
 

PUSHING THE BOUNDARIES: INVESTIGATING PHYSIOLOGICAL 

LIMITS OF INVASIVE SPECIES AND eDNA DETECTION 

METHODS 

By 

Emily Rose 

Lancaster 

B.S. Pepperdine University, 2016 

  

M.S. California State University, Monterey Bay, 2020 

  

  

  

A DISSERTATION 

  

Submitted in Partial Fulfillment of the 

Requirements for the Degree of 

Doctor of Philosophy in Marine Science 

  

  

The Graduate 

School The 

University of 

Maine 

August 2024 

Advisory Committee: 

  

Markus Frederich, Professor of Marine Sciences, 

Advisor 

Damian C Brady, Professor of Oceanography, Advisor 

Doug B Rasher, Senior Research Scientist, Advisor 

Erin K Grey, Assistant Professor of Aquatic Genetics 



 

Rhian G Waller, Senior Lecturer/Associate Professor 

Copyright page  



 

Land Acknowledgement page  



 

Abstract Page 

Invasive species are organisms moved from one region to another by humans. Although they are 

not always harmful to the recipient community, their lack of evolutionary history with their new 

community can set the stage for destruction. In a world of increasing interconnectivity and 

warming waters, we expect invasive species will continue to be introduced and that their ranges 

will expand as more areas become suitable habitats. At this critical point in our planet’s natural 

history, the need to understand where invasive species can survive and how to detect them are 

important. Here, I begin with a review of invasive species physiology measurements using species 

identified as invasive through the Marine Invader Monitoring and Information Collaborative. 

These data points highlight inconsistencies in measurement technique as well as the importance 

that acclimation temperature and life stage play on thermal thresholds. Based on the noise in the 

data, I recommend laboratory experiments to understand the absolute maximum and minimum 

survivable temperatures for each species, followed by field observations of temperatures needed to 

grow and reproduce. Then, using a newer invader to Maine Hemigrapsus sanguineus, I measured 

thermal thresholds for summer and winter-acclimated crabs and found shifts in thermal thresholds 

as well as evidence that winter temperatures are stressful for these crabs. Lastly, to effectively 

detect invasive species early, I tested and designed assays for environmental DNA (eDNA) 

detection of 9 invasive or nuisance species in the Gulf of Maine. Using laboratory experiments and 

a two-year time series in a local tide pool, I found that not all of the studied invertebrate species 

can be detected equally. Some organisms with soft, exposed tissues shed eDNA consistently with 

their abundance, while organisms with exoskeletons or shells do not. This trend does not hold true 

for all of the studied taxa, but this premise alongside an understanding of natural history and 

morphology helps clarify the observed trends. Thus, eDNA techniques should not be applied 

equally across all taxa for management purposes without a clear understanding of the message of 

the signal. Overall, I made recommendations to better predict suitable habitats for invasive species, 

characterized thresholds for an understudied invasive species in New England, and continued 

building upon the challenges of detecting invertebrates with eDNA.  
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Introduction 

Invasive species impacts in the Gulf of Maine 

​ The Gulf of Maine (GoM) is a highly productive body of water with diverse ecosystems, 

oceanography, a growing aquaculture industry, and proximity to several large shipping ports. 

Due to climate change, the GoM is warming, with record high temperatures in 2012, 2016, and 

2018 (Pershing et al., 2015).  2015-2020 was the warmest 5-year period for the Gulf, a trend that 

is predicted to continue under climate change projections (Pershing et al., 2021).  These 

oceanographic differences between regions in the gulf likely serve as some protection towards 

invasive species northward progress, but the strength of the currents varies seasonally and 

annually (Pettigrew et al., 2005).  The GoM is dominated by two strong current systems, the 

Eastern Maine Coastal Current and the Western Maine Coastal Current.  The northern GoM is 

cooler and well mixed due to nutrient rich, cool waters from the Scotian shelf and continental 

slope (Goode et al., 2019; Pettigrew et al., 2005; Townsend et al., 2006; Townsend et al., 2015).  

To the south, the Western Maine Coastal Current is warm and stratified, driven by freshwater 

input and wind.    

The overall warming temperatures, together with overfishing, are affecting some of the 

most profitable fisheries in the GoM, such as lobster (Mountain and Kane, 2010; Mills et al., 

2013).  Alongside climate change and the rate of warming in the Gulf of Maine, marine heat 

waves are events that “last for five or more days, with temperatures warmer than the 90th 

percentile based on a 30-year historical baseline period” (Hobday et al., 2016).  The frequency of 

marine heatwaves is increasing and could have disastrous impacts on the already stressed native 

communities in Maine (Oliver et al., 2018).  Warming temperatures are partially blamed for the 

decline of the cod fishery and changes in distribution and abundances of lobsters (Mills et al., 

2013; Nye et al., 2009; Pinsky et al., 2013; Pershing et al., 2015). While here we discuss the 

overall implications of warming, it is important to note that warming is not affecting the oceans 

at a constant velocity. 

​ Invasive species in the GoM compound other stressors, putting endemic communities at 

risk.   An invasive species is defined here as a species transported by humans, directly or 

indirectly, which establishes in a new environment. Although invasive species are not always 

harmful to their recipient communities, they usually do not share an evolutionary history with 

recipient community members, leading to novel interactions which may affect either species 



 

negatively (Sorte et al., 2010).  Recently, the rate of invasion has increased dramatically due to 

increased global connectivity, and our increased ability to detect these species (Lockwood et al., 

2013; Richardson and Pyšek, 2008). In marine ecosystems, many invasive species arrive in an 

area with ballast, on the hulls of boats, with the aquarium trade, or through aquaculture practices 

(Ruiz et al., 1999; Dijkstra et al., 2007; Lord and Williams, 2017; Marraffini et al., 2017; Weigle, 

2007).  

Ocean temperatures generally decrease at higher latitude along the coast of Maine and 

higher densities of invasive species have been observed in southern Maine due to temperature, 

currents (see above), and higher introduction rate (McNaught and Norden, 2011).  Due to climate 

change, the intensity and scale of these biotic invasions are shifting. For example, between 1979 

and 2005, the average cover of invasive ascidians on settlement plates deployed in southwestern 

Maine increased from 6% to 11% (Dijkstra et al., 2007). Ascidians are not the only non-native 

species proliferating; European green crab, Carcinus maenas, expanded their range from New 

Jersey to Newfoundland (1800 km) in just over 100 years (Klassen and Locke, 2007). An even 

newer invader, Hemigrapsus sanguineus has outcompeted C. maenas in the southern GoM due to 

its aggressive nature, higher feeding rates, and stronger claws (Jensen et al., 2002; DeGraaf and 

Tyrrell, 2004; Payne and Kraemer, 2013; Lord and Williams, 2017). There are at least fifteen 

readily identifiable invasive invertebrate species of concern in New England, though more are 

likely present and undetected (MIMIC, Rouget et al., 2016). 

​ While understudied, the impacts of some invasive species on Northwest Atlantic 

ecosystems have been described.  The European green crab, C. maenas, is one species whose 

impacts (such as habitat destruction and aggression) have been well classified in the GoM.  For 

example, foraging by C. maenas triggered a decline of eelgrass beds in the Gulf of Saint 

Lawrence, leading to changes in food web dynamics and decreases in Canadian geese staging for 

migration (Garbary et al., 2014). Eelgrass meadows are predicted to decline in density with 

anthropogenic climate change, so C. maenas may exacerbate the loss of this habitat in the GoM 

(see Duarte, 2002; Goode et al., 2019). Similar observations of C. maenas and eelgrass 

interactions have been made on the Pacific coast of the United States (Howard et al., 2019). 

Eelgrass beds are important ecosystems for coastline protection, a source of blue carbon, and can 

serve as nursery habitats for young fish such as Atlantic cod (Gadus morhua) (Duarte, 2002; 

Gotceitas et al.,1997). C. maenas are also known to be aggressive towards juvenile American 



 

lobster, Homarus americanus (Rossong et al., 2006). Lastly, C. maenas are potentially voracious 

predators of juvenile blue mussels, Mytilus edulis, and littorinid snails, both of which are 

important members of intertidal and subtidal Atlantic communities (Ebling et al., 1964; 

Lubchenco and Menge, 1978). The impacts of C. maenas are well studied due to the time since 

invasion and the pervasive nearshore effects on fisheries and habitats. 

​ Despite fewer studies focusing on their impacts, several other invasive species have also 

been documented negatively affecting the GoM. Didemnum vexillum, the carpet tunicate, was 

introduced in the Damariscotta River estuary through aquaculture in the 1970s (Dijkstra et al., 

2007). Since its introduction, it has spread rapidly throughout the GoM and now covers 230 km2 

of George’s Bank, an important fishing ground and nursery habitat in the Northwest Atlantic 

(Valentine et al., 2007). This colonization is impacting the scallop fishery by decreasing available 

space for juvenile and adult scallops on gravel habitat and overgrowth of the scallops by the 

tunicate (Dijkstra and Nolan, 2011; Kaplan et al., 2017). Changes to benthic substrate may also 

affect survival of juvenile cod, Gadus morhua and haddock, Melanogrammus aeglefinus 

(Lengyel et al., 2009) by decreasing food availability as only about 10% of D. vexillum tissue 

contains nutritional value (Valentine et al., 2007). 

​ Clearly, invasive species are already impacting the GoM and we are just beginning to 

understand their impacts on native ecosystems. As temperatures continue to rise, invasive species 

will continue to spread and native species will shift poleward (Goode et al., 2019; Parmesan and 

Yohe, 2003). These species shifts could lead to more novel species interactions, exacerbating the 

effects of the invasive species and creating novel species assemblages (Aronson et al., 2015; 

Goode et al., 2019; Sorte et al., 2010). To detect and respond to these shifts, effective monitoring 

strategies will be crucial. 

Environmental DNA to detect invasive invertebrates 

​ Ficetola and colleagues in 2008 detected DNA from American bullfrogs in the lab and 

field through the extraction of DNA from environmental samples. This DNA, referred to as 

environmental DNA or eDNA, opened the door for detection of species without capture of the 

organism. Environmental DNA has been used in a variety of applications including freshwater 

(Biggs et al., 2015 [newt detection with community science]; Dejean et al., 2011 [American bull 

frog and Siberian sturgeon]; Eichmiller et al., 2016 [common carp]; Eiler et al., 2018 [pool frog]; 

Laramie et al., 2015 [Chinook salmon]; Pilliod et al., 2014 [Idaho giant salamanders]; Pont et al., 



 

2018 [comparing electrofishing surveys with eDNA metabarcoding]; Stoeckle et al., 2015 [fish 

commmunity metabarcoding]; Takahara et al., 2012 [common carp]; Turner et al., 2015 

[bigheaded Asian carp]), ice (Willerslev et al., 2004 [ancient bacterial DNA]), air (Banchi et al., 

2020 [airborne fungi and plant DNA]; Lynggaard et al., 2022 [zoo animal detection]), soil 

(Levy-Booth et al., 2007 [DNA cycling]; Pietramellara et al., 2009 [review of microbial impact 

on soil DNA]), and salt water (Ardura et al., 2015 [European mudsnail ballast transfer; Kelly et 

al., 2014 [metabarcoding of a mesocosm]; Kelly et al., 2018 [tidal effect on eDNA detection]; 

Thomsen et al., 2016 [deepwater fish detection versus trawl data]). These studies demonstrate 

that species detection using eDNA is possible, even if we do not directly capture or observe the 

animal. In cryptic species such as amphibians, eDNA provides scientists a glimpse into 

population sizes and distribution, which can be critical for monitoring (Biggs et al., 2015).  

​ The sensitivity of eDNA methods allows for the detection of invasive species as well. 

Invasive species are easier to manage when they are in low abundance, so early detection may be 

the key to eradication (see, for example, Vander Zanden et al., 2010). The Laurentian Great 

Lakes are now home to several damaging invasive species, including several carp species and 

zebra mussels. Environmental DNA was able to detect the presence of bighead and silver carp 

(Hypophthalmichthys nobilis and Hypophthalmichthys molitrix, respectively) before the fish 

were caught upstream of electrical barriers to keep the fish out of the lakes (Jerde et al., 2011; 

Jerde et al., 2013). Zebra mussels, Dreissena polymorpha, and quagga mussels, D. rostriformis, 

have been detected using eDNA in the Great Lakes and in Europe, where eDNA was used to 

quantify the level of infestation in lakes where traditional survey methods, such as larval counts, 

failed (Clusa et al., 2017; Klymus et al., 2017; Peñarrubia et al., 2016; Williams et al., 2017). 

These examples highlight the strength of eDNA in detecting invasive species early, which is 

critical to decrease the risk of establishment. 

​ Some suggest interpreting eDNA with caution; that we cannot trust the results if we 

cannot see the animal and that the DNA could be coming from other sources (Jerde, 2021). 

Despite pushback from managers and the public, eDNA methods for some species were found to 

be more reliable and less expensive than traditional methods. Asian carp species are challenging 

to detect with traditional methods, especially in low density, so eDNA survey methods are likely 

more precise (Jerde et al., 2011). Invasive species management in the United States costs more 

than $120 billion annually and false positive detections could lead to an inefficient distribution of 



 

limited resources (Pimentel et al., 2005). All survey methods are subject to error, and error in 

invasive species detection can have costly consequences, whether those methods are traditional 

survey methods or eDNA based methods. For example, conventional capture methods can suffer 

from misidentification, low detection probabilities, insufficient effort, or temporal mismatch in 

sampling effort (Jerde, 2021). Sources of error in eDNA studies can come from genetic 

misidentification, hybridization, contamination, DNA persistence, seasonal or temporal 

mismatch, inhibitors, or molecular failure. Some of these error sources are similar across 

methods so proper background information (i.e. when is the animal present in the ecosystem?) 

can reduce error across methodologies. 

​ Although eDNA methods are constantly improving, guidelines have been developed to 

ensure that eDNA assays (primer and probe set) have been sufficiently validated for management 

purposes. One of these guidelines is the “Minimum Information for Publication of Quantitative 

Real-Time PCR Experiments” (MIQE). An assay designed following the MIQE guidelines will 

have information on the limit of detection, primer specificity, inhibition testing, and other factors 

that can lead to differences between laboratories and locations (Bustin et al., 2009). The overall 

goal of these guidelines were to increase the value of reported qPCR experiments, allow editors 

and reviewers to assess the quality of submitted qPCR publications, and to help experiments be 

replicable to reduce redundancy in assay design. Thalinger et al. (2021) built upon the MIQE 

guidelines to create a set of guidelines specific to eDNA assays. Many of the requirements from 

MIQE remain in place, but they include validating eDNA samples at multiple sites and 

quantifying detection probabilities (Thalinger et al., 2021). The use of these guidelines as well as 

strong scientific communication should increase confidence in eDNA techniques for monitoring 

invasive species (Jerde et al., 2021). 

​ An area of eDNA study that requires more attention is the relationship between 

abundance and detectable eDNA. Factors such as mixing and flowing of water (Foote et al., 

2012; Stoeckle et al., 2015), degradation caused by UV, temperature, or bacteria (Pilliod et al., 

2014; Strickler et al., 2015; Tsuji et al., 2017), and potentially, body plan of the animal. Studies 

in fish and some amphibians have found a correlation between biomass and detected eDNA in 

the laboratory and in field or mesocosm studies (Kelley et al., 2014; Klymus et al., 2015; 

Lacoursière-Roussel et al., 2016; Maruyama et al., 2014;  Pont et al., 2018; Takahara et al., 2012; 

Thomsen et al., 2016). Both single species and metabarcoding studies have questioned whether 



 

eDNA reads correlate with the amount of organisms present depending on primer set and 

morphology (Crane et al., 2021; Danziger et al., 2022; Grey et al., 2018; Thomas et al., 2016).  

​ Here, I use eDNA to detect nine species of invasive invertebrates. These species range in 

body plan from fleshy, exposed tissues (squishy), to organisms covered in a shell or exoskeleton 

(crunchy). I predict that there will be a difference in effectiveness of quantitative eDNA 

detection between these groups of species, where more exposed organisms will shed more eDNA 

and move covered organisms will shed less eDNA.  

Physiology of invasive invertebrates 

​ Physiological plasticity is a leading hypothesis for the success of invasive species. Ability 

to survive in a variety of environments has allowed European green crab, C. maenas, to colonize 

every continent except Antarctica (Compton et al., 2010, Darling et al., 2008). For example, C. 

maenas can live in a wide range of temperatures, from lower than 0 ℃ to nearly 36 ℃ (Jost et 

al., 2012; Tepolt and Somero, 2014; Frederich and Pierce, 2024). They can live in estuaries with 

low salinity by increasing their urine output (Binns, 1969). As generalists, they can eat most 

foods they encounter and some populations have strengthened their claws to more effectively 

prey upon littorinid snails (Edgell and Hollander, 2011; Seeley, 1986). Finally, their larvae can 

develop at a variety of temperatures by increasing planktonic duration, allowing them to disperse 

further (deRivera et al., 2007). These characteristics have allowed C. maenas to spread far from 

its home range and outcompete native species to become a dominant part of many nearshore 

ecosystems. These characteristics of plasticity are likely true of other invasive species in the 

GoM, but extensive studies of C. maenas have occurred due to the prevalence of this invasive 

species around the world. Chapters 1 and 2 will explore what is known about physiological 

tolerance for other GoM invasive invertebrates and measure physiological frameworks for Asian 

shore crab, H. sanguineus, in greater detail, thereby enhancing our understanding of the role of 

physiological plasticity in invasion success. 

​ Physiology of an animal becomes increasingly important as the climate changes; to 

predict where organisms will spread based on their physiological limits will allow for appropriate 

implementation of eDNA monitoring methods. Furthermore, our ability to detect an organism 

using eDNA methods may change under stress. Green crabs running on a treadmill increased the 

amount of detectable DNA in a laboratory setting, likely due to an increased metabolic rate 

(Danziger et al., 2022). Similar results have been seen in bluegill sunfish, Lepomis macrochirus, 



 

where juvenile fish released more eDNA than adults due to activity level (Maruyama et al., 

2014). One study found unexplained, individual variation in eDNA shedding rates for Idaho 

giant salamanders; so much variation that a salamander who produced more than four times the 

amount of eDNA as the others had to be excluded from analysis (Pilliod et al., 2014). Organisms 

may also reproduce once water temperature reaches a certain level, so these factors must be 

taken into consideration for field eDNA studies with goals of quantification (see, for example, 

Peñarrubia et al., 2016). Due to the potential interaction between temperature and eDNA 

detection, these topics are important to examine before usage of eDNA in monitoring practices. 

Study system and species of interest 

​ In the GoM, there are fifteen invasive invertebrate species currently being monitored by 

the Marine Invader Monitoring and Information Collaborative (MIMIC), which are already 

known to be established in New England. The purpose of MIMIC is to study the presence of 

easily-identifiable invasive species in the New England area through volunteer efforts. These 

invaders are representatives of multiple phyla from around the world. There are both solitary 

(Ascidiella aspersa, Styela clava) and colonial tunicates (Botrylloides violaceus, Botryllus 

schlosseri, Didemnum vexillum, and Diplosoma listerianum), bushy (Bugula neritina and 

Tricellaria inopinata) and encrusting bryozoans (Membranipora membranacea), a variety of 

crustaceans (Carcinus maenas, Hemigrapsus sanguineus, Caprella mutica, Palaemon elegans), 

the orange striped anemone (Diadumene lineata), and the European oyster (Ostrea edulis). These 

species were chosen because they are easy to identify with little guidance for trained volunteers, 

not because they are necessarily the most damaging. While not currently monitored by MIMIC, 

Ciona intestinalis is considered exotic or cryptogenic in the GoM and will be considered as an 

invasive species in this study (Leblanc et al., 2020; Martin et al., 2011; McNaught and Norden, 

2011; Ramsay et al., 2008). 

​ These species have been introduced to the GoM in a variety of ways. Green crab, C. 

maenas, was one of the first recognized invasive species in the GoM, likely first traveling in the 

early 1800s to New Jersey in ballast rocks, gravel, and sand (Darling et al., 2008; Edgell and 

Hollander, 2011). The tunicate B. schlosseri also arrived in the 1800s when it was described in a 

book, but there is no information about transportation vectors (Gould, 1870). B. violaceus and D. 

vexillum were transported through oyster aquaculture to the Damariscotta river in the 1970s 

(Dijkstra et al., 2007). H. sanguineus likely arrived via ballast water and due to the genetic 



 

diversity of the invasive populations, has been introduced more than once (Epifanio, 2013; Lord 

and Williams, 2017). M. membranacea first appeared on kelp in New Hampshire from Europe, 

though the vector of transport is also not known (Lambert et al., 1992). C. mutica rapidly 

invaded Europe through hull fouling and was likely transported to the GoM in a similar fashion 

(Cooke et al., 2007). The last species with a clear path and timeline for invasion of the species 

studied here is O. edulis, which was intentionally introduced in the 1950s in a failed aquaculture 

attempt (Loosanoff, 1955). Each of these species, and more, are well established in the GoM and 

moving northward with climate change. Detection using eDNA can help us better understand 

their distribution and mitigate the effects of shifting invasive species on native communities. 

​ This study primarily took place in the laboratory and at Biddeford Pool, Maine 

(43.44203o N, 70.34096o W). Biddeford Pool is home to more than nineteen species of 

shorebirds, both migratory and resident, which utilize the diverse habitats from saltmarsh to 

rocky intertidal in the area (Humphrey et al., 1995). The University of New England Crustacean 

Research Laboratory has a longstanding dataset including abundances of invasive crabs in this 

area and it is also a MIMIC site which is sampled visually monthly. Together with eDNA 

sampling, this long-term dataset will help assess seasonal variation in species presence, and 

perhaps abundance, in this ecologically diverse ecosystem. 

Dissertation structure 

In this dissertation I link physiology with ecology of invasive species through 

environmental DNA detection. The first chapter will be a review of invasive species thermal 

tolerances in the GoM. Chapter two will focus on H. sanguineus as a model organism for 

measuring different thermal tolerance frameworks and discovering which framework best 

predicts species spread. I will also determine whether that framework can be appropriately 

measured for other invasive species in the GoM. Chapter three will tie together the physiology 

and the eDNA, investigating eDNA shedding rates with different biomass and under 

physiological stress to better understand what an eDNA signal confers. Chapter four will bring 

eDNA detection to the field, comparing detectable eDNA from invasive species over three field 

seasons at Biddeford Pool to see whether biomass and seasonal variability correlate with 

detectability.  This dissertation will provide guidance for the use of eDNA to detect invasive 

invertebrate species by enhancing species distribution predictions, clarifying the meaning of an 

eDNA signal, and providing long term monitoring data. 



 

 



 

Chapter 1 | In Hot Water: Current Thermal Threshold Methods Unlikely to Predict Invasive 

Species Shifts in the Northwest Atlantic 

Abstract 

As global temperatures continue to rise, accurate predicted species distribution models will be 

important for forecasting the movement of range-shifting species. These predictions rely on 

measurements of organismal thermal tolerance, which can be measured using classical threshold 

concepts such as Arrhenius Break Temperatures and Critical Thermal Temperatures, or through 

ecologically relevant measurements–such as the temperature at which reproduction and growth 

occur. Many species, including invasive species, exhibit thermal plasticity, so these thresholds 

may change based on ambient temperature, life stage, and measurement techniques. Here, we 

review thermal thresholds for 15 invertebrate species invasive to the Gulf of Maine. The high 

degree of variability within a species and between applied conceptual frameworks suggests that 

modeling the future distribution of these species in all ecosystems, but especially in the rapidly 

warming Northwest Atlantic and Gulf of Maine, will be challenging. We suggest a 

standardization of measurements to increase the applicability of physiological thermal tolerances 

in order to address real world problems. 

Introduction 

Anthropogenic climate change driven by greenhouse gas emissions has led to 

unprecedented rates of warming (IPCC, 2022).  Marine heat waves, which occur when 

temperatures reach the 90th percentile for five or more days, are also increasing in frequency as 

climate change continues (Hobday et al., 2016; Laufkötter et al., 2020; Oliver et al., 2018).  

Warming temperatures are causing species to shift deeper in the water or poleward to find 

favorable thermal conditions (Perry et al., 2005; Sunday et al., 2012).  Many marine organisms 

are ectothermic, whose temperature rely on external sources of body heat, and/or poikilothermic, 

whose temperature varies with environmental temperature. For these organisms, temperature 

changes alter their physiology and increase their metabolic rate, typically at a ratio of 2-3 times 

base metabolic rate for every 10℃ change (Cossins and Bowler, 1987). At thermal extremes, 

metabolic rates begin to limit an organism’s ability to survive.  In order to understand how 

https://docs.google.com/document/d/1uqW0epg1w2dolFT3fkF1GmgxaWnR8sbo8IhNhW94sI8/edit?usp=sharing
https://docs.google.com/document/d/1uqW0epg1w2dolFT3fkF1GmgxaWnR8sbo8IhNhW94sI8/edit?usp=sharing


 

climate change will affect ectothermic animals, accurate measurements of thermal tolerance 

thresholds must be made. 

Several metrics are commonly used to measure thermal tolerance thresholds across the 

animal kingdom.  One classical measurement is lethal dose 50 or LD50 (or LT50 for lethal 

temperature), which is derived from toxicology and is the temperature at which 50% of 

individuals perish (see Nagabhushanam and Krishnamoorthy, 1992).  Arrhenius break 

temperatures (ABT) seek a break from linearity and, while originally described for enzymatic 

reactions (Arrhenius, 1889), are usually measured as heart rates at increasing or decreasing 

temperatures (Harrington and Hamlin, 2019).  The concept of the Oxygen and Capacity Limited 

Thermal Tolerance (OCLTT) hypothesis describes two thresholds, the pejus temperature Tp, the 

temperature at which the animal’s condition worsens, and the aerobic scope is limited (Frederich 

& Portner 2000), and the critical temperature, Tc, the temperature at which the animal’s oxygen 

demand exceeds the oxygen supply due to failing circulatory and/or ventilatory systems, and the 

subsequent buildup of anaerobic end-products (Pörtner et al., 2017).  Critical thermal maxima 

and minima (CTmax and CTmin) measure the point at which the animal loses controlled motion 

(Brett, 1956; Cowles and Bogart, 1944; Jost et al., 2012; Kelty and Lee, 2001).  Lastly, the 

framework of Multiple Performances, Multiple Optima (MPMO) posits that organ systems, ion 

transport, and other processes within the animal fail at different temperatures for different 

species and avoids defining one general mechanism responsible for system failure at thermal 

thresholds (Städele et al., 2015; Clark et al., 2017). 

Each of these frameworks outline valid thermal thresholds, but some are potentially more 

ecologically relevant than others.  For example, temperatures measured in CTmax are so high that 

they are rarely experienced in the field, except perhaps for intertidal organisms which are 

exposed to the air (Stillman and Somero, 2000). If a threshold falls outside of water temperatures 

found in nature, it is not a helpful threshold for predicting species behavior. For modeling, the 

mechanisms behind MPMO vary widely between species, so it is unlikely to be useful for 

widespread use in modeling. Because MPMO is based on organ systems and other underlying 

mechanisms, there is no continuous variable that could drive species range shifts. Furthermore, 

not all invertebrate organisms have well defined organ systems, so MPMO would not broadly 

apply. Outside of ecological relevance, measurements vary greatly due to acclimation 

temperature, measuring styles, differences in populations, and even misinterpretation of 



 

framework measurements (see for example McGaw and Whitley, 2012).  These inconsistencies 

lead to challenges in interpreting the data in meaningful ways; a meta-analysis is impossible with 

invertebrate thermal tolerances. Meta-analyses are suited to data collected in a similar way to be 

analyzed together quantitatively by pulling the effect size and variance from a variety of studies, 

but the high level of variation between measurement techniques introduces too much noise and 

uncertainty for anything quantitative to be inferred. With different starting temperatures, 

acclimation temperatures, rates of temperature change, population differences, and no basis for 

statistical modeling (Forero et al., 2019). 

Plasticity in thermal thresholds has been observed in many taxa at every life stage (see, 

for example, Padilla and Savedo, 2013). Geographic location can also influence thermal 

plasticity, which has been well documented for C. maenas whose CTmax values have a range of 

nearly 10℃ based on acclimation temperature and location (Tepolt and Somero, 2014). Some 

life stages have different energy requirements, so this plasticity may be limited for developing 

larvae and reproducing females, among others (deRivera et al., 2007). Thus, any thermal 

threshold measured should contain records of where the organisms were collected, life stage, and 

acclimation temperature, at a minimum, to understand the validity of those measurements. 

Despite the development of these frameworks, many studies instead focus on the 

temperature effects on factors such as larval development, survival, reproduction, or presence of 

a species.  Although these measurements may help inform local abundance of organisms, 

accurate species distribution modeling will require broad physiological understanding of 

organisms to be applied over a broader scale, measured in precise and replicable ways.  Thus, 

without the mechanistic understanding of physiological limitations, models may fall short.  This 

is increasingly important as climate change and general warming move organisms towards the 

poles or deeper in the water column (Sunday et al., 2012). Furthermore, some studies use 

survival at the minimum and maximum regional temperature in the species range as temperature 

thresholds, which are likely underestimating the true limits of potential invaders (see for example 

Willis et al., 2009). 

Invasive species (defined here as organisms moved from one area to another by humans) 

will only have a chance at success if the temperatures in the recipient community fall within the 

thermal thresholds of the species.  In general, many marine invasive species have a wide range of 

thermal tolerance and are able to live in many areas they are introduced to.  Diet generalism, 



 

salinity tolerance, and high fecundity are also predictors of invasion success.  For example, 

European green crab (Carcinus maenas) is native to Europe and Northern Africa, but has 

established invasive populations nearly worldwide, on every continent except Antarctica 

(Carlton and Cohen, 2003; Compton et al., 2010; Frederich and Lancaster, 2024). Fortunately, C. 

maenas is well studied in regard to thermal tolerance, so we can predict their future range 

expansion (see Frederich and Lancaster, 2023).  Due to warming ocean temperatures and their 

extreme thermal tolerance (down to -1.8℃), there are few thermal limits to where C. maenas 

could spread (Tepolt and Somero, 2014). One area of particular concern is the Antarctic shelf, 

which is under threat of encroaching lithoid crabs and currently has no crushing predators 

(Aronson et al., 2015).  Due to anticipated climate changes and increased connectivity between 

continents, knowledge of thermal tolerance for invasive species is important to generate species 

distribution models, which could inform management strategies.  

Fouling communities are one of the most common habitats for benthic invasive species in 

harbors and on boats. Assemblages of fouling communities compared in the Great Bay Estuary 

in New Hampshire have shown a 33% difference in community members since the late 1970s 

(Harris and Dijkstra, 2007).  Furthermore, increases in marine heatwave frequency will lead to 

more erratic temperature changes, which could alter invasive species communities (Sorte et al., 

2010). This difference is likely due to newly introduced species and warming waters. Not all 

invasive species are transported through fouling species or ballast, other common methods of 

introduction are the pet trade and seafood industry (Rius et al., 2014; Weigel, 2007).  

Here, we review thermal tolerances of fifteen ecologically important Gulf of Maine 

invasive species around the world to highlight the need for more consistent measurements to 

inform predictive species distribution models (Table 1).  These studies report thermal thresholds 

from field observations and laboratory experiments from all continents, including Africa (4), 

Antarctica (3), Asia (28), Australia (24), Europe (127), North America (146), South America (5), 

and Worldwide (21), with the rest being either unlisted or multi-continent. The species list for 

this review was chosen from the Marine Invaders Monitoring and Information Collaborative 

(MIMIC), a community science project based in New England hosted by the Massachusetts 

Office of Coastal Zone Management.  While these species are not necessarily the most harmful, 

they are the most easily identifiable, allowing trained volunteers to make observations across the 

area.  These observations began in 2008 and continue to be collected, creating a distribution of 



 

species over time.  One species, Ciona intestinalis, is not listed on MIMIC surveys, but is 

considered cryptogenic in Maine (Hewitt et al., 2002) and thus was added to this analysis.  The 

fifteen species represented here span five phyla (urochordata, arthropoda, bryozoa, mollusca, and 

cnidaria) and consist of a variety of bauplans and metabolic rates.  

  

Table 1. A list of invasive species including their native and invasive ranges.  Information 

compiled from the global invasive species database (GBIF) and the Smithsonian Marine 

Invasions Lab. 

Species name Phylum Native 

range 

Temperatur

e in native 

range 

Invasive range 

Ascidiella 

aspersa 

Chordata Europe Up to 26℃ Australia, Japan, New Zealand, 

North America, South America; 

possibly also India and South 

Africa 

Botrylloides 

violaceus 

Asia -0.6 - 27.4℃ Australia, Europe, North America 

Botryllus 

schlosseri 

Europe -1 - 30℃ Asia, Australia, New Zealand, 

North America, South America 

Ciona 

intestinalis 

Cryptogeni

c 

0 - 27℃ Asia, Africa, Australia, Europe, 

New Zealand, North America, 

South America 

Didemnum 

vexillum 

Asia -2 - 24℃ Australia, Europe, New Zealand, 

North America 

Diplosoma 

listerianum 

Europe 2.2 - 30℃ Asia, Australia, Europe, 

Madagascar, New Zealand, North 

America, South America 



 

Styela clava Asia -2 - 26.6℃ Australia, Europe, New Zealand, 

North America;  possibly also in 

Africa. 

Caprella 

mutica 

Arthropod

a 

Asia -2 - 28℃ North America, Europe 

Carcinus 

maenas 

Europe -1 - 35℃ Asia, Australia, North America, 

South America 

Hemigrapsus 

sanguineus 

Asia 1.8 - 30℃ Europe, North America;  possibly 

also Australia and India. 

Palaemon 

elegans 

Europe, 

Africa 

2 - 25℃ North America 

Bugula 

neritina 

Bryozoa Europe 2.2 - 30℃ Africa, Asia, Australia, New 

Zealand, North America, South 

America; possibly also Antarctica;  

present on several islands 

including the Galapagos and 

Vanuatu 

Membranipora 

membranacea 

Europe -1.8 - 27℃ Africa, Asia, Australia, New 

Zealand, North America 

Diadumene 

lineata 

Cnidaria Asia 0 - 27.5℃ Australia, Europe, New Zealand, 

North America, South America 

Ostrea edulis Mollusca Europe 5 - 25℃ Africa, Australia, New Zealand, 

North America, 

  

 ​ Studying these species in the Gulf of Maine is of particular importance due to the 

unprecedented rate of warming in this region (Pershing et al., 2021).  This warming has 



 

temporarily, positively affected the lobster fishery, but warmer temperatures may facilitate 

poleward movement of invasive species from lower latitudes (Duffy et al., 2017; Goode et al., 

2019; Sorte et al., 2010). Depending on the rate of species spread, which is influenced by larval 

duration and transport, lifecycle, and bathymetric barriers (amongst other factors), high latitude 

ecosystems may face invasions sooner rather than later, especially as temperatures continue to 

climb.  Due to the rate of warming in the Gulf of Maine, as well as the latitudinal gradient, this 

area is ideal for projecting how species distribution might change in other regions.  While the 

rate of warming will affect species success, the extreme rate of warming in the Gulf of Maine 

serves as a “worst case scenario”; if organisms can survive this, they will likely be successful in 

other, less drastically changing areas. The implication of this study can be applied elsewhere, 

especially for forecasting studies which presently use field distribution to determine thermal 

tolerance (see, for example, Holland et al., 2021).  In this context, we provide suggestions for 

future physiological studies to increase their applicability to species modeling. 

 

Figure 1: A) Summary of 450 measured thermal thresholds for all of the study species 

represented by means and standard deviations of the high (square) and low (circle) temperature 

measurements. Species are organized from lowest maximum high temperature to highest 

maximum high temperature on the x axis. B) Total number of records for each species and how 

many of those records measured classical thresholds (lighter gray). Most of the records analyzed 

studied the more ecologically meaningful measurements which lack a mechanistic 

understanding. 



 

Characterization of thermal thresholds 

Using a variety of search queries (supplementary table 1), we collected records of thermal 

thresholds for the 15 species of interest. Although the search queries were based on the 

mechanistic frameworks, they also captured a variety of measurement techniques outside of the 

frameworks. Indeed, most of the studies included did not measure traditional thermal threshold 

metrics, but instead investigated factors such as survival, larval development, reproduction, or 

growth.  Information recorded from each publication included the maximum or minimum 

temperature threshold and exactly what was measured. Per the discretion of the authors, many 

frameworks could be assigned to data if the framework was not explicitly listed in the 

publication. A table including which frameworks were assigned can be found in the 

supplementary material. Furthermore, some publications used a different title for a framework 

that was previously established and was reassigned for the purpose of this review. For example, 

in 2014 Tepolt and Somero studied cardiac function of C. maenas and measured CTmax, whereas 

by our definition this measurement might be ABT or MPMO (Tepolt and Somero, 2014). Other 

publications did not specify a framework but did measure relevant values and were captured in 

the “general” search queries, so a descriptive term was chosen from those studies for what was 

being measured (i.e., development, survival, reproduction). 

This literature review scanned 450 thermal threshold records for the species of interest. 

Most of the records did not align with any of the classical thermal physiology models, but 

instead focused on what temperatures the organisms were reproducing in the field, the 

temperatures at which they grew, and general records of survival in an area with specific 

temperatures. A summary of the average upper and lower measurements can be found in Figure 

1. 

Physiology by phylum 

Ascidian thermal thresholds 

​ The largest group of organisms in our analysis are the ascidians. A. aspersa, B. violaceus, 

B. schlosseri, C. intestinalis, D. vexillum, D. listerianum, and S. clava.  A. aspersa, C. 

intestinalis, and S. clava are solitary tunicates, whereas the others live as thin layer colonies. A 

breakdown of all measured thresholds can be found in Figure 2. This group is fairly well studied, 



 

as C. intestinalis and others are used as model organisms. They are generally suspension feeders 

and are dominant members of fouling communities.  In the Gulf of Maine, they have been 

introduced through equipment fouling and aquaculture (Carman et al., 2014; Lambert, 2009).  

They frequently outcompete other species in fouling communities and grow over native bivalves 

such as mussels, oysters, and scallops as well as eelgrass (Fletcher, 2013; Gittenberger, 2007; 

Long and Grosholz, 2015).  Didemnum vexillum is particularly harmful to Gulf of Maine 

fisheries and ecosystems. At George’s Bank, located in the center of the Gulf of Maine, over two 

hundred square kilometers have been colonized by D. vexillum, which is damaging nursery 

habitat for commercially valuable fish like cod (Valentine et al., 2007).  Unfortunately, dredging, 

scraping, and trawling fragments ascidians, and many of those fragments can settle and start new 

colonies; so the issue is made worse by traditional fishing practices.   

​ The invasive ascidians in Maine have wide temperature tolerances and are able to 

reproduce early in the year, allowing them to quickly dominate fouling communities in the 

spring. They inhabit a variety of ecosystems, from harbors and tide pools to large swaths of 

benthic area (Dijkstra et al., 2007; Sorte and Stachowicz, 2011; Valentine et al., 2007). Many 

species exhibit a lower thermal threshold that is below the temperatures required for 

reproduction. For example, S. clava requires a temperature above 15℃ to reproduce, so it is not 

feasible for populations to exist if the maximum temperature does not exceed 15 even though the 

species can survive down to -2℃ (Davis et al., 2007; Davis and Davis, 2008). Many species 

exhibit population level variation, which leads to differences in thermal maxima and minima. For 

example, larvae of B. schlosseri have been reared at 10℃ (which took nearly 66 days), while 

other studies did not have successful reproduction at 13℃ (Brunetti et al., 1984; Sabbadin et al., 

1955). Whether this difference is from laboratory versus field observations or interspecific 

variation is unknown. 

For C. intestinalis and others, temperature may affect life cycle length. Individuals 

growing in cooler temperatures live longer (2-3 years), while individuals in warmer waters may 

reproduce several times per year or produce up to four generations in one year and live shorter 

lives (Berrill, 1947; Dybern, 1965; Yamaguchi, 1975). Botrylloides violaceus in the Great Bay 

Estuary in New Hampshire now experience more than one reproductive cycle in a year, 

compared to the 1970s where cooler temperatures and shorter heat extremes limited their 

reproductive cycles to 0.7 annual reproductive cycles (Dijkstra et al., 2011). Multiple generations 



 

per year could extend the impacted area and allow for increased genetic diversity, so 

understanding how temperature impacts the reproductive capacity of each species is important 

for modeling.  

For each species studied in this group, there was a high amount of variability within 

measurements. Indeed, many studies only measured up to a certain temperature (usually 

25-30℃) before ending an experiment prematurely, labeling the maximum temperature 

measured as a thermal maximum. Studies using the frameworks above, such as LD50 and 

CTmax, which elicit the maximum survivable temperatures, show that the maximum 

temperatures for all ascidians studied here are above 27℃, some falling well above 27. 

 

Figure 2: Measured thermal thresholds (dots) and ranges between thresholds (lines) for the 

ascidian species included in this study. Vertical lines in each gray rectangle indicate measured 

LD50 temperatures. For A. aspersa, none of the traditional thermal threshold measurements were 

taken, C. intestinalis has an ABT (21℃) and LD50 (27℃), D. listerianum has an LD50 

(26.6±1.40℃), D. vexillum only has an LD50 (26.77±1.01℃), and lastly, S. clava has an LD50 

of 29.5℃. Gray boxes indicate maximum and minimum measured thermal tolerance, purple 

boxes indicate a reproductive threshold. 



 

Bryozoan thermal thresholds 

​ The invasive bryozoans Membranipora membranacea and Bugula neritina can be found 

in fouling communities, but also exist in ecosystems that are less directly influenced by humans. 

A summary of their thermal thresholds can be found in figure 3.  Membranipora membranacea is 

frequently found as a biofouler in kelp forests, where it grows over the kelp and leads to 

decreased flexibility, which causes breakage and increased mortality (Dixon et al., 1981; Førde et 

al., 2016; Saunders and Metaxas, 2008). Kelps are an excellent aquaculture food source that 

could be threatened by invasive bryozoans, and kelp forest composition in the Gulf of Maine is 

changing from tall canopies of brown kelps to short, dense, red algae (Witman and Lamb, 2018). 

This species composition may change habitat function, as kelp forests are usually considered 

nursery habitats due to their complex structure and wave-damping properties.  Furthermore, kelp 

aquaculture is an emerging field in the Gulf of Maine in the winter, but warming temperatures 

may increase biofouling risk at this time of year (Forbord et al., 2020; Førde et al., 2016). 

​ These two species usually inhabit different parts of nearshore ecosystems. Whereas B. 

neritina is an upright bryozoan that attaches to hard structures nearshore, M. membranacea is 

found where kelps are found in subtidal regions. According to the measurements, M. 

membranacea is able to reproduce across most of its thermal range, whereas B. neritina has a 

narrower range of reproduction closer to the bottom of its thermal range. Importantly, M. 

membranacea reproduces below the minimum threshold measured by some species, suggesting 

either population-level variation or vastly different measurement techniques. 

 



 

Figure 3: Measured thermal thresholds (dots) and ranges between thresholds (lines) for the 

bryozoan species included in this study. B. neritina has a measured LD50 value (25.12±0.89℃) 

and M. membranacea has no classical measured threshold values in the literature. Vertical lines 

in each gray rectangle indicate measured LD50 temperatures. Gray boxes indicate maximum and 

minimum measured thermal tolerance, purple boxes indicate a reproductive threshold. 

Arthropod thermal thresholds 

​ Invasive arthropods in the Gulf of Maine include Carcinus maenas, Caprella mutica, 

Hemigrapsus sanguineus, and Palaemon elegans.  They arrived here through ballast water or 

rocks, aquaculture, and fouled equipment (Ashton et al., 2007; Edgell and Hollander, 2011; 

McDermott, 1998).  Carcinus maenas is one of the most damaging invasive species in the Gulf 

of Maine, but in southern regions such as New Jersey H. sanguineus has become the dominant 

invasive arthropod in the tide pools.  These invasive species have documented impacts on 

nearshore ecosystems and prediction models must take thermal preferences into account for 

accuracy. 

​ While arthropods have some of the widest thermal tolerances of the studied species, 

reproduction is a limiting factor at low temperatures, despite surviving at near freezing 

temperatures. One example of this is C. mutica, which survives down to 0℃ in its native range, 

but in Scotland juveniles were not present in the winter at some sampling sites despite the low 

temperature only reaching 7.4℃ (Ashton et al., 2010). Some research suggests that marine 

species ranges conform to their thermal tolerance; if they can survive the temperatures in an area, 

they likely inhabit it (Sunday et al., 2012). However, other oceanographic factors, such as wave 

intensity, may limit the distribution of certain arthropods, despite temperatures well within their 

survivable ranges (Hampton and Griffiths, 2007). 

​ C. maenas is a worldwide invader with high thermal tolerance. Despite the survival of 

these crabs at exceptionally high and low temperatures, different populations of crabs may 

struggle at middling temperatures on a physiological level. For example, C. maenas from 

Helgoland, Germany, had lower oxygen consumption rates at medium temperatures (12-21℃) 

compared to crabs from Cadiz, Spain (Laspoumaderes et al., 2022). However, even with the 

differences in oxygen consumption rates, the crabs continued to eat and grow at similar rates at 

increasing temperatures. As one of the better studied organisms here (66 measured temperature 



 

thresholds), population-level variation in thermal tolerance is well documented for C. maenas. 

Critical thermal thresholds range from water temperatures of 29.7 to 38.3℃ based on haplotype 

and acclimation temperature. 

  

Figure 4: Measured thermal thresholds (dots) and ranges between thresholds (lines) for the 

arthropod species included in this study. P elegans CTmax (34.08±3.01℃). Gray boxes indicate 

maximum and minimum measured thermal tolerance, periwinkle boxes indicate an estimated 

reproductive threshold, if one exists. 

Cnidarian thermal thresholds 

The only cnidarian included in this study is D. lineata, who has thermal thresholds 

ranging from -0.6℃ to 30ºC at the extremes. Peak reproduction falls in the middle of this 

thermal range. Although they can survive low temperatures, they do not start growing or 

reproducing asexually until water temperatures reach above 10℃ (Ryan, 2017). 



 

 

Figure 5: Measured thermal thresholds (dots) and ranges between thresholds (lines) and ranges 

for D. lineata. Box indicates temperature range over which reproduction is possible. 

Molluscan thermal thresholds 

For the only invasive mollusc in this study, acclimation temperature seems to have an 

impact on minimum reproductive temperatures for O. edulis across its native range. In Spain, 

oysters begin reproducing around 12℃, however, in Norway, spawning onset does not occur 

until water temperatures reach 14℃ (Bromley et al., 2016; Colsoul et al., 2021). For adult 

oysters reaching sexual maturity, temperature has an effect on sex ratios, where the first 

gametogenesis usually produces sperm, but sequential reproductions can switch between egg and 

sperm production and are affected by temperature (Zapata-Restrepo et al., 2019). Thus, while 

certain temperatures may not prove lethal to the oysters, raised temperatures may affect 

spawning viability for certain populations.  



 

 

Figure 6: Measured thermal thresholds (dots) and ranges between thresholds (lines) for O. edulis 

included LD50 measurements (34-38℃) and measurement of HSP70 expression, which begins at 

25℃. Gray box indicates LD50 range, purple box indicates temperature range over which 

reproduction is possible. 

​ Many of the species studied had well defined thermal reproductive ranges for sexual 

reproduction and growth (Figure 7). The widest reproductive range belongs to C. maenas, which 

reproduces year-round in the Gulf of Maine (Frederich and Lancaster, 2023). The organism 

requiring the highest temperature for reproduction is B. violaceus, whereas M. membranacea and 

C. maenas have the lowest reproductive temperatures, just above freezing. Of importance, 

colony growth through budding and asexual reproduction was not included as reproduction for 

the purpose of this study, so all of the reproduction here is from sexual reproduction. In the 

growth specific graph, S. clava has the narrowest range for growth and O. edulis has the widest. 

When comparing these ranges to the ranges in Figure 1, which ranked organisms from lowest to 

highest upper mean thermal threshold, there is no similar pattern in reproductive or growth 

thresholds. In other words, understanding just the temperature range over which an organism 

reproduces or grows in the field does not indicate what their maximum and minimum survivable 

temperature is.  



 

 

Figure 7: A summary of the temperatures over which the organisms in this study reproduce and 

grow. The order species in this figure are the same as figure 1, which ranks species from low to 

high mean high temperature. Membranipora membranacea has the lowest mean high thermal 

thresholds and O. edulis has the highest mean high thermal thresholds. Based on the width of 

reproductive and growth thermal thresholds, there is no correlation between reproductive 

window and measured thermal thresholds. Thus, maximum, minimum, reproductive, and growth 

temperatures are all important in species survival in an area.  

Which metric is most reliable and recommendations for the future 

​ No matter what measurement method was used, all examples show high variance in 

thermal tolerance measurements within the same species. From a functional perspective, these 

data should only be considered useful in the region and season in which the measurement was 

taken. This lack of continuity has potentially alarming consequences for species distribution 

modeling in worldwide, dynamic ecosystems.  

​ Frequent examples of genetic variation and local adaptation to acclimation temperatures 

cause different temperature thresholds in different regions. Some of the variation comes from 

acclimation temperature, the temperature at which the organism in question is used to in its 

environment.  For example, an animal that lives in temperate and tropical regions has different 



 

acclimation temperatures along the gradient of its distribution. Even in different temperate 

regions, P. elegans experience different osmoregulation capabilities at low temperatures, with 

Baltic Sea populations being better adapted to colder temperatures than populations near the UK 

(Janas and Spicer, 2010). 

​ One point for further study is air exposure, at which organisms may experience warmer 

temperatures than in the water. Many of these species survive in the intertidal zone, and several 

studies have looked at the impact of dry heat exposure on survival (see for example, Helmuth et 

al., 2010). One example for S. clava found that exposure at warmer temperatures (15-29℃) was 

more damaging than exposure at 10℃ and that body size played a role in survival under these 

conditions (Hillock and Costello, 2013). Asian shore crab H. sanguineus has a 4x higher 

metabolic rate out of the water at similar temperatures (Fletcher et al., 2022). Air temperatures in 

some regions may even reach lethal levels; in Australia coastal temperatures reach above 40 

degrees, which is the LT50 for C. maenas (Garside and Bishop, 2014). Despite these 

temperatures, C. maenas are capable of evading unfavorable temperatures by moving into the 

shade, something that tunicates are unable to achieve. The same is true for Asian shore crabs, 

which can change their distribution in tide pools in Long Island Sound to escape air temperatures 

reaching above 40 °C (Kraemer et al., 2007). These extreme temperatures are usually temporary, 

but the length of time can also affect species survival at high temperatures, which is used to 

prevent spread of biofoulers (Piola and Hopkins, 2012). 

​ Acknowledging that climate change is a very present threat, lower thermal thresholds 

should also not be overlooked. Bugula neritina, C. intestinalis, and M. membranacea have been 

seen near Antarctica or are predicted to invade (Avila et al., 2020; Convey and Peck, 2019). 

Though they have not established populations, invasions of Antarctica become more likely with 

climate change (Convey and Peck, 2019, Holland et al., 2021; McCarthy et al., 2019). These 

invasions are especially alarming when considering the current food web of the Antarctic Shelf, 

which currently has no durophagous, crushing predators, so the introduction of a crab such as C. 

maenas would be highly destructive (Aronson et al., 2015). Without the evolutionary history of a 

shell-crushing predator, many organisms evolved to have soft bodies or thin shells. Their ability 

to survive at very low temperatures pose C. maenas as an excellent candidate to negatively 

impact the existing ecosystem (Frederich and Lancaster, 2023). Lithoid crabs are already found 



 

on the Antarctic slope and shelf, so this whole ecosystem will likely be threatened by crustaceans 

in the near future (Smith et al., 2012). 

​ It is important in future studies to use consistent measurement strategies with larval and 

juvenile forms as well. In Maine and worldwide, invasive species are impacting the livelihood of 

fishermen, decreasing harvestable food from the oceans, and disturbing natural habitats. With 

climate change predicted to increase sea surface temperatures, an understanding of thermal 

tolerance for all species will be important for management and mitigation at a variety of 

developmental stages. At the same temperature, 21℃, larvae of H. sanguineus have different 

oxygen consumption rates as they develop (Marsh et al., 2001). Under different temperatures, 

larvae of C. maenas and other species take longer to develop in colder conditions (deRivera et 

al., 2007). For organisms able to reproduce sexually and asexually through fragmentation or 

budding, winter temperatures may limit larval development but still allow settlement of 

fragmented adults (VKM, 2023). 

​ Of note, temperature isn’t the only factor that dictates species presence. For example, in 

Nova Scotia, it was found that neither temperature nor salinity was predictive in C. intestinalis 

distribution. Some species, such as H. sanguineus, may also rely on metamorphic cues from 

nearby adult populations, dictating metamorphosis outside of temperature cues (Anderson and 

Epifanio, 2010). For C. mutica living in Scotland, some populations do not reproduce year round 

despite mild temperatures, suggesting another factor limiting their reproductive success (Ashton 

et al., 2010). Other factors, such as heavy metal pollutants or pesticides, may influence 

settlement or development success for certain species in anthropogenically impacted areas 

(Lange and Marshall, 2017; Rodrigues et al., 2015). These factors are important, as some 

invasions begin in harbors whose water quality is usually poor (Carlton, 1996; Schiff et al., 

2007). So, even for studies that include temperature, species distribution models should never 

negate visual surveys (Murphy et al., 2019). 

​ Based on the present study, there is so much inconsistency in the data that it is 

challenging to put species’ thermal tolerance into perspective from an ecological and future 

projections standpoint. The first is understanding how growth and development are affected by 

temperature through in-field observations of gamete development, larval supply, settlement, and 

proliferation. The presence of these three parameters ensures population growth, cell turnover, 

and dispersal. Due to changing temperatures and local adaptations, simply reporting that an 



 

organism can survive in a region is not enough for modeling their future spread. The second 

important factor requires a laboratory study that pinpoints the maximum and minimum 

survivable temperatures for multiple populations, which may be outside of the bounds of 

ecological relevance but can inform a true upper limit to survival. Rius and colleagues in 2014 

do an excellent example of this, showing field abundances and investigating larval development, 

metamorphosis, and settlement in the laboratory. We summarize this recommendation in Figure 

8. While physiological and metabolic signs of stress are important to understanding the 

mechanistic causes of organisms struggling at certain temperatures, these thresholds only provide 

limited information to predicting invasive range with climate change. Thus, focusing on the 

range in which an organism thrives enough to reproduce, grow, and remain healthy, as well as 

maximum and minimum survivable temperatures, reduces the minimum amount of critical 

information. Of course, traditional thermal thresholds do have importance on the cellular and 

molecular levels. Solely measuring survival in the field may gloss over physiological 

mechanisms and limitations that may hinder organism success. For example, at 20℃, both H. 

sanguineus and C. maenas survive easily in the field, but respirometry showed that H. 

sanguineus respiratory rate per gram is twofold higher at higher temperatures, suggesting a 

greater energetic cost to fill basic survival needs (Jungblut et al., 2018). 



 

  

 

Figure 8: Conceptual model outlining the recommended minimum information for modeling 

species distribution based solely on thermal thresholds. While use of the traditional thresholds is 

important for understanding mechanisms, for basic species distribution predictions this model 

outlines the fewest measurements needed to generate a thermal performance curve. We suggest 

measurements in the laboratory to deduce the maximum and minimum survivable temperatures 

and in the field for important milestones such as reproduction and growth. 

 

​ Here, we highlight inconsistencies in thermal performance measurements and propose a 

solution to some of the noise within the data. A more integrative approach combining field and 

laboratory studies to capture the physiology as well as the ecology is required to forecast 

invasion probability. This study highlights the complexities of thermal thresholds and underscore 

the pivotal role of acclimation temperatures and consistent measurement techniques. By 

visualizing the existing data together, we pave the way for more accurate predictions of species 

distributions, ensuring we don't just scratch the surface but delve deep into the nuanced 

intricacies of potential invasive species spread in a changing climate. 
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Abstract 

Hemigrapsus sanguineus is native to the western Pacific but was introduced to the United States 

east coast in the late 1900s. Along with other invasive species like Carcinus maenas, this grapsid 

crab has caused changes to nearshore ecosystems by outcompeting native species, eating a 

variety of prey, and disrupting food chains. In the southern reaches of their invasive habitat, H. 

sanguineus have outcompeted C. maenas due to their habitat utilization strategy, strength, and 

foraging strategies, but further north in the Gulf of Maine, H. sanguineus have not become 

dominant yet. Here, we describe the thermal thresholds of H. sanguineus in both the winter and 

the summer to assess physiological conditions which could limit their poleward spread. We 

describe a shift in thermal thresholds between summer and winter with higher heart rates, more 

HSP70 protein expression, and lower reaction times in the winter, coupled with behavioral 

modifications such as hiding under rocks enabling them to survive. Cold-acclimated crabs 

shifted their optimum temperatures in response to ambient temperatures. We discuss this 

metabolic cold adaptation in context of this species’ ability to expand its invasive range further 

north and highlight the importance of measuring thermal thresholds at a variety of acclimation 

temperatures to understand physiological plasticity. 

Introduction 

The Asian shore crab, Hemigrapsus sanguineus, is native to southeast Asia, and was 

introduced to New Jersey as an invasive species in 1988 (McDermott, 1998). It has become a 

common tide pool crab in New England since its arrival; it was first detected at Woods Hole, 

Massachusetts by 1993 (Epifanio, 2013; McDermott, 1998). Similar to another invasive crab in 

New England, the European green crab (Carcinus maenas), Asian shore crabs utilize nearshore 

ecosystems and reproduce successfully in a variety of climates, making them a significant threat 

to fisheries and general diversity in New England (Bourdeau and Conner, 2003; Epifanio, 2013). 

Hemigrapsus sanguineus are generalist foragers with strong claws; for the first year of life male 

https://docs.google.com/document/d/1-YHTmWdF0qJFRi7LBzKNVTpIB3ZJOSKl29MEFsorTTA/edit?usp=sharing
https://docs.google.com/document/d/1-YHTmWdF0qJFRi7LBzKNVTpIB3ZJOSKl29MEFsorTTA/edit?usp=sharing


 

H. sanguineus have stronger crushing strength than C. maenas (Payne and Kraemer, 2013). 

According to laboratory studies, they are capable of opening mussels and some clams 

(Mercinaria mercenaria) and will feed on macroalgae species (Bourdeau and O’Connor, 2003). 

Population genetics studies suggest that New England H. sanguineus are continuing to diversify 

with eight total haplotypes having been identified, 2 of which are newly described haplotypes 

and the other 6 are other introduced Asian haplotypes (Lord and Williams, 2017). From New 

Jersey to New Hampshire Asian shore crabs have surpassed green crabs as the dominant 

intertidal crab through effective habitat utilization (Lord and Williams, 2017). Green crabs were 

introduced nearly 200 years earlier than Hemigrapsus sanguineus, so this drastic shift in tide 

pool communities suggests that H. sanguineus is a strong competitor, whose impacts may 

overshadow those of C. maenas in other regions. At one field site in Biddeford Pool, Maine, 

USA, this shift from a green crab dominated ecosystem to an Asian shore crab dominated 

ecosystem has not yet happened (Frederich and Lancaster, 2024). Summer mean sea surface 

temperatures in their native range are between 13-30℃ (Stephenson et al., 2009). Summer mean 

sea surface temperatures in the invasive range where H sanguineus is the dominant intertidal 

crab are above 20℃, whereas in northern New England summer mean temperatures drop to 

below 20℃.  This leads to the question whether the Asian shore crab’s poleward migration is 

limited by temperature in the Gulf of Maine. 

The Gulf of Maine (GoM) is not only a highly dynamic ecosystem, it is also changing 

rapidly; the GoM warmed faster than 99% of the world’s oceans between 2005-2020 (Pershing et 

al., 2015; Pershing et al., 2021). This warming has led to shifting kelp forest ecosystems, 

changes in lobster fishing grounds, and, amongst other factors, contributed to the collapse of the 

cod and haddock fisheries (Fogarty et al., 2008; Friedland et al., 2015; Pershing et al., 2015; 

Witman and Lamb, 2018). Though the GoM is warming, it is still relatively cold compared to 

other habitats that H. sanguineus experiences. In its native range in the western Pacific, 

temperatures range from 2 to 30℃. From New Jersey where they have become the dominant 

species, ocean temperatures range from 1 to 27℃ (McDermott, 1998). Historically, the influence 

of the Gulf Stream has been limited due to its divergence offshore, but recently the Gulf Stream 

has been encroaching on the Tail of the Grand Banks, bringing warm and saline water into the 

GoM (Neto et al., 2021). This too is decreasing the influx of water from the cold Labrador 

Current into the GoM. The GoM is dominated by the Gulf of Maine Coastal Current in two parts, 



 

the western Maine coastal current (WMCC) and the eastern Maine coastal current (EMCC) 

(Pettigrew et al., 2005). Furthermore, there is freshwater input from several rivers along the 

coast, leading to a highly variable water temperature in this region (Pettigrew et al., 2005; 

Townsend et al., 2015).  

Temperature physiology for green crabs has been extensively studied (for review see 

Frederich and Lancaster, 2023, Tepolt, 2024). Part of the reason that these and other crustacean 

species are so successful is due to their extreme temperature tolerance; they survive temperatures 

below freezing and above 30℃, and are known to reproduce year-round in the GoM (Frederich 

and Lancaster, 2023). As ectotherms, a crustacean’s energy budget is heavily reliant on ambient 

water temperatures. Thus, their bodily and cellular functions are dependent on their environment. 

Some of these processes can be modeled by the principle of Q10 (Van’t Hoff rule), wherein with 

every 10℃ temperature increase, the rate of biological processes increases by 2-3 at mid-range 

temperatures. At both ends of the temperature spectrum, the crabs may reallocate their energy 

expenditure from reproduction or growth to survival, lose motor function, and, at a point, they 

may die. Previous studies on green crabs have used a variety of physiological thresholds to 

measure temperature tolerance such as Arrhenius break temperatures (ABT), critical thermal 

maxima and minima (CTmax and CTmin), and the oxygen and capacity limited thermal tolerance 

(OCLTT) models (Cuculescu et al., 1998; Jost et al., 2012; Kelley et al., 2011). These thresholds 

are useful because they help standardize methods across studies, but they may not always 

measure an ecologically relevant threshold (for example, the measured threshold temperature 

may be well outside the range of expected values for the GoM).  

​ These thresholds are derived from different measurement techniques and calculations 

measured in living individuals in experiments involving acute temperature stress. The concept of 

critical thermal maxima and minima applies to organisms across the animal kingdom, with the 

earliest examples being reptiles whose movement became haphazard at extreme temperatures 

(Cowles and Bogert, 1944). Generally, a short term exposure to these temperatures is non-lethal; 

fish exposed to their CTmax often remain alive when brought back to ambient temperatures (Brett, 

1956). For many crustaceans, a popular measurement technique is to flip an organism on its back 

and look at righting time (Dayananda et al., 2017; MacMillan, 2019). Arrhenius break 

temperatures seek a deviation from linearity in mathematically transformed heart rate data, when 

a line plotting the natural log of the heart rate and the inverse of the temperatures in Kelvin 



 

(multiplied by 10,000 to reach reasonable numbers) changes slope. This concept was first used 

for enzymes, looking at the thermal limits of their function (Arrhenius, 1889). Heart rates for 

crustaceans can be measured using electrical probes implanted into the animal, infrared detecting 

photodiodes, or visually for transparent organisms (Braby and Somero, 2006; Harrington et al., 

2020; Depledge, 1984). Although ABTs are easy to measure, some have criticized their 

usefulness as crustaceans have an open circulatory system and an ABT measurement provides no 

mechanistic understanding of organismal failure at these temperatures (Frederich and Lancaster, 

2024). 

​ The Oxygen and Capacity Limited Thermal Tolerance hypothesis is more mechanistic 

and assumes that organisms have an optimal range of temperatures where they have enough 

energy to grow, reproduce, and function (see for review Pörtner et al., 2017). Outside of this 

range their scope for activity narrows and the animal’s condition begins to worsen; this range is 

called the pejus temperature (Tp) (Frederich and Pörtner, 2000). Outside of the Tp is the critical 

temperature, Tc, where the animal switches to anaerobiosis–as it is unable to meet its oxygen 

requirements despite ample oxygen in the environment. This switch to anaerobiosis can be 

measured through anaerobic byproducts such as succinate in Laternula elliptica or lactate in 

many crustaceans (Frederich and Pörtner, 2000; Jost et al., 2012; Paul et al., 2004; Peck et al., 

2004). As anaerobic metabolism ramps up, the organism may also experience an increase in gene 

or protein expression of heat shock protein 70 (HSP70) and/or AMP activated protein kinase to 

ensure a supply of ATP (Herzig and Shaw, 2017; Frederich et al. 2009; Jost et al., 2012). Lastly, 

the denaturation temperature or Td is likely closer to CTmax, where the proteins begin to denature 

(Pörtner et al., 2017). 

​ For less well-studied animals, these measurements have not been performed. The current 

study has two objectives: First, to define thermal thresholds in the invasive H. sanguineus 

adapted to summer and to winter conditions, and second, to use the identified thresholds to 

estimate H. sanguineus’ potential to expand its invasive range further north into colder waters. 

From these objectives, we hypothesize that using classical physiological measurements, we can 

explain the slowed dominance of H. sanguineus to the north. Furthermore, we hope to identify 

one traditional metric which best describes the current distribution of H. sanguineus. Though 

these measurements were taken from crabs in the Gulf of Maine, we hope that these findings can 

be applied to their invasive range elsewhere. 



 

Methods 

Animal collection and care 

Hemigrapsus sanguineus individuals were collected between 2020 and 2023 from the 

intertidal zone in Biddeford Pool, Maine, USA (43.44207o N, 70.34098o W) in both the summer 

and winter. Ambient water temperatures ranged from 15-19℃ or 3.5 to 6.5℃ in the summer and 

winter, respectively.  Crabs were held in a flow-through seawater system at the University of 

New England and fed a diet of mussels and mackerel ad libitum until use in experiments. Both 

male and female medium-sized (13-38 mm carapace width) hard shelled crabs were used. Gravid 

females were not used as H. sanguineus does not reproduce in the winter in Maine, and 

reproduction may impact thermal tolerance.  

CTmax and CTmin  

​ Crabs were placed in a temperature-controlled seawater tank seawater and temperature 

was increased or decreased at 5ºC per hour. Every 0.5℃, crabs were flipped onto their backs and 

their righting time was recorded. Animals were recorded as non-responsive if their righting time 

exceeded 120 seconds, and the recorded times were used for calculating means. The temperature 

at which the crab response began to slow down per breakpoint analysis was recorded as the 

critical thermal maximum or minimum temperature. 

ABT 

​ Arrhenius break temperature was measured using heart rates from crabs acutely warmed 

or cooled over the course of 4 hours. Photoplethysmographs (AMP03, Newshift, Leiria, Portugal 

were attached to the carapace using dental wax and super glue covering the heart and crab claws 

were immobilized using electrical tape to prevent wire damage (for more detailed methods, see 

Depledge, 1984 and Frederich & Pörtner, 2000). Voltages were read by a Pico Technologies 

oscilloscope (Scope 6404D 4 channel, 8-bit 500 MHz bandwidth) and analyzed using PicoScope 

7 T&M software. Every 0.5℃, heart rate was recorded and averaged over 30 seconds of 

measurements in the winter. For summer acclimated crabs, measurements were taken every 

1.5℃. To calculate the ABT, heart rates were transformed as the natural log and the inverse of 

the temperature in Kelvin was multiplied by 10,000, then used the breakpoint calculator 

described below to ascertain the ABT.  

OCLTT 

Oxygen consumption- 



 

​ Oxygen consumption was measured using an intermittent flow closed-system 

respirometer (Qubit, Kingston, ON, Canada) with a volume of 250 mL. Animals were heated or 

cooled from ambient temperature to either 40℃ or 0℃, respectively, over approximately 4 hours 

and oxygen consumption was recorded continuously. For heating experiments, the system was 

closed and water circulated for 10 minutes, followed by a 7 minute flush time. For cooling 

experiments, flow through the chamber was reduced and water was circulated for 8 minutes 

followed by a 3 minute flush time. Oxygen concentration never fell below 80% during the 

measurement cycles. Heating experiments continued until death, whereas cooling experiments 

ceased around 0℃ due to ice buildup in the system. VO2 was calculated from the difference 

between inflowing and outflowing oxygen concentration, the chamber volume, and the animal 

wet weight. Seawater oxygen content was adjusted for temperature and salinity. 

 

Lactate-  

​ Approximately 100 uL of hemolymph was collected from the arthropodial membrane of 

the last and second to last set of legs using a sterile 1 mL syringe l. Hemolymph was sampled 

from crabs at temperatures between 0 and 35ºC every 0.5ºC. Once a hemolymph sample was 

collected from a crab, the same crab was not used again for collection. Samples were stored in a 

-80℃ freezer until extraction using perchloric acid (PCA) and neutralizing buffer following the 

spectrophotometric lactate measurement in duplicates by Bergmeyer (1985) described in detail 

by Frederich & Pörtner 2000.  

 

HSP70-  

Heat shock protein 70 protein expression in heart tissue of H. sanguineus was quantified 

by western blots. Hearts were excised quickly from the crabs and flash frozen in liquid nitrogen,  

then stored in the -80℃ until protein extraction. Tissues were homogenized using a bullet 

blender (NextAdvance Inc. Troy, NY) and cubic zirconia in a phosphatase inhibiting buffer as 

outlined in Frederich et al., 2009. Proteins were separated on a 7% polyacrylamide-SDS gel for 2 

hours at 120 V. Proteins were transferred to a nitrocellulose membrane on a semi dry transfer 

chamber (BioRad) at 20 V for 20 minutes before the membrane was blocked with bovine serum 

albumin blocker diluted with Tris-buffered saline with Tween 20 (TBST), following an overnight 

incubation in the primary antibodies (Millipore Sigma (H5147). GAPDH was used as a loading 



 

control (Invitrogen, 437000). The membranes were rinsed in TBST before the addition of 

secondary antibodies for goat anti-rabbit (IRDye 680LT) and donkey anti-mouse (IRDye 

800CW). The membranes were scanned on a LI-COR Odyssey infrared laser imager and TIFF 

files of the scans were analyzed using ImageJ. 

Citrate synthase- 

​ To estimate the number of mitochondria from winter and summer crabs, we quantified 

citrate synthase activity in H. sanguineus hearts. Starting with a potassium phosphate buffer (pH 

7.4), we added 2 μg of the homogenized protein, 3 μL DTNB solution (Millipore Sigma, 

D8130-1G), Triton X-100 (Millipore Sigma, T8787) and 10 μL acetyl coenzyme A (Millipore 

Sigma, A2181), followed by 10 μL oxaloacetate solution (Millipore Sigma, O4126) to catalyze 

the colorimetric reaction. As a standard, we used citrate synthase from porcine heart (Millipore 

Sigma, C3260). Immediately upon the addition of oxaloacetate, samples were placed into a 

spectrophotometer reading every 10 seconds at 412 nm for 2 minutes. Citrate synthase activity 

was calculated as units/mg protein from change in absorbance, the extinction coefficient for 

DTNB (13.6 mM-1cm-1), the pathlength and the protein content.  

Breakpoint analysis 

​ To analyze differences in intercept or breakpoints for physiological data, we used the R 

package RespR, which calculates deviations from linearity and was designed for aquatic 

respirometry (Harianto et al., 2019, Carey and Harianto, 2023). RespR runs a rolling regression 

and rolling average on the data, seeking out the breakpoints at high resolution, following the 

method described by Yeager and Ultsch (1989). The regression was generated using the broken 

stick regression model, which seeks the intersection of two linear regressions with the smallest 

sum of residual sum of squares when looking at two lines fitted to the data. This was used to 

calculate breakpoints for CTmin and Arrhenius break temperatures. 

Reproductive timing- 

​ We quantified H. sanguineus and C. maenas for the past 12 years in a year-round 

monthly 40 m2 transect from the high- to the low water mark at Biddeford Pool (43.44207o N, 

70.34098o W). Within the transect, rocks and macroalgae are moved and all crabs are measured, 

sexed, and it is recorded whether a crab is newly molted (soft shelled) or gravid. Both C. maenas 

and H. sanguineus are collected, but here we present data only for H. sanguineus. 



 

Results 

Reaction times of crabs were consistently low between about 10 and 30℃ (Figure 1). At the tail 

end of the temperatures, both summer and winter acclimated crabs slow dramatically. Solely 

focusing on the lower threshold for understanding potential for poleward migration, the CTmin 

shifted from 9.8℃ in summer acclimated crabs to 8.6℃ in winter acclimated crabs. Evidence for 

metabolic cold adaptation suggests that cold acclimated crabs shift their thermal thresholds down 

in accordance with lower ambient temperatures.  

  

Figure 1: Reaction time of H. sanguineus under acute cold and warm stress in summer and 

winter. Winter acclimated crabs (blue) were cooled and heated from an ambient temperature of 

between 3.5-6.5℃, summer acclimated crabs (red) were heated and cooled from an ambient 

temperature between 15-19℃. In the middle of this temperature range, reaction time was fast, 

slowing down dramatically at the more extreme temperatures. Breakpoint analysis identified 

where reaction time began to slow. At the colder end of the spectrum, CTmin shifted from 9.8 to 

8.6℃ for cold acclimated crabs, suggesting a small shift across seasons. 

 

Heart rates were similar for summer and winter acclimated crabs between about 0-20℃ before 

separating as temperatures increased. Between 20-30℃, winter heart rates were higher than 

summer heart rates. For heart rates analyzed using Arrhenius break temperatures, the ABT for 



 

winter-acclimated crabs (32.5℃) was lower than for summer acclimated crabs (36.6℃) (Figure 

2).  

 

Figure 2. A. Heart rate data from winter acclimated crabs (blue) and summer acclimated crabs 

(red) are similar at lower temperatures. At warmer temperatures, there is a distinctive shift 

upward in winter acclimated crabs, suggesting physiological stress at warmer temperatures. B. 

Arrhenius plot for summer and winter-acclimated crabs, where black dots indicate measurements 

after the breakpoint for summer acclimated crabs, and open circles represent the measurements 

after the breakpoint for winter acclimated crabs. For winter acclimated crabs, their cardiac 

function is disrupted at 32.5℃, for summer acclimated crabs, this occurs at 36.6℃. There was no 

lower ABT, suggesting that cold temperatures are not leading to collapse in cardiac function for 

H. sanguineus. 

 

Winter-acclimated crabs had lower oxygen consumption than summer-acclimated crabs in the 

upper temperatures. Between 0-20℃, oxygen consumption ranges were similar for both sets of 

crabs, as well as above 35℃. Summer-acclimated crabs had peak oxygen consumption around 

30℃ and winter-acclimated crabs peaked around 34℃, though not as drastically. This mismatch 

between heart rate and oxygen consumption in winter acclimated crabs led us to quantify 

mitochondria using a citrate synthase assay. There was no difference in citrate synthase activity 

for summer versus winter crab heart tissue (Figure 3). 



 

 

Figure 3: Oxygen consumption measured in summer versus winter-acclimated crabs. Winter 

acclimated crabs (blue) had generally lower oxygen consumption rates at high temperatures 

compared to summer acclimated crabs (red). In the lower range, there was no difference in 

oxygen consumption between warm and cold acclimated crabs. 

  

Figure 4: Measured citrate synthase activity in summer versus winter-acclimated crabs 

from cardiac tissue. Summer acclimated crab’s citrate synthase density is marked in red, winter 

acclimated crab’s citrate synthase density is marked in blue. There was no significant difference 

in citrate synthase concentration in cardiac tissue from these crabs (t(10)=0.3861, p=0.71). 

​  

Summer and winter-acclimated crabs exhibit differences in lactate accumulation due to 

temperature stress. For example, they switch to anaerobiosis at different temperatures based on 

the season, suggesting that they are well adapted to the season they are in (Figure 5). 



 

Winter-acclimated crabs do not increase their lactate concentration with lower temperatures, but 

it gradually increases with warmer temperatures. Thus, this one peak resulting from a gradual 

slope upward as temperature increases shows thermal stress only at the upper end of the gradient. 

Summer-acclimated crabs appear to have a thermal optimum around 18℃ but enter anaerobiosis 

at colder and warmer temperatures, suggesting less plasticity in temperature tolerance in the 

summer. Summer and winter acclimated crabs accumulate lactate in very different patterns 

depending on their acclimation season. 

 

Figure 5: Difference in hemolymph lactate concentrations for summer versus winter acclimated 

crabs. Winter acclimated crabs (blue) have an increase in lactate as temperature increases. 

Summer acclimated crabs increase their lactate concentration at high and low temperatures, 

suggesting that they experience anaerobiosis at most temperatures outside of their range.  

​  

Heat shock protein 70 protein expression was low at all temperatures for summer-acclimated 

crabs (Figure 6). Furthermore, there was little variation in HSP70 protein expression amongst all 

summer acclimated crabs. For winter-acclimated crabs, there are increases in HSP70 protein 

expression at low and high temperatures under acute thermal stress. Even at the ambient cold 

temperature in the winter, crabs were creating HSP70 in response to physiological stress, but this 

stress was not irreversible as protein expression decreased at milder temperatures. Heat shock 

protein 70 protein expression was much more variable for winter acclimated crabs, especially at 

more extreme temperatures. 



 

 

Figure 6: Protein expression of HSP70 measured with western blot for summer and winter 

acclimated crabs. Winter acclimated crabs not only had higher HSP70 protein concentration, 

they also had higher variability in HSP70 concentration than summer acclimated crabs, who 

varied very little. For winter acclimated crabs, the highest HSP70 protein concentrations were at 

5 and 35​​℃. There were slight increases to HSP70 concentration in summer acclimated crabs at 

10 and 35℃. Error bars are covered up by the red dots due to their size. 

Asian shore crabs do not reproduce year-round in the Gulf of Maine (Figure 7). While green 

crabs can be found gravid in the Gulf of Maine in all seasons, Asian shore crabs do not become 

gravid until May, and instances of gravid crabs tapers off in the fall (Frederich and Lancaster, 

2023).  

 

Figure 7: Percentage of female H. sanguineus found gravid at Biddeford Pool from 2012-2023. 

On the left is the percent of female crabs found gravid for each season from 2012-2023 where 



 

gravid crabs are found between April and October. On the right are the same data but with 

seawater temperature on the x-axis, gravid crabs are usually only seen above 12​​℃. 

​ Combining these data, we can generate thermal performance curves for summer and 

winter-acclimated crabs, where the pejus temperature (Tp) is indicated by declining motor 

activity and increasing HSP70 protein expression and critical temperature (Tc) is where lactate 

accumulates (a switch to anaerobic respiration) and the heart rate hits a maximum (Figure 8). For 

winter-acclimated crabs, the Tpmin was around 8.6℃ where motor function declines and HSP70 

protein concentration begins increasing. Tpmax for winter-acclimated crabs was estimated to be 

25℃, an average temperature between CTmax, lactate accumulation, and HSP70 protein 

expression maxima. Lactate did not increase with cold temperature for winter-acclimated crabs, 

so no Tcmin was determined, but a Tcmax was estimated as 32.5℃, consistent with the maximum 

heart rate. Using the same metrics for summer-acclimated crabs, Tpmin was 10℃, Tpmax was 

30℃, Tcmin was 5℃ (due to an increase in lactate concentrations at low temperatures) and Tcmax 

was between 36.6 and 40℃. 

 

Figure 8: Thermal performance curve based on measured OCLTT values such as heart rate, 

lactate accumulation, HSP70 protein expression, and oxygen consumption. For summer 

acclimated crabs (red), the thermal performance curve shifts and Tc and Tp values fall higher 

than they do for winter-acclimated crabs. For winter acclimated crabs, there was no measurable 

Tcmin and the Tcmax was similar to the Tpmax of summer acclimated crabs. The y axis is scaled for 

maximum potential scope for performance for summer and winter acclimated crabs. 

 



 

We found seasonal shifts in thermal tolerance between summer and winter-acclimated crabs for 

all measured thresholds. Generally, summer-acclimated crabs performed better than 

winter-acclimated crabs at higher temperatures, and winter acclimated crabs performed better at 

lower temperatures. 

 

Discussion 

​ We found seasonal shifts in thermal tolerance between summer and winter-acclimated 

crabs for all measured thresholds. Generally, summer-acclimated crabs performed better than 

winter-acclimated crabs at higher temperatures, and winter-acclimated crabs performed better at 

lower temperatures. Our evidence suggests that H. sanguineus acclimates to different seasons at 

the cellular and system levels to survive in a variety of climates. This trait is common amongst 

invasive species, which generally exhibit thermal plasticity (Kelley, 2014). Hemigrapsus 

sanguineus has already established invasive populations in Europe and North America and these 

results suggest that other areas may be at risk of invasion. 

​ Reaction time (CTmax and CTmin) shows a shift in threshold by over 1℃ in cold 

acclimated crabs. The shift in CTmin for cold acclimated crabs suggests a physiological change 

that allows the crabs to survive in colder environments. While that is not the minimum 

temperature the crabs will experience in the Gulf of Maine, the shift in thermal threshold, as well 

as their behavior, allow them to overcome a lack of mobility. It is worth noting that H. 

sanguineus usually hide under rocks where they are protected from predators. Furthermore, 

within our crab transect, many H. sanguineus disappear in the winter, likely moving subtidally to 

avoid lower air temperatures (Frederich and Lancaster, 2024).  

Shifts in CTmax have been seen in a variety of species in short term acclimation studies or 

when studying different populations. For another invasive crab in the GoM, Carcinus maenas, 

CTmax falls between 34 and 36℃ depending on location and acclimation temperature (Jost et al., 

2012; Madeira et al., 2014). For native species such as Cancer irroratus, CTmax is far lower, 

around 20℃ (Jost et al., 2012). Of course, temperatures as high as 36℃ are far outside of the 

range of temperatures these organisms experience in water in the Gulf of Maine, but in other 

regions and when considering air exposure, knowing the absolute limits may help predict species 

spread into new territories. While we had no discernible difference in CTmax for summer and 



 

winter acclimated crabs, further research on short term acclimation and population genetics and 

their effects on response time for H. sanguineus is warranted.    

​ We also found a shift in ABT with cold and warm acclimated crabs. This time, 

winter-acclimated crabs had a decline in cardiac function 4℃ lower than summer-acclimated 

crabs. From an ecological perspective, this is acceptable because sudden changes in water 

temperature near the ABT values seldom occur and the crabs have time to shift between seasons. 

However, this shift indicates some physiological tradeoff in cardiac function between summer 

and winter acclimated crabs. Heart rates in the winter were also generally higher than heart rates 

in the summer. This is in contrast to oxygen consumption, which is lower in the winter and 

higher in the summer. Both winter and summer-acclimated crabs showed higher oxygen 

consumption rates at temperatures between 20 and 30℃. Arrhenius break temperatures have 

been measured for C. maenas ranging from 33.7℃ to 37.3℃ based on acclimation temperature 

and habitat range (Tepolt and Somero, 2014). This ABT is much higher than has been measured 

for native species such as the American lobster, Homarus americanus, with an ABT ranging 

from 25.2-26.3℃. In some cases, a lower ABT can be measured, such as in Daphnia sp. water 

fleas, where it was 6.5℃ (Frederich and Lancaster, 2024).  

​ Framing the findings in context of OCLTT for H. sanguineus, there are definite 

differences between summer and winter acclimated crabs, suggesting a shift in the thermal 

optima and scope for activity for these crabs (Figure 8). We were unable to identify a Tcmin for 

winter-acclimated crabs, likely because the ambient water temperature was near the summer 

Tcmin. This is an important observation and may explain the year-round presence of H. 

sanguineus in the Gulf of Maine, despite the fact that summer-acclimated crabs are challenged 

physiologically and enter anaerobiosis at those temperatures. The animals must shift their 

energetic stores to basic survival needs rather than growth and reproduction at these 

temperatures. Thus, it is not surprising that we do not find gravid H. sanguineus year-round in 

the Gulf of Maine. 

​ The concept of metabolic cold adaptation has been used to describe physiological 

changes that occur to allow polar species to survive in cold water such as slow movement and 

changing oxygen consumption (Clarke, 1991; Hodkinson, 2003). For some cold-water species, 

mitochondrial density may increase in colder water to meet their physiological needs. One 

excellent example of this is described in the lugworm Arenicola marina whose distribution 



 

across the North and White Seas creates a natural experiment (Sommer and Pörtner, 2002). The 

White Sea is colder on average than the North Sea (lower mean annual temperatures of 4 vs 

10℃, respectively), and worms in the White Sea had 2.4 times higher mitochondrial respiration 

and higher rates of succinate oxidation than worms in the naturally warmer environment. 

Physiologically, the increasing mitochondrial density led to shifts of critical temperature to lower 

temperatures for worms originating from the White Sea. Lower temperatures lead to slower rates 

of enzymatic reactions, so increased mitochondrial density helps to overcome that, but has 

increased maintenance cost. Due to the shifts seen in summer vs winter acclimated H. 

sanguineus, we suspected a similar increase in mitochondrial density to survive the colder 

temperatures, but surprisingly found no evidence of a change (Figure 4). 

​ Here we focused on adult, non-gravid animals only, but every life stage is important to 

species survival. A study in Europe compared the larval development of H. sanguineus and C. 

maenas under a range of temperatures and food limitations. While C. maenas consistently 

survived all treatments, H. sanguineus larvae showed an ability to thrive at the higher 

temperatures even under food limited conditions (Espinosa-Novo et al., 2023). Rate of larval 

development is dependent on temperature; Asian shore crabs raised at 15℃ took 55 days to 

undergo full metamorphosis, whereas at 25℃, crabs completed this development in 16 days 

(Epifanio et al., 1998). Salinity also has an effect on larval development. The longer H. 

sanguineus remains planktonic, the more risk of floating into unfavorable conditions or being 

preyed upon, as many larvae do not survive to adulthood (Pederson et al., 2008). We understand 

that by leaving larvae out of this study we may have overestimated the physiological success of 

these crabs over their whole lifespan and urge further research on larval thermal tolerance. 

​ Hemigrapsus sanguineus have been slowly moving northward into even colder 

temperatures in Canada. They were first reported in Canada in southwest Nova Scotia in 2017, 

and subsequently surveyed throughout southwest Nova Scotia and southwest New Brunswick in 

2020 and 2021, with reproduction occurring late spring through early fall (Claudio DiBacco, 

personal communication). Our data suggest that in the winter in southern Maine, the crabs are 

physiologically challenged, but not enough to restrict their survival with the help of behavior, so 

it is reasonable that the crabs have continued their poleward spread. With expected warming 

temperatures, we anticipate that the northward spread will continue as long as the water 

temperature hits the threshold for reproduction long enough for larval development to occur. 



 

Although H. sanguineus population numbers are limited temporally by a small reproductive 

window, which could be holding the dynamic between C. maenas and H. sanguineus relatively 

constant, behavior and thermal tolerances suggest that the Asian shore crab can continue its 

northward march, impacting intertidal communities as it goes. 

 

Acknowledgements 

Thank you to Aubrey Jane for help troubleshooting western blot protocol. Also, thank you to 

University of New England undergraduate students and staff for their help in collecting crabs and 

taking some measurements during the first year of this study, specifically Melissa Butler, Kai 

Alger, Benjamin Rico, Emma Parish, Tyler Ferrin, Lindsay Forrette, and JJ Custer. 

 



 

Chapter 3 | Detecting Squishy and Crunchy Invasive Invertebrates: environmental DNA is not 

shed equally. 

 

Emily R. Lancaster, Erin K Grey, Damian Brady, Markus Frederich 

Abstract 

Environmental DNA (eDNA) is a powerful tool for detecting organisms in low abundance and 

can be crucial for early invasive species detection. Despite its potential, the body plan diversity 

of invertebrates can pose significant challenges, notably arthropods with exoskeletons like the 

European green crab which can be particularly difficult to detect. In this study, we validated  nine 

single-species quantitative PCR assays targeting invasive and nuisance species in the Gulf of 

Maine using a two-year eDNA time series. Combining visual surveys and molecular analyses, 

we successfully detected eight of nine target species with qPCR; however, quantitative 

assessment was not feasible for all species. [DB1] Our findings demonstrated the effectiveness of 

eDNA for early invasive species detection but emphasized the need for long-term field and 

laboratory validation, informed by species' natural histories. It is imperative to recognize that 

while eDNA is a valuable tool, its applicability varies across taxa. Therefore, interpreting eDNA 

results requires careful consideration of its limitations and the specific characteristics of the 

target organisms. 

Introduction 

Environmental DNA (eDNA) consists of nucleic acids shed by organisms into their 

environments and can originate from shed cells, waste, gametes, or free DNA from degraded 

cells (Ficetola et al., 2008; Rees et al., 2014). Environmental DNA with molecular techniques 

can be a useful tool for species detection and has been used to detect species in air, soil, ice, and 

water (Ariza et al., 2023; Clare et al., 2021; Ruppert et al., 2019; Willerslev et al., 2004). There 

are two major methods of detection when using eDNA: a broader community approach and a 

single species approach. For analyzing the broader community, metabarcoding,  amplification 

and sequencing of a barcode locus  (such as cytochrome c I oxidase (CO1), ribosomal genes 18S, 

16S, or 12S) can provide insight into a broad range of taxa present in an area (van der Loos and 

Nijland, 2021). Metabarcoding can detect multiple species in one sample, rather than multiple 

https://docs.google.com/document/d/1kXjlmTCdApUkFEGnr-QvlvWMme5Z77d4_rfcka1MdYs/edit?usp=sharing
https://docs.google.com/document/d/1kXjlmTCdApUkFEGnr-QvlvWMme5Z77d4_rfcka1MdYs/edit?usp=sharing


 

tests, so it can be a faster method for detecting invasive species semi-quantitatively (****). The 

alternative is a single species assay, using techniques such as quantitative PCR (qPCR), light 

mediated isothermal amplification (LAMP), or digital droplet PCR (ddPCR), which use primers 

specific to a species to provide a quantitative measure of eDNA abundance for the taxa of 

interest (Baudry et al., 2023; Kageyama et al., 2022). These species-specific methods are more 

precise and give more quantitative results but take more time as they have to be processed 

separately in many cases. Depending on the research objective, one or both techniques may be 

used to detect the species of interest. 

Abiotic factors can influence the fate of eDNA. For example, fish eDNA tends to 

accumulate in sediment, which may over-represent species if disturbed during water sampling 

(Turner et al., 2015). Furthermore, many studies have investigated the longevity of eDNA in 

water, finding that factors such as temperature, bacteria, and UV can lead to degradation of 

samples (Eichmiller et al., 2015; Tsuji et al., 2017). Tides and other water movements may 

influence detection probabilities, though one study found that eDNA from benthic species and 

plankton stayed consistent across tidal cycles (Kelly et al., 2018). Thus, there are many factors 

that must be considered when designing an eDNA experiment that can be used in decision 

making contexts. Although eDNA is ephemeral, it is useful for detecting species within a certain 

amount of time. 

 In aquatic ecosystems, eDNA has been used to detect fish, mammals, microbes, plants, 

algae, and invertebrates (Ruppert et al., 2019). Fish communities in aquariums are studied to 

ensure that all species are represented in the sequencing data (Kelly et al., 2014; Silverbrand, 

2021). In smaller-scale mesocosms, single species assays have shown agreement between fish 

biomass and magnitude of eDNA detection (Dejean et al., 2011; Lacoursière-Roussel et al., 

2016; Takahara et al., 2015; Tsuji et al., 2017). For fish species, there is generally good 

agreement between eDNA detection and fish abundance, even in systems with moving water 

(Kelly et al., 2018; Pont et al., 2018). Even in ecosystems like the deep sea, eDNA detection 

levels are correlated to fish caught by trawls and can detect species that are usually not caught in 

trawls, such as the Greenland shark, Somniosus microcephalus (Thomsen et al., 2016). In lakes, 

eDNA has been similarly used to compare catch data to qPCR eDNA concentrations and found 

similar quantitative results using metabarcoding (Hänfling et al., 2016; Valentini et al., 2016). 



 

Due to the precision of qPCR, it is generally considered to be more reliable for biomass 

assessments than metabarcoding. 

Environmental DNA has also been used to detect and monitor invasive species. There are 

various definitions for invasive species, but for the purpose of this study we define invasive 

species as organisms which establish a population in a recipient community after being moved 

using humans as a vector (Molnar et al., 2008). These species are not necessarily harmful to 

humans or the environment, but due to a lack of evolutionary history with members of the 

recipient community, they can cause damage (Edgell and Hollander, 2011). Early detection of 

invasive species is important to reduce the spread of these species to new regions. As the effect 

size of invasive species increases with time, eradication of invasive species becomes more 

difficult, and management strategies may switch to control and adaptation rather than removal 

(see, for example, Haubrock et al., 2022). Thus, detection of invasive species early in their 

invasion history is critical if the overall goal is eradication and eDNA techniques could assist in 

this aim.  

Many invasive species eDNA studies focus on presence/absence of invasive species 

rather than attempting to quantify the number of animals, despite using single species assays 

(Kim et al., 2018; Takahara et al., 2013). Many eDNA studies focus on Asian carps, which are 

invasive in many waterways and cause damage to ecosystems by eating and outcompeting other 

fish species; they cause harm to other organisms by decreasing water quality; and they cause 

harm to humans by jumping out of the water (Kolar et al., 2007). Although they had not been 

detected or caught in the Laurentian Great Lakes in the early 2000’s, an eDNA survey beginning 

in 2009 found their DNA present nearby in 2010 (Jerde et al., 2011). This detection was met with 

scrutiny, but bighead and silver carps are challenging to catch with traditional surveys. 

Eventually, the fish were caught where eDNA was detected, validating this method for detecting 

hard-to-catch invasive species (Jerde, 2021). Laboratory studies using the same species 

(Hypophthalmichthys nobilis and Hypophthalmichthys molitrix) and other carp species have 

found correlations between biomass and amount of eDNA detected (Klymus et al., 2015; 

Takahara et al., 2016). 

        ​ Some invasive species are harmful to ecosystems and their inhabitants. These impacts 

can be direct, through direct aggression and space utilization (Bullard et al., 2004; Macdonald et 

al., 2007; Rius et al., 2009;), or indirect, through resource sharing and allelopathy (Davis et al., 



 

1991; Schenk, 2006). The impacts of these species can change community dynamics and may be 

exacerbated by climate change and other disturbances, which further stresses native species 

(Altman et al., 2007; Mack et al., 1998). Furthermore, invasive species can cost millions of 

dollars annually in damaged structures, fisheries losses, and effects on human health (Finnoff et 

al., 2005; Pejchar and Mooney, 2008; Pimentel et al., 2004). Therefore, from a management and 

policy perspective, early detection of these species not only helps local ecology, it also helps 

reduce the costs of managing potential invaders. Traditional species monitoring methods include 

fishing, trapping, or visual surveys, but eDNA could assist or replace these methods. 

        ​ Despite numerous success stories, eDNA methods cannot be applied to all systems 

equally. Mammalian species are notoriously challenging to detect with traditional visual surveys 

due to their elusive nature. Qu and Stewart detected the endangered Yangtze finless porpoise, 

Neophocaena asiaeorientalis asiaeorientalis, with qPCR, a method that is more repeatable, 

efficient, and cost effective than visual surveys (Qu and Stewart, 2017). This study compared 

cost for visual, PCR, and qPCR-based detection of the porpoise; it found that qPCR was the best 

option for detection, as the method was highly sensitive and less expensive than widespread 

visual surveys. Due to the low density of mammals and the ephemeral nature of eDNA, false 

negatives are a serious concern for species detection. In a stream, eDNA was used to detect a 

freshwater pearl mussel (Margaritifera margaritifera) where they concluded that eDNA can be 

used as a non-destructive complement to traditional surveys (Stoeckle et al 2015). They noted 

degradation of the eDNA downstream and detection of an extinct population, either due to 

missed individuals or shells shedding eDNA. So, while there is a lot of potential in using eDNA 

to detect species, there are still uncertainties about the source and reliability of the method. 

Whether these difficulties are related to the body plan of the species being studied or species 

level variation is unclear. 

Although there are challenges to detection using eDNA signals, there is also considerable 

promise for the widespread use of eDNA methods to detect species. Due to the cost-effective 

nature and ease of taking a water sample over traditional survey methods, using eDNA 

techniques would be preferable if the molecular signal is properly understood (i.e. biomass 

estimations versus presence/absence). To test whether species-specific eDNA signals can be used 

to detect presence or absence, and even biomass, of invasive invertebrates in a highly dynamic 

marine intertidal system we compared qPCR-based eDNA data to visual surveys in a tide pool 



 

over two years. The species detected included seven species identified as invasive through the 

Marine Invader Monitoring and Information Collaborative, as well as one cryptogenic species 

and a nuisance species. Based on previous eDNA literature, we hypothesized that the species 

with soft and exposed tissues would shed eDNA consistently with their abundance, whereas 

organisms covered with shells or exoskeletons would be more challenging to detect. 

​​Methods 

Field molecular methods 

        ​ Environmental DNA samples were collected monthly from a tide pool in Biddeford Pool, 

Maine, USA (43.44207o N, 70.34098o W) from June 2021 through July 2023, excluding 

October-December 2021 (Figure 1). The samples were taken at six sites, four of which were fully 

disconnected from the ocean at low tide (tide pools) and two of which were on the ocean-side of 

the rocks with constant flowing water. The tide pool area was approximately 40 m wide and 

consisted of rocky sided pools where water depth did not exceed 1 meter. Samples were always 

collected at slack low tide using an extendable 8 m pole fitted with a water bottle holder which 

could hold bleach-sterilized 500 mL Nalgene bottles. 500 mL seawater samples were collected 

from 6 sites along a 40 m long area in the tide pool. Water samples were stored in the dark and 

on ice until filtered later the same day in the laboratory. A field control consisting of a 500 mL 

Nalgene bottle of deionized water was opened for one minute at the site. Field controls were 

analyzed through each of the following steps to ensure no contamination. 



 

 

Figure 1: The field site location in Biddeford, Maine, USA in Southern Maine in Saco Bay. 

Inlaid map of Maine with black star indicates the general location of the tide pools relative to the 

state. An aerial view of the tide pools is shown, with the pools sampled visually and with eDNA 

outlined in white. The open ocean side of the pools is in the top of the photos and two eDNA 

samples were also taken there, though visual surveys were not conducted. 

Field visual methods 

       ​ Visual surveys were used to detect nine invertebrate species common to New England: 

Botrylloides violaceus, Botryllus schlosseri, Ciona intestinalis, Didemnum vexillum, Diplosoma 

listerianum, Hemigrapsus sanguineus, Membranipora membranacea, Ostrea edulis, and 

Semibalanus balanoides. The only species studied here that is not an invasive species is the 

northern acorn barnacle, Semibalanus balanoides, which is a common intertidal organism and 

belongs to a group of organisms known as biofouling species for aquaculture (Zazzaro et al., 

2018). The Marine Invader Monitoring and Information Collaborative (MIMIC) is an 

organization using visual surveys performed by trained volunteers in northern New England 

studying over 100 sites in Massachusetts and Maine since 2008 to detect marine invasive 



 

species. The nine invasive and nuisance species in this study were categorized as such by 

MIMIC or have been identified by other parties as cryptogenic (Ciona intestinalis) (Dewitt, 

2002). Immediately after sampling, we conducted a visual survey for invasive species using the 

MIMIC protocol. The MIMIC protocol is based on the Puget Sound Expedition and generates a 

relative abundance of invasive species, whereas the photographic data provided a quantitative 

measure of changing abundances (Cohen et al., 1998; Pappal and Baker, 2011).  The amount of 

each organism across the tide pool area was categorized as abundant (present everywhere), 

common (present in more than half of surveyed sites), few (present in less than half the surveyed 

sites), or rare (one or two individuals across the tide pool). These rankings were coded for 

visualization, where 4 was abundant, 3 was common, 2 was few, 1 was rare, and 0 was not 

present at the time of the survey. Visual surveys only occurred for the four sites that were 

isolated at low tide; due to the flux of water on the oceanic side of the transect, visual surveys 

were not used. Temperature was measured in the tide pools during each sampling event. 

Laboratory methods 

eDNA filtration and extraction  

        ​ All eDNA filtration occurred in the laboratory on the same day as samples were 

collected. All 500 mL of each sample were vacuum filtered through 0.45 μm cellulose nitrate 

filters (Sartorius Stedim Biotech GmbH). Before pouring the samples onto the filter, the water 

was swirled in the bottle to suspend any particulate matter that may have fallen to the bottom of 

the bottle. The vacuum manifold was housed in a hood, which was always sanitized before use 

with a 10% bleach solution and an 8W UV light for at least 10 minutes. All removable filtration 

equipment was soaked in a 10% bleach solution for 10 minutes prior to use and then rinsed with 

water until no bleach smell remained. 

        ​ Filters were rolled using bleach cleaned forceps and placed into a labeled 1.5 mL 

Eppendorf tube and stored at -80℃ until DNA extraction using the Qiagen DNeasy Blood and 

Tissue Kit. The extraction protocol was slightly modified from the manufacturers 

recommendation to increase eDNA yield. First, after the addition of lysis buffer ATL and 

proteinase K, the filters were incubated at 56℃ for three hours and vortexed once every hour to 

ensure the buffer was reaching all parts of the filter. Final elution of DNA was performed in 80 

μL of elution buffer AE to increase eDNA yield. 

Laboratory based experiments 



 

        ​ To ground-truth some of the trends observed in the field, we conducted controlled lab 

experiments. These experiments were only performed for organisms that could be harvested 

without risk of fragmentation, which could lead to the spread of more invasive species (Valentine 

et al., 2009), or that were commonly found alive in the tide pool. Organisms were placed in 19 L 

buckets containing sterile artificial seawater (Instant Ocean SeaSalt mixed with deionized water, 

UV sterilized) with a sterilized bubbler for oxygen. Organisms were distributed amongst the 

buckets in groups of small, medium, or large (by weight or surface area) to assess how biomass 

impacted eDNA shedding rate. Buckets were sealed and set into a tank with flowing seawater to 

maintain ambient seawater temperatures between 14 and 18℃ within the mesocosms. After 24 

hours, 500 mL of water was collected from each bucket for filtering and DNA extraction using 

the same protocol as the field samples. Organism abundance was measured in two ways, either 

surface area was calculated and the eDNA concentration was analyzed using a linear regression, 

or wet weight was used, and organisms were classified as small, medium, and large for 

comparison. 

Table 1: Small, medium, and large groupings of three of the species studied in laboratory 

experiments. Numbers are listed in grams of wet weight. 

 

 

 

 

 

qPCR 

        ​ Nine 

qPCR assays 

were used to identify some of the invasive invertebrate species common to New England: 

Botrylloides violaceus, Botryllus schlosseri, Ciona intestinalis, Didemnum vexillum, Diplosoma 

listerianum, Hemigrapsus sanguineus, Membranipora membranacea, Ostrea edulis, and 

Semibalanus balanoides (not an invasive species, but a nuisance species) (Table 2). Assays were 

generated either with Primer3 or IDT PrimerQuest. Most of the qPCR assays were performed on 

a Stratagene MX3005P qPCR thermocycler aside from the O. edulis assay, which used a 

fluorophore not detectable with the filters installed on the MX3005P, so that assay was 

Species Small Medium Large 

Botrylloides violaceus 10.24±5.03 g 34.22±2.78 g 78.03±3.01 g 

Hemigrapsus 

sanguineus 8.45±1.23 g 30.55±1.61 g 71.60±5.20 g 

Ostrea edulis 49.67±6.32 g 

203.35±29.00 

g 

444.36±37.77 

g 



 

developed on a BioRad qPCR CFX Opus 96 Real-Time PCR System. The supermix for all qPCR 

reactions was identical: 10 μL of Applied Biosystems TaqMan FastAdvanced Master Mix, 0.3 

μL of each primer and probe (all 10 μM stock solution), 7 μL of water, and 1 μL of DNA. For 

one qPCR plate of each sample, the mixture was also spiked with an exogenous internal positive 

control (ThermoFisher) to test for PCR inhibition. Most assays were performed for 3 minutes at 

95℃ to activate the polymerase, followed by 40 cycles of 15 seconds at 95℃ and 30 seconds at 

60℃. The only assay that varied from this was D. vexillum, where we followed the qPCR 

protocol from Matejusova et al., (2021) which started with 2 minutes of 50℃, 10 minutes at 

95℃, then 45 cycles of 95℃ for 15 seconds and 55℃ for one minute. 

  

Table 2: Primers, probes, and their sources for species specific qPCR of invasive Gulf of Maine 

species. F represents the forward primer, R represents the reverse primer, and the probes were 

labeled with 6-FAM and MGB. All oligos are listed 5’-3’. Limit of detection (LOD) and limit of 

quantification (LOQ) are calculated based on concentrations determined in a Nanodrop 

spectrophotometer of genomic DNA extracted from the organisms. 

  

Species Primer Source Length 

(bp) 

LOD*/LOQ*/efficiency 

*(copies/μL) 

Botrylloides 

violaceus 

F- 

GGACAATGTTGGTAACTACTG 

R- 

CGAAGAAAGACGTATTGAAA

TTAC 

Probe- CAGCAGCCATTACA 

This study 105   

Botryllus 

schlosseri 

F- 

TGAACTGTTTATCCTCCCCTT

TCTAGA 

LeBlanc et 

al., 2020 

179 0.0002 / 0.02 / 0.89 



 

R- 

CAAAACAAAGATATAGAAAA

RAGTCCCCA 

Probe- 

TCATTCTAGAGCTGCTTTG 

Ciona 

intestinalis 

F - 

ACTTTTTTTGATCCTAACAGAA

GAAGGG 

R- 

CACACTAGAAATCTAAGAAAC

CTAATTCCTCTT 

Probe- 

TTGATCCTACCAAGATTTAGAA 

LeBlanc et 

al., 2020 

212 0.000018 / 0.0018 / 1.1 

Didemnum 

vexillum 

F- 

CGACTAATCATAAAGATATTAG

AACA 

R- 

TTCTTGTAGAACTTAATTCTATT

CG 

Probe- 

ATAGT{T}{A}GAGCT{A}G{A}T

TTAGT{A}TA{A} 

Matejusov

a et al., 

2021 

111 0.00015 / 0.0015 / 0.88 

Diplosoma 

listerianum 

F- 

CTAGGCAATTGATTAGAAAT

AGAC R- 

GCTCTTAGTATTAAAGGTAAT

AACC 

This study 119 0.0003 / 0.03 / 0.94 

Hemigrapsus 

sanguineus 

F- 

CCTGGGCCGGTATAGTAGGT 

Knudsen et 

al., 2020 

136 0.00056 / 0.056 / 1 



 

R-GGGGCTCCGAGTATAAGTG

G 

Probe- 

CGAGCAGAATTAAGACAACC

AGGAAGC 

  

Membranipora 

membranacea 

See citation for details Greenlee et 

al., in prep 

  0.0017 / 0.17 / 0.92 

Ostrea edulis F- GGTAGTTTCTGCATTTGTTG 

R- 

TGCACATTCCATGATATGAA 

Probe- ACTGGCTGAACTGTCT 

This study 89 0.000045 / 0.0045 / 0.89 

Semibalanus 

balanoides 

F - 

TGCCACCAGCTTTAATACTTC

TA 

R - 

GATCTACAGAGGCTCCAGAAT

G 

This study  120 0.00025 / 0.025 / 0.99 

        ​ All qPCR assays were validated by comparing the primers and probe to DNA extracted 

from tissues of many intertidal organisms common to the Gulf of Maine (all species included in 

this study as well as the American lobster Homarus americanus, green sea urchin 

Strongylocentrotus droebachiensis, green crab Carcinus maenas, Jonah crab Cancer borealis, 

European grass shrimp Palaemon elegans, common periwinkle Littorina littorea, flat periwinkle 

Littorina obtusata, European sea squirt Ascidiella aspersa, knotted wrack Ascophyllum nodosum, 

bladderwrack Fucus spp., northern sea star Asterias rubens,forbes sea star Asterias forbesii, and 

American oyster Crassostrea virginica). All primers were validated in silico against these species 

as well as using a SYBR green qPCR and melt curve analysis to assess specificity. Only assays 

with no amplification of other products were used. To calculate the limit of detection (LOD), 

limit of quantification (LOQ), efficiency, and r2, three replicates of standard curves ranging over 



 

eight orders of magnitude were performed simultaneously (Klymus et al., 2019). In addition to 

this standard curve, a standard curve consisting of two replicates of at least four orders of 

magnitude concentration was included with each plate to ensure optimum efficiency and r2 

values of those curves. 

Results 

qPCR 

        ​ For many species, we found seasonal oscillations in detectable eDNA consistent with the 

life cycles and abundances of each organism. For some of the colonial tunicates (e.g., B. 

violaceus and B. schlosseri), their presence in the tide pools was highest in the spring and 

summer and they nearly disappeared in visual surveys during the winter (Figure 2). We found 

higher eDNA concentrations [DB1] when tunicate biomasses were at the highest in the tide pools 

and in laboratory experiments (Figures 2 and 3). The lowest eDNA concentrations for each of 

these species occurred when water temperatures dropped below 15℃, especially when the 

species became dormant in the coldest winter temperatures. 



 

 

 

Figure 2: The amount of eDNA shed by two species of colonial tunicates, Botryllus schlosseri 

and Botrylloides violaceus. Black dots indicate visual abundance. These invasive species visually 

had their highest abundance in the summer when water temperatures were warmer. Both species 



 

nearly disappeared from the tide pools in the winter. These patterns were especially strong for B. 

schlosseri, and B. violaceus increased in abundance over time. 

 

Figure 3: eDNA shedding for Botrylloides violaceus in controlled lab conditions. While the 

means appear to increase with increasing size, there is no difference in the amount of eDNA shed 

amongst the different size tunicate colonies (ANOVA F2,27=0.3, p=0.743). 

 

For the other two colonial tunicate species, these trends were not as consistent. 

Didemnum vexillum was visually present year-round in the tide pools, though the colonies 

degraded and fragmented in the winter (Figure 4). They were also subject to snail predation 

year-round, but it was especially noticeable in the winter because D. vexillum was the most 

common sessile invertebrate present in the winter.[DB3]  

 



 

Figure 4: Amount of detectable eDNA shed by Didemnum vexillum at Biddeford Pool 

between June of 2021 and July of 2023. Black dots indicate visual abundance. This species was 

visually present year-round and detected with eDNA even when temperatures were low. 

The colonial tunicate, D. listerianum, was not detected using qPCR, despite being 

observed in the summer and fall in the tide pools (Figure 5). Similar to other soft bodied 

tunicates, their presence increased in the summer. 

 

Figure 5: Amount of detectable eDNA shed by Diplosoma listerianum at Biddeford Pool 

between June of 2021 and July of 2023. Black dots indicate visual abundance. Environmental 

DNA from this species was not detected at any time during this study, despite visual 

confirmation of its presence. 

In April of 2022, we identified one adult sea vase tunicate, C. intestinalis individual in 

the tide pool, which had not been observed previously in 5 years of monthly summer surveys of 

this tidepool (Figure 6). Using eDNA, this solitary tunicate was detected beginning in January, 

four months before it was observable in the visual survey. No other individuals were visually 

detected in the tide pool over this time series. 



 

 

Figure 6: Amount of detectable eDNA shed by Ciona intestinalis at Biddeford Pool between 

June of 2021 and July of 2023. Abundance was not measured in the same way, as this species is 

not recorded by the Marine Invader Monitoring and Information Collaborative, so no visual 

abundance is graphed. This species was first seen in visual surveys in April of 2022 and only that 

individual was seen throughout the course of this survey. 

 

In a laboratory study, we found a linear increase in detectable eDNA with increasing 

amounts of C. intestinalis (r2=0.658) (Figure 7). 

 



 

Figure 7: A comparison between biomass of C. intestinalis and detected eDNA concentration. 

There is a positive correlation between shed eDNA and wet biomass of C. intestinalis in 

laboratory experiments (r2=0.658). The gray area indicates the 95% confidence interval around 

the linear regression which is the black line. 

 

Several species displayed no pattern of eDNA in the tide pools. One of those species, M. 

membranacea was usually only found on wrack which washed into the tide pool as there were 

not many macroalgae surfaces conducive to their growth, and colonies were mostly dead. Thus, 

there were no seasonal patterns in eDNA detection over time for this species, but the second year 

of the time series generally had more detectable eDNA (Figure 8). 

 

Figure 8: Amount of detected eDNA shed by Membranipora membranacea at Biddeford Pool 

between June of 2021 and July of 2023. Black dots indicate visual abundance. Most of the M. 

membranacea seen in the tide pools came in on wrack that washed in from offshore. 

  

The Asian shore crab, H. sanguineus, was rarely observed in the tidepools themselves, 

but rather inhabited the exposed intertidal cobble above the tide pools (Figure 9). Of the 186 

samples, 91 were negative for the eDNA of H. sanguineus. Their detection was also sporadic, 

similar to M. membranacea. Laboratory experiments confirmed that there is no relationship 

between number of crabs and eDNA shedding (Figure 10). 



 

 

Figure 9: Amount of detected eDNA shed by Hemigrapsus sanguineus at Biddeford Pool 

between June of 2021 and July of 2023. Black dots indicate visual abundance. Many of the crabs 

seen in this habitat were out of the water under rocks; Asian shore crabs were infrequently seen 

in the water, so they would not be actively emanating eDNA into the water. 

 

Figure 10: Laboratory eDNA shedding experiment for H. sanguineus. There was no correlation 

between wet weight and eDNA shedding rate. No eDNA was detected for the small group. 

 



 

The final invasive species analyzed with qPCR was the European flat oyster, O. edulis 

(Figure 11). This long-lived species experienced a mass mortality event for reasons not identified 

in this study in the middle of this sampling period (April 2022), but their bottom shells were left 

behind. The laboratory study showed that the shells have DNA entombed in the shells, so eDNA 

was being shed even if the animal was not alive. We also did not find a significant relationship 

between biomass and shed eDNA in mesocosm experiments (Figure 12). 

 

Figure 11: Amount of detected eDNA shed by Ostrea edulis at Biddeford Pool between June of 

2021 and July of 2023. Black dots indicate visual abundance, which does not include dead shells. 

In spring of the first year of sampling, a mass mortality event affected most of the adult O. edulis 

in the tide pool, but despite the loss of many individuals, the amount of eDNA detection did not 

change. 



 

 

Figure 12: Laboratory eDNA shedding experiment for Ostrea edulis. There was no correlation 

between wet weight and eDNA shedding rate. Of all metrics taken from O. edulis, wet weight of 

the whole organism was most correlated with the amount of soft tissue over other factors such as 

maximum shell diameter. 

 

The nuisance species, S. balanoides, had a similar oscillating pattern to some of the 

tunicates but with the highest eDNA concentrations in early spring and declining concentrations 

through the summer and to the early winter (Figure 13). 

 

Figure 13: Amount of detected eDNA shed by Semibalanus balanoides at Biddeford Pool 

between June of 2021 and July of 2023. This species is not an invasive species, so we did not 



 

measure visual abundance over time, thus it is not graphed. This species is present throughout 

the tide pools and while it was not directly measured, there was no visual change in abundance 

over time. 

All samples were tested for inhibition, which was defined as a deviation from Cq values of 3 

between samples and controls. None of the samples exhibited any level of inhibition. 

Discussion 

Four of five species adhered to the initial expectation that soft, exposed organisms would 

shed eDNA consistent with their body mass. Furthermore, five species followed general trends 

based on known life history or visual abundance over time. The only species that did not follow 

the anticipated pattern was the gray tunicate, D. listerianum. This species is gelatinous and 

semi-transparent–more so than the other sea squirt species studied here. Frequently in visual 

surveys, D. listerianum could be overlooked because the rock under the colonies would show 

through. The best way to identify the colonies was to feel over the rock surface for the distinct 

slime feeling that differed from the rock. The high water concentration in the body of this species 

likely led to the lack of eDNA detected; they have high surface area but low body mass which 

means that despite having a lot of biological material to interface with the water, they shed little 

eDNA.  

        ​ For the other tunicate species, there was agreement with eDNA concentrations  and visual 

biomass in the tide pools. Botryllus schlosseri and B. violaceus showed oscillations between high 

and low concentrations of eDNA in agreement with visual surveys, which showed that in the late 

spring into summer these tunicates grew to be a dominant intertidal species. They began 

disappearing in the early fall and were nearly undetectable in the winter, save for a few colonies 

scattered throughout the tide pool. These tunicates begin growing and reproducing as seawater 

temperatures get above 12 or 15℃ for B. schlosseri and B. violaceus respectively and the 

increases in tide pool coverage are consistent with these expected temperatures (Brunetti, 1974; 

Takeuchi, 1980). The in-laboratory experiments did not produce a significant correlation between 

biomass and eDNA concentration, likely due to the challenges of keeping B. violaceus and B. 

schlosseri alive in the flowing seawater system. An attempt to replicate this experiment was 



 

made, but colony health quickly declined each time individuals were brought into the laboratory, 

so the eDNA results shown here are likely influenced by high levels of tissue degradation. 

The results for D. vexillum are particularly interesting because this species does not disappear as 

the water gets colder (< XX C). Didemnum vexillum was often the visibly dominant sessile 

invertebrate in the tide pool when water temperatures dropped. Furthermore, when we reflect on 

previous MIMIC surveys from this area, we see that the detectable eDNA from D. vexillum has 

been increasing over time; summer 2022 and 2023 had the highest visual record of D. vexillum 

over the time series, which is consistent with our eDNA results (Figure 4). Didemnum vexillum is 

frequently seen being eaten by periwinkles in the winter, so the high eDNA signal in the winter 

may also be influenced by the feeding of the snails as they fragment colonies. The last tunicate 

meeting this expectation that soft bodied organisms shed eDNA consistently with their 

abundance  is C. intestinalis, a surprising addition to the tide pool whose eDNA was detected 

three months before an individual was observed in visual surveys. Following the discovery of 

this individual, we used cameras to search under cracks in the rocks but found that the tunicate 

was the only one to appear during this time series, which is consistent with the unchanging 

eDNA concentration over time. In-laboratory experiments showed a positive correlation between 

biomass and eDNA concentrations for C. intestinalis, which have a life expectancy of 2-3 years, 

we assume that no other individuals arrived as eDNA concentration remained consistent. 

Furthermore, the short larval period for C. intestinalis (less than 24 hours from egg and sperm 

release to potential settlement) would make capturing the spawning event of one individual in the 

field particularly challenging if only sampling once per month (Dybern, 1965). This result also 

shows that this technique was sensitive enough to detect a single individual living in the tide 

pool, highlighting how powerful this tool can be for some species. 

Based on the body plans of organisms studied here, we can group them into two large 

categories. Organisms that have an exoskeleton or outer shell can be described by their texture as 

‘crunchy’. Organisms with exposed soft tissue and no exoskeleton can be grouped together as 

‘squishy’. The crunchy organisms studied here were H. sanguineus, S. balanoides, O. edulis, and 

M. membranacea, which either have a chitin and calcium carbonate exoskeleton or a shell. 

During a molt, those with exoskeletons have more exposed soft tissues, but this has not been 

shown to increase eDNA shedding in green crabs C. maenas (Crane et al., 2021). The squishy 

species included B. schlosseri, B. violaceus, C. intestinalis, D. listerianum, and D. vexillum. We 



 

assumed that squishy organisms might shed eDNA consistently with their abundance due to the 

increased surface for fluid exchange with the surrounding environment. While environmental 

DNA shedding rates were not completely consistent with the squishy versus crunchy hypothesis, 

we use these groups to contextualize the results further. 

        ​ Generally, the crunchy species were more unpredictable in their eDNA release than the 

squishy species. Several of the eDNA detection patterns can be explained by behavior; for 

example, H. sanguineus was rarely spotted in the water, but rather lives under rocks in the mid 

and upper intertidal. While some of the peaks in eDNA detection for this crab occurred during 

the reproductive season (May - October), this trend was not consistent across all months, 

suggesting that this detection was haphazard. Due to their general abundance out of the water 

and the ephemeral nature of eDNA, it is not necessarily surprising that there was not a lot of 

agreement between nearby H. sanguineus crabs and eDNA detected in the pool. Another 

example of behavior explaining eDNA detection is S. balanoides, which is a common intertidal 

organism and showed an interesting seasonal oscillation potentially due to reproduction rather 

than settlement. These barnacles brood their larvae in the late fall and winter, and release them 

from February to April (King et al., 1993). The larvae develop and grow as plankton before 

returning to shore in the summer for settlement. This life history is consistent with eDNA trends, 

with increasing eDNA concentrations as brooded larvae are released from the barnacles and 

captured in the water sample. It is difficult to say whether there is an increase in eDNA 

concentrations for settlement as the largest signal came from larval release, so further study 

should investigate an eDNA signal of settling barnacle larvae. 

        ​ The signals that came from O. edulis and M. membranacea may not be attributable to 

living organisms established in the tide pools. For M. membranacea, individuals were detected 

throughout the year, especially in the 2022-2023 season when more frequent storms brought 

encrusted kelps into the tide pool. However, frequently these colonies did not contain live zooids. 

Similar to O. edulis, following a mass mortality event in early 2022, the detectable eDNA did not 

change despite fewer live individuals. When the oysters die, the individuals attached to the rocks 

leave behind half of their shell. In-laboratory experiments confirmed that oyster shells shed 

eDNA. In both of these cases, the presence of eDNA did not confirm the living presence of 

invasive species. Importantly, without visual surveys, it would be impossible to assess invasion 

severity by eDNA alone for these species. ​  



 

Through this two-year time series, we uncovered inconsistencies in the utility of eDNA 

for detecting invasive species in tide pools. Environmental DNA was not shed equally for all 

species and thus, an eDNA signal cannot be interpreted equally across all taxa. This finding 

suggests that laboratory validation of eDNA shedding rates or visual surveys are required for 

organisms with diverse body plans. One of the challenges of studying invertebrates is that their 

diverse phylogeny goes hand in hand with diverse body plans. That is, soft exposed bodies or 

covering with an exoskeleton or shell could lead to large differences in exuded mucus or other 

bodily fluids. There are multiple studies investigating the amount of eDNA shed by fish into a 

controlled environment and in nature, validating that in general, fish biomass is correlated with 

eDNA shedding. Studies with Asian carps in man-made ponds, buckets, and mesocosms indicate 

that with more fish, the amount of eDNA shed also increases (Klymus et al., 2015; Takahara et 

al., 2012). For lake trout, catch per unit effort is significantly correlated with eDNA 

concentration, suggesting that molecular methods can save time and money in the management 

of this species (Lacoursière-Roussel et al., 2016). These trends appear to extend to other 

vertebrates such as amphibians (Pilliod et al., 2013; Thomsen et al., 2012). So, while there may 

be outlier species, eDNA can generally be applied quantitatively to fish and amphibians in a 

variety of systems. 

        ​ A few studies have captured the challenges of eDNA research for invertebrates. Crane et 

al. (2021) investigated eDNA shedding of the green crab Carcinus maenas at different life 

phases such as soft shell, ovigerous, male, female, and at high density. Another study found no 

correlation between biomass and eDNA detection in mesocosm experiments for C. maenas 

(Danziger and Frederich, 2022). Detection was generally low in all treatments, except for 

ovigerous females who shed more eDNA, especially when zoea were present (Crane et al., 

2021). These trends were corroborated in a 2022 study, which also found an increase in eDNA 

shedding of C. maenas for crabs running on a treadmill (Danziger et al., 2022). For the 

freshwater crayfish Procambarus clarkii, eDNA was not detected in high enough concentrations 

to overcome the limit of detection and trapping methods were more effective at detecting the 

freshwater crustaceans (Tréguier et al., 2014). Outside of arthropods, the potential for shells that 

shed eDNA was identified with Margaritifera margaritifera, the freshwater pearl mussel, when 

eDNA was detected from an extinct population (Stoeckle et al 2015). More studies are needed to 

continue looking at the challenges of studying invertebrate animals with eDNA. 



 

        ​ The implications of this research indicate that eDNA should not be used equally for all 

species and systems. We understand that these findings may bring into question the applicability 

of eDNA in widespread species monitoring;, however, we argue that the key finding here is  

variable success, rather than no success. Environmental DNA should still be trusted for many 

applications, especially following rigorous testing. For species studied here, the results from B. 

schlosseri, B. violaceus, S. balanoides, and C. intestinalis, and D. vexillum show that the eDNA 

can be analyzed quantitatively as the results show good agreement with visual 

abundances[DB21] . With enough sampling, species such as O. edulis, H. sanguineus, and M. 

membranacea can also be detected for presence, if not quantitatively. While we show 

inconsistencies in the tool, with proper validation, many species can successfully be detected by 

eDNA. These findings expand beyond the nine species studied here; the variety of body plans for 

invertebrates challenge eDNA detection success.  One could speculate that crunchy organisms 

could be more challenging to detect than squishy organisms across the board, which is 

particularly problematic considering the number of arthropod species and insect pests (Ezcurra et 

al., 1978). Environmental DNA techniques can be used quantitatively for many species, but 

without a full understanding of the eDNA signal, it cannot be applied to all systems equally. 

Conclusion 

Shedding rates of eDNA for invertebrate taxa vary. Some of this variation can be 

attributed to body plan of the invertebrates; many of the soft bodied, squishy animals shed eDNA 

in a manner consistent with their seasonal variation. For these species, eDNA can be used 

quantitatively to assess invasion severity in similar ecosystems with low flow. Some soft bodied 

organisms, such as Diplosoma listerianum, do not shed much eDNA, likely due to the general 

lack of organic material making up their bodies. In general, organisms with exoskeletons or other 

hard surfaces do not shed eDNA consistently with abundance, but the barnacle S. balanoides 

showed seasonal variation consistent with spawning. The generalizations of body plan for eDNA 

shedding rates of invertebrates are not consistent enough to make a broad statement about the 

reliability of an eDNA signal. This highlights the need for visual surveys or laboratory 

experiments to understand the meaning of an eDNA signal before it should be used for broader 

management perspectives.  
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Conclusion 

​ Sea surface temperatures are continuing to rise globally, so these issues apply further than 

the GoM, impacting marine ecosystems worldwide (Johnson and Lyman, 2020; Pershing et al., 

2021). By extrapolating findings from invasive invertebrate studies in the GoM, we can 

anticipate similar ecological challenges in other regions experiencing temperature shifts. 

Therefore, comprehending the nuances of invasive species detection methodologies becomes 

paramount not only for regional conservation efforts but also for broader ecological management 

strategies. As we navigate these environmental changes, integrating insights from physiology 

and molecular biology into adaptive management frameworks will be essential for safeguarding 

marine biodiversity and sustaining valuable marine resources beyond the GoM. 

​ From a physiological perspective, I demonstrated the variety in measurements in the 

literature and highlighted one example of a species which acclimates to different seasons, 

shifting its thermal thresholds. For the review, there were inconsistent measurement techniques, 

with few studies using the classical frameworks and more leaning towards observational 

measurements in the field which, while ecologically relevant, do not elucidate a mechanism for 

survival. Furthermore, these observational methods were susceptible to local adaptations, as are 

the framework measurements, but with little context to why these changes matter and how they 

affect the animal. Despite the lack of underlying causal mechanisms, measurements in the field 

such as growth or reproductive thresholds do serve some purpose in species distribution 

modeling but should not be the only measurements taken. Without understanding the 

ecologically relevant temperatures at which an animal thrives, rather than just survives, modeling 

may overestimate invasive range. Thus, by measuring the maximum and minimum survivable 

temperatures, plus the temperatures at which the animal thrives, modeling will consider many 

thresholds required for the animal to persist. 

​ Of course, these measurements alone are not helpful without context. Many of the 

analyzed studies showed variation based on acclimation temperature and local adaptation. For 

example, the reproductive temperature for Carcinus maenas ranged from 0 to 27℃ based on 

location (Himes et al., 2017; Thresher et al., 2003; Yamada and Kosro, 2010; Young and Elliott, 

2020). If we were to assume that its reproductive temperature was only 4-26℃ as it was reported 

in Australia, that would underestimate its potential invasive range (Thresher et al., 2003). 

Thresholds can vary for a variety of reasons, including life stage, acclimation temperature, 



 

population variation/local adaptation, and exposure to other abiotic factors, so reporting all 

metadata about animal rearing conditions is important. Overall warming ocean temperatures may 

also lead to shifting thermal thresholds for organisms with thermal plasticity, so it should also be 

acknowledged that thresholds may continue to change worldwide. Warming sea surface 

temperatures will also lead to less ice cover, decreasing winter hypoxia, and changing flow 

patterns, which can open up new areas to invasion (Rahel and Olden, 2008). The best thing 

individual studies can do is list all metadata in order to contextualize these measurements on a 

broader scale. 

For H. sanguineus specifically, I found seasonal shifts in temperature tolerance likely due 

to acclimation. This species only reproduces in the summer months and spends much of its time 

in the colder months huddled under rocks, moving seldomly, or deeper in the water (Frederich 

and Lancaster, 2024). Despite the lack of year-round reproduction, this species is present and 

becoming a dominant force in the intertidal in southern New England, though its dominance over 

C. maenas has not come to fruition in southern Maine. It continues to spread northward where it 

is found on both sides of the Bay of Fundy (C. DiBacco, personal communication).  

Lastly, in order to understand the distribution of these species over time, I validated 9 

qPCR assays for several of the MIMIC species and other local pests to compare against a 2 year 

time series of eDNA collected at Biddeford Pool. I found that some species, especially those 

with exposed soft tissue (squishy), shed eDNA in a manner consistent with their abundance. This 

was not true for all squishy species, as D. listerianum was not detected using eDNA using qPCR 

nor metabarcoding. For crunchier species, organisms with an exoskeleton or less exposed soft 

tissue, generally there was no correlation between visual abundance and eDNA concentration. 

Interestingly, at least one crunchy species did show seasonal variation in eDNA shedding, not 

necessarily in relation to visual abundance, but with regard to reproduction. This species broods 

its larvae until January when they begin to release through April. Settlement occurs as waters 

warm through the spring, and I did not find a notable increase in eDNA at this time. The last 

interesting trend was for eDNA from O. edulis, which exhibited consistent eDNA detection 

throughout the year despite mortality and changing abundances over time. Laboratory 

experiments showed no trend in eDNA shedding rate and amount of oysters as well as shed 

eDNA from cleaned shells containing no live oysters.  



 

These results show varied detection of invasive species using eDNA from an abundance 

standpoint. With enough samples, all species but one was detected, suggesting that if the only 

research goal is to detect the presence of an invasive species, eDNA is still a powerfully useful 

tool. This chapter highlights the importance of validation and comparison to traditional survey 

methods before blindly applying eDNA methods to all systems equally. Although these findings 

may raise doubts as to the validity of eDNA results, they also show great promise for 

quantitative results for many species. 

Overall, this dissertation has filled in information gaps regarding invasive species 

physiology and detection using eDNA. As the world becomes more interconnected, we expect 

incidence of invasive species to continue to increase (Hulme, 2009). This, paired with global 

warming, will lead to drastic changes in all ecosystems which will affect humans in a variety of 

ways. By understanding the temperatures which could allow species to continue spreading, we 

can predict where they might spread, and use eDNA to detect them as early as possible. Through 

these three chapters, I’ve turned a lot of traditional understandings of physiology and eDNA on 

their heads but hope that the findings here will continue to strengthen these fields for the 

betterment of our planet’s beloved oceans.  
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Appendix A 

Appendix A. Two way ANOVA tables for Biddeford Pool qPCR runs comparing location in the 

tide pool and sampling date. 
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Appendix B 

Metabarcoding and bioinformatics  

​ PCR was run in triplicate using the Leray COI primers. All PCR results were visualized 

on a 1% agarose gel with SYBR Green to ensure PCR success. Following PCR, and if the gel 

indicated success, PCRs were pooled and cleaned using Ampure beads in a 1.4x concentration. 

Following binding to Ampure beads, the samples were washed three times using a 70% ethanol 

solution before being eluted into 10 μL of nuclease free water. All samples were then measured 

with a NanoDrop spectrophotometer to ensure that DNA concentrations were between 10 ng/μL 

and 200 ng/μL. Sequencing was performed on an Illumina MiSeq using either a 2x300 or 2x200 

sequencing kit at the discretion of the sequencing facility (Integrated Microbiome Resource, 

Dalhousie University).  

​ The returned FASTQ files were processed with a pipeline designed by collaborators at the 

NSF EPSCoR Maine-eDNA consortium using dada2 and phyloseq. Due to the two sequencing 

runs being processed with different kits, the reads of half of the sequences were not able to be 

merged. So, we moved through the pipeline using only the forward reads. Amplicon sequence 

variants (ASVs) were compared to MIDORI and an internal Maine-eDNA database containing 

whole mitogenomes and generated using a species list of Maine-specific species. Visualizations 

in phyloseq allowed us to generate nMDS and diversity index plots. 

Metabarcoding 

​ Using the DADA2 pipeline, we only analyzed the forward reads due to the differences in 

sequencing kits leaving the sequences too short to merge paired reads. Approximately 70% of 

sequences passed the filters of the pipeline and were analyzed to generate amplicon sequence 

variants (ASVs). Amplicon sequence variants were compared against a modified MIDORI 

database to assign taxonomy to the sequences (Leray et al., 2022).   



 

 

Figure 14: Amplicon sequence variants that were successfully assigned to a variety of phyla. 

Each color represents a different phylum. These metabarcoding data exclude any unassigned 

ASVs. 

Despite the broad range of phyla observed above, most ASVs did not assign to any taxa in the 

database. The resolution of the matched phyla decreases when placed in the context of the entire 

dataset. 

 

Figure 15: Total ASVs and matched phyla for Biddeford Pool metabarcoding data. Each color 

represents a different phylum. Gray bars indicate unassigned ASVs. 
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