the same metrics for summer-acclimated crabs, Tp_{min} was 10° C, Tp_{max} was 30° C, Tc_{min} was 5° C (due to an increase in lactate concentrations at low temperatures) and Tc_{max} was between 36.6 and 40° C.

Figure 8: Thermal performance curve based on measured OCLTT values such as heart rate, lactate accumulation, HSP70 protein expression, and oxygen consumption. For summer acclimated crabs (red), the thermal performance curve shifts and Tc and Tp values fall higher than they do for winter-acclimated crabs. For winter acclimated crabs, there was no measurable Tc_{min} and the Tc_{max} was similar to the Tp_{max} of summer acclimated crabs. The y axis is scaled for maximum potential scope for performance for summer and winter acclimated crabs.

We found seasonal shifts in thermal tolerance between summer and winter-acclimated crabs for all measured thresholds. Generally, summer-acclimated crabs performed better than winter-acclimated crabs at higher temperatures, and winter acclimated crabs performed better at lower temperatures.

Discussion

We found seasonal shifts in thermal tolerance between summer and winter-acclimated crabs for all measured thresholds. Generally, summer-acclimated crabs performed better than winter-acclimated crabs at higher temperatures, and winter-acclimated crabs performed better at lower temperatures. Our evidence suggests that *H. sanguineus* acclimates to different seasons at the cellular and system levels to survive in a variety of climates. This trait is common amongst invasive species, which generally exhibit thermal plasticity (Kelley, 2014). *Hemigrapsus sanguineus* has already established invasive populations in Europe and North America and these results suggest that other areas may be at risk of invasion.

Reaction time (CT_{max} and CT_{min}) shows a shift in threshold by over $1^{\circ}C$ in cold acclimated crabs. The shift in CT_{min} for cold acclimated crabs suggests a physiological change that allows the crabs to survive in colder environments. While that is not the minimum temperature the crabs will experience in the Gulf of Maine, the shift in thermal threshold, as well as their behavior, allow them to overcome a lack of mobility. It is worth noting that H. sanguineus usually hide under rocks where they are protected from predators. Furthermore, within our crab transect, many H. sanguineus disappear in the winter, likely moving subtidally to avoid lower air temperatures (Frederich and Lancaster, 2024).

Shifts in CT_{max} have been seen in a variety of species in short term acclimation studies or when studying different populations. For another invasive crab in the GoM, *Carcinus maenas*, CT_{max} falls between 34 and 36°C depending on location and acclimation temperature (Jost et al., 2012; Madeira et al., 2014). For native species such as *Cancer irroratus*, CT_{max} is far lower, around 20°C (Jost et al., 2012). Of course, temperatures as high as 36°C are far outside of the range of temperatures these organisms experience in water in the Gulf of Maine, but in other regions and when considering air exposure, knowing the absolute limits may help predict species spread into new territories. While we had no discernible difference in CT_{max} for summer and

winter acclimated crabs, further research on short term acclimation and population genetics and their effects on response time for *H. sanguineus* is warranted.

We also found a shift in ABT with cold and warm acclimated crabs. This time, winter-acclimated crabs had a decline in cardiac function 4°C lower than summer-acclimated crabs. From an ecological perspective, this is acceptable because sudden changes in water temperature near the ABT values seldom occur and the crabs have time to shift between seasons. However, this shift indicates some physiological tradeoff in cardiac function between summer and winter acclimated crabs. Heart rates in the winter were also generally higher than heart rates in the summer. This is in contrast to oxygen consumption, which is lower in the winter and higher in the summer. Both winter and summer-acclimated crabs showed higher oxygen consumption rates at temperatures between 20 and 30°C. Arrhenius break temperatures have been measured for *C. maenas* ranging from 33.7°C to 37.3°C based on acclimation temperature and habitat range (Tepolt and Somero, 2014). This ABT is much higher than has been measured for native species such as the American lobster, *Homarus americanus*, with an ABT ranging from 25.2-26.3°C. In some cases, a lower ABT can be measured, such as in *Daphnia sp.* water fleas, where it was 6.5°C (Frederich and Lancaster, 2024).

Framing the findings in context of OCLTT for *H. sanguineus*, there are definite differences between summer and winter acclimated crabs, suggesting a shift in the thermal optima and scope for activity for these crabs (Figure 8). We were unable to identify a Tc_{min} for winter-acclimated crabs, likely because the ambient water temperature was near the summer Tc_{min}. This is an important observation and may explain the year-round presence of *H. sanguineus* in the Gulf of Maine, despite the fact that summer-acclimated crabs are challenged physiologically and enter anaerobiosis at those temperatures. The animals must shift their energetic stores to basic survival needs rather than growth and reproduction at these temperatures. Thus, it is not surprising that we do not find gravid *H. sanguineus* year-round in the Gulf of Maine.

The concept of metabolic cold adaptation has been used to describe physiological changes that occur to allow polar species to survive in cold water such as slow movement and changing oxygen consumption (Clarke, 1991; Hodkinson, 2003). For some cold-water species, mitochondrial density may increase in colder water to meet their physiological needs. One excellent example of this is described in the lugworm *Arenicola marina* whose distribution

across the North and White Seas creates a natural experiment (Sommer and Pörtner, 2002). The White Sea is colder on average than the North Sea (lower mean annual temperatures of 4 vs 10°C, respectively), and worms in the White Sea had 2.4 times higher mitochondrial respiration and higher rates of succinate oxidation than worms in the naturally warmer environment. Physiologically, the increasing mitochondrial density led to shifts of critical temperature to lower temperatures for worms originating from the White Sea. Lower temperatures lead to slower rates of enzymatic reactions, so increased mitochondrial density helps to overcome that, but has increased maintenance cost. Due to the shifts seen in summer vs winter acclimated *H. sanguineus*, we suspected a similar increase in mitochondrial density to survive the colder temperatures, but surprisingly found no evidence of a change (Figure 4).

Here we focused on adult, non-gravid animals only, but every life stage is important to species survival. A study in Europe compared the larval development of H. sanguineus and C. maenas under a range of temperatures and food limitations. While C. maenas consistently survived all treatments, H. sanguineus larvae showed an ability to thrive at the higher temperatures even under food limited conditions (Espinosa-Novo et al., 2023). Rate of larval development is dependent on temperature; Asian shore crabs raised at 15° C took 55 days to undergo full metamorphosis, whereas at 25° C, crabs completed this development in 16 days (Epifanio et al., 1998). Salinity also has an effect on larval development. The longer H. sanguineus remains planktonic, the more risk of floating into unfavorable conditions or being preyed upon, as many larvae do not survive to adulthood (Pederson et al., 2008). We understand that by leaving larvae out of this study we may have overestimated the physiological success of these crabs over their whole lifespan and urge further research on larval thermal tolerance.

Hemigrapsus sanguineus have been slowly moving northward into even colder temperatures in Canada. They were first reported in Canada in southwest Nova Scotia in 2017, and subsequently surveyed throughout southwest Nova Scotia and southwest New Brunswick in 2020 and 2021, with reproduction occurring late spring through early fall (Claudio DiBacco, personal communication). Our data suggest that in the winter in southern Maine, the crabs are physiologically challenged, but not enough to restrict their survival with the help of behavior, so it is reasonable that the crabs have continued their poleward spread. With expected warming temperatures, we anticipate that the northward spread will continue as long as the water temperature hits the threshold for reproduction long enough for larval development to occur.

Although *H. sanguineus* population numbers are limited temporally by a small reproductive window, which could be holding the dynamic between *C. maenas* and *H. sanguineus* relatively constant, behavior and thermal tolerances suggest that the Asian shore crab can continue its northward march, impacting intertidal communities as it goes.

Acknowledgements

Thank you to Aubrey Jane for help troubleshooting western blot protocol. Also, thank you to University of New England undergraduate students and staff for their help in collecting crabs and taking some measurements during the first year of this study, specifically Melissa Butler, Kai Alger, Benjamin Rico, Emma Parish, Tyler Ferrin, Lindsay Forrette, and JJ Custer.

Chapter 3 | Detecting Squishy and Crunchy Invasive Invertebrates: environmental DNA is not shed equally.

Emily R. Lancaster, Erin K Grey, Damian Brady, Markus Frederich

Abstract

Environmental DNA (eDNA) is a powerful tool for detecting organisms in low abundance and can be crucial for early invasive species detection. Despite its potential, the body plan diversity of invertebrates can pose significant challenges, notably arthropods with exoskeletons like the European green crab which can be particularly difficult to detect. In this study, we validated nine single-species quantitative PCR assays targeting invasive and nuisance species in the Gulf of Maine using a two-year eDNA time series. Combining visual surveys and molecular analyses, we successfully detected eight of nine target species with qPCR; however, quantitative assessment was not feasible for all species. [DB1] Our findings demonstrated the effectiveness of eDNA for early invasive species detection but emphasized the need for long-term field and laboratory validation, informed by species' natural histories. It is imperative to recognize that while eDNA is a valuable tool, its applicability varies across taxa. Therefore, interpreting eDNA results requires careful consideration of its limitations and the specific characteristics of the target organisms.

Introduction

Environmental DNA (eDNA) consists of nucleic acids shed by organisms into their environments and can originate from shed cells, waste, gametes, or free DNA from degraded cells (Ficetola et al., 2008; Rees et al., 2014). Environmental DNA with molecular techniques can be a useful tool for species detection and has been used to detect species in air, soil, ice, and water (Ariza et al., 2023; Clare et al., 2021; Ruppert et al., 2019; Willerslev et al., 2004). There are two major methods of detection when using eDNA: a broader community approach and a single species approach. For analyzing the broader community, metabarcoding, amplification and sequencing of a barcode locus (such as cytochrome c I oxidase (CO1), ribosomal genes 18S, 16S, or 12S) can provide insight into a broad range of taxa present in an area (van der Loos and Nijland, 2021). Metabarcoding can detect multiple species in one sample, rather than multiple

tests, so it can be a faster method for detecting invasive species semi-quantitatively (****). The alternative is a single species assay, using techniques such as quantitative PCR (qPCR), light mediated isothermal amplification (LAMP), or digital droplet PCR (ddPCR), which use primers specific to a species to provide a quantitative measure of eDNA abundance for the taxa of interest (Baudry et al., 2023; Kageyama et al., 2022). These species-specific methods are more precise and give more quantitative results but take more time as they have to be processed separately in many cases. Depending on the research objective, one or both techniques may be used to detect the species of interest.

Abiotic factors can influence the fate of eDNA. For example, fish eDNA tends to accumulate in sediment, which may over-represent species if disturbed during water sampling (Turner et al., 2015). Furthermore, many studies have investigated the longevity of eDNA in water, finding that factors such as temperature, bacteria, and UV can lead to degradation of samples (Eichmiller et al., 2015; Tsuji et al., 2017). Tides and other water movements may influence detection probabilities, though one study found that eDNA from benthic species and plankton stayed consistent across tidal cycles (Kelly et al., 2018). Thus, there are many factors that must be considered when designing an eDNA experiment that can be used in decision making contexts. Although eDNA is ephemeral, it is useful for detecting species within a certain amount of time.

In aquatic ecosystems, eDNA has been used to detect fish, mammals, microbes, plants, algae, and invertebrates (Ruppert et al., 2019). Fish communities in aquariums are studied to ensure that all species are represented in the sequencing data (Kelly et al., 2014; Silverbrand, 2021). In smaller-scale mesocosms, single species assays have shown agreement between fish biomass and magnitude of eDNA detection (Dejean et al., 2011; Lacoursière-Roussel et al., 2016; Takahara et al., 2015; Tsuji et al., 2017). For fish species, there is generally good agreement between eDNA detection and fish abundance, even in systems with moving water (Kelly et al., 2018; Pont et al., 2018). Even in ecosystems like the deep sea, eDNA detection levels are correlated to fish caught by trawls and can detect species that are usually not caught in trawls, such as the Greenland shark, *Somniosus microcephalus* (Thomsen et al., 2016). In lakes, eDNA has been similarly used to compare catch data to qPCR eDNA concentrations and found similar quantitative results using metabarcoding (Hänfling et al., 2016; Valentini et al., 2016).

Due to the precision of qPCR, it is generally considered to be more reliable for biomass assessments than metabarcoding.

Environmental DNA has also been used to detect and monitor invasive species. There are various definitions for invasive species, but for the purpose of this study we define invasive species as organisms which establish a population in a recipient community after being moved using humans as a vector (Molnar et al., 2008). These species are not necessarily harmful to humans or the environment, but due to a lack of evolutionary history with members of the recipient community, they can cause damage (Edgell and Hollander, 2011). Early detection of invasive species is important to reduce the spread of these species to new regions. As the effect size of invasive species increases with time, eradication of invasive species becomes more difficult, and management strategies may switch to control and adaptation rather than removal (see, for example, Haubrock et al., 2022). Thus, detection of invasive species early in their invasion history is critical if the overall goal is eradication and eDNA techniques could assist in this aim.

Many invasive species eDNA studies focus on presence/absence of invasive species rather than attempting to quantify the number of animals, despite using single species assays (Kim et al., 2018; Takahara et al., 2013). Many eDNA studies focus on Asian carps, which are invasive in many waterways and cause damage to ecosystems by eating and outcompeting other fish species; they cause harm to other organisms by decreasing water quality; and they cause harm to humans by jumping out of the water (Kolar et al., 2007). Although they had not been detected or caught in the Laurentian Great Lakes in the early 2000's, an eDNA survey beginning in 2009 found their DNA present nearby in 2010 (Jerde et al., 2011). This detection was met with scrutiny, but bighead and silver carps are challenging to catch with traditional surveys. Eventually, the fish were caught where eDNA was detected, validating this method for detecting hard-to-catch invasive species (Jerde, 2021). Laboratory studies using the same species (*Hypophthalmichthys nobilis* and *Hypophthalmichthys molitrix*) and other carp species have found correlations between biomass and amount of eDNA detected (Klymus et al., 2015; Takahara et al., 2016).

Some invasive species are harmful to ecosystems and their inhabitants. These impacts can be direct, through direct aggression and space utilization (Bullard et al., 2004; Macdonald et al., 2007; Rius et al., 2009;), or indirect, through resource sharing and allelopathy (Davis et al.,

1991; Schenk, 2006). The impacts of these species can change community dynamics and may be exacerbated by climate change and other disturbances, which further stresses native species (Altman et al., 2007; Mack et al., 1998). Furthermore, invasive species can cost millions of dollars annually in damaged structures, fisheries losses, and effects on human health (Finnoff et al., 2005; Pejchar and Mooney, 2008; Pimentel et al., 2004). Therefore, from a management and policy perspective, early detection of these species not only helps local ecology, it also helps reduce the costs of managing potential invaders. Traditional species monitoring methods include fishing, trapping, or visual surveys, but eDNA could assist or replace these methods.

Despite numerous success stories, eDNA methods cannot be applied to all systems equally. Mammalian species are notoriously challenging to detect with traditional visual surveys due to their elusive nature. Qu and Stewart detected the endangered Yangtze finless porpoise, Neophocaena asiaeorientalis asiaeorientalis, with qPCR, a method that is more repeatable, efficient, and cost effective than visual surveys (Qu and Stewart, 2017). This study compared cost for visual, PCR, and qPCR-based detection of the porpoise; it found that qPCR was the best option for detection, as the method was highly sensitive and less expensive than widespread visual surveys. Due to the low density of mammals and the ephemeral nature of eDNA, false negatives are a serious concern for species detection. In a stream, eDNA was used to detect a freshwater pearl mussel (Margaritifera margaritifera) where they concluded that eDNA can be used as a non-destructive complement to traditional surveys (Stoeckle et al 2015). They noted degradation of the eDNA downstream and detection of an extinct population, either due to missed individuals or shells shedding eDNA. So, while there is a lot of potential in using eDNA to detect species, there are still uncertainties about the source and reliability of the method. Whether these difficulties are related to the body plan of the species being studied or species level variation is unclear.

Although there are challenges to detection using eDNA signals, there is also considerable promise for the widespread use of eDNA methods to detect species. Due to the cost-effective nature and ease of taking a water sample over traditional survey methods, using eDNA techniques would be preferable if the molecular signal is properly understood (i.e. biomass estimations versus presence/absence). To test whether species-specific eDNA signals can be used to detect presence or absence, and even biomass, of invasive invertebrates in a highly dynamic marine intertidal system we compared qPCR-based eDNA data to visual surveys in a tide pool

over two years. The species detected included seven species identified as invasive through the Marine Invader Monitoring and Information Collaborative, as well as one cryptogenic species and a nuisance species. Based on previous eDNA literature, we hypothesized that the species with soft and exposed tissues would shed eDNA consistently with their abundance, whereas organisms covered with shells or exoskeletons would be more challenging to detect.

Methods

Field molecular methods

Environmental DNA samples were collected monthly from a tide pool in Biddeford Pool, Maine, USA (43.44207° N, 70.34098° W) from June 2021 through July 2023, excluding October-December 2021 (Figure 1). The samples were taken at six sites, four of which were fully disconnected from the ocean at low tide (tide pools) and two of which were on the ocean-side of the rocks with constant flowing water. The tide pool area was approximately 40 m wide and consisted of rocky sided pools where water depth did not exceed 1 meter. Samples were always collected at slack low tide using an extendable 8 m pole fitted with a water bottle holder which could hold bleach-sterilized 500 mL Nalgene bottles. 500 mL seawater samples were collected from 6 sites along a 40 m long area in the tide pool. Water samples were stored in the dark and on ice until filtered later the same day in the laboratory. A field control consisting of a 500 mL Nalgene bottle of deionized water was opened for one minute at the site. Field controls were analyzed through each of the following steps to ensure no contamination.

Figure 1: The field site location in Biddeford, Maine, USA in Southern Maine in Saco Bay. Inlaid map of Maine with black star indicates the general location of the tide pools relative to the state. An aerial view of the tide pools is shown, with the pools sampled visually and with eDNA outlined in white. The open ocean side of the pools is in the top of the photos and two eDNA samples were also taken there, though visual surveys were not conducted.

Field visual methods

Visual surveys were used to detect nine invertebrate species common to New England: Botrylloides violaceus, Botryllus schlosseri, Ciona intestinalis, Didemnum vexillum, Diplosoma listerianum, Hemigrapsus sanguineus, Membranipora membranacea, Ostrea edulis, and Semibalanus balanoides. The only species studied here that is not an invasive species is the northern acorn barnacle, Semibalanus balanoides, which is a common intertidal organism and belongs to a group of organisms known as biofouling species for aquaculture (Zazzaro et al., 2018). The Marine Invader Monitoring and Information Collaborative (MIMIC) is an organization using visual surveys performed by trained volunteers in northern New England studying over 100 sites in Massachusetts and Maine since 2008 to detect marine invasive

species. The nine invasive and nuisance species in this study were categorized as such by MIMIC or have been identified by other parties as cryptogenic (*Ciona intestinalis*) (Dewitt, 2002). Immediately after sampling, we conducted a visual survey for invasive species using the MIMIC protocol. The MIMIC protocol is based on the Puget Sound Expedition and generates a relative abundance of invasive species, whereas the photographic data provided a quantitative measure of changing abundances (Cohen et al., 1998; Pappal and Baker, 2011). The amount of each organism across the tide pool area was categorized as abundant (present everywhere), common (present in more than half of surveyed sites), few (present in less than half the surveyed sites), or rare (one or two individuals across the tide pool). These rankings were coded for visualization, where 4 was abundant, 3 was common, 2 was few, 1 was rare, and 0 was not present at the time of the survey. Visual surveys only occurred for the four sites that were isolated at low tide; due to the flux of water on the oceanic side of the transect, visual surveys were not used. Temperature was measured in the tide pools during each sampling event.

Laboratory methods

eDNA filtration and extraction

All eDNA filtration occurred in the laboratory on the same day as samples were collected. All 500 mL of each sample were vacuum filtered through 0.45 µm cellulose nitrate filters (Sartorius Stedim Biotech GmbH). Before pouring the samples onto the filter, the water was swirled in the bottle to suspend any particulate matter that may have fallen to the bottom of the bottle. The vacuum manifold was housed in a hood, which was always sanitized before use with a 10% bleach solution and an 8W UV light for at least 10 minutes. All removable filtration equipment was soaked in a 10% bleach solution for 10 minutes prior to use and then rinsed with water until no bleach smell remained.

Filters were rolled using bleach cleaned forceps and placed into a labeled 1.5 mL Eppendorf tube and stored at -80°C until DNA extraction using the Qiagen DNeasy Blood and Tissue Kit. The extraction protocol was slightly modified from the manufacturers recommendation to increase eDNA yield. First, after the addition of lysis buffer ATL and proteinase K, the filters were incubated at 56°C for three hours and vortexed once every hour to ensure the buffer was reaching all parts of the filter. Final elution of DNA was performed in 80 μ L of elution buffer AE to increase eDNA yield.

Laboratory based experiments

To ground-truth some of the trends observed in the field, we conducted controlled lab experiments. These experiments were only performed for organisms that could be harvested without risk of fragmentation, which could lead to the spread of more invasive species (Valentine et al., 2009), or that were commonly found alive in the tide pool. Organisms were placed in 19 L buckets containing sterile artificial seawater (Instant Ocean SeaSalt mixed with deionized water, UV sterilized) with a sterilized bubbler for oxygen. Organisms were distributed amongst the buckets in groups of small, medium, or large (by weight or surface area) to assess how biomass impacted eDNA shedding rate. Buckets were sealed and set into a tank with flowing seawater to maintain ambient seawater temperatures between 14 and 18°C within the mesocosms. After 24 hours, 500 mL of water was collected from each bucket for filtering and DNA extraction using the same protocol as the field samples. Organism abundance was measured in two ways, either surface area was calculated and the eDNA concentration was analyzed using a linear regression, or wet weight was used, and organisms were classified as small, medium, and large for comparison.

Table 1: Small, medium, and large groupings of three of the species studied in laboratory experiments. Numbers are listed in grams of wet weight.

Species	Small	Medium	Large
Botrylloides violaceus	10.24±5.03 g	34.22±2.78 g	78.03±3.01 g
Hemigrapsus sanguineus	8.45±1.23 g	30.55±1.61 g	71.60±5.20 g
		203.35±29.00	444.36±37.77
Ostrea edulis	49.67±6.32 g	g	g

Nine

qPCR

qPCR assays

were used to identify some of the invasive invertebrate species common to New England: Botrylloides violaceus, Botryllus schlosseri, Ciona intestinalis, Didemnum vexillum, Diplosoma listerianum, Hemigrapsus sanguineus, Membranipora membranacea, Ostrea edulis, and Semibalanus balanoides (not an invasive species, but a nuisance species) (Table 2). Assays were generated either with Primer3 or IDT PrimerQuest. Most of the qPCR assays were performed on a Stratagene MX3005P qPCR thermocycler aside from the O. edulis assay, which used a fluorophore not detectable with the filters installed on the MX3005P, so that assay was

developed on a BioRad qPCR CFX Opus 96 Real-Time PCR System. The supermix for all qPCR reactions was identical: 10 μL of Applied Biosystems TaqMan FastAdvanced Master Mix, 0.3 μL of each primer and probe (all 10 μM stock solution), 7 μL of water, and 1 μL of DNA. For one qPCR plate of each sample, the mixture was also spiked with an exogenous internal positive control (ThermoFisher) to test for PCR inhibition. Most assays were performed for 3 minutes at 95°C to activate the polymerase, followed by 40 cycles of 15 seconds at 95°C and 30 seconds at 60°C. The only assay that varied from this was *D. vexillum*, where we followed the qPCR protocol from Matejusova et al., (2021) which started with 2 minutes of 50°C, 10 minutes at 95°C, then 45 cycles of 95°C for 15 seconds and 55°C for one minute.

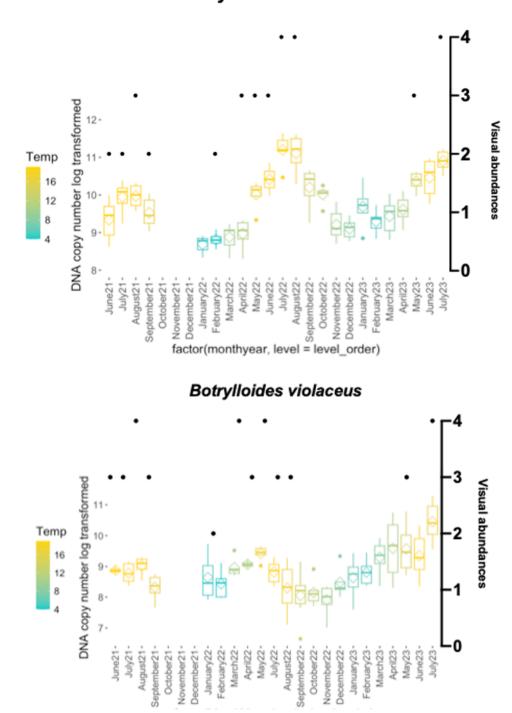
Table 2: Primers, probes, and their sources for species specific qPCR of invasive Gulf of Maine species. F represents the forward primer, R represents the reverse primer, and the probes were labeled with 6-FAM and MGB. All oligos are listed 5'-3'. Limit of detection (LOD) and limit of quantification (LOQ) are calculated based on concentrations determined in a Nanodrop spectrophotometer of genomic DNA extracted from the organisms.

Species	Primer	Source	Length (bp)	LOD*/LOQ*/efficiency *(copies/μL)
Botrylloides violaceus	F- GGACAATGTTGGTAACTACTG R- CGAAGAAAGACGTATTGAAA TTAC Probe- CAGCAGCCATTACA	This study	105	
Botryllus schlosseri	F- TGAACTGTTTATCCTCCCCTT TCTAGA	LeBlanc et al., 2020	179	0.0002 / 0.02 / 0.89

	R- CAAAACAAAGATATAGAAAA RAGTCCCCA Probe- TCATTCTAGAGCTGCTTTG			
Ciona intestinalis	F - ACTTTTTTTGATCCTAACAGAA GAAGGG R- CACACTAGAAATCTAAGAAAC CTAATTCCTCTT Probe- TTGATCCTACCAAGATTTAGAA	LeBlanc et al., 2020	212	0.000018 / 0.0018 / 1.1
Didemnum vexillum	F- CGACTAATCATAAAGATATTAG AACA R- TTCTTGTAGAACTTAATTCTATT CG Probe- ATAGT{T}{A}GAGCT{A}G{A}T TTAGT{A}TA{A}	Matejusov a et al., 2021	111	0.00015 / 0.0015 / 0.88
Diplosoma listerianum	F- CTAGGCAATTGATTAGAAAT AGAC R- GCTCTTAGTATTAAAGGTAAT AACC	This study	119	0.0003 / 0.03 / 0.94
Hemigrapsus sanguineus	F- CCTGGGCCGGTATAGTAGGT	Knudsen et al., 2020	136	0.00056 / 0.056 / 1

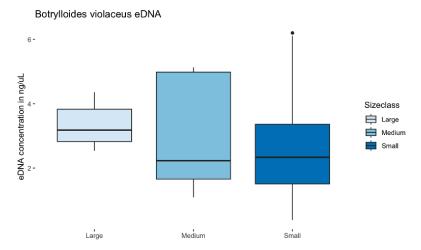
	R-GGGGCTCCGAGTATAAGTG G Probe- CGAGCAGAATTAAGACAACC AGGAAGC			
Membranipora membranacea	See citation for details	Greenlee et al., in prep		0.0017 / 0.17 / 0.92
Ostrea edulis	F- GGTAGTTTCTGCATTTGTTG R- TGCACATTCCATGATATGAA Probe- ACTGGCTGAACTGTCT	This study	89	0.000045 / 0.0045 / 0.89
Semibalanus balanoides	F - TGCCACCAGCTTTAATACTTC TA R - GATCTACAGAGGCTCCAGAAT G	This study	120	0.00025 / 0.025 / 0.99

All qPCR assays were validated by comparing the primers and probe to DNA extracted from tissues of many intertidal organisms common to the Gulf of Maine (all species included in this study as well as the American lobster *Homarus americanus*, green sea urchin *Strongylocentrotus droebachiensis*, green crab *Carcinus maenas*, Jonah crab *Cancer borealis*, European grass shrimp *Palaemon elegans*, common periwinkle *Littorina littorea*, flat periwinkle *Littorina obtusata*, European sea squirt *Ascidiella aspersa*, knotted wrack *Ascophyllum nodosum*, bladderwrack *Fucus spp.*, northern sea star *Asterias rubens*, forbes sea star *Asterias forbesii*, and American oyster *Crassostrea virginica*). All primers were validated *in silico* against these species as well as using a SYBR green qPCR and melt curve analysis to assess specificity. Only assays with no amplification of other products were used. To calculate the limit of detection (LOD), limit of quantification (LOQ), efficiency, and r², three replicates of standard curves ranging over


eight orders of magnitude were performed simultaneously (Klymus et al., 2019). In addition to this standard curve, a standard curve consisting of two replicates of at least four orders of magnitude concentration was included with each plate to ensure optimum efficiency and r² values of those curves.

Results

qPCR


For many species, we found seasonal oscillations in detectable eDNA consistent with the life cycles and abundances of each organism. For some of the colonial tunicates (e.g., *B. violaceus* and *B. schlosseri*), their presence in the tide pools was highest in the spring and summer and they nearly disappeared in visual surveys during the winter (Figure 2). We found higher eDNA concentrations [DB1] when tunicate biomasses were at the highest in the tide pools and in laboratory experiments (Figures 2 and 3). The lowest eDNA concentrations for each of these species occurred when water temperatures dropped below 15°C, especially when the species became dormant in the coldest winter temperatures.

Botryllus schlosseri

Figure 2: The amount of eDNA shed by two species of colonial tunicates, *Botryllus schlosseri* and *Botrylloides violaceus*. Black dots indicate visual abundance. These invasive species visually had their highest abundance in the summer when water temperatures were warmer. Both species

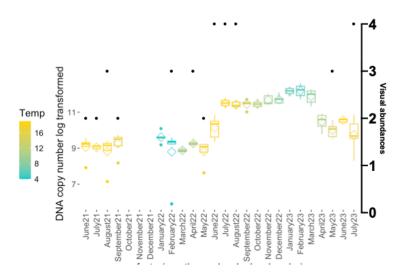
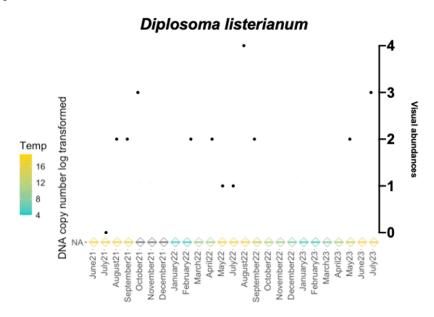

nearly disappeared from the tide pools in the winter. These patterns were especially strong for *B. schlosseri*, and *B. violaceus* increased in abundance over time.

Figure 3: eDNA shedding for *Botrylloides violaceus* in controlled lab conditions. While the means appear to increase with increasing size, there is no difference in the amount of eDNA shed amongst the different size tunicate colonies (ANOVA $F_{2,27}$ =0.3, p=0.743).


For the other two colonial tunicate species, these trends were not as consistent. Didemnum vexillum was visually present year-round in the tide pools, though the colonies degraded and fragmented in the winter (Figure 4). They were also subject to snail predation year-round, but it was especially noticeable in the winter because *D. vexillum* was the most common sessile invertebrate present in the winter.[DB3]

Didemnum vexillum

Figure 4: Amount of detectable eDNA shed by *Didemnum vexillum* at Biddeford Pool between June of 2021 and July of 2023. Black dots indicate visual abundance. This species was visually present year-round and detected with eDNA even when temperatures were low.

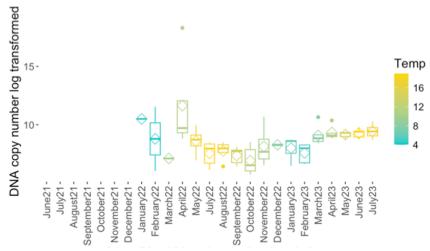

The colonial tunicate, *D. listerianum*, was not detected using qPCR, despite being observed in the summer and fall in the tide pools (Figure 5). Similar to other soft bodied tunicates, their presence increased in the summer.

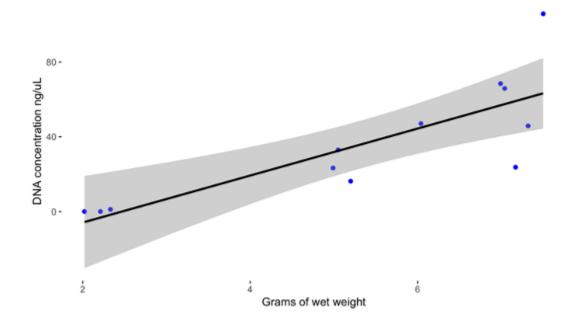
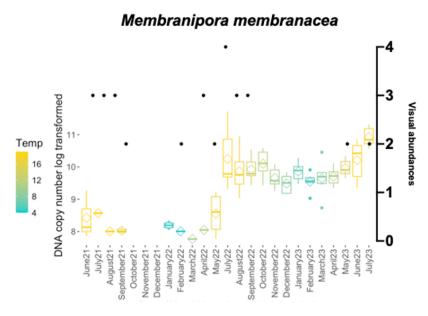
Figure 5: Amount of detectable eDNA shed by *Diplosoma listerianum* at Biddeford Pool between June of 2021 and July of 2023. Black dots indicate visual abundance. Environmental DNA from this species was not detected at any time during this study, despite visual confirmation of its presence.

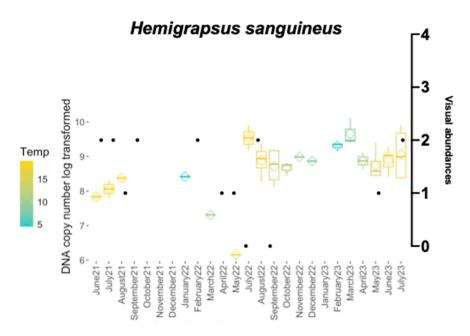
In April of 2022, we identified one adult sea vase tunicate, *C. intestinalis* individual in the tide pool, which had not been observed previously in 5 years of monthly summer surveys of this tidepool (Figure 6). Using eDNA, this solitary tunicate was detected beginning in January, four months before it was observable in the visual survey. No other individuals were visually detected in the tide pool over this time series.

Ciona intestinalis

Figure 6: Amount of detectable eDNA shed by *Ciona intestinalis* at Biddeford Pool between June of 2021 and July of 2023. Abundance was not measured in the same way, as this species is not recorded by the Marine Invader Monitoring and Information Collaborative, so no visual abundance is graphed. This species was first seen in visual surveys in April of 2022 and only that individual was seen throughout the course of this survey.

In a laboratory study, we found a linear increase in detectable eDNA with increasing amounts of C. intestinalis ($r^2=0.658$) (Figure 7).


Figure 7: A comparison between biomass of C. intestinalis and detected eDNA concentration. There is a positive correlation between shed eDNA and wet biomass of C. intestinalis in laboratory experiments (r^2 =0.658). The gray area indicates the 95% confidence interval around the linear regression which is the black line.

Several species displayed no pattern of eDNA in the tide pools. One of those species, *M. membranacea* was usually only found on wrack which washed into the tide pool as there were not many macroalgae surfaces conducive to their growth, and colonies were mostly dead. Thus, there were no seasonal patterns in eDNA detection over time for this species, but the second year of the time series generally had more detectable eDNA (Figure 8).

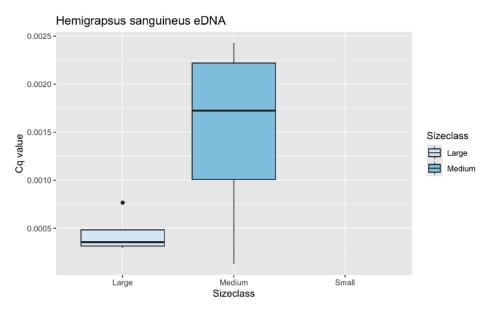


Figure 8: Amount of detected eDNA shed by *Membranipora membranacea* at Biddeford Pool between June of 2021 and July of 2023. Black dots indicate visual abundance. Most of the *M. membranacea* seen in the tide pools came in on wrack that washed in from offshore.

The Asian shore crab, *H. sanguineus*, was rarely observed in the tidepools themselves, but rather inhabited the exposed intertidal cobble above the tide pools (Figure 9). Of the 186 samples, 91 were negative for the eDNA of *H. sanguineus*. Their detection was also sporadic, similar to *M. membranacea*. Laboratory experiments confirmed that there is no relationship between number of crabs and eDNA shedding (Figure 10).

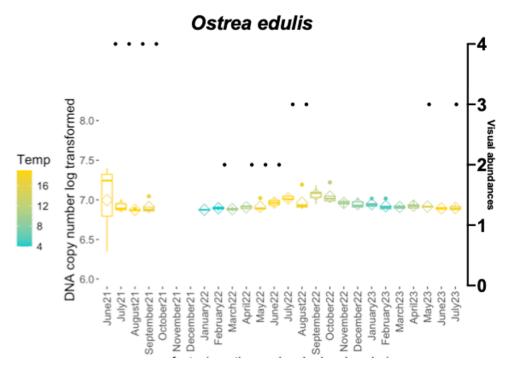


Figure 9: Amount of detected eDNA shed by *Hemigrapsus sanguineus* at Biddeford Pool between June of 2021 and July of 2023. Black dots indicate visual abundance. Many of the crabs seen in this habitat were out of the water under rocks; Asian shore crabs were infrequently seen in the water, so they would not be actively emanating eDNA into the water.

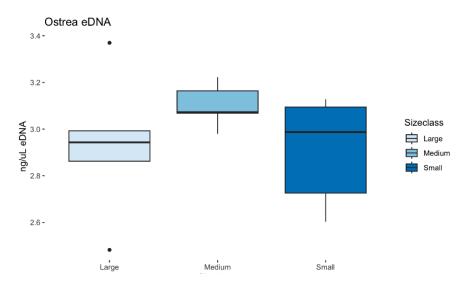


Figure 10: Laboratory eDNA shedding experiment for *H. sanguineus*. There was no correlation between wet weight and eDNA shedding rate. No eDNA was detected for the small group.

The final invasive species analyzed with qPCR was the European flat oyster, *O. edulis* (Figure 11). This long-lived species experienced a mass mortality event for reasons not identified in this study in the middle of this sampling period (April 2022), but their bottom shells were left behind. The laboratory study showed that the shells have DNA entombed in the shells, so eDNA was being shed even if the animal was not alive. We also did not find a significant relationship between biomass and shed eDNA in mesocosm experiments (Figure 12).

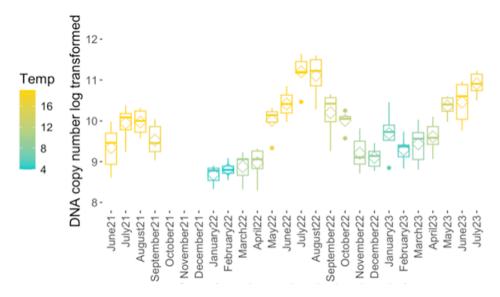

Figure 11: Amount of detected eDNA shed by *Ostrea edulis* at Biddeford Pool between June of 2021 and July of 2023. Black dots indicate visual abundance, which does not include dead shells. In spring of the first year of sampling, a mass mortality event affected most of the adult *O. edulis* in the tide pool, but despite the loss of many individuals, the amount of eDNA detection did not change.

Figure 12: Laboratory eDNA shedding experiment for *Ostrea edulis*. There was no correlation between wet weight and eDNA shedding rate. Of all metrics taken from *O. edulis*, wet weight of the whole organism was most correlated with the amount of soft tissue over other factors such as maximum shell diameter.

The nuisance species, *S. balanoides*, had a similar oscillating pattern to some of the tunicates but with the highest eDNA concentrations in early spring and declining concentrations through the summer and to the early winter (Figure 13).

Semibalanus balanoides

Figure 13: Amount of detected eDNA shed by *Semibalanus balanoides* at Biddeford Pool between June of 2021 and July of 2023. This species is not an invasive species, so we did not

measure visual abundance over time, thus it is not graphed. This species is present throughout the tide pools and while it was not directly measured, there was no visual change in abundance over time.

All samples were tested for inhibition, which was defined as a deviation from Cq values of 3 between samples and controls. None of the samples exhibited any level of inhibition.

Discussion

Four of five species adhered to the initial expectation that soft, exposed organisms would shed eDNA consistent with their body mass. Furthermore, five species followed general trends based on known life history or visual abundance over time. The only species that did not follow the anticipated pattern was the gray tunicate, *D. listerianum*. This species is gelatinous and semi-transparent—more so than the other sea squirt species studied here. Frequently in visual surveys, *D. listerianum* could be overlooked because the rock under the colonies would show through. The best way to identify the colonies was to feel over the rock surface for the distinct slime feeling that differed from the rock. The high water concentration in the body of this species likely led to the lack of eDNA detected; they have high surface area but low body mass which means that despite having a lot of biological material to interface with the water, they shed little eDNA

For the other tunicate species, there was agreement with eDNA concentrations and visual biomass in the tide pools. *Botryllus schlosseri* and *B. violaceus* showed oscillations between high and low concentrations of eDNA in agreement with visual surveys, which showed that in the late spring into summer these tunicates grew to be a dominant intertidal species. They began disappearing in the early fall and were nearly undetectable in the winter, save for a few colonies scattered throughout the tide pool. These tunicates begin growing and reproducing as seawater temperatures get above 12 or 15°C for *B. schlosseri* and *B. violaceus* respectively and the increases in tide pool coverage are consistent with these expected temperatures (Brunetti, 1974; Takeuchi, 1980). The in-laboratory experiments did not produce a significant correlation between biomass and eDNA concentration, likely due to the challenges of keeping *B. violaceus* and *B. schlosseri* alive in the flowing seawater system. An attempt to replicate this experiment was

made, but colony health quickly declined each time individuals were brought into the laboratory, so the eDNA results shown here are likely influenced by high levels of tissue degradation. The results for *D. vexillum* are particularly interesting because this species does not disappear as the water gets colder (< XX C). Didemnum vexillum was often the visibly dominant sessile invertebrate in the tide pool when water temperatures dropped. Furthermore, when we reflect on previous MIMIC surveys from this area, we see that the detectable eDNA from D. vexillum has been increasing over time; summer 2022 and 2023 had the highest visual record of D. vexillum over the time series, which is consistent with our eDNA results (Figure 4). Didemnum vexillum is frequently seen being eaten by periwinkles in the winter, so the high eDNA signal in the winter may also be influenced by the feeding of the snails as they fragment colonies. The last tunicate meeting this expectation that soft bodied organisms shed eDNA consistently with their abundance is C. intestinalis, a surprising addition to the tide pool whose eDNA was detected three months before an individual was observed in visual surveys. Following the discovery of this individual, we used cameras to search under cracks in the rocks but found that the tunicate was the only one to appear during this time series, which is consistent with the unchanging eDNA concentration over time. In-laboratory experiments showed a positive correlation between biomass and eDNA concentrations for C. intestinalis, which have a life expectancy of 2-3 years, we assume that no other individuals arrived as eDNA concentration remained consistent. Furthermore, the short larval period for C. intestinalis (less than 24 hours from egg and sperm release to potential settlement) would make capturing the spawning event of one individual in the field particularly challenging if only sampling once per month (Dybern, 1965). This result also shows that this technique was sensitive enough to detect a single individual living in the tide pool, highlighting how powerful this tool can be for some species.

Based on the body plans of organisms studied here, we can group them into two large categories. Organisms that have an exoskeleton or outer shell can be described by their texture as 'crunchy'. Organisms with exposed soft tissue and no exoskeleton can be grouped together as 'squishy'. The crunchy organisms studied here were *H. sanguineus*, *S. balanoides*, *O. edulis*, and *M. membranacea*, which either have a chitin and calcium carbonate exoskeleton or a shell. During a molt, those with exoskeletons have more exposed soft tissues, but this has not been shown to increase eDNA shedding in green crabs *C. maenas* (Crane et al., 2021). The squishy species included *B. schlosseri*, *B. violaceus*, *C. intestinalis*, *D. listerianum*, and *D. vexillum*. We

assumed that squishy organisms might shed eDNA consistently with their abundance due to the increased surface for fluid exchange with the surrounding environment. While environmental DNA shedding rates were not completely consistent with the squishy versus crunchy hypothesis, we use these groups to contextualize the results further.

Generally, the crunchy species were more unpredictable in their eDNA release than the squishy species. Several of the eDNA detection patterns can be explained by behavior; for example, H. sanguineus was rarely spotted in the water, but rather lives under rocks in the mid and upper intertidal. While some of the peaks in eDNA detection for this crab occurred during the reproductive season (May - October), this trend was not consistent across all months, suggesting that this detection was haphazard. Due to their general abundance out of the water and the ephemeral nature of eDNA, it is not necessarily surprising that there was not a lot of agreement between nearby *H. sanguineus* crabs and eDNA detected in the pool. Another example of behavior explaining eDNA detection is S. balanoides, which is a common intertidal organism and showed an interesting seasonal oscillation potentially due to reproduction rather than settlement. These barnacles brood their larvae in the late fall and winter, and release them from February to April (King et al., 1993). The larvae develop and grow as plankton before returning to shore in the summer for settlement. This life history is consistent with eDNA trends, with increasing eDNA concentrations as brooded larvae are released from the barnacles and captured in the water sample. It is difficult to say whether there is an increase in eDNA concentrations for settlement as the largest signal came from larval release, so further study should investigate an eDNA signal of settling barnacle larvae.

The signals that came from *O. edulis* and *M. membranacea* may not be attributable to living organisms established in the tide pools. For *M. membranacea*, individuals were detected throughout the year, especially in the 2022-2023 season when more frequent storms brought encrusted kelps into the tide pool. However, frequently these colonies did not contain live zooids. Similar to *O. edulis*, following a mass mortality event in early 2022, the detectable eDNA did not change despite fewer live individuals. When the oysters die, the individuals attached to the rocks leave behind half of their shell. In-laboratory experiments confirmed that oyster shells shed eDNA. In both of these cases, the presence of eDNA did not confirm the living presence of invasive species. Importantly, without visual surveys, it would be impossible to assess invasion severity by eDNA alone for these species.

Through this two-year time series, we uncovered inconsistencies in the utility of eDNA for detecting invasive species in tide pools. Environmental DNA was not shed equally for all species and thus, an eDNA signal cannot be interpreted equally across all taxa. This finding suggests that laboratory validation of eDNA shedding rates or visual surveys are required for organisms with diverse body plans. One of the challenges of studying invertebrates is that their diverse phylogeny goes hand in hand with diverse body plans. That is, soft exposed bodies or covering with an exoskeleton or shell could lead to large differences in exuded mucus or other bodily fluids. There are multiple studies investigating the amount of eDNA shed by fish into a controlled environment and in nature, validating that in general, fish biomass is correlated with eDNA shedding. Studies with Asian carps in man-made ponds, buckets, and mesocosms indicate that with more fish, the amount of eDNA shed also increases (Klymus et al., 2015; Takahara et al., 2012). For lake trout, catch per unit effort is significantly correlated with eDNA concentration, suggesting that molecular methods can save time and money in the management of this species (Lacoursière-Roussel et al., 2016). These trends appear to extend to other vertebrates such as amphibians (Pilliod et al., 2013; Thomsen et al., 2012). So, while there may be outlier species, eDNA can generally be applied quantitatively to fish and amphibians in a variety of systems.

A few studies have captured the challenges of eDNA research for invertebrates. Crane et al. (2021) investigated eDNA shedding of the green crab *Carcinus maenas* at different life phases such as soft shell, ovigerous, male, female, and at high density. Another study found no correlation between biomass and eDNA detection in mesocosm experiments for *C. maenas* (Danziger and Frederich, 2022). Detection was generally low in all treatments, except for ovigerous females who shed more eDNA, especially when zoea were present (Crane et al., 2021). These trends were corroborated in a 2022 study, which also found an increase in eDNA shedding of *C. maenas* for crabs running on a treadmill (Danziger et al., 2022). For the freshwater crayfish *Procambarus clarkii*, eDNA was not detected in high enough concentrations to overcome the limit of detection and trapping methods were more effective at detecting the freshwater crustaceans (Tréguier et al., 2014). Outside of arthropods, the potential for shells that shed eDNA was identified with *Margaritifera margaritifera*, the freshwater pearl mussel, when eDNA was detected from an extinct population (Stoeckle et al 2015). More studies are needed to continue looking at the challenges of studying invertebrate animals with eDNA.

The implications of this research indicate that eDNA should not be used equally for all species and systems. We understand that these findings may bring into question the applicability of eDNA in widespread species monitoring; however, we argue that the key finding here is variable success, rather than no success. Environmental DNA should still be trusted for many applications, especially following rigorous testing. For species studied here, the results from B. schlosseri, B. violaceus, S. balanoides, and C. intestinalis, and D. vexillum show that the eDNA can be analyzed quantitatively as the results show good agreement with visual abundances[DB21]. With enough sampling, species such as O. edulis, H. sanguineus, and M. membranacea can also be detected for presence, if not quantitatively. While we show inconsistencies in the tool, with proper validation, many species can successfully be detected by eDNA. These findings expand beyond the nine species studied here; the variety of body plans for invertebrates challenge eDNA detection success. One could speculate that crunchy organisms could be more challenging to detect than squishy organisms across the board, which is particularly problematic considering the number of arthropod species and insect pests (Ezcurra et al., 1978). Environmental DNA techniques can be used quantitatively for many species, but without a full understanding of the eDNA signal, it cannot be applied to all systems equally.

Conclusion

Shedding rates of eDNA for invertebrate taxa vary. Some of this variation can be attributed to body plan of the invertebrates; many of the soft bodied, squishy animals shed eDNA in a manner consistent with their seasonal variation. For these species, eDNA can be used quantitatively to assess invasion severity in similar ecosystems with low flow. Some soft bodied organisms, such as *Diplosoma listerianum*, do not shed much eDNA, likely due to the general lack of organic material making up their bodies. In general, organisms with exoskeletons or other hard surfaces do not shed eDNA consistently with abundance, but the barnacle *S. balanoides* showed seasonal variation consistent with spawning. The generalizations of body plan for eDNA shedding rates of invertebrates are not consistent enough to make a broad statement about the reliability of an eDNA signal. This highlights the need for visual surveys or laboratory experiments to understand the meaning of an eDNA signal before it should be used for broader management perspectives.

Acknowledgements

We thank the following people for their help to collect eDNA samples: UNE Crab Lab, specifically Kai Alger, B Rico, JJ Custer, Harrison Stern, Kai Watkins, and Tyler Ferrin. Also, thank you to the dedicated volunteers who helped with photo taking and MIMIC surveys, especially Aubrey Jane, Melissa Butler, Alexa Cacacie, Tahoe Lancaster, Michael Ngyuen, and Lindsay Forrette. For coding support, thanks to Julia Sunnarborg, Robin Sleith, Laura Jackson and Rene Francolini from Maine-eDNA. Lastly, we acknowledge Doug Rasher and Rhian Waller for their feedback on this manuscript.

Conclusion

Sea surface temperatures are continuing to rise globally, so these issues apply further than the GoM, impacting marine ecosystems worldwide (Johnson and Lyman, 2020; Pershing et al., 2021). By extrapolating findings from invasive invertebrate studies in the GoM, we can anticipate similar ecological challenges in other regions experiencing temperature shifts. Therefore, comprehending the nuances of invasive species detection methodologies becomes paramount not only for regional conservation efforts but also for broader ecological management strategies. As we navigate these environmental changes, integrating insights from physiology and molecular biology into adaptive management frameworks will be essential for safeguarding marine biodiversity and sustaining valuable marine resources beyond the GoM.

From a physiological perspective, I demonstrated the variety in measurements in the literature and highlighted one example of a species which acclimates to different seasons, shifting its thermal thresholds. For the review, there were inconsistent measurement techniques, with few studies using the classical frameworks and more leaning towards observational measurements in the field which, while ecologically relevant, do not elucidate a mechanism for survival. Furthermore, these observational methods were susceptible to local adaptations, as are the framework measurements, but with little context to why these changes matter and how they affect the animal. Despite the lack of underlying causal mechanisms, measurements in the field such as growth or reproductive thresholds do serve some purpose in species distribution modeling but should not be the only measurements taken. Without understanding the ecologically relevant temperatures at which an animal thrives, rather than just survives, modeling may overestimate invasive range. Thus, by measuring the maximum and minimum survivable temperatures, plus the temperatures at which the animal thrives, modeling will consider many thresholds required for the animal to persist.

Of course, these measurements alone are not helpful without context. Many of the analyzed studies showed variation based on acclimation temperature and local adaptation. For example, the reproductive temperature for *Carcinus maenas* ranged from 0 to 27°C based on location (Himes et al., 2017; Thresher et al., 2003; Yamada and Kosro, 2010; Young and Elliott, 2020). If we were to assume that its reproductive temperature was only 4-26°C as it was reported in Australia, that would underestimate its potential invasive range (Thresher et al., 2003). Thresholds can vary for a variety of reasons, including life stage, acclimation temperature,

population variation/local adaptation, and exposure to other abiotic factors, so reporting all metadata about animal rearing conditions is important. Overall warming ocean temperatures may also lead to shifting thermal thresholds for organisms with thermal plasticity, so it should also be acknowledged that thresholds may continue to change worldwide. Warming sea surface temperatures will also lead to less ice cover, decreasing winter hypoxia, and changing flow patterns, which can open up new areas to invasion (Rahel and Olden, 2008). The best thing individual studies can do is list all metadata in order to contextualize these measurements on a broader scale.

For *H. sanguineus* specifically, I found seasonal shifts in temperature tolerance likely due to acclimation. This species only reproduces in the summer months and spends much of its time in the colder months huddled under rocks, moving seldomly, or deeper in the water (Frederich and Lancaster, 2024). Despite the lack of year-round reproduction, this species is present and becoming a dominant force in the intertidal in southern New England, though its dominance over *C. maenas* has not come to fruition in southern Maine. It continues to spread northward where it is found on both sides of the Bay of Fundy (C. DiBacco, personal communication).

Lastly, in order to understand the distribution of these species over time, I validated 9 qPCR assays for several of the MIMIC species and other local pests to compare against a 2 year time series of eDNA collected at Biddeford Pool. I found that some species, especially those with exposed soft tissue (squishy), shed eDNA in a manner consistent with their abundance. This was not true for all squishy species, as *D. listerianum* was not detected using eDNA using qPCR nor metabarcoding. For crunchier species, organisms with an exoskeleton or less exposed soft tissue, generally there was no correlation between visual abundance and eDNA concentration. Interestingly, at least one crunchy species did show seasonal variation in eDNA shedding, not necessarily in relation to visual abundance, but with regard to reproduction. This species broods its larvae until January when they begin to release through April. Settlement occurs as waters warm through the spring, and I did not find a notable increase in eDNA at this time. The last interesting trend was for eDNA from *O. edulis*, which exhibited consistent eDNA detection throughout the year despite mortality and changing abundances over time. Laboratory experiments showed no trend in eDNA shedding rate and amount of oysters as well as shed eDNA from cleaned shells containing no live oysters.

These results show varied detection of invasive species using eDNA from an abundance standpoint. With enough samples, all species but one was detected, suggesting that if the only research goal is to detect the presence of an invasive species, eDNA is still a powerfully useful tool. This chapter highlights the importance of validation and comparison to traditional survey methods before blindly applying eDNA methods to all systems equally. Although these findings may raise doubts as to the validity of eDNA results, they also show great promise for quantitative results for many species.

Overall, this dissertation has filled in information gaps regarding invasive species physiology and detection using eDNA. As the world becomes more interconnected, we expect incidence of invasive species to continue to increase (Hulme, 2009). This, paired with global warming, will lead to drastic changes in all ecosystems which will affect humans in a variety of ways. By understanding the temperatures which could allow species to continue spreading, we can predict where they might spread, and use eDNA to detect them as early as possible. Through these three chapters, I've turned a lot of traditional understandings of physiology and eDNA on their heads but hope that the findings here will continue to strengthen these fields for the betterment of our planet's beloved oceans.

References

Agius, B. P. (2007). Spatial and temporal effects of pre-seeding plates with invasive ascidians: Growth, recruitment and community composition. *Journal of Experimental Marine Biology and Ecology*, *342*(1), 30–39. https://doi.org/10.1016/J.JEMBE.2006.10.012

Ai-Li, J., Jin-Li, G., Wen-Gui, C., & Chang-Hai, W. (2008). Oxygen consumption of the ascidian Styela clava in relation to body mass, temperature and salinity. *Aquaculture Research*, *39*(14), 1562–1568. https://doi.org/10.1111/J.1365-2109.2008.02040.X

Aldred, N., & Clare, A. S. (2014). Mini-review: Impact and dynamics of surface fouling by solitary and compound ascidians. *Biofouling*, *30*(3), 259–270.

https://doi.org/10.1080/08927014.2013.866653

Alter, K., Philippart, C. J. M., Teng, S., Bolier, H., Drenth, P., & Dubbeldam, M. (2023).

Consequences of thermal history for growth, development and survival during metamorphosis and settlement for the European flat oyster. *Aquaculture*, *566*, 739174.

https://doi.org/10.1016/J.AQUACULTURE.2022.739174

Altman, S., & Whitlatch, R. B. (2007). Effects of small-scale disturbance on invasion success in marine communities. *Journal of Experimental Marine Biology and Ecology*, *342*(1), 15–29. https://doi.org/10.1016/J.JEMBE.2006.10.011

Amsalem, E. (2018). Thermal vulnerability of the rockpool shrimp Palaemon elegans at its distributional trailing edge: implications for impacts of climate change (Issue October). Amsalem, E., & Rilov, G. (2021). High thermal plasticity, and vulnerability, in extreme environments at the warm distributional edge: The case of a tidepool shrimp. *Journal of Experimental Marine Biology and Ecology*, 545, 151641.

https://doi.org/10.1016/J.JEMBE.2021.151641

Anderson, J. A., & Epifanio, C. E. (2010a). Mating and sperm storage of the Asian shore crab hemigrapsus sanguineus. *Journal of Shellfish Research*, 29(2), 497–501.

https://doi.org/10.2983/035.029.0228

Anderson, J. A., & Epifanio, C. E. (2010b). Response of the Asian shore crab Hemigrapsus sanguineus to metamorphic cues under natural field conditions. *Journal of Experimental Marine Biology and Ecology*, 384(1–2), 87–90. https://doi.org/10.1016/J.JEMBE.2009.12.014

Anderson, J. A., Valentine, M., & Epifanio, C. E. (2010). Characterization of the conspecific metamorphic cue for Hemigrapsus sanguineus (De Haan). *Journal of Experimental Marine Biology and Ecology*, *382*(2), 139–144. https://doi.org/10.1016/J.JEMBE.2009.10.005

Ardura, A., Zaiko, A., Martinez, J. L., Samuiloviene, A., Borrell, Y., & Garcia-Vazquez, E. (2015). Environmental DNA evidence of transfer of North Sea molluscs across tropical waters through ballast water. *Journal of Molluscan Studies*, *81*(4), 495–501. https://doi.org/10.1093/mollus/eyv022

Ariza, M., Fouks, B., Mauvisseau, Q., Halvorsen, R., Alsos, I. G., & de Boer, H. J. (2023a). Plant biodiversity assessment through soil eDNA reflects temporal and local diversity. *Methods in Ecology and Evolution*, *14*(2), 415–430. https://doi.org/10.1111/2041-210X.13865

Ariza, M., Fouks, B., Mauvisseau, Q., Halvorsen, R., Alsos, I. G., & de Boer, H. J. (2023b).

Plant biodiversity assessment through soil eDNA reflects temporal and local diversity. *Methods in Ecology and Evolution*, *14*(2), 415–430. https://doi.org/10.1111/2041-210X.13865

Aronson, R. B., Frederich, M., Price, R., & Thatje, S. (2014). Prospects for the return of

shell-crushing crabs to Antarctica. *Journal of Biogeography*, 42(1), 1–7.

https://doi.org/10.1111/JBI.12414

Arrhenius, S. (1889). Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren. Zeitschrift Für Physikalische Chemie.

Ashton, G. V. (2006). Distribution and dispersal of the non-native caprellid amphipod, Caprella mutica Schurin 1935.

Ashton, G. v, Burrows, M. T., Willis, K. J., & Cook, E. J. (2010). Seasonal population dynamics of the non-native Caprella mutica (Crustacea, Amphipoda) on the west coast of Scotland. *Marine and Freshwater Research*, *61*, 549–559. https://doi.org/10.1071/MF09162

Ashton, G. v., Riedlecker, E. I., & Ruiz, G. M. (2008). First non-native crustacean established in coastal waters of Alaska. *Aquatic Biology*, *3*(2), 133–137. https://doi.org/10.3354/ab00070
Ashton, G. v., Willis, K. J., Burrows, M. T., & Cook, E. J. (2007a). Environmental tolerance of Caprella mutica: Implications for its distribution as a marine non-native species. *Marine Environmental Research*, *64*(3), 305–312. https://doi.org/10.1016/J.MARENVRES.2007.02.003
Ashton, G. v., Willis, K. J., Burrows, M. T., & Cook, E. J. (2007b). Environmental tolerance of Caprella mutica: Implications for its distribution as a marine non-native species. *Marine Environmental Research*, *64*(3), 305–312. https://doi.org/10.1016/J.MARENVRES.2007.02.003

Ashton, G. v., Willis, K. J., Cook, E. J., & Burrows, M. (2007). Distribution of the introduced amphipod, Caprella mutica Schurin, 1935 (Amphipoda: Caprellida: Caprellidae) on the west coast of Scotland and a review of its global distribution. *Hydrobiologia*, *590*(1), 31–41. https://doi.org/10.1007/S10750-007-0754-Y/FIGURES/2

Auker, L. A., & Oviatt, C. A. (2008). Factors influencing the recruitment and abundance of Didemnum in Narragansett Bay, Rhode Island. *ICES Journal of Marine Science*, 65(5), 765–769. https://doi.org/10.1093/ICESJMS/FSM196

Avila, C., Angulo-Preckler, C., Martín-Martín, R. P., Figuerola, B., Griffiths, H. J., & Waller, C. L. (2020). Invasive marine species discovered on non–native kelp rafts in the warmest Antarctic island. *Scientific Reports 2020 10:1*, *10*(1), 1–9. https://doi.org/10.1038/s41598-020-58561-y Sorte, C. J., Williams, S. L., & Zerebecki, R. A. (2010). Ocean warming increases threat of invasive species in a marine fouling community. *Ecology*, *91*(8), 2198–2204. https://doi.org/10.1890/10-0238.1

Ballarin, L., Burighel, P., & Cima, F. (2008). A Tale of Death and Life: Natural Apoptosis in the Colonial Ascidian Botryllus schlosseri (Urochordata, Ascidiacea). *Current Pharmaceutical Design*, *14*, 138–147.

Bamber, S. D. (2023). Valve gaping behaviour in the European oyster (Ostrea edulis) in response to changes in light intensity when combined with variations in salinity and seawater temperature. *Journal of Experimental Marine Biology and Ecology*, *568*, 151943.

https://doi.org/10.1016/J.JEMBE.2023.151943

Barneche, D. R., White, C. R., & Marshall, D. J. (2017). Temperature effects on mass-scaling exponents in colonial animals: A manipulative test. *Ecology*, *98*(1), 103–111. https://doi.org/10.1002/ecy.1624

Baudry, T., Laffitte, M., Noizat, C., Delaunay, C., Ricou, G., Vasselon, V., & Grandjean, F. (2023). Influence of distance from source population and seasonality in eDNA detection of white-clawed crayfish, through qPCR and ddPCR assays. *Environmental DNA*, *5*(4), 733-749. Beerman, J., & Franke, H. D. (2011). A supplement to the amphipod (Crustacea) species inventory of Helgoland (German Bight, North Sea): indication of rapid recent change jan beermann and heinz-dieter franke. *Marine Biodiversity Records4*.

https://doi.org/10.1017/S1755267211000388

Beiras, R., Camacho, A. P., & Albentosa, M. (1995). Short-term and long-term alterations in the energy budget of young oyster Ostrea edulis L. in response to temperature change. *Journal of Experimental Marine Biology and Ecology*, *186*, 221–236.

https://doi.org/10.1016/0022-0981(94)00159-B

Bélair, M. C., & Miron, G. (2009). Predation behaviour of Cancer irroratus and Carcinus maenas during conspecific and heterospecific challenges. *Aquatic Biology*, 6(1–3), 41–49.

https://doi.org/10.3354/ab00166

Bennett, C. E., & Marshall, D. J. (2007). Marine and Freshwater Behaviour and Physiology The relative energetic costs of the larval period, larval swimming and metamorphosis for the ascidian Diplosoma listerianum. *Marine and Freshwater Behaviour and Physiology*, *38*(1), 21–29. https://doi.org/10.1080/10236240400029333

Berrill, N. J. (1947). THE DEVELOPMENT AND GROWTH OF CIONA. *Journal of the Marine Biological Association of the United Kingdom*, 26(4), 616–625.

Biggar, B. S. (2021). The thermal biology of Carcinus maenas as a tool for conservation, mitigation, and invasion predictions.

Biggs, J., Ewald, N., Valentini, A., Gaboriaud, C., Dejean, T., Griffiths, R. A., Foster, J., Wilkinson, J. W., Arnell, A., Brotherton, P., Williams, P., & Dunn, F. (2015). Using eDNA to develop a national citizen science-based monitoring programme for the great crested newt (*Triturus cristatus*). *Biological Conservation*, 183, 19–28.

https://doi.org/10.1016/j.biocon.2014.11.029

Bilgin, S., Ozen, O., & Ates, A. S. (2008). Spatial and temporal variation of Palaemon adspersus, Palaemon elegans, and Crangon crangon (Decapoda: Caridea) in the southern Black Sea.

Estuarine, Coastal and Shelf Science, 79(4), 671–678.

https://doi.org/10.1016/J.ECSS.2008.06.008

Bilgin, S., Ozen, O., & Samsun, O. (2009). Sexual seasonal growth variation and reproduction biology of the rock pool prawn, Palaemon elegans (Decapoda: Palaemonidae) in the southern Black Sea. *Scientia Marina*, 73(2), 239–247. https://doi.org/10.3989/scimar.2009.73n2239 Binnaser, Y. S. M. (2014). *Physiological Effects of Global Climate Change on Common British Marine Invertebrates*.

Bishop, J. D. D., Wood, C. A., Yunnie, A. L. E., & Griffiths, C. A. (2015). Unheralded arrivals: non-native sessile invertebrates in marinas on the English coast. *Aquatic Invasions*, *10*(3), 249–264. https://doi.org/10.3391/ai.2015.10.3.01

Blackstone, N. W., & el Rahmany, W. S. (2023). An Organismal Perspective on the Warburg Effect and Models for Proliferation Studies. *Biology*, *12*(4).

https://doi.org/10.3390/biology12040502

Bloch, C. P., Sawyer, S. J., Hathaway, N. B., Bouley, K., Briggs, J. L., Frew, V., & Surasinghe, T. D. (2022). Biophysical predictors of spatial variation in abundance and population dynamics of an invasive decapod. *Marine Ecology*, *43*(6). https://doi.org/10.1111/MAEC.12732

Boag, T. H., Stockey, R. G., Elder, L. E., Hull, P. M., & Sperling, E. A. (2018). Oxygen, temperature and the deep-marine stenothermal cradle of Ediacaran evolution. *Proceedings of the Royal Society B*, 285. https://doi.org/10.1098/RSPB.2018.1724

Boets, P., Lock, K., & Goethals, P. L. M. (2012). Assessing the importance of alien macro-Crustacea (Malacostraca) within macroinvertebrate assemblages in Belgian coastal harbours. *Helgoland Marine Research*, 66(2), 175–187.

https://doi.org/10.1007/S10152-011-0259-Y/FIGURES/5

Bohmann, K., Evans, A., Thomas, M., Gilbert, P., Carvalho, G. R., Creer, S., Knapp, M., Yu, D. W., & de Bruyn, M. (2014). Environmental DNA for wildlife biology and biodiversity monitoring. *Trends in Ecology & Evolution*, *29*, 358–367.

https://doi.org/10.1016/j.tree.2014.04.003

Boos, K., Ashton, G. v, & Cottier-Cook, E. J. (2011). The Japanese Skeleton Shrimp Caprella mutica (Crustacea, Amphipoda): A Global Invader of Coastal Waters. In *In the wrong place-alien marine crustaceans: distribution, biology and impacts* (pp. 129–156). https://doi.org/10.1007/978-94-007-0591-3 4

Bouchemousse, S., Bishop, J. D. D., & Viard, F. (2016). Contrasting global genetic patterns in two biologically similar, widespread and invasive Ciona species (Tunicata, Ascidiacea). *Scientific Reports*, *6*(1), 1–15. https://doi.org/10.1038/srep24875

Bourdeau, P. E., & O'Connor, N. J. (2003). Predation by the nonindigenous Asian shore crab Hemigrapsus sanguineus on macroalgae and molluscs. *Northeastern Naturalist*, *10*(3), 319–334. https://doi.org/10.1656/1092-6194(2003)010[0319:PBTNAS]2.0.CO;2

Bourque, D., Davidson, J., MacNair, N. G., Arsenault, G., LeBlanc, A. R., Landry, T., & Miron, G. (2007). Reproduction and early life history of an invasive ascidian Styela clava Herdman in Prince Edward Island, Canada. *Journal of Experimental Marine Biology and Ecology*, *342*, 78–84. https://doi.org/10.1016/j.jembe.2006.10.017

Braby, C. E., & Somero, G. N. (2006). Following the heart: Temperature and salinity effects on heart rate in native and invasive species of blue mussels (genus Mytilus). *Journal of Experimental Biology*, 209(13), 2554–2566. https://doi.org/10.1242/jeb.02259

Brett, J. R. (1956). Some Principles in the Thermal Requirements of Fishes. *The Quarterly Review of Biology*, *31*(2), 75–87. https://www.jstor.org/stable/pdf/2815121.pdf

Bromley Ciaran McGonigle Elizabeth Clare Ashton Dai Roberts, C. (2016). Restoring degraded European native oyster, Ostrea edulis, habitat: is there a case for harrowing? *Hydrobiologia*, 768, 151–165. https://doi.org/10.1007/s10750-015-2544-2

Brousseau, D. J., Goldberg, R., & Garza, C. (2014). Impact of predation by the invasive crab hemigrapsus sanguineus on survival of juvenile blue mussels in western Long Island sound. *Northeastern Naturalist*, *21*(1), 119–133. https://doi.org/10.1656/045.021.0110

Brunetti, R. (1974). Observations on the Life Cycle of Botryllus schlosseri (Pallas) (Ascidiacea) in the Venetian Lagoon. *Italian Journal of Zoology*, *41*(3), 225–251.

https://doi.org/10.1080/11250007409430119

Brunetti, R., Beghi, L., Bressan, M., & Marin, M. (1980). Combined Effects of Temperature and Salinity on Colonies of Botryllus schlosseri and Botfylloides leachi (Ascidiacea) from the Venetian Lagoon. *Marine Ecology Progress Series*, *2*, 303–314.

https://doi.org/10.3354/meps002303

Brunetti, R., Bressan, M., Marin, M., & Libralato, M. (1988). On the ecology and biology of Diplosoma listerianum (Milne Edwards, 1841) (Ascidiacea, Didemnidae). *Life and Environment*, 123–131. https://hal.sorbonne-universite.fr/hal-03031428

Bullard, Whitlatch, & Osman. (2004). Checking the landing zone: Do invertebrate larvae avoid settling near superior spatial competitors? *Marine Ecology Progress Series*.

http://www.int-res.com/articles/meps2004/280/m280p239.pdf

Buxton, C. D. (1980). Energy Balance of a Laboratory Population of Ostrea edulis.

Buxton, C. D., Newell, R. C., & Field, J. G. (1981a). Response-Surface Analysis of the Combined Effects of Exposure and Acclimation Temperatures on Filtration, Oxygen

Consumption and Scope for Growth in the Oyster. *Source: Marine Ecology Progress Series*, 6(1), 73–82.

Buxton, C. D., Newell, R. C., & Field, J. G. (1981b). Response-Surface Analysis of the Combined Effects of Exposure and Acclimation Temperatures on Filtration, Oxygen Consumption and Scope for Growth in the Oyster Ostrea edulis. *Marine Ecology Progress Series*, *6*(1), 73–82. https://doi.org/10.3354/meps006073

Byers, J. E., Blaze, J. A., Dodd, A. C., Hall, H. L., & Gribben, P. E. (2023). Exotic asphyxiation: interactions between invasive species and hypoxia. *Biological Reviews*, *98*(1), 150–167. https://doi.org/10.1111/BRV.12900

Caines, S., & Gagnon, P. (2012). Population dynamics of the invasive bryozoan Membranipora membranacea along a 450-km latitudinal range in the subarctic northwestern Atlantic. *Marine Biology*, *159*(8), 1817–1832. https://doi.org/10.1007/S00227-012-1972-Z/TABLES/4 Calder, D. R. (1966). *Ecology of Marine Invertebrate Fouling Organisms in Hampton Roads*, *Virginia*. https://doi.org/10.25773/v5-4p98-6a56

Camus, L., Davies, P. E., Spicer, J. I., & Jones, M. B. (2004). Temperature-dependent physiological response of Carcinus maenas exposed to copper. *Marine Environmental Research*, *58*, 781–785. https://doi.org/10.1016/J.MARENVRES.2004.03.093

Carlton, J. T. (1996). Marine Bioinvasions: The Alteration of Marine Ecosystems by Nonindigenous Species. *Oceanography*, *9*(1), 36–43.

https://www.jstor.org/stable/43925538#metadata info tab contents

Carlton, J. T. (2003). Community assembly and historical biogeography in the North Atlantic Ocean: the potential role of human-mediated dispersal vectors. *Hydrobiologia*, *503*, 1–8.

Carlton, J. T., & Geller, J. B. (1993). Ecological Roulette: The Global Transport of Nonindigenous Marine Organisms. *Science*, *261*(5117), 78–82.

https://doi.org/10.1126/science.261.5117.78

Carman, M. R., Grunden, D. W., & Ewart, D. (2014). Coldwater reattachment of colonial tunicate Didemnum vexillum fragments to natural (eelgrass) and artificial (plastic) substrates in New England. *Aquatic Invasions*, *9*(1), 105–110. https://doi.org/10.3391/ai.2014.9.1.09
Carnegie, R. B., & Barber, B. J. (2001). Growth and Mortality of Ostrea edulis at Two Sites on the Damariscotta River Estuary, Maine, USA. *Journal of the World Aquaculture Society*, *32*(2), 221–227. https://doi.org/10.1111/J.1749-7345.2001.TB01099.X

Carver, C. E., Mallet, A. L., & Vercaemer, B. (2006). *Biological Synopsis of the colonial tunicates, Botryllus schlosseri and Botrylloides violaceus*.

Casso, M., Navarro, M., Ordóñez, V., Fernández-Tejedor, M., Pascual, M., & Turon, X. (2018). Seasonal patterns of settlement and growth of introduced and native ascidians in bivalve cultures in the Ebro Delta (NE Iberian Peninsula). *Regional Studies in Marine Science*, *23*, 12–22. https://doi.org/10.1016/J.RSMA.2017.11.002

Casso, M., Turon, X., & Pascual, M. (2019). Single zooids, multiple loci: independent colonisations revealed by population genomics of a global invader. *Biological Invasions 2019* 21:12, 21(12), 3575–3592. https://doi.org/10.1007/S10530-019-02069-8

Castro, N., Ramalhosa, P., Cacabelos, E., Costa, J. L., Canning-Clode, J., & Gestoso, I. (2021). Winners and losers: prevalence of non-indigenous species under simulated marine heatwaves and high propagule pressure. *Marine Ecology Progress Series*, 668, 21–38.

https://doi.org/10.3354/MEPS13710

Cereja, R. (2020). Critical thermal maxima in aquatic ectotherms. *Ecological Indicators*, *119*, 106856. https://doi.org/10.1016/J.ECOLIND.2020.106856

Chapman, E. C. N., Rodriguez-Perez, A., Hugh-Jones, T., Bromley, C., James, M. A., Diele, K., & Sanderson, W. G. (2021). Optimising recruitment in habitat creation for the native European oyster (Ostrea edulis): Implications of temporal and spatial variability in larval abundance. *Marine Pollution Bulletin*, *170*, 112579. https://doi.org/10.1016/J.MARPOLBUL.2021.112579 Chebbi, N., Mastrototaro, F., & Missaoui, H. (2010). Spatial distribution of ascidians in two Tunisian lagoons of the Mediterranean Sea. *Cahiers de Biologie Marine*, *51*, 117–127. https://www.researchgate.net/publication/215454667

Child, A. R., & Laing, I. (1998). Comparative low temperature tolerance of small juvenile European, Ostrea edulis L., and Pacific oysters, Crassostrea gigas Thunberg. *Aquaculture Research*, *29*(2), 103–113. https://doi.org/10.1046/J.1365-2109.1998.00934.X

Cima, F., Ballarin, L., Caicci, F., Franchi, N., Gasparini, F., Rigon, F., Schiavon, F., & Manni, L. (2015). Life history and ecological genetics of the colonial ascidian Botryllus schlosseri. *Zoologischer Anzeiger*, *257*, 54–70. https://doi.org/10.1016/j.jcz.2015.04.004

Clare, E. L., Economou, C. K., Faulkes, C. G., Gilbert, J. D., Bennett, F., Drinkwater, R., & Littlefair, J. E. (2021). eDNAir: Proof of concept that animal DNA can be collected from air

sampling. *PeerJ*, 9, e11030. https://doi.org/10.7717/PEERJ.11030/TABLE-1

Clarke, A. (1991). What Is Cold Adaptation and How Should We Measure It? *American Zoologist*, *31*, 81–92. https://academic.oup.com/icb/article/31/1/81/152231

Clarke, A. (1993). Seasonal Acclimatization and Latitudinal Compensation in Metabolism: Do They Exist? ESSAY REVIEW Seasonal acclimatization and latitudinal compensation in metabolism: do they exist? In *Functional Ecology* (Vol. 7, Issue 2).

Clarke, C. L., & Therriault, T. W. (2007). *Biological Synopsis of the Invasive Tunicate Styela clava (Herdman 1881)* .

Clusa, L., Miralles, L., Basanta, A., Escot, C., & García-Vázquez, E. (2017). eDNA for detection of five highly invasive molluscs. A case study in urban rivers from the Iberian Peninsula. *PLOS ONE*. https://doi.org/10.1371/journal.pone.0188126

Clutton, E. A., Alurralde, G., & Repolho, T. (2021). Early developmental stages of native populations of Ciona intestinalis under increased temperature are affected by local habitat history. *Journal of Experimental Biology*, 224. https://doi.org/10.1242/jeb.233403

Cockrell, M. L., & Sorte, C. J. B. (2012). Predicting climate-induced changes in population dynamics of invasive species in a marine epibenthic community. *Journal of Experimental Marine Biology and Ecology*, 440, 42–48. https://doi.org/10.1016/j.jembe.2012.11.008

Cohen, A. N., & Carlton, J. T. (1995a). *Nonindigenous Aquatic Species in a United States Estuary: A Case Study of the Biological Invasions of the San Francisco Bay and Delta*.

Cohen, A. N., & Carlton, J. T. (1995b). *Nonindigenous Aquatic Species in a United States Estuary: A Case Study of the Biological Invasions of the San Francisco Bay and Delta*.

Cohen, A. N., Carlton, J. T., & Fountain, M. C. (1995). Introduction, dispersal, and potential

Cohen, A. N., Carlton, J. T., & Fountain, M. C. (1995). Introduction, dispersal, and potential impacts of green crab Carcinus maenas in San Francisco Bay, California. *Marine Biology*, 122, 225–237.

https://www.sfei.org/sites/default/files/biblio_files/1995_introductiondispersalimpactsofgreencrab.pdf

Cohen, A. N., Harris, L. H., Bingham, B. L., Carlton, J. T., Chapman, J. W., Lambert, C. C., Lambert, G., Ljubenkov, J. C., Murray, S. N., Rao, L. C., Reardon, K., & Schwindt, E. (2005). Rapid Assessment Survey for exotic organisms in southern California bays and harbors, and abundance in port and non-port areas. *Biological Invasions*, *7*, 995–1002. https://doi.org/10.1007/s10530-004-3121-1

Colarusso, P., Nelson, E., Ayvazian, S., Carman, M. R., Chintala, M., Grabbert, S., & Grunden, D. (2016). Quantifying the ecological impact of invasive tunicates to shallow coastal water systems. *Management of Biological Invasions*, 7(1), 33–42.

https://doi.org/10.3391/mbi.2016.7.1.05

Collin, S. B., Edwards, P. K., Leung, B., & Johnson, L. E. (2013). Optimizing early detection of non-indigenous species: Estimating the scale of dispersal of a nascent population of the invasive tunicate Ciona intestinalis (L.). *Marine Pollution Bulletin*, 73(1), 64–69.

https://doi.org/10.1016/J.MARPOLBUL.2013.05.040

Compton, T. J., Leathwick, J. R., & Inglis, G. J. (2010). Thermogeography predicts the potential global range of the invasive European green crab (Carcinus maenas). *Diversity and Distributions*, *16*(2), 243–255. https://doi.org/10.1111/J.1472-4642.2010.00644.X

Convey, P., & Peck, L. S. (2019). Antarctic environmental change and biological responses.

Sciences Advances, 11, 1–16. www.ipcc.ch/2019/09/25/srocc-press-release/
Cook, E. J., Jenkins, S., Maggs, C., Minchin, D., Mineur, F., Nall, C., & Sewell, J. (2013).

Impacts of climate change on non-native species. *Marine Climate Change Impacts Partnershio*, 155–166. https://doi.org/10.1111xxxxx

Cook, E. J., Willis, K. J., & Lozano-Fernandez, M. (2007). Survivorship, growth and reproduction of the non-native Caprella mutica Schurin, 1935 (Crustacea: Amphipoda). *Hydrobiologia*, *590*(1), 55–64. https://doi.org/10.1007/S10750-007-0757-8/FIGURES/3

Coolen, J. W. P., Lengkeek, W., Degraer, S., Kerckhof, F., Kirkwood, R. J., & Lindeboom, H. J. (2016). Distribution of the invasive Caprella mutica Schurin, 1935 and native Caprella linearis (Linnaeus, 1767) on artificial hard substrates in the North Sea: Separation by habitat. *Aquatic Invasions*, 11(4), 437–449. https://doi.org/10.3391/ai.2016.11.4.08

Cosham, J., Beazley, K. F., Mccarthy, C., Cosham, J., & Beazley, K. F. (2016). Environmental factors influencing local distributions of European green crab (Carcinus maenas) for modeling and management applications. *Environmental Reviews*, *24*, 244–252.

https://doi.org/10.1139/er-2015-0053

Cossins, A. R., & Bowler, K. (1987). Temperature Biology of Animals. In *Temperature Biology of Animals*. Springer Netherlands. https://doi.org/10.1007/978-94-009-3127-5

Coutant, C. C., & Talmage, S. S. (1976). Thermal Effects. *Water Pollution Control Federation*, 48(6), 1486–1544.

Cowles, R. B., & Bogert, C. M. (1944). A Preliminary Study of the Thermal Requirements of Desert Reptiles. *Bulletin of the American Museum of Natural History*, 83(5).

Coyle, A. F. (2017). Some like it cold: the relationship between thermal tolerance and mitochondrial genotype in an invasive population of the European green crab, Carcinus maenas An Honors Paper for the Department of Biology.

Coyle, A. F., Voss, E. R., Tepolt, C. K., & Carlon, D. B. (2019a). Mitochondrial genotype influences the response to cold stress in the European green crab, Carcinus maenas. *Journal of Experimental Biology*, 222(17).

https://doi.org/10.1242/JEB.203521/258894/AM/MITOCHONDRIAL-GENOTYPE-INFLUEN CES-THE-RESPONSE-TO

Coyle, A. F., Voss, E. R., Tepolt, C. K., & Carlon, D. B. (2019b). Mitochondrial genotype influences the response to cold stress in the European green crab, Carcinus maenas. *Journal of Experimental Biology*, 222(17).

https://doi.org/10.1242/JEB.203521/258894/AM/MITOCHONDRIAL-GENOTYPE-INFLUEN CES-THE-RESPONSE-TO

Crane, L. C., Goldstein, J. S., Thomas, D. W., Rexroth, K. S., & Watts, A. W. (2021). Effects of life stage on eDNA detection of the invasive European green crab (Carcinus maenas) in estuarine systems. *Ecological Indicators*, *124*. https://doi.org/10.1016/j.ecolind.2021.107412

Cuculescu, M., Hyde, D., & Bowler, K. (1998a). Thermal Tolerance of Two Species of Marine Crab, Cancer pagurus and Carcinus maenas. *Journal of Thermal Biology*.

Cuculescu, M., Hyde, D., & Bowler, K. (1998b). Thermal tolerance of two species of marine crab, Cancer pagurus and Carcinus maenas. *Journal of Thermal Biology*, *23*(2), 107–110. https://doi.org/10.1016/S0306-4565(98)00008-4

Dahms, H.-U., Gao, Q.-F., & Hwang, J.-S. (2007). Optimized maintenance and larval production of the bryozoan Bugula neritina (Bugulidae: Gymnolaemata) in the laboratory. *Aquaculture*, 265, 169–175. https://doi.org/10.1016/j.aquaculture.2007.01.029

Dalla Via, J. (1985). Oxygen consumption and temperature change in the shimp Palaemon elegans Oxygen consumption and temperature change in the shrimp Palaemon elegans. *Marine Ecology Progress Series*, *26*, 199–202. https://doi.org/10.3354/meps026199

Danziger, A. M., Olson, Z. H., & Frederich, M. (2022). Limitations of eDNA analysis for Carcinus maenas abundance estimations. *BMC Ecology and Evolution*.

https://doi.org/10.1186/s12862-022-01969-z

Danziger, A. M., & Frederich, M. (2022). Challenges in eDNA detection of the invasive European green crab, Carcinus maenas. *Biological Invasions*, *24*(6), 1881-1894.

Darling, J. A., Bagley, M. J., Roman, J. O. E., Tepolt, C. K., & Geller, J. B. (2008). Genetic patterns across multiple introductions of the globally invasive crab genus Carcinus. *Molecular Ecology*, *17*(23), 4992-5007.

Dauvin, J.-C., Rius, A. T., & Ruellet, T. (2009). Recent expansion of two invasive crabs species Hemigrapsus sanguineus (de Haan, 1835) and H. takanoi Asakura and Watanabe 2005 along the Opal Coast, France. *Aquatic Invasions*, *4*(3), 451–465. https://doi.org/10.3391/ai.2009.4.3.3 Davis, A. R., Butler, A. J., & van Altena, I. (1991). Settlement behaviour of ascidian larvae: preliminary evidence for inhibition by sponge allelochemicals. *Source: Marine Ecology Progress Series*, *72*(1), 117–123.

Davis, M. H., & Davis, M. E. (2008). First record of Styela clava (Tunicata, Ascidiacea) in the Mediterranean region. *Aquatic Invasions*, *3*(2), 125–132. https://doi.org/10.3391/ai.2008.3.2.2 Davis, M. H., & Davis, M. E. (2010). The impact of the ascidian Styela clava Herdman on shellfish farming in the Bassin de Thau, France. *Journal of Applied Ichthyology*, *26*(Suppl. 2), 12–18. https://doi.org/10.1111/J.1439-0426.2010.01496.X

Davis, M. H., Lützen, J., & Davis, M. E. (2007). The spread of Styela clava Herdman, 1882 (Tunicata, Ascidiacea) in European waters. *Aquatic Invasions*, *2*(4), 378–390. https://doi.org/10.3391/ai.2007.2.4.6

Dawirs, R. (1985). Temperature and larval development of Carcinus maenas (Decapoda) in the laboratory; predictions of larval dynamics in the sea. *Marine Ecology Progress Series*, *24*(3), 297–302. https://doi.org/10.3354/meps024297

Dayananda, B., Murray, B. R., & Webb, J. K. (2017). Hotter nests produce hatchling lizards with lower thermal tolerances. *Journal of Experimental Biology*, 220, 2159–2165.

 $https://opus.lib.uts.edu.au/bitstream/10453/118307/1/080\%20Dayananda\%20et\%20al.\%202017.\\pdf$

de Mesel, I., Kerckhof, F., Norro, A., Rumes, B., & Degraer, S. (2015). Succession and seasonal dynamics of the epifauna community on offshore wind farm foundations and their role as

stepping stones for non-indigenous species. *Hydrobiologia*, 756(1), 37–50.

https://doi.org/10.1007/S10750-014-2157-1/FIGURES/6

de Pirro, M., Cannicci, S., & Santini, G. (1999). A multi-factorial experiment on heart rate variations in the intertidal crab Pachygrapsus marmoratus. *Marine Biology*, *135*, 341–345.

de Rivera, C. E., Steves, B. P., Fofonoff, P. W., Hines, A. H., & Ruiz, G. M. (2011). Potential for high-latitude marine invasions along western North America. *Diversity and Distributions*, *17*(6), 1198–1209. https://doi.org/10.1111/J.1472-4642.2011.00790.X

de Wachter, B., Sartoris, F. J., & Pörtner, H. O. (1997). The anaerobic endproduct lactate has a behavioural and metabolic signalling function in the shore crab Carcinus maenas. *Journal of Experimental Biology*, 200(6), 1015–1024. https://doi.org/10.1242/jeb.200.6.1015

Decelle, J., Andersen, A. C., & Hourdez, S. (2010). Morphological adaptations to chronic hypoxia in deep-sea decapod crustaceans from hydrothermal vents and cold seeps. *Marine Biology*, *157*(6), 1259–1269. https://doi.org/10.1007/S00227-010-1406-8/FIGURES/5

Deibel, D., Mckenzie, C. H., Rise, M. L., Thompson, R. J., Lowen, J. B., Ma, K. C. K., Applin, G., O'donnell, R., Wells, T., Hall, J. R., Sargent, P., & Pilgrim, B. B. (2014). Recommendations for Eradication and Control of Non-indigenous, Colonial, Ascidian Tunicates in Newfoundland Harbours. In *Canadian Manuscript Report of Fisheries and Aquatic Sciences*.

Deiner, K., & Altermatt, F. (2014). Transport distance of invertebrate environmental DNA in a natural river. *PLoS ONE*, *9*(2), e88786. https://doi.org/10.1371/journal.pone.0088786

Deiner, K., Bik, H. M., Mächler, E., Seymour, M., Lacoursière-Roussel, A., Altermatt, F., Creer, S., Bista, I., Lodge, D. M., de Vere, N., Pfrender, M. E., & Bernatchez, L. (2017). Environmental DNA metabarcoding: Transforming how we survey animal and plant communities. *Molecular Ecology*, 26(21), 5872–5895. https://doi.org/10.1111/mec.14350

Deli, T., Pfaller, M., & Schubart, C. D. (2018). Phylogeography of the littoral prawn species Palaemon elegans (Crustacea: Caridea: Palaemonidae) across the Mediterranean Sea unveils disparate patterns of population genetic structure and demographic history in the two sympatric genetic types II and III. *Marine Biodiversity*, 48(4), 1979–2001.

https://doi.org/10.1007/S12526-017-0711-6/TABLES/6

Denley, D., & Metaxas, A. (2015). Recovery capacity of the invasive colonial bryozoan Membranipora membranacea from damage: effects of temperature, location, and magnitude of

damage. Marine Biology, 162(9), 1769–1778.

https://doi.org/10.1007/S00227-015-2707-8/TABLES/3

Denley, D., & Metaxas, A. (2016). Quantifying mortality of modular organisms: a comparison of partial and whole-colony mortality in a colonial bryozoan. *Ecosphere*, 7(10), 1483. https://doi.org/10.1002/ecs2.1483

Denley, D., & Metaxas, A. (2017). Effects of intrinsic and extrinsic factors on reproduction of an ecologically significant invasive bryozoan: implications for invasion success. *Marine Biology*, *164*(6), 1–10. https://doi.org/10.1007/S00227-017-3172-3/FIGURES/4

Denley, D., Metaxas, A., & Short, J. (2014). Selective settlement by larvae of Membranipora membranacea and Electra pilosa (Ectoprocta) along kelp blades in Nova Scotia, Canada. *Aquatic Biology*, *21*(1), 47–56. https://doi.org/10.3354/ab00569

Dijkstra, J. A., & Harris, L. G. (2007). Predicting the Success of Invasive Species in the Great Bay Predicting the Success of Invasive Species in the Great Bay Estuarine Researce Estuarine Researce. https://scholars.unh.edu/prep/137

Dijkstra, J. A., Lambert, W. J., & Harris, L. G. (2013). Introduced species provide a novel temporal resource that facilitates native predator population growth. *Biological Invasions*, *15*(4), 911–919. https://doi.org/10.1007/S10530-012-0339-1/FIGURES/8

Dijkstra, J. A., Westerman, E. L., & Harris, L. G. (2011). The effects of climate change on species composition, succession and phenology: a case study. *Global Change Biology*, *17*(7), 2360–2369. https://doi.org/10.1111/J.1365-2486.2010.02371.X

Dijkstra, J. A., Westerman, E. L., & Harris, L. G. (2017). Elevated seasonal temperatures eliminate thermal barriers of reproduction of a dominant invasive species: A community state change for northern communities? *Diversity and Distributions*, *23*(10), 1182–1192. https://doi.org/10.1111/DDI.12604

Dijkstra, J. A., Westerman, E. L., Harris, L. G., Jennifer Dijkstra, C. A., & Ricciardi, A. (2017). Elevated seasonal temperatures eliminate thermal barriers of reproduction of a dominant invasive species: A community state change for northern communities? *Diversity and Distributions*, 23(10), 1182–1192. https://doi.org/10.1111/DDI.12604

Dijkstra, J., Dutton, A., Westerman, E., & Harris, L. (2008). Heart rate reflects osmostic stress levels in two introduced colonial ascidians Botryllus schlosseri and Botrylloides violaceus. *Marine Biology*, *154*(5), 805–811. https://doi.org/10.1007/s00227-008-0973-4

Dijkstra, J., Harris, L. G., & Westerman, E. (2007). Distribution and long-term temporal patterns of four invasive colonial ascidians in the Gulf of Maine. *Journal of Experimental Marine Biology and Ecology*, *342*(1), 61–68. https://doi.org/10.1016/J.JEMBE.2006.10.015

Dybern, B. I. (1965). The Life Cycle of Ciona intestinalis (L.) f. typica in Relation to the Environmental Temperature. *Oikos*, *16*, 109–131. https://www.jstor.org/stable/pdf/3564870.pdf

Edgell, T. C., & Hollander, J. (2011). The Evolutionary Ecology of European Green Crab, Carcinus maenas, in North America. In *In the wrong place-alien marine crustaceans: Distribution, biology and impacts* (pp. 641–659). Springer Netherlands. https://doi.org/10.1007/978-94-007-0591-3_23

Eichmiller, J. J., Best, S. E., & Sorensen, P. W. (2016). Effects of temperature and trophic state on degradation of environmental DNA in lake water. *Environmental Science and Technology*. https://doi.org/10.1021/acs.est.5b05672

Ens, N., Harvey, B., Davies, M. M., Thomson, H. M., Meyers, K. J., Yakimishyn, J., Lee, L. C., McCord, M. E., & Gerwing, T. G. (2022). The Green Wave: Reviewing the Environmental Impacts of the Invasive European Green Crab (Carcinus maenas) and Potential Management Approaches Environmental Reviews. *Environmental Reviews*.

Epelbaum, A., Herborg, L. M., Therriault, T. W., & Pearce, C. M. (2009). Temperature and salinity effects on growth, survival, reproduction, and potential distribution of two non-indigenous botryllid ascidians in British Columbia. *Journal of Experimental Marine Biology and Ecology*, 369(1), 43–52. https://doi.org/10.1016/J.JEMBE.2008.10.028

Epifanio, C. E. (2013). Invasion biology of the Asian shore crab Hemigrapsus sanguineus: A review. *Journal of Experimental Marine Biology and Ecology*, *441*, 33–49.

https://doi.org/10.1016/j.jembe.2013.01.010

Epifanio, C. E., Dittel, A. I., Park, S., Schwalm, S., & Fouts, A. (1998). Early life history of Hemigrapsus sanguine us, a non-indigenous crab in the Middle Atlantic Bight (USA). *Marine Ecology Progress Series*, *170*, 231–238.

Erenger Colsoul, B., Boudry, P., P Erez-Parall, L., Brato S Cetini, A., Hugh-Jones, T., Arzul, I., Erou, N. M., Wegner, K. M., Peter, C., Merk, V., & Pogoda, B. (2021). Sustainable large-scale production of European flat oyster (Ostrea edulis) seed for ecological restoration and aquaculture: a review. *Reviews in Aquaculture*, *13*, 1423–1468. https://doi.org/10.1111/raq.12529

Ern, R., Huong, D. T. T., Phuong, N. T., Madsen, P. T., Wang, T., & Bayley, M. (2015). Some like it hot: Thermal tolerance and oxygen supply capacity in two eurythermal crustaceans. *Scientific Reports*, *5*, 1–11. https://doi.org/10.1038/srep10743

Ertan Çinar, M. (2016). The alien ascidian Styela clava now invading the Sea of Marmara (Tunicata: Ascidiacea). *ZooKeys*, *563*, 1–10. https://doi.org/10.3897/zookeys.563.6836 Escribano-Álvarez, P., & López-González, P. J. (2018). Facing the arrival of newcomers: an intertidal sea anemone approach (Hexacorallia, Actiniaria). *Biological Invasions*, *20*(10), 2945–2962. https://doi.org/10.1007/S10530-018-1748-6/FIGURES/5

Espelien, M. S. (2020). *Looking for alien invertebrates in Norwegian ports, extensive sampling, and precise identification* (Issue May). https://hdl.handle.net/11250/2659710

Espinosa-Novo, N., Giménez, L., Boersma, M., & Torres, G. (2023). On their way to the north: larval performance of Hemigrapsus sanguineus invasive on the European coast—a comparison with the native European population of Carcinus maenas. *Biological Invasions*, *25*, 3119–3136. https://doi.org/10.1007/S10530-023-03095-3

Eymann, C., Götze, S., Bock, C., Guderley, H., Knoll, A. H., Lannig, G., Sokolova, I. M., Aberhan, M., & Pörtner, H. O. (2020). Thermal performance of the European flat oyster, Ostrea edulis (Linnaeus, 1758)—explaining ecological findings under climate change. *Marine Biology*, *167*(2), 1–15. https://doi.org/10.1007/S00227-019-3620-3/FIGURES/5

Ferguson, N., White, C. R., & Marshall, D. J. (2013). Competition in benthic marine invertebrates: the unrecognized role of exploitative competition for oxygen. *Ecology*, *94*(1), 126–135. https://doi.org/10.1890/12-0795.1

Fernández-Romero, A., Moreira, J., & Guerra-García, J. M. (2019). Marinas: An overlooked habitat for exploring the relation among polychaete assemblages and environmental factors. *Marine Pollution Bulletin*, *138*, 584–597. https://doi.org/10.1016/j.marpolbul.2018.11.064 Ficetola, G. F., Miaud, C., Pompanon, F., & Taberlet, P. (2008). Species detection using environmental DNA from water samples. *Biology Letters*, *4*(4), 423.

Finnoff, D., Shogren, J. F., Leung, B., & Lodge, D. (2005). The importance of bioeconomic feedback in invasive species management. *Ecological Economics*, *52*(3), 367–381. https://doi.org/10.1016/J.ECOLECON.2004.06.020

https://doi.org/10.1098/RSBL.2008.0118

Flenniken, M. M. (2017). *Understanding the invasion success and spread of the globally introduced marine invertebrate, Diadumene lineata.*

Fletcher, L. M. (2013). *Ecology of Biofouling and Impacts on Mussel Aquaculture: A Case Study With Didemnum Vexillum*.

Fletcher, L. M., Atalah, J., & Forrest, B. M. (2018). Effect of substrate deployment timing and reproductive strategy on patterns in invasiveness of the colonial ascidian Didemnum vexillum. *Marine Environmental Research*, *141*, 109–118.

https://doi.org/10.1016/J.MARENVRES.2018.08.006

Fletcher, L. M., Forrest, B. M., Atalah, J., & Bell, J. J. (2013). Reproductive seasonality of the invasive ascidian Didemnum vexillum in New Zealand and implications for shellfish aquaculture. *Aquaculture Environment Interactions*, *3*(3), 197–211.

https://doi.org/10.3354/aei00063

Fletcher, L. S., Bolander, M., Reese, T. C., Asay, E. G., Pinkston, E., & Griffen, B. D. (2022). Metabolic rates of the Asian shore crab Hemigrapsus sanguineus in air as a function of body size, location, and injury. *Ecology and Evolution*, *12*. https://doi.org/10.1002/ECE3.9297

Førde, H., Forbord, S., Handå, A., Fossberg, J., Arff, J., Johnsen, G., & Kjell, I. R. (2016). Development of bryozoan fouling on cultivated kelp (Saccharina latissima) in Norway. *Journal of Applied Phycology*, *28*, 1225–1234. https://doi.org/10.1007/s10811-015-0606-5

Forero, D. A., Lopez-Leon, S., González-Giraldo, Y., & Bagos, P. G. (2019). Ten simple rules for carrying out and writing meta-analyses. *PLOS Computational Biology*, *15*(5), e1006922. https://doi.org/10.1371/JOURNAL.PCBI.1006922

Forrest, B. M., Fletcher, L. M., Atalah, J., Piola, R. F., & Hopkins, G. A. (2013). Predation Limits Spread of Didemnum vexillum into Natural Habitats from Refuges on Anthropogenic Structures. *PLOS ONE*, *8*(12). https://doi.org/10.1371/JOURNAL.PONE.0082229

Fraser, P. J. (1990). Effects of temperature on statocyst afferents of the crab Carcinus maenas. *Journal of Thermal Biology*, *15*(1), 25–31. https://doi.org/10.1016/0306-4565(90)90043-H

Frederich, M., O'Rourke, M. R., Furey, N. B., & Jost, J. A. (2009). AMP-activated protein kinase (AMPK) in the rock crab, Cancer irroratus: An early indicator of temperature stress. *Journal of Experimental Biology*, *212*(5), 722–730. https://doi.org/10.1242/jeb.021998

Frederich, M., & Pörtner, H. O. (2000). Oxygen limitation of thermal tolerance defined by cardiac and ventilatory performance in spider crab, Maja squinado. *American Journal of*

Physiology - Regulatory Integrative and Comparative Physiology, *279*(5 48-5), 1531–1538. https://doi.org/10.1152/ajpregu.2000.279.5.r1531

Freeman, A. S., Frischeisen, A., & Blakeslee, A. M. H. (2016). Estuarine fouling communities are dominated by nonindigenous species in the presence of an invasive crab. *Biological Invasions*, *18*, 1653–1665. https://doi.org/10.1007/s10530-016-1108-3

Fujikawa, T., Munakata, T., Kondo, S.-I., Satoh, N., & Wada, S. (2010). Stress response in the ascidian Ciona intestinalis: transcriptional profiling of genes for the heat shock protein 70 chaperone system under heat stress and endoplasmic reticulum stress. *Cell Stress and Chaperones*, *15*, 193–204. https://doi.org/10.1007/s12192-009-0133-x

Fukui, Y. (1988). Comparative studies on the life history of the grapsid crabs (Crustacea, Brachyura) inhabiting intertidal cobble and boulder shores. *Publications of the Seto Marine Biological Laboratory*, *33*. https://ci.nii.ac.jp/naid/500000035810

Fukui, Y. (1991). Embryonic and larval development of the sea anemone Haliplanella lineata from Japan. *Coelenterate Biology: Recent Research on Cnidaria and Ctenophora*, 137–142. https://doi.org/10.1007/978-94-011-3240-4_19

Garside, C. J., & Bishop, M. J. (2014). The distribution of the European shore crab, Carcinus maenas, with respect to mangrove forests in southeastern Australia. *Journal of Experimental Marine Biology and Ecology*, *461*, 173–178. https://doi.org/10.1016/J.JEMBE.2014.08.007
Gasparini, F., Manni, L., Cima, F., Zaniolo, G., Burighel, P., Caicci, F., Franchi, N., Schiavon, F., Rigon, F., Campagna, D., & Ballarin, L. (2015). Sexual and asexual reproduction in the colonial ascidian Botryllus schlosseri. *Genesis*, *53*(1), 105–120. https://doi.org/10.1002/DVG.22802
Gauff, R. P. M., Lejeusne, C., Greff, S., Loisel, S., Bohner, O., & Davoult, D. (2022). Impact of in Situ Simulated Climate Change on Communities and Non-Indigenous Species: Two Climates, Two Responses. *Journal of Chemical Ecology*, *48*, 761–771.

https://doi.org/10.1007/S10886-022-01380-4/TABLES/2

Georgoulis, I., Papadopoulos, D. K., Lattos, A., Michaelidis, B., Feidantsis, K., & Giantsis, I. A. (2024). Increased seawater temperature triggers thermal, oxidative and metabolic response of Ostrea edulis, leading to anaerobiosis. *Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology*, 110943. https://doi.org/10.1016/J.CBPB.2024.110943 Giachetti, C. B., Tatián, M., & Schwindt, E. (2022). Differences in the gonadal cycle between two ascidians species, Ascidiella aspersa and Ciona robusta, help to explain their invasion

success in a cold temperate port. *Polar Biology*, 45, 1689–1701.

https://doi.org/10.1007/s00300-022-03100-w

Gilson, A. R., Coughlan, N. E., Dick, J. T. A., & Kregting, L. (2021). Marine heat waves differentially affect functioning of native (Ostrea edulis) and invasive (Crassostrea [Magallana] gigas) oysters in tidal pools. *Marine Environmental Research*, 172.

https://doi.org/10.1016/J.MARENVRES.2021.105497

Gimenez, L. H., & Brante, A. (2021). Do non-native sea anemones (Cnidaria: Actiniaria) share a common invasion pattern? – a systematic review. *Aquatic Invasions*, *16*(3), 365–390.

https://doi.org/10.3391/ai.2021.16.3.01

Gittenberger, A. (2007). Recent population expansions of non-native ascidians in The Netherlands. *Journal of Experimental Marine Biology and Ecology*, *342*(1), 122–126. https://doi.org/10.1016/J.JEMBE.2006.10.022

Glon, H., Daly, M., Carlton, J. T., Flenniken, M. M., & Currimjee, Z. (2020). Mediators of invasions in the sea: life history strategies and dispersal vectors facilitating global sea anemone introductions. *Biological Invasions*, 22(11), 3195–3222.

https://doi.org/10.1007/S10530-020-02321-6/FIGURES/8

Goldberg, C. S., Sepulveda, A., Ray, A., Baumgardt, J., & Waits, L. P. (2013). Environmental DNA as a new method for early detection of New Zealand mudsnails (*Potamopyrgus antipodarum*). *Freshwater Science*. https://doi.org/10.1899/13-046.1

Goldberg, C. S., Strickler, K. M., & Fremier, A. K. (2018). Degradation and dispersion limit environmental DNA detection of rare amphibians in wetlands: Increasing efficacy of sampling designs. *Science of The Total Environment*, 633, 695–703.

https://doi.org/10.1016/J.SCITOTENV.2018.02.295

Goldberg, C. S., Strickler, K. M., & Pilliod, D. S. (2015). Moving environmental DNA methods from concept to practice for monitoring aquatic macroorganisms. *Biological Conservation*, *183*, 1–3. https://doi.org/10.1016/j.biocon.2014.11.040

Goldsmit, J., Archambault, P., Chust, G., Villarino, E., Liu, G., Lukovich, J. v., Barber, D. G., & Howland, K. L. (2017). Projecting present and future habitat suitability of ship-mediated aquatic invasive species in the Canadian Arctic. *Biological Invasions*, 20(2), 501–517.

https://doi.org/10.1007/S10530-017-1553-7

Gonzá Lez, R. A., Díaz, F., Licea, A., Re, A. D., Noemí Sá Nchez, L., & García-Esquivel, Z. (2010). Thermal preference, tolerance and oxygen consumption of adult white shrimp Litopenaeus vannamei (Boone) exposed to different acclimation temperatures. *Journal of Thermal Biology*, *35*, 218–224. https://doi.org/10.1016/j.jtherbio.2010.05.004

Goodwin, K. D., Thompson, L. R., Duarte, B., Kahlke, T., Thompson, A. R., Marques, J. C., & Caçador, I. (2017). DNA sequencing as a tool to monitor marine ecological status. *Frontiers in Marine Science*, *4*, 107. https://doi.org/10.3389/fmars.2017.00107

Götze, S. (2020). What drives species into extinction? Biochemical and molecular mechanisms involved in temperature-related stress responses in two marine bivalves.

Grey, E. K. (2011). Relative effects of environment and direct species interactions on the population growth rate of an exotic ascidian. *Oecologia*, *166*, 935–947.

https://doi.org/10.1007/s00442-011-1931-2

Grey, E. K., Bernatchez, L., Cassey, P., Deiner, K., Deveney, M., Howland, K. L., Lacoursière-Roussel, A., Chee, S., Leong, Y., Li, Y., Olds, B., Pfrender, M. E., Prowse, T. A. A., Renshaw, M. A., & Lodge, D. M. (2018). Effects of sampling effort on biodiversity patterns estimated from environmental DNA metabarcoding surveys. *Scientific Reports*. https://doi.org/10.1038/s41598-018-27048-2

Griffen, B. D., Alder, J., Anderson, L., Asay, E. G., Blakeslee, A., Bolander, M., Cabrera, D., Carver, J., Crane, L. C., DiNuzzo, E. R., Fletcher, L. S., Luckett, J., Meidell, M., Pinkston, E., Reese, T. C., Repetto, M. F., Smith, N., Stancil, C., Tepolt, C. K., ... Vernier, A. (2022). Latitudinal and temporal variation in injury and its impacts in the invasive Asian shore crab Hemigrapsus sanguineus. *Scientific Reports*, *12*(1), 1–12.

https://doi.org/10.1038/s41598-022-21119-1

Gröner, F., Lenz, M., Wahl, M., & Jenkins, S. R. (2011). Stress resistance in two colonial ascidians from the Irish Sea: The recent invader Didemnum vexillum is more tolerant to low salinity than the cosmopolitan Diplosoma listerianum. *Journal of Experimental Marine Biology and Ecology*, 409, 48–52. https://doi.org/10.1016/J.JEMBE.2011.08.002

Guyondet, T., Patanasatienkul, T., Comeau, L. A., Landry, T., & Davidson, J. (2016). Preliminary model of tunicate infestation impacts on seston availability and organic sedimentation in longline mussel farms. *Aquaculture*, 465, 387–394. https://doi.org/10.1016/j.aquaculture.2016.09.026

Hancock, Z. B., Goeke, J. A., & Wicksten, M. K. (2017). A sea anemone of many names: a review of the taxonomy and distribution of the invasive actiniarian Diadumene lineata (Diadumenidae), with records of its reappearance on the Texas coast. *ZooKeys*, *2017*, 1–15. https://doi.org/10.3897/ZOOKEYS.706.19848

Hänfling, B., Handley, L. L., Read, D. S., Hahn, C., Li, J., Nichols, P., Blackman, R. C., Oliver, A., & Winfield, I. J. (2016). Environmental DNA metabarcoding of lake fish communities reflects long-term data from established survey methods. *Molecular Ecology*, *25*(13). https://doi.org/10.1111/mec.13660

Harianto, J., Carey, N., & Byrne, M. (2019). respR—An R package for the manipulation and analysis of respirometry data. *Methods in Ecology and Evolution*, *10*(6), 912–920. https://doi.org/10.1111/2041-210X.13162

Harms, J., Meyerharms, B., Dawirs, R. R., & Anger, K. (1994). Growth and physiology of Carcinus maenas (Decapoda, Portunidae) larvae in the field and in laboratory experiments. *Marine Ecology Progress Series*, *108*, 107–118. https://doi.org/10.3354/meps108107 Harrington, A. M., Haverkamp, H., & Hamlin, H. J. (2020). Impedance pneumography for minimally invasive measurement of heart rate in late stage invertebrates. *Journal of Visualized Experiments*.

Harris, A. M., Moore, A. M., Lowen, J. ben, & Dibacco, C. (2017). Seasonal reproduction of the non-native vase tunicate Ciona intestinalis (Linnaeus, 1767) in Nova Scotia, Canada, in relation to water temperature. *Aquatic Invasions*, 12(1), 33–41. https://doi.org/10.3391/ai.2017.12.1.04 Harris, L. G., & Dijkstra, J. A. (2007). *Seasonal Appearance and Monitoring of Invasive Species in the Great Bay Estuarine System Recommended Citation "Seasonal Appearance and Monitoring of Invasive Species in the Great Bay Estuarine System" (2007). <i>PREP Reports & Publications*.

Haubrock, P. J., Ahmed, D. A., Cuthbert, R. N., Stubbington, R., Domisch, S., G Marquez, J. R., Beidas, A., Amatulli, G., Drohan, E., England, J., Feio, M. J., E Forio, M. A., Goethals, P., Graf, W., Heino, J., Hudgins, E. J., Jähnig, S. C., Johnson, R. K., Larrañaga, A., ... Cuthbert contributed equally, R. N. (2022). *Invasion impacts and dynamics of a European-wide introduced species*. https://doi.org/10.1111/gcb.16207

Haubrock, P. J., Cuthbert, R. N., Sundermann, A., Diagne, C., & Golivets, M. (2021). Economic costs of invasive species in Germany. *NeoBiota*, *67*, 225–246.

https://doi.org/10.3897/neobiota.67.59502ï

Haure, J., Penisson, C., Bougrier, S., & Baud, J. P. (1998). Influence of temperature on clearance and oxygen consumption rates of the flat oyster Ostrea edulis: determination of allometric coefficients. *Aquaculture*, *169*(3–4), 211–224. https://doi.org/10.1016/S0044-8486(98)00383-4 Häussermann, V., Spano, C., Thiel, M., & Lohrmann, K. B. (2015). First record of the sea anemone Diadumene lineata (Verrill, 1869) from the Chilean coast (Cnidaria, Anthozoa, Actiniaria). *Spixiana*, *38*(1), 39–42.

Hawes, N. A., Tremblay, L. A., Pochon, X., Dunphy, B., Fidler, A. E., & Smith, K. F. (2018). Effects of temperature and salinity stress on DNA methylation in a highly invasive marine invertebrate, the colonial ascidian Didemnum vexillum. *PeerJ*, *2018*(6), e5003. https://doi.org/10.7717/PEERJ.5003/SUPP-4

Hawk, H. L., & Geller, J. B. (2018). DNA entombed in archival seashells reveals low historical mitochondrial genetic diversity of endangered white abalone Haliotis sorenseni. *Marine and Freshwater Research*. https://doi.org/10.1071/MF17342

Herborg, L. M., O'Hara, P., & Therriault, T. W. (2009). Forecasting the potential distribution of the invasive tunicate Didemnum vexillum. *Journal of Applied Ecology*, *46*(1), 64–72. https://doi.org/10.1111/J.1365-2664.2008.01568.X

Hernandez, S. R. D. I., & Taylor, A. C. (1985). The effect of temperature on osmotic and ionic regulation in the prawn, Palaemon elegans (Rathke). *Ophelia*, 24(1), 1–15.

https://doi.org/10.1080/00785236.1985.10426615

Herzig, S., & Shaw, R. J. (2018). AMPK: Guardian of metabolism and mitochondrial homeostasis. In *Nature Reviews Molecular Cell Biology* (Vol. 19, Issue 2, pp. 121–135). Nature Publishing Group. https://doi.org/10.1038/nrm.2017.95

Hidu, H., & Lavoie, R. E. (1991). The European oyster, Ostrea edulis L., in Maine and Eastern Canada. In W. Menzel (Ed.), *Estuarine and Marine Bivalve Mollusk Culture* (pp. 35–46). https://books.google.com/books?hl=en&lr=&id=m52s-m2VM_kC&oi=fnd&pg=PA35&dq=Hidu+and+Lavoie+1991&ots=4JmwKYfKd4&sig=vSkDc_G9Mz8aGEIrMAqLFQscAyc#v=onepage &q=Hidu and Lavoie 1991&f=false Hill, A. (2017). Alien Species Alert: Didemnum vexillum Kott, 2002: Invasion, impact, and control. In *ICES Cooperative Research Report* (Vol. 355). http://doi.org/10.17895/ices.pub.2138 Hillock, K. A., & Costello, M. J. (2013). Tolerance of the invasive tunicate Styela clava to air exposure. *Biofouling*, 29(10), 1181–1187. https://doi.org/10.1080/08927014.2013.832221 Himes, A. R., Balschi, W. S., Pelletier, G., & Frederich, M. (2017). Color Phase-Specific Ion Regulation of the European Green Crab Carcinus maenas in an Oscillating Salinity Environment. *Journal of Shellfish Research*, 36(2), 465–479. https://doi.org/10.2983/035.036.0218 Ho, B., Kelley, B., Trull, K., Roda, W., & Bordonaro, L. (2007). *Laboratory Culture of Didemnum sp.*, an *Invasive Colonial Tunicate Sea New Hampshire*.

Hobday, A. J., Alexander, L. v., Perkins, S. E., Smale, D. A., Straub, S. C., Oliver, E. C. J., Benthuysen, J. A., Burrows, M. T., Donat, M. G., Feng, M., Holbrook, N. J., Moore, P. J., Scannell, H. A., sen Gupta, A., & Wernberg, T. (2016). A hierarchical approach to defining marine heatwaves. *Progress in Oceanography*, *141*, 227–238.

https://doi.org/10.1016/J.POCEAN.2015.12.014

Hodkinson, I. D. (2003a). Metabolic Cold Adaptation in Arthropods: A Smaller-Scale Perspective. In *Ecology* (Vol. 17, Issue 4).

Hodkinson, I. D. (2003b). Metabolic Cold Adaptation in Arthropods: A Smaller-Scale Perspective. In *Ecology* (Vol. 17, Issue 4).

Hoffman, S. (2020). Analysis of the Spatial Distribution, and Recruitment of Native and Non-Native Tunicate Species on Zostera marina in New Jersey.

https://digitalcommons.montclair.edu/etdhttps://digitalcommons.montclair.edu/etd/493
Holland, O., Shaw, J., Stark, J. S., & Wilson, K. A. (2021). Hull fouling marine invasive species pose a very low, but plausible, risk of introduction to East Antarctica in climate change scenarios. *Diversity and Distributions*, 27(6), 973–988. https://doi.org/10.1111/DDI.13246
Hopkin, R. S., Qari, S., Bowler, K., Hyde, D., & Cuculescu, M. (2006). Seasonal thermal tolerance in marine Crustacea. *Journal of Experimental Marine Biology and Ecology*, 331, 74–81. https://doi.org/10.1016/j.jembe.2005.10.007

Hopkins, G. A., Forrest, B. M., Piola, R. F., & Gardner, J. P. A. (2011). Factors affecting survivorship of defouled communities and the effect of fragmentation on establishment success. *Journal of Experimental Marine Biology and Ecology*, 396(2), 233–243.

https://doi.org/10.1016/J.JEMBE.2010.10.027

Hosono, T. (2011). Effect of temperature on growth and maturation pattern of Caprella mutica (Crustacea, Amphipoda): Does the temperature-size rule function in caprellids? *Marine Biology*, *158*(2), 363–370. https://doi.org/10.1007/S00227-010-1564-8/FIGURES/5

Hosono, T. (2014). Temperature explains reproductive dynamics in caprellids at different latitudes. *Marine Ecology Progress Series*, *511*, 129–141. https://doi.org/10.3354/meps10914 Howard, B. R., Wong, D. T. S., Aguiar, V., Desforges, J., Oishi, E. M., Stewart, J., & Côte, I. M. (2022). Effects of perceived competition and water temperature on the functional responses of invasive and native crabs. *Marine Ecology Progress Series*, *684*, 69–78.

Hudson, D. M. (2005). Characteristics Contributing to Invasiveness of the Asian Shore Crab, Hemigrapsus sanguineus.

Hudson, D. M., Sexton, D. J., Wint, D., Capizzano, C., & Crivello, J. F. (2018). Physiological and behavioral response of the Asian shore crab, Hemigrapsus sanguineus, to salinity: Implications for estuarine distribution and invasion. *PeerJ*, 8.

https://doi.org/10.7717/PEERJ.5446/SUPP-12

https://doi.org/10.3354/MEPS13974

Hulme, P. E. (2009). Trade, transport and trouble: managing invasive species pathways in an era of globalization. *Journal of applied ecology*, 46(1), 10-18.

Hutchinson, S., & Hawkins, L. E. (1992). Quantification of the physiological responses of the European flat oyster Ostrea edulis L. to temperature and salinity. *Journal of Molluscan Studies*, *58*(2), 215–226. https://doi.org/10.1093/MOLLUS/58.2.215

Hyde, D., Pearson, T., Qari, S., & Bowler, K. (2015). Adaptive considerations of temperature dependence of neuromuscular function in two species of summer- and winter-caught Crab (Carcinus maenas and Cancer pagurus). *Journal of Comparative Physiology Part B*, *185*, 629–636. https://doi.org/10.1007/s00360-015-0912-x

Irvine, S. Q., McNulty, K. B., Siler, E. M., & Jacobson, R. E. (2019). High temperature limits on developmental canalization in the ascidian Ciona intestinalis. *Mechanisms of Development*, *157*, 10–21. https://doi.org/10.1016/J.MOD.2019.04.002

Janas, U., & Bruska, O. (2010). Energy values and energy resources of two prawns in baltic coastal waters: The indigenous palaemon adspersus and the non-indigenous palaemon elegans. *Oceanologia*, *52*(2), 281–297. https://doi.org/10.5697/oc.52-2.281

Janas, U., Piłka, M., & Lipińska, D. (2013). Temperature and salinity requirements of Palaemon adspersus Rathke, 1837 and Palaemon elegans Rathke, 1837. Do they explain the occurrence and expansion of prawns in the Baltic Sea? *Marine Biology Research*, *9*, 293–300.

https://doi.org/10.1080/17451000.2012.739699

Janas, U., & Spicer, J. I. (2008). Does the effect of low temperature on osmoregulation by the prawn Palaemon elegans Rathke, 1837 explain winter migration offshore? *Marine Biology*, 153(5), 937–943. https://doi.org/10.1007/S00227-007-0865-Z/FIGURES/5

Janas, U., & Spicer, J. I. (2010). Seasonal and temperature effects on osmoregulation by the invasive prawn Palaemon elegans Rathke, 1837 in the Baltic Sea. *Marine Biology Research*, 6(3), 333–337. https://doi.org/10.1080/17451001003670086

Januario, S. M., Estay, S. A., Labra, F. A., & Lima, M. (2015). Combining environmental suitability and population abundances to evaluate the invasive potential of the tunicate Ciona intestinalis along the temperate South American coast. *PeerJ*, *e1357*(10).

https://doi.org/10.7717/PEERJ.1357/SUPP-2

Jensen, G. C., McDonald, P. S., & Armstrong, D. A. (2002). East meets west: Competitive interactions between green crab Carcinus maenas, and native and introduced shore crab Hemigrapsus spp. *Marine Ecology Progress Series*, 225, 251–262.

https://doi.org/10.3354/meps225251

Jensen, K. R., Andersen, P., Andersen, N. R., Bruhn, A., Buur, H., Carl, H., Jakobsen, H., Jaspers, C., Lundgreen, K., Nielsen, R., Strandberg, B., & Stæhr, P. A. U. (2023). Reviewing Introduction Histories, Pathways, Invasiveness, and Impact of Non-Indigenous Species in Danish Marine Waters. *Diversity*, *15*(3), 434. https://doi.org/10.3390/D15030434/S1

Jerde, C. L., Chadderton, W. L., Mahon, A. R., Renshaw, M. A., Corush, J., Budny, M. L., Mysorekar, S., & Lodge, D. M. (2013). Detection of Asian carp DNA as part of a Great Lakes basin-wide surveillance program. *Canadian Journal of Fisheries and Aquatic Sciences*, 70(4), 522–526.

https://doi.org/10.1139/CJFAS-2012-0478/ASSET/IMAGES/LARGE/CJFAS-2012-0478F1.JPE

Jerde, C. L., Mahon, A. R., Chadderton, W. L., & Lodge, D. M. (2011). "Sight-unseen" detection of rare aquatic species using environmental DNA. *Conservation Letters*, *4*(2), 150–157. https://doi.org/10.1111/J.1755-263X.2010.00158.X

Jiang, A. li, Lin, J., & Wang, C. hai. (2008). Physiological energetics of the ascidian Styela clava in relation to body size and temperature. *Comparative Biochemistry and Physiology Part A*, *149*, 129–136. https://doi.org/10.1016/J.CBPA.2006.08.047

Jofré Madariaga, D., Rivadeneira, M. M., Tala, F., & Thiel, M. (2014). Environmental tolerance of the two invasive species Ciona intestinalis and Codium fragile: their invasion potential along a temperate coast. *Biological Invasions*, *16*(12), 2507–2527.

https://doi.org/10.1007/S10530-014-0680-7/FIGURES/5

Johnson, L. E., & Carlton, J. T. (1996). Post-establishment spread in large-scale invasions: Dispersal mechanisms of the zebra mussel Dreissena Polymorpha. *Ecology*, 77(6), 1686–1690. https://doi.org/10.2307/2265774

Johnson, G. C., & Lyman, J. M. (2020). Warming Trends Increasingly Dominate Global Ocean. *Nature Climate Change*.

Jørgensen, L. B., Overgaard, J., & MacMillan, H. A. (2017). Paralysis and heart failure precede ion balance disruption in heat-stressed European green crabs. *Journal of Thermal Biology*, *68*, 186–194. https://doi.org/10.1016/J.JTHERBIO.2016.08.001

Jost, J. A., Podolski, S. M., & Frederich, M. (2012). Enhancing thermal tolerance by eliminating the pejus range: A comparative study with three decapod crustaceans. *Marine Ecology Progress Series*, 444(Shelford 1931), 263–274. https://doi.org/10.3354/meps09379

Joyce, A., Holthuis, T. D., Charrier, G., & Lindegarth, S. (2013). Experimental effects of temperature and photoperiod on synchrony of gametogenesis and sex ratio in the european oyster ostrea edulis (Linnaeus). *Journal of Shellfish Research*, 32(2), 447–458.

https://doi.org/10.2983/035.032.0225

Jungblut, S. (2017). *Ecology and ecophysiology of invasive and native decapod crabs in the southern North Sea*.

Jungblut, S., Beermann, J., Boos, K., Saborowski, R., & Hagen, W. (2017a). Population development of the invasive crab Hemigrapsus sanguineus (De Haan, 1853) and its potential native competitor Carcinus maenas (Linnaeus, 1758) at Helgoland (North Sea) between 2009 and 2014. *Aquatic Invasions*, *12*(1), 85–96. https://doi.org/10.3391/ai.2017.12.1.09 Jungblut, S., Beermann, J., Boos, K., Saborowski, R., & Hagen, W. (2017b). Population development of the invasive crab Hemigrapsus sanguineus (De Haan, 1853) and its potential

native competitor Carcinus maenas (Linnaeus, 1758) at Helgoland (North Sea) between 2009 and 2014. *Aquatic Invasions*, 12. http://www.dwd.de

Jungblut, S., Boos, K., McCarthy, M. L., Saborowski, R., & Hagen, W. (2018). Invasive versus native brachyuran crabs in a European rocky intertidal: respiratory performance and energy expenditures. *Marine Biology*, *165*(3), 1–14.

https://doi.org/10.1007/S00227-018-3313-3/FIGURES/4

Jurgens, L. J., Ciesielski, M., Agrawal, A., & Hubbard, E. (2022). Low Salinity Weakens Predator Effects on Community Assembly in a Sub-tropical Estuary. *Estuaries and Coasts*, 45(7), 2070–2081. https://doi.org/10.1007/S12237-022-01084-8/FIGURES/5

Kageyama, S. A., Hoogland, M. R., Tajjioui, T., Schreier, T. M., Erickson, R. A., & Merkes, C. M. (2022). Validation of a portable eDNA detection kit for invasive carps. *Fishes*, 7(6), 363.

Kamermans, P., & Saurel, C. (2022). Interacting climate change effects on mussels (Mytilus edulis and M. galloprovincialis) and oysters (Crassostrea gigas and Ostrea edulis): experiments for bivalve individual growth models. *Aquatic Living Resources*, *35*(1).

https://doi.org/10.1051/alr/2022001

Kanamori, M., Baba, K., Natsuike, M., & Goshima, S. (2017). Life history traits and population dynamics of the invasive ascidian, Ascidiella aspersa, on cultured scallops in Funka Bay, Hokkaido, northern Japan. *Journal of the Marine Biological Association of the United Kingdon*, 97(2), 387–399. https://doi.org/10.1017/S0025315416000497

Kang, C. K., Choy, E. J., Lee, W. C., Kim, N. J., Park, H. J., & Choi, K. S. (2011). Physiological energetics and gross biochemical composition of the ascidian Styela clava cultured in suspension in a temperate bay of Korea. *Aquaculture*, *319*(1–2), 168–177.

https://doi.org/10.1016/J.AQUACULTURE.2011.06.016

Kang, C. K., Lee, Y. J., Han, E., Park, H. J., Yun, S. G., & Lee, W. C. (2015). Effects of temperature and body size on the physiological energetics of the stalked sea squirt Styela clava. *Journal of Experimental Marine Biology and Ecology*, *462*, 105–112.

https://doi.org/10.1016/J.JEMBE.2014.10.026

Kawaguchi, A., Utsumi, N., Morita, M., Ohya, A., & Wada, S. (2015). Application of the cis-regulatory region of a heat-shock protein 70 gene to heat-inducible gene expression in the ascidian Ciona intestinalis. *Genesis*, *53*(1), 170–182. https://doi.org/10.1002/DVG.22834

Kelley, A. L. (2014). The role thermal physiology plays in species invasion. *Conservation Physiology*, 2. https://doi.org/10.1093/conphys/cou045

Kelley, A. L., de Rivera, C. E., & Buckley, B. A. (2011a). Intraspecific variation in thermotolerance and morphology of the invasive European green crab, Carcinus maenas, on the west coast of North America. *Journal of Experimental Marine Biology and Ecology*, 409(1–2), 70–78. https://doi.org/10.1016/J.JEMBE.2011.08.005

Kelley, A. L., de Rivera, C. E., & Buckley, B. A. (2011b). Intraspecific variation in thermotolerance and morphology of the invasive European green crab, Carcinus maenas, on the west coast of North America. *Journal of Experimental Marine Biology and Ecology*, 409(1–2), 70–78. https://doi.org/10.1016/J.JEMBE.2011.08.005

Kelley, A. L., de Rivera, C. E., & Buckley, B. A. (2013). Cold tolerance of the invasive Carcinus maenas in the east Pacific: Molecular mechanisms and implications for range expansion in a changing climate. *Biological Invasions*, *15*(10), 2299–2309.

https://doi.org/10.1007/S10530-013-0454-7/FIGURES/6

Kelly, E., Tully, O., & Browne, R. (2012). Effects of temperature and salinity on the survival and development of larval and juvenile Palaemon serratus (Decapoda: Palaemonidae) from Irish waters. *Journal of the Marine Biological Association of the United Kingdom*, *92*(1), 151–161. https://doi.org/10.1017/S0025315411000415

Kelly, R. P., Gallego, R., & Jacobs-Palmer, E. (2018). The effect of tides on nearshore environmental DNA. *PeerJ*. https://doi.org/10.7717/peerj.4521

Kelly, R. P., Port, J. A., Yamahara, K. M., & Crowder, L. B. (2014). Using environmental DNA to census marine fishes in a large mesocosm. *PLoS ONE*, *9*(1), e86175.

https://doi.org/10.1371/journal.pone.0086175

Kelty, J. D., & Lee, R. E. (2001). Rapid Cold-Hardening of Drosophila melanogaster (Diptera: Drosophilidae) During Ecologically Based Thermoperiodic Cycles. *Journal of Experimental Biology*, 204, 1659–1666.

https://www.units.miamioh.edu/cryolab/projects/documents/KeltyLee01.pdf

Kenworthy, J. M., Davoult, D., & Lejeusne, · Christophe. (2018). Compared stress tolerance to short-term exposure in native and invasive tunicates from the NE Atlantic: when the invader performs better. *Marine Biology*, *165*, 1–11. https://doi.org/10.1007/s00227-018-3420-1

Keough, M., & Chernoff, H. (1987). Dispersal and Population Variation in the Bryozoan Bugula Neritina. *Ecology*, *68*(1), 199–210.

Keough, M. J. (1986). The Distribution of a Bryozoan on Seagrass Blades: Settlement, Growth, and Mortality. *Ecology*, *67*(4), 846–857.

Khasaf Al-Khafaji, K., Hadi Al Qarooni, I., al Abbad, M. Y., & Moffed Abd Al-Lateef, N. (2016). Study of the growth, reproductive biology and abundance for invasive shrimps Palaemon elegans Rathke from Garmat Ali river Basrah, Southern Iraq. *Journal of Coastal Life Medicine*, *4*(7), 536–540. https://doi.org/10.12980/jclm.4.2016J6-97

Kim, P., Kim, D., Yoon, T. J., & Shin, S. (2018). Early detection of marine invasive species, Bugula neritina (Bryozoa: Cheilostomatida), using species-specific primers and environmental DNA analysis in Korea. *Marine Environmental Research*, *139*, 1–10.

https://doi.org/10.1016/j.marenvres.2018.04.015

Kim, D., Kim, M. K., Park, J., Kim, D. G., Yoon, T. J., & Shin, S. (2018). Effects of Temperature and Salinity on Egg Development of *Ascidiella aspersa* (Ascidiacea, Phlebobranchia, Ascidiidae). *Korean Environmental Biology Research*, *36*(2), 232–240.

https://doi.org/10.11626/kjeb.2018.36.2.232

Kim, Y. S., & Moon, T. S. (1998). Filtering rate with effect of water temperature and size of two farming ascidians *Styela clava* and *S. plicata*, and a farming mussel *Mytilus edulis*. In *Journal of the Korean Fisheries Society* (Vol. 31, Issue 2, pp. 272–277).

King, P. A., Mcgrath, D., Morgan, R., Fitzgerald, O., Mullins, P., & Raleigh, J. (1993). Reproduction and Settlement of the Barnacle Semibalanus balanoides (L.) in Galway Bay (Vol. 93, Issue 1).

Kitamura, H., & Hirayama, K. (1984). Growth of the Bryozoan Bugula neritina in the Sea at Various Water Temperatures. *Bulletin of the Japanese Society of Scientific Fisheries*, *50*(1), 1–5. https://agriknowledge.affrc.go.jp/RN/2030282380.pdf

Klein Breteler, W. C. M. (1975). Oxygen consumption and respiratory levels of juvenile shore crabs, carcinus maenas, in relation to weight and temperature. *Netherlands Journal of Sea Research*, 9(3–4), 243–254. https://doi.org/10.1016/0077-7579(75)90001-0

Klymus, K. E., Richter, C. A., Chapman, D. C., & Paukert, C. (2015). Quantification of eDNA shedding rates from invasive bighead carp *Hypophthalmichthys nobilis* and silver carp

Hypophthalmichthys molitrix. Biological Conservation, 183, 77–84.

https://doi.org/10.1016/j.biocon.2014.11.020

Konecny, C. A., & Harley, C. D. G. (2019). The distribution of the orange-striped green anemone, Diadumene lineata, in relation to environmental factors along coastal British Columbia, Canada. *Invertebrate Biology*, *138*(4), 1–11. https://doi.org/10.1111/ivb.12268 Kraemer, G. P., Sellberg, M., Gordon, A., & Main, J. (2007). Eight-year record of Hemigrapsus sanguineus (Asian shore crab) invasion in western Long Island Sound estuary. *Northeastern Naturalist*, *14*(2), 207–224. https://doi.org/10.1656/1092-6194(2007)14[207:EROHSA]2.0.CO;2 Kriebel, M. E. (1968). Was Used in This Investigation Because Many Published Observations That Are Ventral Vessel. *The Biological Bulletin*, 434–455.

Lacoursière-Roussel, A., Côté, G., Leclerc, V., & Bernatchez, L. (2016). Quantifying relative fish abundance with eDNA: a promising tool for fisheries management. *Journal of Applied Ecology*, *53*(4), 1148–1157. https://doi.org/10.1111/1365-2664.12598

Lagos, M. E., White, C. R., & Marshall, D. J. (2017). Do invasive species live faster? Mass-specific metabolic rate depends on growth form and invasion status. *Functional Ecology*, *31*(11), 2080–2086. https://doi.org/10.1111/1365-2435.12913

Lakshmi, E., Priya, M., & Achari, V. S. (2021). An overview on the treatment of ballast water in ships. *Ocean & Coastal Management*, 199.

https://doi.org/10.1016/J.OCECOAMAN.2020.105296

Lambert, G. (2009). Adventures of a sea squirt sleuth: unraveling the identity of Didemnum vexillum, a global ascidian invader. *Aquatic Invasions*, 4, 5–28.

https://doi.org/10.3391/ai.2009.4.1.2

Lancor, P., Bucicchia, C., & Frederich, M. (2018). AMPK affects thermal tolerance in decapod crustaceans. *The FASEB Journal*, *32*(S1), 862.7-862.7.

https://doi.org/10.1096/FASEBJ.2018.32.1 SUPPLEMENT.862.7

Lange, R., & Marshall, D. (2017). Ecologically relevant levels of multiple, common marine stressors suggest antagonistic effects OPEN. *Scientific Reports*, 7, 1–9.

https://doi.org/10.1038/s41598-017-06373-y

Łapińska, E., & Szaniawska, A. (2006). Environmental Preferences of Crangon crangon (Linnaeus, 1758), Palaemon adspersus Rathke, 1837, and Palaemon elegans Rathke, 1837 in the Littoral Zone of the Gulf of Gdańsk. *Crustaceana*, 79(6), 649–662.

Laspoumaderes, C., Meunier, C. L., Magnin, A., Berlinghof, J., Elser, J. J., Balseiro, E., Torres, G., Modenutti, B., Tremblay, N., & Boersma, M. (2022). A common temperature dependence of nutritional demands in ectotherms. *Ecology Letters*, *25*(10), 2189–2202.

https://doi.org/10.1111/ELE.14093

Laufkötter, C., Zscheischler, J., & Frölicher, T. L. (2020). High-impact marine heatwaves attributable to human-induced global warming. *Science*, *369*, 1621–1625.

https://doi.org/10.1126/science.aba0690

Lear, G., Dickie, I., Banks, J., Boyer, S., Buckley, H. L., Buckley, T. R., Cruickshank, R., Dopheide, A., Handley, K. M., Hermans, S., Kamke, J., Lee, C. K., Macdiarmid, R., Morales, S. E., Orlovich, D. A., Smissen, R., Wood, J., & Holdaway, R. (2018). Methods for the extraction, storage, amplification and sequencing of DNA from environmental samples. *New Zealand Journal of Ecology*, *42*(1), 0–0. https://doi.org/10.20417/nzjecol.42.9

Ledesma, M. E., & O'Connor, N. J. (2001). Habitat and diet of the non-native crab Hemigrapsus Sanguineus in Southeastern New England. *Northeastern Naturalist*, 8(1), 63–78.

https://doi.org/10.1656/1092-6194(2001)008[0063:hadotn]2.0.co;2

Leignel, V., Stillman, J. H., Baringou, S., & Thabet, R. (2014). Overview on the European green crab Carcinus spp. (Portunidae, Decapoda), one of the most famous marine invaders and ecotoxicological models. *Environmental Science and Pollution Research*, *21*, 9129–9144. https://doi.org/10.1007/s11356-014-2979-4

Lemasson, A. J., & Knights, A. M. (2021). Differential responses in anti-predation traits of the native oyster Ostrea edulis and invasive Magallana gigas to ocean acidification and warming. *Marine Ecology Progress Series*, 665, 87–102. https://doi.org/10.3354/meps13687

Lenz, M., da Gama, B. A. P., Gerner, N. v., Gobin, J., Gröner, F., Harry, A., Jenkins, S. R., Kraufvelin, P., Mummelthei, C., Sareyka, J., Xavier, E. A., & Wahl, M. (2011). Non-native marine invertebrates are more tolerant towards environmental stress than taxonomically related native species: Results from a globally replicated study. *Environmental Research*, *111*(7), 943–952. https://doi.org/10.1016/J.ENVRES.2011.05.001

Levy-Booth, D. J., Campbell, R. G., Gulden, R. H., Hart, M. M., Powell, J. R., Klironomos, J. N., Pauls, K. P., Swanton, C. J., Trevors, J. T., & Dunfield, K. E. (2007). Cycling of extracellular DNA in the soil environment. *Soil Biology and Biochemistry*, *39*(12), 2977–2991. https://doi.org/10.1016/J.SOILBIO.2007.06.020

Li, J., Lawson Handley, L.-J., Read, D. S., & Hänfling, B. (2018). The effect of filtration method on the efficiency of environmental DNA capture and quantification via metabarcoding. *Molecular Ecology Resources*, *18*(5), 1102–1114. https://doi.org/10.1111/1755-0998.12899 Lins, D. M., de Marco Jr, P., A Andrade, A. F., & Rocha, R. M. (2018). Predicting global ascidian invasions. *Diversity and Distributions*, *24*, 692–704. https://doi.org/10.1111/ddi.12711 Li-ping, L., Jian-hai, X., Bo, D., Pavanasam, N., Kui-jie, Y., & Nan-er, C. (2006). Ciona intestinalis as an emerging model organism: its regeneration under controlled conditions and methodology for egg dechorionation *. *Journal of Zhejiang University SCIENCE B*, *7*(6), 467–474. https://doi.org/10.1631/jzus.2006.B0467

Locke, A., Carman, M., Davis, M. H., & Davis, M. E. (2009). Styela clava (Tunicata, Ascidiacea) – a new threat to the Mediterranean shellfish industry? *Aquatic Invasions*, *4*(1), 283–289. https://doi.org/10.3391/ai.2009.4.1.29

Locke, A., Hanson, J. M., Ellis, K. M., Thompson, J., & Rochette, R. (2007). Invasion of the southern Gulf of St. Lawrence by the clubbed tunicate (Styela clava Herdman): Potential mechanisms for invasions of Prince Edward Island estuaries. *Journal of Experimental Marine Biology and Ecology*, *342*(1), 69–77. https://doi.org/10.1016/J.JEMBE.2006.10.016

Long, H. A., & Grosholz, E. D. (2015). Overgrowth of eelgrass by the invasive colonial tunicate

Didemnum vexillum: Consequences for tunicate and eelgrass growth and epifauna abundance. Journal of Experimental Marine Biology and Ecology, 473, 188–194.

https://doi.org/10.1016/J.JEMBE.2015.08.014

Lopes, A. R. J. (2012). HEAT TOLERANCE LIMITS AND PHYSIOLOGICAL RESPONSES TO CLIMATE WARMING IN SHRIMPS FROM DIFFERENT TIDAL HABITATS AND LATITUDINAL REGIONS.

Lopez, C. (2016). Temperature Effects on the Proteome of Ciona intestinalis.

Lopez, C. E., Sheehan, H. C., Vierra, D. A., Azzinaro, P. A., Meedel, T. H., Howlett, N. G., & Irvine, S. Q. (2017). Proteomic responses to elevated ocean temperature in ovaries of the ascidian Ciona intestinalis. *Biology Open*, *6*(7), 943–955.

https://doi.org/10.1242/BIO.024786/256604/AM/PROTEOMIC-RESPONSES-TO-ELEVATED-OCEAN-TEMPERATURE

Lord, J. P. (2017a). Impact of seawater temperature on growth and recruitment of invasive fouling species at the global scale. *Marine Ecology*, 38(2), 1–10.

https://doi.org/10.1111/MAEC.12404

Lord, J. P. (2017b). Potential impact of the Asian shore crab Hemigrapsus sanguineus on native northeast Pacific crabs. *Biological Invasions*, *19*(6), 1879–1887.

https://doi.org/10.1007/S10530-017-1399-Z/FIGURES/3

Lord, J. P., & Williams, L. M. (2017a). Increase in density of genetically diverse invasive Asian shore crab (Hemigrapsus sanguineus) populations in the Gulf of Maine. *Biological Invasions*, 19(4), 1153–1168. https://doi.org/10.1007/s10530-016-1304-1

Lord, J. P., & Williams, L. M. (2017b). Increase in density of genetically diverse invasive Asian shore crab (Hemigrapsus sanguineus) populations in the Gulf of Maine. *Biological Invasions*, 19(4), 1153–1168. https://doi.org/10.1007/S10530-016-1304-1/TABLES/4

Lord, J., & Whitlatch, R. (2015a). Predicting competitive shifts and responses to climate change based on latitudinal distributions of species assemblages. *Ecology*, *96*(5), 1264–1274. https://doi.org/10.1890/14-0403.1

Lord, J., & Whitlatch, R. (2015b). Predicting competitive shifts and responses to climate change based on latitudinal distributions of species assemblages. *Ecology*, *96*(5), 1264–1274. https://doi.org/10.1890/14-0403.1

Lowen, J. B., & di Bacco, C. (2023). Range expansion and establishment of a non-indigenous tunicate (Diplosoma listerianum) in thermal refugia is mediated by environmental variability in changing coastal environments. *Canadian Journal of Fisheries and Aquatic Sciences*, 80(2), 330–345.

https://doi.org/10.1139/CJFAS-2022-0082/SUPPL_FILE/CJFAS-2022-0082SUPPLA.DOCX Lowen, J. B., & DiBacco, C. (2017). Distributional changes in a guild of non-indigenous tunicates in the NW Atlantic under high-resolution climate projections. *Marine Ecology Progress Series*, *570*, 173–186.

https://www.jstor.org/stable/pdf/26403555.pdf?casa_token=MFtEZLb5DvwAAAAA:MXApREJ MgGyLibwW3CcePmJo1nkPQTDUoNoZZ_eXBnMHfhCo4zoXO-34_guTDmPZ2ArAELTOM 9ZTcuYAEfBRMFvVxRugt4-hjsMIJw9TEV8o5vHAOGA

Lund, P. K. (2023). *Host-Microbe Interactions in Non-Native Estuarine Anemones: Biogeography and Temperature*.

Lutterschmidt, W. I., & Hutchison, V. H. (1997). The critical thermal maximum: history and critique. *Canadian Journal of Zoology*, 75(10), 1561–1574. https://doi.org/10.1139/Z97-783 Lützen, J. (1999). Styela clava Herdman (Urochordata, Ascidiacea), a successful immigrant to North West Europe: ecology, propagation and chronology of spread. *Helgolgnder Meeresunters*, 52, 383–391.

Lynch, F. (1952). Factors Influencing Metamorphosis of Bugula Larvae. *The Biological Bulletin*, 369–383.

Lynch, S. A., Darmody, G., O'dwyer, K., Gallagher, M. C., Nolan, S., Mcallen, R., & Culloty, S. C. (2016). Biology of the invasive ascidian Ascidiella aspersa in its native habitat: Reproductive patterns and parasite load. *Estuarine, Coastal, and Shelf Science*, *181*, 249–255. https://doi.org/10.1016/j.ecss.2016.08.048

Lynch, W. F. (1947). The Behavior and Metamorphosis of the Larva of Bugula neritina (Linnaeus): Experimental modification of the length of the free-swimming period and the responses of the larvae to light and gravity. *The Biological Bulletin*.

Lynch, W. F. (1956). The Effects of Moderately Low Temepratures on the Rate of Metamorphosis of Bugula flabellata. *Physiological Zoology*, *29*(3), 1–23.

https://doi.org/10.1016/J.RSMA.2020.101049

Ma, K. C. K., Glon, H. E., Hawk, H. L., & Chapman, C. N. (2020). Reconstructing the distribution of the non-native sea anemone, Diadumene lineata (Actiniaria), in the Canadian Maritimes: Local extinction in New Brunswick and no regional range expansion in Nova Scotia since its initial detection. *Regional Studies in Marine Science*, *34*, 101049.

Ma, K. C. K., Goodwin, C., & Cooper, J. A. (2018). Second record of Diplosoma listerianum (Milne-Edwards, 1841) five years after and 280 kilometres from the site of the first record in Nova Scotia. *Bioinvasions Records*, 7(2), 159–163. https://doi.org/10.3391/bir.2018.7.2.07

Ma, K. C. K., Lowen, J. ben, & Mckenzie, C. H. (2017). Spatio-temporal dynamics of ascidian larval recruitment and colony abundance in a non-indigenous Newfoundland population. *Marine Ecology Progress Series*, *585*, 99–112. https://doi.org/10.2307/26403452

Macdonald, J. A., Ross, R., Glover, T., & Weis, J. S. (2007). The invasive green crab and Japanese shore crab: behavioral interactions with a native crab species, the blue crab. *Biological Invasions*, *9*, 837–848. https://doi.org/10.1007/s10530-006-9085-6

Mächler, E., Deiner, K., Spahn, F., & Altermatt, F. (2016). Fishing in the Water: Effect of Sampled Water Volume on Environmental DNA-Based Detection of Macroinvertebrates. *Environmental Science & Technology*, *50*(1), 305–312. https://doi.org/10.1021/acs.est.5b04188 Mack, M. C., & D'Antonio, C. M. (1998). Impacts of biological invasions on disturbance regimes. *TREE*, *13*(5).

MacMillan, H. A. (2019). Dissecting cause from consequence: A systematic approach to thermal limits. *Journal of Experimental Biology*, *222*(4). https://doi.org/10.1242/jeb.191593

Madeira, D., Mendonça, V., Dias, M., Roma, J., Costa, P. M., Larguinho, M., Vinagre, C., & Diniz, M. S. (2015). Physiological, cellular and biochemical thermal stress response of intertidal shrimps with different vertical distributions: Palaemon elegans and Palaemon serratus.

Comparative Biochemistry and Physiology Part A, 183, 107–115.

https://doi.org/10.1016/J.CBPA.2014.12.039

Madeira, D., Mendonça, V., Vinagre, C., & Diniz, M. S. (2016). Is the stress response affected by season? Clues from an in situ study with a key intertidal shrimp. *Marine Biology*, *163*(2), 1–12. https://doi.org/10.1007/S00227-015-2803-9/FIGURES/5

Madeira, D., Narciso, L., Cabral, H. N., Diniz, M. S., & Vinagre, C. (2014). Role of thermal niche in the cellular response to thermal stress: Lipid peroxidation and HSP70 expression in coastal crabs. *Ecological Indicators*, *36*, 601–606. https://doi.org/10.1016/j.ecolind.2013.09.023 Madeira, D., Narciso, L., Cabral, H. N., & Vinagre, C. (2012). Thermal tolerance and potential impacts of climate change on coastal and estuarine organisms. *Journal of Sea Research*, *70*, 32–41. https://doi.org/10.1016/J.SEARES.2012.03.002

Madeira, D., Narciso, L., Cabral, H. N., Vinagre, C., & Diniz, M. S. (2012). HSP70 production patterns in coastal and estuarine organisms facing increasing temperatures. *Journal of Sea Research*, *73*, 137–147. https://doi.org/10.1016/J.SEARES.2012.07.003

Magorrian, B. H. (1997). The Extent and Temporal Variation of Disturbance to Epibenthic Communities in Strangford Lough, Northern Ireland. *Journal of the Marine Biological Association of the United Kingdom*, 77(4), 1151–1164.

https://doi.org/10.1017/S0025315400038686

Magozzi, S., & Calosi, P. (2015). Integrating metabolic performance, thermal tolerance, and plasticity enables for more accurate predictions on species vulnerability to acute and chronic

effects of global warming. Global Change Biology, 21(1), 181–194.

https://doi.org/10.1111/GCB.12695

Maia, S., Marques, S. C., Dupont, S., Neves, M., Pinto, H. J., Reis, J., & Leandro, S. M. (2022). Effects of ocean acidification and warming on the development and biochemical responses of juvenile shrimp Palaemon elegans (Rathke, 1837). *Marine Environmental Research*, *176*. https://doi.org/10.1016/J.MARENVRES.2022.105580

Majaneva, M., Diserud, O. H., Eagle, S. H. C., Boström, E., Hajibabaei, M., & Ekrem, T. (2018). Environmental DNA filtration techniques affect recovered biodiversity. *Scientific Reports*. https://doi.org/10.1038/s41598-018-23052-8

Malfant, M., Coudret, J., le Merdy, R., & Viard, F. (2017). Effects of temperature and salinity on juveniles of two ascidians, one native and one invasive, and their hybrids. *Journal of Experimental Marine Biology and Ecology*, 497, 180–187.

https://doi.org/10.1016/J.JEMBE.2017.09.019

Marin, M. G., Bressan, M., Beghi, L., & Brunetti, R. (1987). Thermo-haline tolerance of Ciona intestinalis (L., 1767) at different developmental stages. *Cahiers de Biologie Marine*, *28*, 47–57. Marsh, A. G., Cohen, S., & Epifanio, C. E. (2001). Larval energy metabolism and physiological variability in the Asian shore crab Hemigrapsus sanguineus. *Marine Ecology Progress Series*, *218*, 303–309. https://doi.org/10.3354/meps218303

Marshall, D. J. (2021). Temperature-mediated variation in selection on offspring size: A multi-cohort field study. *Functional Ecology*, *35*(10), 2219–2228.

https://doi.org/10.1111/1365-2435.13879

Marshall, D. J., Bolton, T. F., & Keough, M. J. (2003). Offspring size affects the post-metamorphic performance of a colonial marine invertebrate. *Ecology*, *84*(12), 3131–3137. https://doi.org/10.1890/02-0311

Marshall, D. J., & Keough, M. J. (2003). Effects of settler size and density on early post-settlement survival of Ciona intestinalis in the field. *Marine Ecology Progress Series*, *259*, 139–144. https://doi.org/10.3354/meps259139

Marshall, D. J., & Keough, M. J. (2005). Offspring size effects in the marine environment: A field test for a colonial invertebrate. *Austral Ecology*, 30(3), 275–280.

https://doi.org/10.1111/J.1442-9993.2005.01463.X

Marshall, D. J., Pechenik, J. A., & Keough, M. J. (2003). Larval activity levels and delayed metamorphosis affect post-larval performance in the colonial ascidian Diplosoma listerianum. *Marine Ecology Progress Series*, *246*, 153–162. https://doi.org/10.3354/meps246153

Maruyama, A., Nakamura, K., Yamanaka, H., Kondoh, M., & Minamoto, T. (2014). The Release Rate of Environmental DNA from Juvenile and Adult Fish. *PLoS ONE*.

https://doi.org/10.1371/journal.pone.0114639

Mastrototaro, F., Gasparini, F., & Montesanto, F. (2022). The clubbed tunicate Styela clava has arrived in the Lagoon of Venice. *European Zoological Journal*, 89(1), 502–509. https://doi.org/10.1080/24750263.2022.2052989

Matejusova, I., Stanley Mount, A., Michael Reitzel, A., Zheng, X., Alex Douglas, G.,

Matejusova, I., Graham, J., Bland, F., Lacaze, J.-P., Herman, G., Brown, L., Dalgarno, E.,

Bishop, J. D., Kakkonen, J. E., Smith, K. F., & Douglas, A. (2021). *Environmental DNA Based Surveillance for the Highly Invasive Carpet Sea Squirt Didemnum vexillum: A Targeted Single-Species Approach*. https://doi.org/10.3389/fmars.2021.728456

Matheson, K., & Gagnon, P. (2012a). Effects of temperature, body size, and chela loss on competition for a limited food resource between indigenous rock crab (Cancer irroratus Say) and recently introduced green crab (Carcinus maenas L.). *Journal of Experimental Marine Biology and Ecology*, 428, 49–56. https://doi.org/10.1016/J.JEMBE.2012.06.003

Matheson, K., & Gagnon, P. (2012b). Temperature mediates non-competitive foraging in indigenous rock (Cancer irroratus Say) and recently introduced green (Carcinus maenas L.) crabs from Newfoundland and Labrador. *Journal of Experimental Marine Biology and Ecology*, 6–18. https://doi.org/10.1016/j.jembe.2012.01.006

McCarthy, A. H., Peck, L. S., Hughes, K. A., & Aldridge, D. C. (2019). Antarctica: The final frontier for marine biological invasions. *Global Change Biology*, *25*(7), 2221–2241. https://doi.org/10.1111/GCB.14600

Mccarthy, A., Osman, R. W., Whitlatch, R. B., & Osman, R. W. (2007). Effects of temperature on growth rates of colonial ascidians: A comparison of Didemnum sp. to Botryllus schlosseri and Botrylloides violaceus. *Journal of Experimental Marine Biology and Ecology*, *342*, 172–174. https://doi.org/10.1016/j.jembe.2006.10.036

Mcclary, D., Phipps, C., & Golder Associates, S. H. (2008). *Reproductive behaviour of the Clubbed Tunicate, Styela clava, in northern New Zealand waters*.

http://www.biosecurity.govt.nz/about-us/our-publications/technical-papers

McDermott, J. J. (1998). The western Pacific brachyuran (Hemigrapsus sanguineus: Grapsidae), in its new habitat along the Atlantic coast of the United States: Geographic distribution and ecology. *ICES Journal of Marine Science*, *55*(2), 289–298.

https://doi.org/10.1006/jmsc.1997.0273

Mcgaw, I. J., & Whiteley, N. M. (2012). Effects of acclimation and acute temperature change on specific dynamic action and gastric processing in the green shore crab, Carcinus maenas. *Journal of Thermal Biology*, *37*, 570–578. https://doi.org/10.1016/j.jtherbio.2012.07.003

Menon, N. R. (1972). Heat tolerance, growth and regeneration in three North Sea bryozoans exposed to different constant temperatures. *Marine Biology*, *15*(1), 1–11.

https://doi.org/10.1007/BF00347433/METRICS

Menzies, A. K., Studd, E. K., Majchrzak, Y. N., L Peers, M. J., Boutin, S., Dantzer, B., Lane, J. E., McAdam, A. G., Humphries, M. M., & Allyson Menzies, C. K. (2020). *Body temperature, heart rate, and activity patterns of two boreal homeotherms in winter: Homeostasis, allostasis, and ecological coexistence*. https://doi.org/10.1111/1365-2435.13640

Milkman, R. (1967). Genetic and Developmental Studies on Botryllus schlosseri. *The Biological Bulletin*.

Millar, R. H. (1952). The Annual Growth and Reproductive Cycle in Four Ascidians. *Journal of the Marine Biological Association of the United Kingdom*, *31*, 41–61.

Miller, K. B. (2016). Forecasting at the edge of the niche: Didemnum vexillum in Southeast Alaska. *Marine Biology*, *163*(2), 1–12. https://doi.org/10.1007/S00227-015-2799-1/FIGURES/7 Minchin, D., & Duggan, C. B. (1988). The Distribution of the Exotic Ascidian, Styela clava Herdman, in Cork Harbour. *The Irish Naturalists' Journal*, *22*(9), 388–393.

Monaco, C. J., & Helmuth, B. (2011). Tipping Points, Thresholds and the Keystone Role of Physiology in Marine Climate Change Research. In *Advances in Marine Biology* (Vol. 60, pp. 123–160). Academic Press. https://doi.org/10.1016/B978-0-12-385529-9.00003-2

Monteiro, J. N., Bueno-Pardo, J., Pinto, M., Pardal, M. A., Martinho, F., & Leitão, F. (2023). Implications of Warming on the Morphometric and Reproductive Traits of the Green Crab, Carcinus maenas. *Fishes*, 8(10), 485. https://doi.org/10.3390/FISHES8100485/S1

Moore, A. M., Lowen, J. ben, Dibacco, C., & Bullard, S. (2018). Assessing invasion risk of Didemnum vexillum to Atlantic Canada. *Management of Biological Invasions*, *9*(1), 11–25. https://doi.org/10.3391/mbi.2018.9.1.02

Moore, A. M., Vercaemer, B., Dibacco, C., Sephton, D., & Ma, K. C. K. (2014). Invading Nova Scotia: first records of Didemnum vexillum Kott, 2002 and four more non-indigenous invertebrates in 2012 and 2013. *BioInvasions Records*, *3*, 225–234.

https://doi.org/10.3391/bir.2014.3.4.03

Morley, S. A., Peck, L. S., Sunday, J. M., Heiser, S., & Bates, A. E. (2019). Physiological acclimation and persistence of ectothermic species under extreme heat events. *Global Ecology and Biogeography*, 28(7), 1018–1037. https://doi.org/10.1111/GEB.12911

Morris, J. A., & Carman, M. R. (2012). Fragment reattachment, reproductive status, and health indicators of the invasive colonial tunicate Didemnum vexillum with implications for dispersal. *Biological Invasions*, *14*, 2133–2140. https://doi.org/10.1007/s10530-012-0219-8

Morris, S., & Taylor, A. (1984). Heart rate response of the intertidal prawn Palaemon elegans to simulated and in situ environmental changes. *Marine Ecology Progress Series*, *20*(1), 127–136. https://doi.org/10.3354/meps020127

Munguia, P., Osman, R. W., Hamilton, J., Whitlatch, R. B., & Zajac, R. N. (2010). Modeling of priority effects and species dominance in long Island Sound benthic communities. *Marine Ecology Progress Series*, *413*, 229–240. https://doi.org/10.3354/meps08764

Murphy, K. J., Sephton, D., Klein, K., Bishop, C. D., & Wyeth, R. C. (2019). Abiotic conditions are not sufficient to predict spatial and interannual variation in abundance of Ciona intestinalis in Nova Scotia, Canada. *Marine Ecology Progress Series*, 628, 105–123.

https://doi.org/10.3354/meps13076

Nagabhushanam, A. K., & Krishnamoorthy, P. (1992). Occurrence and Biology of the Solitary Ascidian Ascidiella Aspersa in Tamil Nadu Coastal Waters. *Journal of the Marine Biological Association of India*, *34*, 1–9. https://doi.org/10.4319/lo.1959.4.4.0503b

Nakajima, K., & Takeuchi, I. (2008). Rearing Method for Caprella mutica (Malacostraca: Amphipoda) in an Exhibition Tank in the Port of Nagoya Public Aquarium, with Notes on Reproductive Biology. *Journal of Crustacean Biology*, *28*(1), 171–174.

https://doi.org/10.1651/06-2811R.1

Nancollas, S. J., & McGaw, I. J. (2021). The role of tidal acclimation on the physiological responses of the green shore crab, Carcinus maenas, to thermal stress. *Journal of Experimental Marine Biology and Ecology*, *545*, 151630. https://doi.org/10.1016/J.JEMBE.2021.151630

Naranjo, S. A., Carballo, J. L., & García-Gómez, J. C. (1996). Effects of environmental stress on ascidian populations in Algeciras Bay (southern Spain). Possible marine bioindicators? *Marine Ecology Progress Series*, *144*, 119–131.

Naylor, E. (1963). Temperature Relationships of the Locomotor Rhythm of Carcinus. *Journal of Experimental Biology*, 40(4), 669–679. https://doi.org/10.1242/JEB.40.4.669

Neto, A. G., Langan, J. A., & Palter, J. B. (2021). Changes in the Gulf Stream preceded rapid warming of the Northwest Atlantic Shelf. *Communications Earth and Environment*, *2*(1). https://doi.org/10.1038/s43247-021-00143-5

Newcomer, K., Flenniken, M. M., & Carlton, J. T. (2019). Home and away and home again: discovery of a native reproductive strategy of the globally invading sea anemone Diadumene lineata (Verrill, 1869) in a satellite population. *Biological Invasions*, *21*(5), 1491–1497. https://doi.org/10.1007/S10530-019-01940-Y/TABLES/1

Newell, R. C., Johson, L. G., & Kofoed, L. H. (1977). Adjustment of the Components of Energy Balance in Response to Temperature Change in Ostrea edulis. *Oecologia*, *30*, 97–110. https://www.jstor.org/stable/4215485

Ni, P., Li, S., Lin, Y., Xiong, W., Huang, X., & Zhan, A. (2018). Methylation divergence of invasive Ciona ascidians: Significant population structure and local environmental influence. *Ecology and Evolution*, *8*, 10272–10287. https://doi.org/10.1002/ece3.4504

Nielsen, M., Hansen, B. W., & Vismann, B. (2017). Feeding traits of the European flat oyster, Ostrea edulis, and the invasive Pacific oyster, Crassostrea gigas. *Marine Biology*, *164*(1), 1–10. https://doi.org/10.1007/S00227-016-3041-5/TABLES/2

Nishikawa, T., Yasuda, A., Murata, Y., & Otani, M. (2019). The Earliest Japanese records of the invasive European ascidian *Ascidiella aspersa* (Müller, 1776) (Urochordata: Ascidiidae) from Mutsu and Ago Bays, with a brief discussion of its invasion processes. *Sessile Organisms*, *36*(1), 1–6. https://doi.org/10.4282/sosj.36.1

Nugegoda, D., & Rainbow, P. S. (1987). The effect of temperature on zinc regulation by the decapod crustacean Palaemon elegans Rathke. *Ophelia*, *27*(1), 17–30.

https://doi.org/10.1080/00785236.1987.10422008

O'Donnell, J. L., Kelly, R. P., Shelton, A. O., Samhouri, J. F., Lowell, N. C., & Williams, G. D. (2017). Spatial distribution of environmental DNA in a nearshore marine habitat. *PeerJ*, *5*, e3044. https://doi.org/10.7717/peerj.3044

Oliver, E. C. J., Donat, M. G., Burrows, M. T., Moore, P. J., Smale, D. A., Alexander, L. v., Benthuysen, J. A., Feng, M., sen Gupta, A., Hobday, A. J., Holbrook, N. J., Perkins-Kirkpatrick, S. E., Scannell, H. A., Straub, S. C., & Wernberg, T. (2018). Longer and more frequent marine heatwaves over the past century. *Nature Communications*, *9*(1), 1–12.

https://doi.org/10.1038/s41467-018-03732-9

Olsen, Y. S., Fox, S. E., Hofmann, L., & Valiela, I. (2013). Benthic community composition and faunal stable isotopic signatures differ across small spatial scales in a temperate estuary. *Marine Environmental Research*, *86*, 12–20. https://doi.org/10.1016/J.MARENVRES.2013.02.002 Ordóñez, V., Pascual, M., Fernández-Tejedor, M., Pineda, M. C., Tagliapietra, D., & Turon, X. (2015). Ongoing expansion of the worldwide invader Didemnum vexillum (Ascidiacea) in the Mediterranean Sea: high plasticity of its biological cycle promotes establishment in warm waters. *Biological Invasions*, *17*(7), 2075–2085.

https://doi.org/10.1007/S10530-015-0861-Z/FIGURES/4

Osman, R. W., Munguia, P., Whitlatch, R. B., Zajac, R. N., & Hamilton, J. (2010). Thresholds and multiple community states in marine fouling communities: Integrating natural history with management strategies. *Marine Ecology Progress Series*, *413*, 277–289.

https://doi.org/10.3354/meps08673

Padilla, D. K., & Savedo, M. M. (2013). A Systematic Review of Phenotypic Plasticity in Marine Invertebrate and Plant Systems. *Advances in Marine Biology*, *65*, 67–94. https://doi.org/10.1016/B978-0-12-410498-3.00002-1

Palmer, A. N. S., Styan, C. A., & Shearman, D. C. A. (2008). Foot mucus is a good source for non-destructive genetic sampling in Polyplacophora. *Conservation Genetics*, *9*(1), 229–231. https://doi.org/10.1007/s10592-007-9320-4

Parretti, P., Ros, M., Gestoso, I., Ramalhosa, P., Cristina Costa, A., & Canning-Clode, J. (2021). Assessing biotic interactions between a non-indigenous amphipod and its congener in a future climate change scenario. *Aquatic Invasions*, 16(2), 186–207.

https://doi.org/10.3391/ai.2021.16.2.01

Paul, R. J., Lamkemeyer, T., Maurer, J., Pinkhaus, O., Pirow, R., Seidl, M., & Zeis, B. (2004). Thermal acclimation in the microcrustacean Daphnia: A survey of behavioural, physiological and biochemical mechanisms. *Journal of Thermal Biology*, *29*(7-8 SPEC. ISS.), 655–662. https://doi.org/10.1016/j.jtherbio.2004.08.035

Payne, A., & Kraemer, G. P. (2013). Morphometry and Claw Strength of the Non-nativeAsian Shore Crab, Hemigrapsus sanguineus . *Northeastern Naturalist*, *20*(3), 478–492.

https://doi.org/10.1656/045.020.0311

Pechenik, J. A. (2006). Larval experience and latent effects—metamorphosis is not a new beginning. *Integrative and Comparative Biology*, 46(3), 323–333.

https://doi.org/10.1093/ICB/ICJ028

Peck, L. S., Webb, K. E., & Bailey, D. M. (2004). Extreme sensitivity of biological function to temperature in Antarctic marine species. *Functional Ecology*, 18(5), 625–630.

https://doi.org/10.1111/j.0269-8463.2004.00903.x

Pedersen, T. M., Hansen, J. L. S., Josefson, A. B., & Hansen, B. W. (2008). Mortality through ontogeny of soft-bottom marine invertebrates with planktonic larvae. *Journal of Marine Systems*, 73(1–2), 185–207. https://doi.org/10.1016/j.jmarsys.2007.10.008

Pejchar, L., & Mooney, H. A. (2009). *Invasive species, ecosystem services and human well-being*. https://doi.org/10.1016/j.tree.2009.03.016

Peñarrubia, L., Alcaraz, C., Bij De Vaate, A., Sanz, N., Pla, C., Vidal, O., & Viñas, J. (2016).

Validated methodology for quantifying infestation levels of dreissenid mussels in environmental DNA (eDNA) samples. *Nature Publishing Group*. https://doi.org/10.1038/srep39067

Pennoyer, K. E., Himes, A. R., & Frederich, M. (2016). Effects of sex and color phase on ion regulation in the invasive European green crab, Carcinus maenas. *Marine Biology*, *163*. https://doi.org/10.1007/s00227-016-2910-2

Perry, A. L., Low, P. J., Ellis, J. R., & Reynolds, J. D. (2005). Climate Change and Distribution Shifts in Marine Fishes. *Science Magazine*, *308*. https://www.science.org

Pershing, A. J., Alexander, M. A., Brady, D. C., Brickman, D., Curchitser, E. N., Diamond, A. W., McClenachan, L., Mills, K. E., Nichols, O. C., Pendleton, D. E., Record, N. R., Scott, J. D., Staudinger, M. D., & Wang, Y. (2021). Climate impacts on the Gulf of Maine ecosystem: A review of observed and expected changes in 2050 from rising temperatures. *Elementa*, *9*(1), 1–18. https://doi.org/10.1525/elementa.2020.00076

Pershing, A. J., Alexander, M. A., Hernandez, C. M., Kerr, L. A., le Bris, A., Mills, K. E., Nye, J. A., Record, N. R., Scannell, H. A., Scott, J. D., Sherwood, G. D., & Thomas, A. C. (2015). Slow adaptation in the face of rapid warming leads to collapse of the Gulf of Maine cod fishery. *Science*, *350*(6262), 809–812. https://doi.org/10.1126/science.aac9819

Petersen, J. K., Mayer, S., & Knudsen, M. A. Ê. (1999). Beat frequency of cilia in the branchial basket of the ascidian Ciona intestinalis in relation to temperature and algal cell concentration. *Marine Biology*, *133*, 185–192.

Petersen, J. K., & Riisgard, H. U. (1992). Filtration capacity of the ascidian Ciona intestinalis and its grazing impact in a shallow fjord. *Marine Ecology Progress Series*, 88(1), 9–17. https://doi.org/10.3354/meps088009

Pettersen, A. K., White, C. R., Bryson-Richardson, R. J., & Marshall, D. J. (2019). Linking life-history theory and metabolic theory explains the offspring size-temperature relationship. *Ecology Letters*, 22(3), 518–526. https://doi.org/10.1111/ELE.13213

Pettigrew, N. R., Churchill, J. H., Janzen, C. D., Mangum, L. J., Signell, R. P., Thomas, A. C., Townsend, D. W., Wallinga, J. P., & Xue, H. (2005). The kinematic and hydrographic structure of the Gulf of Maine Coastal Current. *Deep-Sea Research Part II: Topical Studies in Oceanography*, *52*(19-21 SPEC. ISS.), 2369–2391. https://doi.org/10.1016/j.dsr2.2005.06.033 Piano, A., Asirelli, C., Caselli, F., & Fabbri, E. (2002). Hsp70 expression in thermally stressed Ostrea edulis, a commercially important oyster in Europe. *Cell Stress & Chaperones*, *7*(3), 250–257. https://doi.org/10.1379/1466-1268(2002)007<0250:heitso>2.0.co;2

Piazzola, C. D., & Hiebert, T. C. (2015). Diadumene lineata. In B. A. Butler & A. L. Shanks (Eds.), *Oregon Estuarine Invertebrates: Rudys' Illustrated Guide to Common Speices* (3rd ed.). Pietramellara, G., Ascher, J., Borgogni, F., Ceccherini, M. T., Guerri, G., & Nannipieri, P. (2009). Extracellular DNA in soil and sediment: fate and ecological relevance. *Biology and Fertility of Soils*, 45(3), 219–235. https://doi.org/10.1007/s00374-008-0345-8

Pilliod, D. S., Goldberg, C. S., Arkle, R. S., & Waits, L. P. (2013). Estimating occupancy and abundance of stream amphibians using environmental DNA from filtered water samples. *Canadian Journal of Fisheries and Aquatic Sciences*, 70(8), 1123–1130. https://doi.org/10.1139/cjfas-2013-0047

Pilliod, D. S., Goldberg, C. S., Arkle, R. S., & Waits, L. P. (2014). Factors influencing detection of eDNA from a stream-dwelling amphibian. *Molecular Ecology Resources*, *14*, 109–116. https://doi.org/10.1111/1755-0998.12159

Pimentel, D., Zuniga, R., & Morrison, D. (2004). *Update on the environmental and economic costs associated with alien-invasive species in the United States*.

https://doi.org/10.1016/j.ecolecon.2004.10.002

Piola, R. F., & Hopkins, G. A. (2012). Thermal treatment as a method to control transfers of invasive biofouling species via vessel sea chests. *Marine Pollution Bulletin*, *64*, 1620–1630. https://doi.org/10.1016/j.marpolbul.2012.05.028

Podbielski, I., Bock, C., Lenz, M., & Melzner, F. (2016). Using the critical salinity (S crit) concept to predict invasion potential of the anemone Diadumene lineata in the Baltic Sea. *Marine Biology*, *163*(11), 1–15. https://doi.org/10.1007/S00227-016-2989-5/FIGURES/5 Podbielski, I., Hiebenthal, C., Hajati, M. C., Bock, C., Bleich, M., & Melzner, F. (2022). Capacity for Cellular Osmoregulation Defines Critical Salinity of Marine Invertebrates at Low Salinity. *Frontiers in Marine Science*, *9*. https://doi.org/10.3389/FMARS.2022.898364/BIBTEX Pont, D., Rocle, M., Valentini, A., Civade, R., Jean, P., Maire, A., Roset, N., Schabuss, M., Zornig, H., & Dejean, T. (2018). Environmental DNA reveals quantitative patterns of fish biodiversity in large rivers despite its downstream transportation. *Scientific Reports*, *8*, 10361. https://doi.org/10.1038/s41598-018-28424-8

Pörtner, H. O., Bock, C., & Mark, F. C. (2017). Oxygen & capacity-limited thermal tolerance: Bridging ecology & physiology. *Journal of Experimental Biology*, *220*(15), 2685–2696. https://doi.org/10.1242/jeb.134585

Pörtner, H.-O., Dupont, S., Melzner, F., Storch, D., & Thorndyke, M. (2011). Studies of metabolic rate and other characters across life stages 10. In *Guide to best practices for ocean acidification research and data reporting*.

Pratt, C. J. (2021). *Drivers of Regional-Scale Variability in the Abundance of an Invasive Bryozoan in the Kelp Beds of the Northwest Atlantic Ocean.*

Pratt, C. J., Denley, D., & Metaxas, A. (2022). Selection of predictor variables for species distribution models: a case study with an invasive marine bryozoan. *Oecologia*, *198*, 319–336. https://doi.org/10.1007/s00442-022-05110-1

Qu, C., & Stewart, K. A. (2017). Comparing conservation monitoring approaches: traditional and environmental DNA tools for a critically endangered mammal. *PeerJ PrePrints*.

https://doi.org/10.7287/peerj.preprints.2828v1

Rahel, F. J., & Olden, J. D. (2008). Assessing the effects of climate change on aquatic invasive species. *Conservation biology*, 22(3), 521-533.

Ramsay, A., Davidson, J., Bourque, D., & Stryhn, H. (2009). Recruitment patterns and population development of the invasive ascidian Ciona intestinalis in Prince Edward Island, Canada. *Aquatic Invasions*, *4*(1), 169–176. https://doi.org/10.3391/ai.2009.4.1.17

Ravaux, J., Léger, N., Rabet, N., Fourgous, C., Voland, G., Zbinden, M., & Shillito, B. (2016). Plasticity and acquisition of the thermal tolerance (upper thermal limit and heat shock response) in the intertidal species Palaemon elegans. *Journal of Experimental Marine Biology and Ecology*, 484, 39–45. https://doi.org/10.1016/J.JEMBE.2016.07.003

Ravaux, J., Léger, N., Rabet, N., Morini, M., Zbinden, M., Thatje, S., & Shillito, B. (2012). Adaptation to thermally variable environments: Capacity for acclimation of thermal limit and heat shock response in the shrimp Palaemonetes varians. *Journal of Comparative Physiology B*, 182(7), 899–907. https://doi.org/10.1007/S00360-012-0666-7/FIGURES/5

Rees, H. C., Maddison, B. C., Middleditch, D. J., Patmore, J. R. M., & Gough, K. C. (2014). The

detection of aquatic animal species using environmental DNA-a review of eDNA as a survey tool in ecology. *Journal of Applied Ecology*, *51*. https://doi.org/10.1111/1365-2664.12306 Reese, T. C., Alder, J., Asay, E. G., Blakeslee, A. M. H., Cabrera, D., Crane, L. C., Fletcher, L. S., Pinkston, E., Repetto, M. F., Smith, N., Stancil, C., Tepolt, C. K., Toscano, B. J., & Griffen, B. D. (2023). Effects of season and latitude on the diet quality of the invasive Asian shore crab Hemigrapsus sanguineus. *Marine Ecology Progress Series*, *704*, 67–79.

https://doi.org/10.3354/meps14231

Reinhardt, J. F., Gallagher, K. L., Stefaniak, L. M., Nolan, R., Shaw, M. T., & Whitlatch, R. B. (2012). Material properties of Didemnum vexillum and prediction of tendril fragmentation. *Marine Biology*, *159*(12), 2875–2884. https://doi.org/10.1007/S00227-012-2048-9/FIGURES/7 Reinhardt, J. F., Whitlatch, R. B., & Osman, R. W. (2013). Effects of temperature on the recruitment phenology and niche overlap of shallow epifaunal assemblages in southern New England. *Marine Ecology Progress Series*, *489*, 61–74. https://doi.org/10.3354/meps10423

Rius, M., Clusella-Trullas, S., Mcquaid, C. D., Navarro, R. A., Griffiths, C. L., Matthee, C. A., von der Heyden, S., & Turon, X. (2014). Range expansions across ecoregions: Interactions of climate change, physiology and genetic diversity. *Global Ecology and Biogeography*, *23*(1), 76–88. https://doi.org/10.1111/geb.12105

Rius, M., Turon, X., & Marshall, D. J. (2009). Non-lethal effects of an invasive species in the marine environment: The importance of early life-history stages. *Oecologia*, *159*(4), 873–882. https://doi.org/10.1007/S00442-008-1256-Y/FIGURES/3

Robert, R., Vignier, J., & Petton, B. (2017). Influence of feeding regime and temperature on development and settlement of oyster Ostrea edulis (Linnaeus, 1758) larvae. *Aquaculture Research*, 48(9), 4756–4773. https://doi.org/10.1111/ARE.13297

Robertson, R. F., Meagor, J., & Taylor, E. W. (2002). Specific dynamic action in the shore crab, Carcinus maenas (L.), in relation to acclimation temperature and to the onset of the Emersion response. *Physiological and Biochemical Zoology*, 75(4), 350–359.

https://doi.org/10.1086/342801

Rochanaburanon, T., & Williamson, D. I. (1976). Laboratory survival of larvae of Palaemon elegans Rathke and other caridean shrimps in relation to their distribution and ecology. *Estuarine and Coastal Marine Science*, *4*(1), 83–91. https://doi.org/10.1016/0302-3524(76)90009-8 Rodrigues, E. T., Moreno, A., Mendes, T., Palmeira, C., & Pardal, M. Â. (2015). Biochemical and physiological responses of Carcinus maenas to temperature and the fungicide azoxystrobin. *Chemosphere*, *132*, 127–134. https://doi.org/10.1016/J.CHEMOSPHERE.2015.03.011 Rogers, T. L., Gouhier, T. C., & Kimbro, D. L. (2018). Temperature dependency of intraguild predation between native and invasive crabs. *Ecology*, *99*(4), 885–895.

https://doi.org/10.1002/ECY.2157

Ros, M., Guerra-García, J. M., Lignot, J. H., & Rivera-Ingraham, G. A. (2021). Environmental stress responses in sympatric congeneric crustaceans: Explaining and predicting the context-dependencies of invader impacts. *Marine Pollution Bulletin*, 170.

https://doi.org/10.1016/j.marpolbul.2021.112621

Ruiz, C., Martinez, D., Mosquera, G., Abad, M., & Sánchez, J. L. (1992). Seasonal variations in condition, reproductive activity and biochemical composition of the flat oyster, Ostrea edulis, from San Cibran (Galicia, Spain). *Marine Biology*, *112*(1), 67–74.

https://doi.org/10.1007/BF00349729/METRICS

Ruppert, K. M., Kline, R. J., & Rahman, S. (2019). *Review Paper Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: A systematic review in methods, monitoring, and applications of global eDNA*. https://doi.org/10.1016/j.gecco.2019.e00547 Ryan, W. H. (2017). *The Role of Seasonal and Geographic Temperature Variation in the Life Cycle of the Clonal Sea Anemone Diadumene lineata (Verrill)*.

Ryan, W. H., Adams, L., Bonthond, G., Mieszkowska, N., Pack, K. E., & Krueger-Hadfield, S. A. (2019). Environmental regulation of individual body size contributes to geographic variation in clonal life cycle expression. *Marine Biology*, *166*(12), 1–15.

https://doi.org/10.1007/S00227-019-3608-Z/FIGURES/5

Ryan, W. H., & Kubota, S. (2016). Morphotype distribution of the sea anemone Diadumene lineata in Tanabe Bay, Wakayama: a comparison with Uchida (1936) after 80 years. *Publications of the Seto Marine Biological Laboratory*, 44, 1–6. www.R-project.org

Ryan, W. H., & Miller, T. E. (2019a). Reproductive strategy changes across latitude in a clonal sea anemone. *Marine Ecology Progress Series*, *611*, 129–141.

https://doi.org/10.3354/MEPS12862

Ryan, W. H., & Miller, T. E. (2019b). Reproductive strategy changes across latitude in a clonal sea anemone. *Marine Ecology Progress Series*, *611*, 129–141.

https://doi.org/10.3354/meps12862

Ryland, J. S., Bishop, J. D. D., de Blauwe, H., el Nagar, A., Minchin, D., Wood, C. A., & Yunnie, A. L. E. (2011). Alien species of Bugula (Bryozoa) along the Atlantic coasts of Europe. *Aquatic Invasions*, *6*(1), 17–31. https://doi.org/10.3391/ai.2011.6.1.03

Saborowski, R., Bartolin, P., Koch, M., & Jungblut, S. (2023). Trophic ecophysiology of the native green shore crab, Carcinus maenas, and the invasive Asian shore crab, Hemigrapsus sanguineus, in the rocky intertidal of Helgoland (North Sea). *Frontiers in Marine Science*, 10(November), 1–13. https://doi.org/10.3389/fmars.2023.1247263

Salter, I. (2018). Seasonal variability in the persistence of dissolved environmental DNA (eDNA) in a marine system: The role of microbial nutrient limitation. *PLOS ONE*, *13*(2), e0192409. https://doi.org/10.1371/journal.pone.0192409

Sambrook, K., Holt, R. H. F., Sharp, R., Griffith, K., Roche, R. C., Newstead, R. G., Wyn, G., & Jenkins, S. R. (2014). Capacity, capability and cross-border challenges associated with marine eradication programmes in Europe: The attempted eradication of an invasive non-native ascidian,

Didemnum vexillum in Wales, United Kingdom. Marine Policy, 48, 51–58.

https://doi.org/10.1016/J.MARPOL.2014.03.018

Saunders, G. W., Hawkins, N., & Wilkin, S. (2013). A survey of Sam Orr's Pond (New Brunswick, Canada) uncovers the invasive green alga Codium fragile (Chlorophyta) and the orange-striped green anemone Diadumene lineata (Cnidaria), first records for the Bay of Fundy and Canada, respectively. *BioInvasions Records*, *2*(3), 185–189.

https://doi.org/10.3391/bir.2013.2.3.02

Saunders, M. I., & Metaxas, A. (2009). Effects of temperature, size, and food on the growth of Membranipora membranacea in laboratory and field studies. *Marine Biology*, *156*(11),

2267–2276. https://doi.org/10.1007/S00227-009-1254-6/FIGURES/4

Saunders, M., & Metaxas, A. (2007). Temperature explains settlement patterns of the introduced bryozoan Membranipora membranacea in Nova Scotia, Canada. *Marine Ecology Progress Series*, *344*, 95–106. https://www.int-res.com/articles/meps2007/344/m344p095.pdf

Scheibling, R. E., & Gagnon, P. (2009). Temperature-mediated outbreak dynamics of the invasive bryozoan Membranipora membranacea in Nova Scotian kelp beds. *Marine Ecology Progress Series*, *390*(1), 1–13. https://doi.org/10.3354/meps08207

Schenk, H. J. (2006). Root competition: beyond resource depletion. *Journal of Ecology*, *94*, 725–739. https://doi.org/10.1111/j.1365-2745.2006.01124.x

Schubart, C. D. (2003). The East Asian shore crab *Hemigrapsus sanguineus* (Brachyura:

Varunidae) in the Mediterranean Sea: an independent human-mediated introduction. *Scientia Marina*, 67(2), 195–200. https://doi.org/10.3989/scimar.2003.67n2195

Schwaninger, H. R. (1999). Evolutionary Genetics and Biogeography of the Marine Bryozoan Membranipora membranacea (Cheilostomata): Implications for Population History, Dispersal Routes, and Taxonomy.

Sephton, D., Vercaemer, B., Nicolas, J. M., & Keays, J. (2011). Monitoring for invasive tunicates in Nova Scotia, Canada (2006-2009). *Aquatic Invasions*, 6(4), 391–403.

https://doi.org/10.3391/ai.2011.6.4.04

Serafini, L., Hann, J. B., Kültz, D., & Tomanek, L. (2011). The proteomic response of sea squirts (genus Ciona) to acute heat stress: A global perspective on the thermal stability of proteins.

Comparative Biochemistry and Physiology Part D, 6(3), 322–334.

https://doi.org/10.1016/J.CBD.2011.07.002

Sheets, E. A., Sarah Cohen, C., Ruiz, G. M., da Rocha, R. M., & Cohen, S. (2016). Investigating the widespread introduction of a tropical marine fouling species. *Ecology and Evolution*, *6*(8), 2453–2471. https://doi.org/10.1002/ece3.2065

Shenkar, N., & Swalla, B. J. (2011). Global Diversity of Ascidiacea. *PLOS ONE*, *6*(6). https://doi.org/10.1371/JOURNAL.PONE.0020657

Simonik, E., & Henry, R. P. (2014). Marine and Freshwater Behaviour and Physiology Physiological responses to emersion in the intertidal green crab, Carcinus maenas (L.). *Marine and Freshwater Behaviour and Physiology*, 42(2), 101–115.

https://doi.org/10.1080/10236244.2014.905001

Simpson, T. J. S., Smale, D. A., Mcdonald, J. I., & Wernberg, T. (2017). Large scale variability in the structure of sessile invertebrate assemblages in artificial habitats reveals the importance of local-scale processes. *Journal of Experimental Marine Biology and Ecology*, *494*, 10–19. https://doi.org/10.1016/j.jembe.2017.05.003

Smale, D. A., Taylor, J. D., Coombs, S. H., Moore, G., & Cunliffe, M. (2017). Community responses to seawater warming are conserved across diverse biological groupings and taxonomic resolutions. *Proceedings of the Royal Society B: Biological Sciences*, 284(1862).

https://doi.org/10.1098/RSPB.2017.0534

Smith, C. R., Grange, L. J., Honig, D. L., Naudts, L., Huber, B., Guidi, L., & Domack, E. (2012). A large population of king crabs in Palmer Deep on the west Antarctic Peninsula shelf and potential invasive impacts. *Proceedings of the Royal Society B: Biological Sciences*, *279*(1730), 1017–1026. https://doi.org/10.1098/RSPB.2011.1496

Somero, G. N. (2011). Comparative physiology: A "crystal ball" for predicting consequences of global change. *American Journal of Physiology - Regulatory Integrative and Comparative Physiology*, 301(1), 1–14.

https://doi.org/10.1152/AJPREGU.00719.2010/ASSET/IMAGES/LARGE/ZH60061175890004. JPEG

Sommer, A. M., & Pörtner, H. O. (2002). Metabolic cold adaptation in the lugworm Arenicola marina: comparison of a North Sea and a White Sea population. *Marine Ecology Progress Series*, 240, 171–182.

Sorte, C. J. B. (2003). Climate Change, Species Invasions, and the Composition of Marine Communities.

Sorte, C. J. B., Fuller, A., Bracken, M. E. S., Sorte, C. J. B., Fuller, -A, & Bracken, M. E. S. (2010). Impacts of a simulated heat wave on composition of a marine community. *Oikos*, *119*(12), 1909–1918. https://doi.org/10.1111/J.1600-0706.2010.18663.X

Sorte, C. J., Williams, S. L., & Zerebecki, R. A. (2010). Ocean warming increases threat of invasive species in a marine fouling community. *Ecology*, *91*(8), 2198–2204. https://doi.org/10.1890/10-0238.1

Sorte, C. J. B., Jones, S. J., & Miller, L. P. (2011). Geographic variation in temperature tolerance as an indicator of potential population responses to climate change. *Journal of Experimental Marine Biology and Ecology*, 400(1–2), 209–217. https://doi.org/10.1016/J.JEMBE.2011.02.009 Sorte, C. J. B., & Stachowicz, J. J. (2011). Patterns and processes of compositional change in a California epibenthic community. *Marine Ecology Progress Series*, 435, 63–74. https://doi.org/10.3354/meps09234

Sorte, C. J. B., & White, J. W. (2013). Competitive and demographic leverage points of community shifts under climate warming. *Proceedings of the Royal Society B: Biological Sciences*, 280. https://doi.org/10.1098/RSPB.2013.0572

Sorte, C. J., Williams, S. L., & Zerebecki, R. A. (2010). Ocean warming increases threat of invasive species in a marine fouling community. *Ecology*, *91*(8), 2198–2204. https://doi.org/10.1890/10-0238.1

Spiridonov, V. A., & Zalota, A. K. (2017). Understanding and forecasting dispersal of non-indigenous marine decapods (Crustacea: Decapoda) in East European and North Asian waters. *Journal of the Marine Biological Association of the United Kingdom*, *97*(3), 591–611. https://doi.org/10.1017/S0025315417000169

Stachowicz, J. J., Terwin, J. R., Whitlatch, R. B., & Osman, R. W. (2002). Linking climate change and biological invasions: Ocean warming facilitates nonindigenous species invasions. *Proceedings of the National Academy of Sciences of the United States of America*, 99(24), 15497–15500.

https://doi.org/10.1073/PNAS.242437499/ASSET/4F59AFCE-9704-42F4-9261-D03617BE576F/ASSETS/GRAPHIC/PQ2424374003.JPEG

Stechele, B., Maar, M., Wijsman, J., van der Zande, D., Degraer, S., Bossier, P., & Nevejan, N. (2022). Comparing life history traits and tolerance to changing environments of two oyster

species (Ostrea edulis and Crassostrea gigas) through Dynamic Energy Budget theory. *Conservation Physiology*, *10*(1). https://doi.org/10.1093/CONPHYS/COAC034

Stefaniak, L. M. (2017). Mechanisms for invasion success by Didemnum vexillum (Chordata: Ascidiacea): observations versus manipulations. *Biological Invasions*, *19*(4), 1213–1225. https://doi.org/10.1007/S10530-016-1317-9/FIGURES/7

Stein, W., Torres, G., Giménez, L., Espinosa-Novo, N., Phillipp Geißel, J., Vidal-Gadea, A., Harzsch, S., Schneider, A. C., Schulz, D. J., & Kloppenburg, P. (2023). Thermal acclimation and habitat-dependent differences in temperature robustness of a crustacean motor circuit. *Frontiers in Cellular Neuroscience*, 17. https://doi.org/10.3389/fncel.2023.1263591

Stella, J., Pratchett, M., Hutchings, P., & Jones, G. (2011). Impact of ocean warming and ocean acidication on marine invertebrate life history stages: Vulnerabilities and potential for persistence in a changing ocean. *Oceanography and Marine Biology: An Annual Review*, 49, 1–42. https://doi.org/10.1201/B11009-3

Stephenson, E. H., Steneck, R. S., & Seeley, R. H. (2009). Possible temperature limits to range expansion of non-native Asian shore crabs in Maine. *Journal of Experimental Marine Biology and Ecology*, 375, 21–31. https://doi.org/10.1016/J.JEMBE.2009.04.020

Stillman, J. H., & Somero, G. N. (2000). A comparative analysis of the upper thermal tolerance limits of eastern pacific porcelain crabs, genus Petrolisthes: Influences of latitude, vertical zonation, acclimation, and phylogeny. *Physiological and Biochemical Zoology*, 73(2), 200–208. https://doi.org/10.1086/316738

Stoeckle, B. C., Kuehn, R., & Geist, J. (2015). Environmental DNA as a monitoring tool for the endangered freshwater pearl mussel (Margaritifera margaritifera L.): a substitute for classical monitoring approaches? *Aquatic Conservation: Marine and Freshwater Ecosystems*. https://doi.org/10.1002/aqc.2611

Stolfi, A., & Christiaen, L. (2012). Genetic and Genomic Toolbox of the Chordate Ciona intestinalis. *Genetics*, *192*(1), 55–66. https://doi.org/10.1534/GENETICS.112.140590 Styrishave, B., Andersen, O., & Depledge, M. H. (2003). In situ monitoring of heart rates in shore crabs Carcinus maenas in two tidal estuaries: Effects of physico-chemical parameters on tidal and diel rhythms. *Marine and Freshwater Behaviour and Physiology*, *36*(3), 161–175. https://doi.org/10.1080/10236240310001603215

Sugden, H., Panusch, R., Lenz, M., Wahl, M., & Thomason, J. C. (2007). Temporal variability of disturbances: is this important for diversity and structure of marine fouling assemblages? *Marine Ecology*, 28(3), 368–376. https://doi.org/10.1111/J.1439-0485.2007.00184.X

Sunday, J. M., Bates, A. E., & Dulvy, N. K. (2012). Thermal tolerance and the global redistribution of animals. *Nature Climate Change*, *2*, 686–690.

https://doi.org/10.1038/NCLIMATE1539

Taberlet, P., Coissac, E., Hajibabei, M., & Riesberg, L. H. (2012). Environmental DNA. *Molecular Ecology*, 21(8), 1789–1793. https://doi.org/10.1111/j.1365-294X.2012.05542.x Takahara, T., Minamoto, T., & Doi, H. (2015). Effects of sample processing on the detection rate of environmental DNA from the Common Carp (Cyprinus carpio). *Biological Conservation*, 183, 64-69.

Takahara, T., Minamoto, T., & Doi, H. (2013). Using environmental DNA to estimate the distribution of an invasive fish species in ponds. *PloS one*, 8(2), e56584.

Takahara, T., Minamoto, T., Yamanaka, H., Doi, H., & Kawabata, Z. (2012). Estimation of fish biomass using environmental DNA. *PLoS ONE*, 7(4), e35868.

https://doi.org/10.1371/journal.pone.0035868

Takeuchi, K. (1980). Oozoid Formation in the Ascidian Botrylloides violaceus. *Publications of the Seto Marine Biological Laboratory*.

Talevi, J., Steeves, L., Coffin, M., Guyondet, T., Sakamaki, T., Comeau, L., & Filgueira, R. (2023). The physiological state of four commercially important bivalve species during a naturally occurring heatwave. *Canadian Journal of Zoology*.

Taylor, E. W., & Wheatly, M. G. (1979). The behaviour and respiratory physiology of the shore crab, Carcinus maenas (L.) at moderately high temperatures. *Journal of Comparative Physiology B*, *130*(4), 309–316. https://doi.org/10.1007/BF00689848

Tepolt, C. K., & Palumbi, S. R. (2020). Rapid Adaptation to Temperature via a Potential Genomic Island of Divergence in the Invasive Green Crab, Carcinus maenas. *Frontiers in Ecology and Evolution*, 8. https://doi.org/10.3389/FEVO.2020.580701/BIBTEX

Tepolt, C. K., & Somero, G. N. (2014). Master of all trades: Thermal acclimation and adaptation of cardiac function in a broadly distributed marine invasive species, the European green crab, Carcinus maenas. *Journal of Experimental Biology*, 217(7), 1129–1138.

https://doi.org/10.1242/jeb.093849

Therriault, T. W., & Herborg, L. M. (2008a). A qualitative biological risk assessment for vase tunicate Ciona intestinalis in Canadian waters: using expert knowledge. *ICES Journal of Marine Science*, 65(5), 781–787. https://doi.org/10.1093/ICESJMS/FSN059

Therriault, T. W., & Herborg, L. M. (2008b). Predicting the potential distribution of the vase tunicate Ciona intestinalis in Canadian waters: informing a risk assessment. *ICES Journal of Marine Science*, 65(5), 788–794. https://doi.org/10.1093/ICESJMS/FSN054

Thomsen, P. F., Kielgast, J., Iverson, L. L., Wiuf, C., Rasmussen, M., Gilbert, M. T. P., Orlando, L., & Willerslev, E. (2012). Monitoring endangered freshwater biodiversity using environmental DNA. *Molecular Ecology*, *21*(11), 2565–2573.

https://doi.org/10.1111/j.1365-294X.2011.05418.x

Thomsen, P. F., Møller, P. R., Sigsgaard, E. E., Knudsen, S. W., Jørgensen, O. A., & Willerslev, E. (2016). Environmental DNA from seawater samples correlate with trawl catches of subarctic, deepwater fishes. *PLOS ONE*, *11*(11), e0165252. https://doi.org/10.1371/journal.pone.0165252 Thresher, R., Proctor, C., Ruiz, G., Gurney, R., MacKinnon, C., Walton, W., Rodriguez, L., & Bax, N. (2003). Invasion dynamics of the European shore crab, Carcinus maenas, in Australia. *Marine Biology*, *142*(5), 867–876. https://doi.org/10.1007/S00227-003-1011-1/FIGURES/6 Tobias, Z., Solow, A., & Tepolt, C. (2024). Geography and developmental plasticity shape post-larval thermal tolerance in the golden star tunicate, Botryllus schlosseri. *Journal of Thermal Biology*, *119*. https://doi.org/10.1016/J.JTHERBIO.2023.103763

Torres, G., Charmantier, G., Giménez, L., & Cooke, S. (2021). *Ontogeny of osmoregulation of the Asian shore crab Hemigrapsus sanguineus at an invaded site of Europe*. 9. https://doi.org/10.1093/conphys/coab094

Torres, G., Charmantier, G., Wilcockson, D., Harzsch, S., & Giménez, L. (2021). Physiological basis of interactive responses to temperature and salinity in coastal marine invertebrate: Implications for responses to warming. *Ecology and Evolution*, *11*, 7042–7056. https://doi.org/10.1002/ece3.7552

Torres, G., & Giménez, L. (2020). Temperature modulates compensatory responses to food limitation at metamorphosis in a marine invertebrate. *Functional Ecology*, *34*(8), 1564–1576. https://doi.org/10.1111/1365-2435.13607

Townsend, D. W., Pettigrew, N. R., Thomas, M. A., Neary, M. G., McGillicuddy, D. J., & O'Donnell, J. (2015). Water masses and nutrient sources to the Gulf of Maine. *Journal of Marine Research*, 73(3–4), 93–122. https://doi.org/10.1357/002224015815848811

Treguier, A., Paillisson, J.-M., Dejean, T., Valentini, A., Schlaepfer, M. A., & Roussel, J.-M. (2014). Environmental DNA surveillance for invertebrate species: advantages and technical limitations to detect invasive crayfish Procambarus clarkii in freshwater ponds. *Journal of Applied Ecology*, *51*, 871–879. https://doi.org/10.1111/1365-2664.12262

Truchot, J. P. (1973). Temperature and acid-base regulation in the shore crab Carcinus maenas (L.). *Respiration Physiology*, *17*(1), 11–20. https://doi.org/10.1016/0034-5687(73)90106-0 Truscott, R., & White, K. N. (1990). The Influence of Metal and Temperature Stress on the Immune System of Crabs. *British Ecological Society*, *4*(3), 455–461.

Tsuji, S., Ushio, M., Sakurai, S., Minamoto, T., & Yamanaka, H. (2017). Water temperature-dependent degradation of environmental DNA and its relation to bacterial abundance. *PLOS ONE*, *12*(4), e0176608. https://doi.org/10.1371/journal.pone.0176608

Turner, C. R., Uy, K. L., & Everhart, R. C. (2015). Fish environmental DNA is more concentrated in aquatic sediments than surface water. *Biological Conservation*, *183*, 93–102. https://doi.org/10.1016/j.biocon.2014.11.017

Turon, X., Cañete, J. I., Sellanes, J., Rocha, R. M., & López-Legentil, S. (2016). Too cold for invasions? Contrasting patterns of native and introduced ascidians in subantarctic and temperate Chile. *Management of Biological Invasions*, 7(1), 77–86.

https://doi.org/10.3391/mbi.2016.7.1.10

Valentine, P. C., Carman, M. R., Blackwood, D. S., & Heffron, E. J. (2007). Ecological observations on the colonial ascidian Didemnum sp. in a New England tide pool habitat. *Journal of Experimental Marine Biology and Ecology*, *342*, 109–121.

https://doi.org/10.1016/j.jembe.2006.10.021

Valentine, P. C., Carman, M. R., Dijkstra, J., & Blackwood, D. S. (2009). Larval recruitment of the invasive colonial ascidian Didemnum vexillum, seasonal water temperatures in New England coastal and offshore waters, and implications for spread of the species. *Aquatic Invasions*, *4*(1), 153–168. https://doi.org/10.3391/ai.2009.4.1.16

Valentine, P. C., Collie, J. S., Reid, R. N., Asch, R. G., Guida, V. G., & Blackwood, D. S. (2007). The occurrence of the colonial ascidian Didemnum sp. on Georges Bank gravel habitat -

Ecological observations and potential effects on groundfish and scallop fisheries. *Journal of Experimental Marine Biology and Ecology*, 342, 179–181.

https://doi.org/10.1016/j.jembe.2006.10.038

van Beusekom, S. A. M. (1994). The difference in energy-budget valve activity and survival in air between two irish Ostrea Edulis populations.

van den Brink, A. M., & Wijsman, J. W. M. (2010). High risk exotic species with respect to shellfish transports from the Oosterschelde to the Wadden Sea.

van der Loos, L. M., & Nijland, R. (2021). Biases in bulk: DNA metabarcoding of marine communities and the methodology involved. *Molecular Ecology*, *30*(13), 3270-3288.

Vercaemer, B., Sephton, D., Nicolas, J. M., Howes, S., & Keays, J. (2011). Ciona intestinalis environmental control points: field and laboratory investigations. *Aquatic Invasions*, *6*(4), 477–490. https://doi.org/10.3391/ai.2011.6.4.13

Vinagre, C., Leal, I., Mendonça, V., & Flores, A. A. V. (2015). Effect of warming rate on the critical thermal maxima of crabs, shrimp and fish. *Journal of Thermal Biology*, *47*, 19–25. https://doi.org/10.1016/J.JTHERBIO.2014.10.012

Vinagre, C., Leal, I., Mendonça, V., Madeira, D., Narciso, L., Diniz, M. S., & Flores, A. A. V. (2016). Vulnerability to climate warming and acclimation capacity of tropical and temperate coastal organisms. *Ecological Indicators*, *62*, 317–327.

https://doi.org/10.1016/J.ECOLIND.2015.11.010

Vinagre, C., Mendonça, V., Cereja, R., Abreu-Afonso, F., Dias, M., Mizrahi, D., & Flores, A. A. V. (2018). Ecological traps in shallow coastal waters—Potential effect of heat-waves in tropical and temperate organisms. *PLOS ONE*, *13*(2), 1–17.

https://doi.org/10.1371/JOURNAL.PONE.0192700

VKM, Järnegren, J., Gulliksen, B., Husa, V., Malmstrøm, M., Oug, E., Berg, P. R., Bryn, A., Geange, S. R., Hindar, K., Hole, L. R., Kausrud, K., Kirkendall, L., Nielsen, A., Sandercock, B. K., Thorstad, E., & Velle, G. (2023). Assessment of risk and risk-reducing measures related to the introduction and dispersal of the invasive alien carpet tunicate Didemnum vexillum in Norway . In *VKM Report*.

https://vkm.no/risikovurderinger/allevurderinger/havnespyvurderingavrisikofornorskbiologiskma ngfold.4.322e13f717e917457df98cb3.html

Wada, S., Hamada, M., & Satoh, N. (2006). A genomewide analysis of genes for the heat shock protein 70 chaperone system in the ascidian Ciona intestinalis. *Cell Stress & Chaperones*, *11*(1), 23–33. https://doi.org/10.1379/CSC-137R.1

Wasson, K., Fenn, K., & Pearse, J. S. (2005). Habitat differences in marine invasions of central California. *Biological Invasions*, *7*, 935–948. https://doi.org/10.1007/s10530-004-2995-2 Webb, D. A. (1940). Ionic regulation in Carcinus maenas. *Proceedings of the Royal Society of London*, 107–137.

Weber, R. E., Behrens, J. W., Malte, H., & Fago, A. (2008). Thermodynamics of oxygenation-linked proton and lactate binding govern the temperature sensitivity of O2 binding in crustacean(Carcinus maenas) hemocyanin. *Journal of Experimental Biology*, 211(7), 1057–1062. https://doi.org/10.1242/JEB.013433

Wei, J., Zhang, J., Lu, Q., Ren, P., Guo, | Xin, Wang, J., Li, | Xiang, Chang, Y., Duan, S., Wang, | Shi, Yu, H., Zhang, X., Yang, X., Gao, H., & Dong, B. (2020). Genomic basis of environmental adaptation in the leathery sea squirt (Styela clava). *Molecular Ecology Resources*, 1414–1431. https://doi.org/10.1111/1755-0998.13209

Weigle, S. (2007). *Non-Shipping Pathways for Marine Invasive Species in Maine*. https://digitalcommons.usm.maine.edu/cbep-publications

Welch, W. R. (1968). Changes in Abundance of the Green Crab, Carcinus maenas (L.), in Relation to Recent Temperature Changes. *Fishery Bulletin*, 67(2), 337–345.

Wells, C., Pappal, A. L., Cao, Y., Carlton, J. T., Currimjee, Z., Dijkstra, J. A., Edquist, S. K., Gittenberger, A., Goodnight, S., Grady, S. P., Green, L. A., Harris, L. G., Harris, L. H., Hobbs, N.-V., Lambert, G., Marques, A., Mathieson, A. C., McCuller, M. I., Osborne, K., ... Stevens, A. (2013). Report on the 2013 Rapid Assessment Survey of Marine Species at New England Bays and Harbors.

https://digitalcommons.usm.maine.edu/cbep-publications.208.https://digitalcommons.usm.maine.edu/cbep-publications/208

Wendt, D. E. (2000). Energetics of Larval Swimming and Metamorphosis in Four Species of Bugula (Bryozoa). *Biological Bulletin*, *198*, 346–356.

Westerman, E. L., Whitlatch, R., Dijkstra, J. A., & Harris, L. G. (2009). Variation in brooding period masks similarities in response to changing temperatures. *Marine Ecology Progress Series*, 391, 13–19. https://doi.org/10.3354/meps08107

Wethey, D. S., & Woodin, S. A. (2008). Ecological hindcasting of biogeographic responses to climate change in the European intertidal zone. *Hydrobiologia*, 606(1), 139–151. https://doi.org/10.1007/s10750-008-9338-8

White, S., & Rainbow, P. (1984). Regulation of zinc concentration by Palaemon elegans (Crustacea: Decapoda): zinc flux and effects of temperature, zinc concentration and moulting. *Marine Ecology Progress Series*, *16*(1), 135–147. https://doi.org/10.3354/meps016135

Willerslev, E., Hansen, A. J., & Poinar, H. N. (2004). Isolation of nucleic acids and cultures from fossil ice and permafrost. *Trends in Ecology and Evolution*, *19*(3), 141–147.

https://doi.org/10.1016/j.tree.2003.11.010

Willis, K., Woods, C., & Ashton, G. (2009). Caprella mutica in the Southern Hemisphere: Atlantic origins distribution, and reproduction of an alien marine amphipod in New Zealand. *Aquatic Biology*, 7, 249–259. https://doi.org/10.3354/ab00197

Wilson, E. R., Murphy, K. J., & Wyeth, R. C. (2022). Ecological Review of the Ciona Species Complex. *The Biological Bulletin*, *242*(2), 153–171. https://doi.org/10.1086/719476

Wilson, K. L., Kay, L. M., Schmidt, A. L., & Lotze, H. K. (2015). Effects of increasing water temperatures on survival and growth of ecologically and economically important seaweeds in Atlantic Canada: implications for climate change. *Marine Biology*, *162*(12), 2431–2444. https://doi.org/10.1007/S00227-015-2769-7/FIGURES/4

Wing, O. H., & Gardell, A. (2022). Some like it hot: temperature stress and juvenile development in the invasive colonial tunicate Botrylloides violaceus.

Winkley, K., & Veeman, M. (2018). A temperature-adjusted developmental timer for precise embryonic staging. *Biology Open*, 7(6).

https://doi.org/10.1242/BIO.032110/259395/AM/A-TEMPERATURE-ADJUSTED-DEVELOP MENTAL-TIMER-FOR

Witman, J. D., & Lamb, R. W. (2018a). Persistent differences between coastal and offshore kelp forest communities in a warming Gulf of Maine. *PLOS ONE*, *13*(1), e0189388.

https://doi.org/10.1371/JOURNAL.PONE.0189388

Witman, J. D., & Lamb, R. W. (2018b). Persistent differences between coastal and offshore kelp forest communities in a warming Gulf of Maine. *PLoS ONE*, *13*(1).

https://doi.org/10.1371/JOURNAL.PONE.0189388

Wolf, E. (1932). Pulsation Frequency of the Advisceral and Abvisceral Heart Beats of Ciona intestinalis in Relation to Temperature. *The Journal of General Physiology*, 89–98. http://rupress.org/jgp/article-pdf/16/1/89/1237920/89.pdf

Wong, N. A., McClary, D., & Sewell, M. A. (2011). The reproductive ecology of the invasive ascidian, Styela clava, in Auckland Harbour, New Zealand. *Marine Biology*, *158*(12), 2775–2785. https://doi.org/10.1007/S00227-011-1776-6/TABLES/1

Yamada, S. B., & Kosro, P. M. (2010). Linking ocean conditions to year class strength of the invasive European green crab, Carcinus maenas. *Biological Invasions*, *12*(6), 1791–1804. https://doi.org/10.1007/s10530-009-9589-y

Yamaguchi, M. (1975). Growth and reproductive cycles of the marine fouling ascidians Ciona intestinalis, Styela plicata, Botrylloides violaceus, and Leptoclinum mitsukurii at Aburatsubo-Moroiso Inlet (central Japan). *Marine Biology*, *29*(3), 253–259. https://doi.org/10.1007/BF00391851/METRICS

Ye, W.-G., Zhao, H., Warner, B. A., & Shine, D. A. (2010). Thermal Acclimation of Heart Rates in Reptilian Embryos. *PLoS ONE*, *5*(12), 15308. https://doi.org/10.1371/journal.pone.0015308 Yeager, D. P., & Ultsch, G. R. (1989). Physiological Regulation and Conformation: A BASIC Program for the Determination of Critical Points. *Physiological Zoology*, *62*(4), 888–907. https://www.jstor.org/stable/30157935

Yonge, C. M. (1926). Structure and Physiology of the Organs of Feeding and Digestion in Ostrea edulis. *Journal of the Marine Biological Association of the United Kingdom*, *14*(2), 295–386. https://doi.org/10.1017/S002531540000789X

Yorke, A. F., & Metaxas, A. (2011). Interactions Between an Invasive and a Native Bryozoan (Membranipora membranacea and Electra pilosa) Species on Kelp and Fucus Substrates in Nova Scotia, Canada. *Marine Biology*, *158*, 2299–2311. https://doi.org/10.3354/meps289109

Yoshioka, P. M. (1982). Role of Planktonic and Benthic Factors in the Population Dynamics of the Bryozoan Membranipora Membranacea. *Ecology*, *63*(2), 457–468. https://doi.org/10.2307/1938963

Young, A. M., & Elliott, J. A. (2020). Life history and population dynamics of green crabs (Carcinus maenas). *Fishes*, *5*(1), 1–44. https://doi.org/10.3390/fishes5010004

Zamer, W. E., Mcmanus, M. G., & Rowell, C. B. (1999). Physiological Variation in Clonal Anemones: Energy Balance and Quantitative Genetics. *American Zoologist*, *39*, 412–421. https://academic.oup.com/icb/article/39/2/412/2033052

Zapata-Restrepo, L. M., Hauton, C., Williams, I. D., Jensen, A. C., & Hudson, M. D. (2019). Effects of the interaction between temperature and steroid hormones on gametogenesis and sex ratio in the European flat oyster (Ostrea edulis). *Comparative Biochemistry and Physiology Part A*, *236*. https://doi.org/10.1016/J.CBPA.2019.06.023

Zazzaro, D., Ruggiero, K., & Jeffs, A. (2018). Use of extract from adults of the triangle barnacle, Balanus trigonus, for reducing fouling in mussel farms. *Aquaculture*, 483, 223–229. https://doi.org/10.1016/j.aquaculture.2017.10.012

Zerebecki, R. A., & Sorte, C. J. B. (2011). Temperature Tolerance and Stress Proteins as Mechanisms of Invasive Species Success. *PLOS ONE*, *6*(4).

https://doi.org/10.1371/JOURNAL.PONE.0014806

Zhang, X., Liu, H., Li, X., Miao, X., Liu, L., & Jiang, A. (2021). Influence of body size, temperature, and diet concentration on feeding of Styela clava. *Journal of Biotech Research*, *12*, 10–18.

Zhang, Y., Deegan, L., & Carman, M. R. (2019). Invasive tunicate (Ascidiacea) metabolic and filtration rates in comparison to native tunicate and bivalve species. *Management of Biological Invasions*, 10(4), 617–625. https://doi.org/10.3391/mbi.2019.10.4.03

Zhang, Z., Capinha, C., Karger, D. N., Turon, X., MacIsaac, H. J., & Zhan, A. (2020). Impacts of climate change on geographical distributions of invasive ascidians. *Marine Environmental Research*, *159*. https://doi.org/10.1016/J.MARENVRES.2020.104993

Appendix A

Appendix A. Two way ANOVA tables for Biddeford Pool qPCR runs comparing location in the tide pool and sampling date.

Botryllus schlosseri

	Df	Sum Sq	Mean Sq F	· value	Pr(>F)	
Location	9	16.96	1.885	1.265	0.265	
monthyear	22	109.00	4.954	3.325	2.08e-05	***
Residuals	102	152.00	1.490			

Botrylloides violaceus

```
Df Sum Sq Mean Sq F value Pr(>F)
Location 7 4.57 0.6524 2.115 0.0493 *
MonthYear 21 44.66 2.1265 6.895 1.68e-11 ***
Residuals 94 28.99 0.3084
```

Ciona intestinalis

	Df	Sum Sq	Mean Sq F	value	Pr(>F)	
Location	5	3.69	0.738	0.349	0.88053	
MonthYear	17	96.24	5.661	2.680	0.00291	**
Residuals	56	118.31	2.113			

Didemnum vexillum

```
Df Sum Sq Mean Sq F value Pr(>F)
Location 11 139.32 12.666 48.08 < 2e-16 ***
monthyear 21 52.61 2.505 9.51 2.87e-15 ***
Residuals 94 24.76 0.263
```

Hemigrapsus sanguineus

	Df	Sum Sq	Mean Sq	F	value	Pr(>F)	
Location	5	3.883	0.7765		4.888	0.004027	**
MonthYear	17	14.423	0.8484		5.340	0.000224	***
Residuals	21	3.336	0.1589				

Membranipora membranacea

Df Sum Sq Mean Sq F value Pr(>F) Location 11 43.57 3.961 18.417 1.31e-15 *** 2.794 0.00105 ** MonthYear 20 12.02 0.601 13.34 Residuals 62 0.215

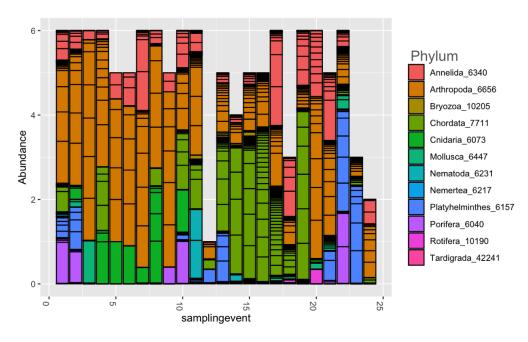
Ostrea edulis

Df Sum Sq Mean Sq F value Pr(>F)
Location 9 1.469 0.16327 2.609 0.00987 **
monthyear 22 2.421 0.11006 1.759 0.03301 *
Residuals 93 5.820 0.06258

Semibalanus balanoides

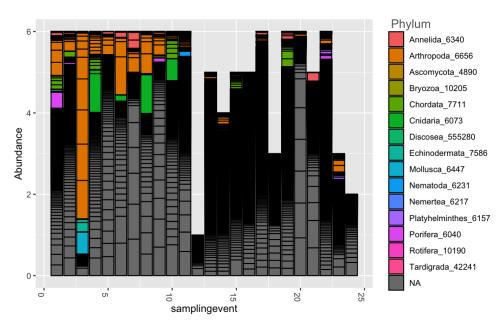
Df Sum Sq Mean Sq F value Pr(>F)
Location 5 0.97 0.194 0.477 0.793
monthyear 22 106.72 4.851 11.924 <2e-16 ***
Residuals 107 43.53 0.407

Appendix B


Metabarcoding and bioinformatics

PCR was run in triplicate using the Leray COI primers. All PCR results were visualized on a 1% agarose gel with SYBR Green to ensure PCR success. Following PCR, and if the gel indicated success, PCRs were pooled and cleaned using Ampure beads in a 1.4x concentration. Following binding to Ampure beads, the samples were washed three times using a 70% ethanol solution before being eluted into 10 μ L of nuclease free water. All samples were then measured with a NanoDrop spectrophotometer to ensure that DNA concentrations were between 10 ng/ μ L and 200 ng/ μ L. Sequencing was performed on an Illumina MiSeq using either a 2x300 or 2x200 sequencing kit at the discretion of the sequencing facility (Integrated Microbiome Resource, Dalhousie University).

The returned FASTQ files were processed with a pipeline designed by collaborators at the NSF EPSCoR Maine-eDNA consortium using dada2 and phyloseq. Due to the two sequencing runs being processed with different kits, the reads of half of the sequences were not able to be merged. So, we moved through the pipeline using only the forward reads. Amplicon sequence variants (ASVs) were compared to MIDORI and an internal Maine-eDNA database containing whole mitogenomes and generated using a species list of Maine-specific species. Visualizations in phyloseq allowed us to generate nMDS and diversity index plots.


Metabarcoding

Using the DADA2 pipeline, we only analyzed the forward reads due to the differences in sequencing kits leaving the sequences too short to merge paired reads. Approximately 70% of sequences passed the filters of the pipeline and were analyzed to generate amplicon sequence variants (ASVs). Amplicon sequence variants were compared against a modified MIDORI database to assign taxonomy to the sequences (Leray et al., 2022).

Figure 14: Amplicon sequence variants that were successfully assigned to a variety of phyla. Each color represents a different phylum. These metabarcoding data exclude any unassigned ASVs.

Despite the broad range of phyla observed above, most ASVs did not assign to any taxa in the database. The resolution of the matched phyla decreases when placed in the context of the entire dataset.

Figure 15: Total ASVs and matched phyla for Biddeford Pool metabarcoding data. Each color represents a different phylum. Gray bars indicate unassigned ASVs.

BIOGRAPHY OF THE AUTHOR

Emily Lancaster (nee Pierce) was born in Murrieta, California on September 10, 1994. She was raised in Reno, Nevada and graduated from Sage Ridge School in 2012. She attended Pepperdine University for a bachelor's degree in biology where she graduated in 2016. She attended Moss Landing Marine Laboratories through California State University, Monterey Bay and received a master's in marine science in 2020. Then she moved to Maine to pursue a Ph.D. in marine biology. Emily is a candidate for the Doctor of Philosophy degree in Marine Biology from the University of Maine in August 2024.