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Abstract
The Routing Policy Speci�cation Language (RPSL) enables opera-
tors to specify routing policies in public registries. These policies
contain information for tra�c engineering, troubleshooting routing
incidents, and automatically con�guring route �lters to improve
security. RPSL information is also valuable for researchers to better
understand the Internet. However, the RPSL’s complexities make
these policies challenging to interpret programmatically. We in-
troduce RPSLyzer, a tool that can parse and interpret 99.99% of
RPSL policies. We use RPSLyzer to characterize the RPSL policies
of 78,701 Autonomous Systems (ASes) and verify 779 million BGP
routes against these policies. We �nd RPSL usage varies widely
among ASes, identify common RPSL misuses that explain most
route veri�cation failures, and o�er operators recommendations to
improve RPSL usage.
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1 Introduction
The Routing Policy Speci�cation Language (RPSL) [6, 12, 48] is a
mechanism for network operators to specify routing policies. Al-
though RPSL usage is not mandated, Autonomous Systems (ASes)
may employ the RPSL to coordinate interdomain routing, trou-
bleshoot incidents, or con�gure tra�c engineering. Some transit
providers require or suggest that their customers maintain routes
they originate in the RPSL so that they can input them into tools like
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IRRToolSet [5] or BGPq4 [63] to automatically generate route �l-
ters [11, 34, 51]. Some IXPs require member ASes to specify peering
policies in the RPSL to use the IXP’s route servers [1, 20]. Networks
may generate con�gurations for peering sessions by specifying
neighboring networks’ border routers, AS number (ASN), and BGP
parameters such as route preference (LocalPref) in the RPSL.

In addition to its operational uses, the RPSL contains extensive
unique data for researchers. For example, researchers have used
RPSL information to identify AS links [26, 27, 59], business rela-
tionships [18, 36, 59], peering information [11, 16, 32, 46], stable
routes [64], sibling ASes [9], and the semantics of BGP communi-
ties [41, 65]. More generally, Internet routes are shaped by routing
policies, so understanding policies can unlock a better understand-
ing of the Internet. However, routing policies are often proprietary
and opaque. To circumvent this, decades of research focused on ex-
ploiting available data sources and developing complex techniques
to infer (the impact of) routing policies, e.g., [7, 49, 50]. Despite
these e�orts, the RPSL, an important data source in which ASes
directly report aspects of their policies, remains understudied.

Interpreting the meaning of RPSL policies faces signi�cant chal-
lenges due to the language’s complexity. The RPSL has recursive
syntax, indirect object references, and domain-speci�c semantics
di�cult to interpret. None of these challenges is fully overcome
by existing tools. For example, BGPq4 [63], a popular up-to-date
con�guration generation tool, can only resolve single-term RPSL
expressions; IRRd [45], a popular RPSL database and query server,
at most breaks RPSL down to attribute-value pairs. More advanced
yet discontinued tools, like Nemecis [59] and one by Di Battista
et al. [11], focus on extracting speci�c high-level information like
AS relationships, but lack generality. Finally, since the use of the
RPSL is neither mandated nor standardized, its inconsistent use
compounds its complexity: operators employ di�erent subsets of
the RPSL manually or with rudimentary tools, in di�erent ways, to
achieve di�erent goals.
Contributions. To address these challenges, we open source RP-
SLyzer,1 the �rst tool capable of interpreting the full meaning of
99.99% of public RPSL policies (Section 3). Besides parsing the RPSL
and interpreting it to verify BGP routes, RPSLyzer exports an in-
termediate representation (IR) that captures policy semantics, fa-
cilitating the development of new tools that analyze the RPSL. We
raise two research questions:

How are ASes using the RPSL? We employ RPSLyzer to character-
ize 78,701 ASes’ RPSL usage (Section 4). We �nd that ASes’ RPSL

1https://github.com/SichangHe/internet_route_veri�cation
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usages vary widely, with 53.2% of ASes not declaring any policies
in the RPSL, and the remaining ones describing their policies at
widely di�erent levels of detail. We �nd that most policies in the
RPSL are simple and capture customer-provider or peer-to-peer
relationships [24].

Do ASes comply with their policies in the RPSL? Using RPSLyzer,
we verify if the sequences of ASes in routes observed by BGP
collectors match the policies expressed in the RPSL (Section 5). For
a large portion of interconnections present in BGP routes (40.4%),
we �nd they cannot be veri�ed using the RPSL due to missing
information: ASes often do not declare their policies, and some
policies refer to missing RPSL entries. Among the interconnections
covered in the RPSL, we observe a high fraction of strict matches
(29.3% of all interconnections), and explain most mismatches (19.0%
of all interconnections) by six common mistakes we identi�ed, e.g.,
some transit ASes incorrectly specify that they distribute only their
own routes when they mean to distribute both their own routes and
routes received from their customers. Based on our �ndings, we
provide recommendations for operators that ease the adoption of
the RPSL and increase expressiveness (Sections 4 and 5), like using
route-sets as a more straightforward way of specifying pre�xes
accepted on an interconnection.

Our contributions have the potential to catalyze the development
of new tools that utilize the RPSL and drive its adoption by operators.
Such development could improve the reliability and correctness
of interdomain routing by reducing con�guration errors that can
result in incidents like suboptimal route propagation, outages, route
leaks, or pre�x hijacks [38, 43, 47, 68]. Research e�orts would also
bene�t from an enhanced understanding of the Internet through
increased tooling and RPSL adoption.

2 Routing Policies and the RPSL
We provide a brief overview of the RPSL according to [6, 12], focus-
ing on its routing policy functionalities. The RPSL is object-oriented.
It de�nes objects, each with a list of attributes. Notable RPSL ob-
ject classes are the standalone aut-num, route, and route6; as well
as as-set and route-set , which may recursively contain objects of
their class. Internet Routing Registries (IRRs) [2, 60] store RPSL
objects, and may support nonstandard extensions or lack support
for standard objects and attributes.

The aut-num object provides an AS’s information and enables
operators to specify routing policies with its multivalued import
and export attributes. We refer to each import or export attribute
as a rule, with the following simpli�ed syntax:

import: from <peering> [action <action>;] accept <filter>
export: to <peering> [action <action>;] announce <filter>

where each <parameter> has the following meaning:

peering: Speci�es the set of relationships between routers, com-
monly as a single ASN like AS X, meaning all BGP sessions
between the declaring aut-num and AS X.

action: De�nes modi�cations applied to route attributes, like set-
ting the LocalPref or attaching a BGP community.

filter: Limits the set of IP pre�xes to be accepted in import or
announced in export rules.

For example, AS38639’s rule below speci�es that AS38639 has
(one or more) BGP sessions with AS4713, over which it announces
routes matching the AS-HANABI as-set .
export: to AS4713 announce AS-HANABI

This example shows a common practice by network operators:
specifying filters using an ASN or as-set . The RPSL has “prede�ned
set objects” where an ASN de�nes a set of pre�xes given by all
route and route6 objects whose origin attribute is AS X; an as-set
de�nes a set of pre�xes its member ASes originate. Alternatively,
to include all routes originated by an ASN or as-set regardless of
pre�xes, operators can use an AS-path regular expression (regex),
as shown in the compound rule below.

AS14595’s rule below highlights RPSL’s capability to express
complex policies. See Appendix A for more compound examples.
% whois -h whois.altdb.net AS14595 | grep | format
mp-import: afi any.unicast #1

from AS13911 #2
accept ANY AND NOT {0.0.0.0/0, ::0/0}; #3

REFINE
afi ipv4.unicast #4

from AS13911 #5
action pref=200; #6
accept <^AS13911 AS6327+$>; #7

The part of the rule before the refine accepts all non-default (#3)
unicast IPv4 and IPv6 routes (#1) received from AS13911 (#2). The
second part of the rule re�nes unicast IPv4 routes (#4) accepted
by the �rst part. It only allows routes from AS13911 (#5) whose
AS-path matches the AS-path regular expression (regex) in the filter
(#7). The regex checks that a route is received from AS13911 and
originated by AS6327. The rule enhances these routes’ preference
to 200 (#6), indicating that AS14595 prefers to route tra�c towards
AS6327’s IPv4 pre�xes through AS13911 over other potential neigh-
bors. Such destination-speci�c tra�c steering is an example of
tra�c engineering con�gurations that can only be captured pre-
cisely using compound RPSL rules.

Henceforth, we include the IPv6-compatible mp-import and mp-
export attributes as well as route6 objects when referring to their
IPv4 counterparts (export , import , and route).

3 Parsing the RPSL
RPSLyzer parses all routing-related objects: aut-num, as-set , route-
set , peering-set , filter-set , and route (details in Appendix B). For
each object type, it decomposes all routing-related attributes, most
importantly the import and export attributes (rules) of aut-num
objects, into interpretable representations.
Features. RPSLyzer can resolve complex RPSL constructs such as
hierarchical as-set names, pre�x range operators, AS-path regex,
and recursive object references. It supports less common features,
such as the indirect “members by reference” of as-sets and route-
sets that allow cooperative set maintenance by multiple network
operators, and Structured Policies that combine multiple rules using
the except and refine operators [6]. RPSLyzer even accommodates
two cases of non-standard but common syntax (Appendix B). To
our knowledge, no other tool has similar coverage of RPSL syntax.
Implementation and performance. RPSLyzer converts RPSL
objects into an intermediate representation (IR) that captures their
meanings. Our open-source Rust library de�nes the IR as a single
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Table 1: IRRs used, grouped and ordered by priority.

IRR S��� (MiB) aut-num route import export
APNIC 929 20,680 988,665 15,615 15,905
AFRINIC 128 2,314 105,835 331 340
ARIN 33 3,047 94,365 6,940 7,359
LACNIC 11 1,847 12,759 0 0
RIPE 5,184 38,573 533,159 368,008 357,317
IDNIC 4 2,276 6,114 3,918 3,938
JPIRR 3 455 14,013 305 307
RADB 487 9,471 1,619,366 12,655 12,834
NTTCOM 176 549 375,836 921 1,016
LEVEL3 66 300 79,152 6,228 5,826
TC 16 4,205 25,333 3,911 3,964
REACH 15 2 20,238 3 3
ALTDB 8 1,680 29,517 3,241 3,143
Total 7,073 78,701 3,367,914 416,312 405,895

data structure with associated methods,2 and can export it to JSON
�les for integration with other tools that leverage RPSL information.
RPSLyzer parses the 13 IRRs listed in Table 1, totaling 6.9GiB of
data, and exports the IR, all in under �ve minutes on an Apple M1.
This performance is enough to support future RPSL adoption.

4 RPSL Use in the Wild
IRR Datasets. We analyze publicly accessible IRR dumps from
June 2023,3 summarized in Table 1. For RPSL objects de�ned in mul-
tiple IRRs, we �rst prioritize based on registrar type (authoritative
regional and national, RADB, and other databases), then by their
sizes, as captured in Table 1.

We lack aut-num object de�nitions for national registrars like
KRNIC and NIC.br due to unavailable IRR dumps. Many ASes dele-
gated by ARIN are absent in ARIN’s IRR.4 Our veri�cation remains
sound despite the missing aut-nums: routes propagating through
them are veri�ed as if these ASes have no rules, and references to
them from other objects are una�ected. The LACNIC IRR dump
does not include any import or export rules.
RPSL adoption varies widely. Figure 1 shows that 35.2% of aut-
nums contain no rules, 10.9% de�ne at least 10 rules, and 0.13% (101
aut-nums) de�ne over 1000 rules. We �nd no signi�cant correlation
between how many rules an AS de�nes and how many neighbors,
customers, peers, or providers it has in CAIDA’s AS-relationship
database [15, 46]. This observation holds both for all ASes and
when considering only transit ASes with at least 5 customers (not
shown). For example, �ve Tier-1 ASes have zero rules and four
have thousands; large cloud and content providers like Microsoft
and Cloud�are operate with zero rules while others have very few
(Figure 1); several small ASes de�ne hundreds of rules.
Rules are simple. Almost all (98.4%) peering de�nitions comprise
a single ASN or ANY , which allows imports from (or exports to) the
speci�ed AS or any AS, respectively. Most (94.5%) ASes with rules
only specify simple filters compatible with BGPq4 [63], a router
con�guration generator. In our tests, BGPq4 does not support filters
2https://docs.rs/route_veri�cation/latest/route_veri�cation/ir/struct.Ir.html
3https://www.irr.net/docs/list.html
4ARIN operates an authoritative database at whois.arin.net. The use of ARIN’s IRR
database, operated separately at rr.arin.net, is entirely optional.
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Figure 1: Complementary cumulative distribution function
of the number of rules per aut-num object. Red crosses show
high RPSL adoption variance across Tier-1 ASes; green ar-
rows point to large CDNs and cloud providers operating with
few (two or �ve) rules. Tier-1s and large CDNSwith zero rules
are not shown.

comprising filter-set , AS-path regex, BGP communities, Composite
Policy Filters (with AND, OR, or NOT ), or Structured Policies (with
refine or except). As Figure 1 shows, the distribution of BGPq4-
compatible rules per AS is quantitatively similar to the distribution
of all rules. Although most rules are simple, compound rules exist
and can improve conciseness or sometimes express policies simple
rules cannot, e.g., �ltering by AS-paths; they could be more com-
mon, usable, and useful with better tooling support. Section 2 and
Appendix A describe some examples of compound rules.
Filter de�nitions are unnecessarily indirect. Table 2 shows
that 60.4% of aut-num and 31.7% of as-set objects are referenced
in filter de�nitions. We �nd that most filters are either an as-set
(43.4%) or ASN (24.1%). As discussed in Section 2, this common
practice relies on route objects of the referenced ASes to de�ne
the filter , thus requiring these (numerous) route objects to be kept
up-to-date. More importantly, this practice limits each AS to only
one set of pre�xes and does not support, e.g., exporting di�erent
sets of pre�xes to di�erent neighbors.

We recommend instead employing route-set objects for filters,
which directly specify sets of pre�xes, obviating the need for main-
taining route objects. Route-sets can additionally specify pre�x
ranges, so a single route-set can replace many route objects. More-
over, an AS can de�ne multiple route-sets, e.g., to selectively adver-
tise di�erent sets of pre�xes to di�erent upstreams. Unfortunately,
Table 2 shows that a smaller fraction of route-sets are actually used
compared to as-sets, even though both object types have similar
modi�cation dates (omitted) and are thusmaintained similarly well.
Route objects require management. Our IRR dumps contain
3,904,352 route objects, corresponding to 3,367,914 unique pre�x-
origin pairs and 2,817,344 unique pre�xes. This is about 3⇥ more
pre�xes than in current global BGP tables at least due to (i) the
need to create route objects for any potential pre�x announcements,
e.g., temporary announcements for tra�c engineering [54, 71],
and (ii) accumulation of outdated and unmaintained route objects.
Among these 2,817,344 pre�xes, 697,269 (24.7%) have multiple route
objects de�ned, among which 404,901 (58.1%) pre�xes have route
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Table 2: Numbers of objects de�ned and referenced in rules
(overall, in peerings, or in filters).

aut-num as-set route-set peering-set filter-set
De�ned 78,701 53,268 24,460 342 203
Referenced

Overall 52,028 17,789 1,711 64 50
peering 37,595 2,519 — 64 —
filter 47,503 16,891 1,711 — 50

objects with di�erent origins. Furthermore, 469,003 (67.3%) pre�xes
have route objects de�ned by multiple operators, which is possible
as IRRs allow operators to create route objects with any pre�x and
origin. This is legitimately used, e.g., when transit providers create
route objects for customer pre�xes, but has also been exploited
maliciously [33].

The number of pre�xes with multiple origins in route objects is
40⇥ larger than the number of multi-origin pre�xes observed in
BGP dumps [28]. This complicates identifying the legitimate origin
AS of a pre�x with the RPSL. We bolster our recommendation for
route-sets, which would not only enhance expressiveness but also
lower maintenance burden.
Opaqueness of as-sets compromises correctness.Among 53,268
as-set objects across all IRRs, 7746 (14.5%) have no members, risking
con�guration errors if used in import or export rules. Moreover,
17,430 (32.7%) as-sets contain only one member AS, which could
replace the whole set. The reserved keyword ANY appears in 3
as-set de�nitions, which is likely an error. A few (772, 1.4%) ex-
tremely large as-sets have more than 10,000 members. Some as-sets
recursively contain other as-sets, forming directed graphs [59]; we
�nd 13,602 such as-sets (25.5%), among which 3050 (22.4%) form
loops and 3129 (23.0%) have depth 5 or more. Although the RPSL
is “readable”, manually tracking deeply recursive and potentially
cyclic as-set de�nitions is laborious and error-prone, thus analyses
greatly bene�t from tooling like RPSLyzer.
RPSL errors. RPSLyzer found 663 syntax errors, 12 invalid as-set
names, and 17 invalid route-set names. For example, it found an
empty as-set named after the RPSL keyword AS-ANY, an anom-
aly that may disrupt RPSL analysis tools. Common syntax errors
include out-of-place text, such as broken comma-separated lists,
misplaced comments, invalid RPSL keywords in import and export
rules, or plain typos. Besides syntax errors, data in the RPSL are
sometimes outdated or outright incorrect [16]. These issues are
compounded by registrars running their own IRR databases, which
further complicates maintenance and can lead to inconsistencies
across databases. To minimize the impact of inaccuracies in the
RPSL, our analyses consider aggregate data from all major IRRs.

5 Verifying AS-Paths
We employ RPSLyzer to verify AS-paths observed in BGP dumps on
June 23rd, 2023, from 60 RIPE and RouteViews BGP collectors [3, 4].
Our goal is to characterize how well AS-paths match public routing
policies in the IRRs.

For each observed BGP route, we extract the AS-path A and
pre�x % , removing prepended ASes. We ignore 0.06% of single-AS
routes directly exported by route collector peers as they have no

inter-AS links to be veri�ed. We also ignore 0.03% of routes whose
AS-paths contain BGP AS-sets, whose use is discouraged [39, 42].

RPSLyzer examines each route h%,Ai from the origin AS of A,
verifying propagation between each AS pair. Concretely, for AS pair
hY, Xi where AS Y accepts (imports) the route announced (exported)
by AS X, we check if AS X has a matching export rule and if AS Y has
a matching import rule. Our implementation queries and interprets
the IR to �nd rules that match h%,Ai, following the semantics in
the RFCs [6, 48]. A rule de�ned by AS X (or AS Y) matching % ’s IP
version and address type is a strict match to route h%,Ai if:

(1) AS Y (or AS X) matches the rule’s peering.
(2) The pre�x % and AS-path A match the rule’s filter .
When matching import (or export) rules against a route import

(export), we classify the veri�cation status by applying the checks
below in order. If there are multiple matches, the “best” rule with
the earliest matching check is considered.
Veri�ed. A strict match, as described above.
Skip. The rule is one of the 114 RPSLyzer does not or cannot handle
(0.01% of 822,207 rules, see Appendix B). As a comparison point,
BGPq4 does not handle 21,463 rules.

Unrecorded. The veri�cation fails due to RPSL objects or rules
being missing in the IRR, including (1) absence of aut-num object
for the AS under check, (2) the aut-num object has zero import
(export) rules when checking an import (export), (3) the filter
refers to an AS that never appears as the origin of route objects, or
(4) the rule refers to an unrecorded as-set , route-set , peering-set ,
or filter-set .

Relaxed. A match when the filter is relaxed, as detailed in Sec-
tion 5.1.1.

Safelisted. The relationship between AS X and AS Y is safelisted,
as detailed in Section 5.1.2.

Unveri�ed. None of the above—a mismatch.
Performance. Verifying the 779.3 million routes in all 60 BGP

dumps took 2 h 49m and less than 2GiB of RAM on a server with
dual EPYC 7763 64-Core processors. RPSLyzer’s high throughput
allows processing large volumes of BGP updates such as those
collected by BGP collectors.

5.1 Special Cases
By manually investigating rule mismatches in the wild, we identi-
�ed six types of common RPSL misuses. Our checks leverage the
business relationship between each pair of ASes. For this purpose,
we rely on CAIDA’s AS relationship inference database due to its
availability and accuracy [46]. RPSLyzer programmatically checks
these special cases in the order below.

5.1.1 Relaxed filters. We identify and relax checks for three com-
mon filter misuses that make sense from an operator’s viewpoint.
When a route matches a rule’s peering but not its filter , we perform
the relaxed checks below.
Export Self. More than half (6664, 64.4%) of transit ASes specify
themselves as an export rule’s filter . In strict RPSL, this would only
allow exporting pre�xes the AS itself originates. However, a transit
AS X likely intends to export its routes and routes received from
any of its customers (see Appendix E). Thus, we mark the export
as relaxed if the previous AS on the AS-path is a customer of AS X.
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Import Customer. Similarly, 3090 (29.8%) transit ASes specify a
customer AS C in both an import rule’s peering and filter . In strict
RPSL, this would only allow importing the pre�xes AS C originates.
However, transit ASes likely intend to import any route received
from AS C, including routes originated by AS C’s customers. In
such cases, we treat the filter as ANY , allowing any pre�x on routes
received from AS C.
Missing routes. De�ning a filter with an ASN (or as-set) requires
keeping the route objects originated by the AS (or as-set) up-to-date
(Section 4). However, we relax this check if the AS is (or the as-set
contains) the AS-path’s origin.

5.1.2 Safelisted Relationships. We safelist three common relation-
ships below that explain many policy mismatches.
Only Provider Policies.A few (46, 0.44%) transit ASes only specify
rules for their providers, who may have mandated RPSL use to auto-
generate BGP �lters. Operators of such ASes do not maintain rules
for the numerous peers and customers, so we safelist any route
such ASes import from a peer or customer.
Tier-1 Peering. Tier-1 networks exchange routes by de�nition,
but not all specify public RPSL policies. Thus, we safelist all route
propagation between a pair of Tier-1 ASes.
Uphill Customer-Provider Propagation. Finally, we assume
that providers import routes from their customers and that cus-
tomers rely on their providers to reach the rest of the Internet.
Therefore, we safelist any route to propagate uphill across a customer-
provider link. These cases highlight opportunities where RPSL rules
could inform route �lters during upstream propagation to curtail
route leaks and pre�x hijacks [17]. We considered similarly safelist-
ing downhill propagation but decided against it due to its limited
utility: both providers and customers typically employ BGP �lters
that allow any pre�x to propagate downhill.

5.2 Veri�cation Results
RPSLyzer veri�ed route imports and exports observed by RIPE
RIS and RouteViews BGP collectors [3, 4]. Appendix C details a
step-by-step route veri�cation example. To demonstrate the class
of analyses RPSLyzer enables, we report the veri�cation statuses at
three granularities: per AS, per AS pair, and per BGP route.
MostASes use theRPSL consistently. Figure 2 shows veri�cation
statuses for route imports and exports per AS, ordered on the G-axis
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Figure 2: Route veri�cation status for each AS.

by correctness. Themajority (61,746, 74.4%) of ASes have all imports
and exports with identical statuses, captured in the graph as vertical
bars with a single color. We identi�ed 14.2% of ASes with 100%
of propagation veri�ed (yellow), 51.6% lacking RPSL information
(“unrecorded”, green), 0.34% that only use relaxed filters (blue), and
6.9% with only safelisted relationships (red).
RPSL-based route veri�cation is feasible and meaningful.
ASes with skipped veri�cations only constitute 0.03% of ASes (not
visible in Figure 2), underscoring RPSLyzer’s high coverage of RPSL
features. Out of the 54.9% of ASes with unrecorded cases, most
can be explained by 27.2% of ASes missing aut-num objects and
24.2% of aut-nums with no rules. Excluding ASes with skipped or
unrecorded cases, we �ndmore ASes with veri�ed (76.3%) or special-
cased (62.5%) routes than ASes with unveri�ed routes (23.1%). This
high fraction of correctness indicates that operators make mindful
use of the RPSL, and the RPSL may help identify routing anomalies
and mistakes.
RPSL adoption is a larger concern than its misuse. RPSLyzer
�nds 25,596 ASes with at least one special-cased import or export
(30.9% out of all ASes). Among these ASes, more incorrectly allow
customer route exports (994, “export self”) than imports (325, “im-
port customer”). This is intuitive as the Internet hierarchy implies
more ASes at the edge exporting (potentially incorrect) routes to
their providers. However, most of the special cases are due to uphill
propagation with no matching rules (23,298 ASes) or missing route
objects (5181 ASes). These results imply that RPSL misuse is a mi-
nor issue, but increased adoption is crucial to increase coverage of
Internet routes. Appendix D details unrecorded and special cases.
Veri�cation statuses largely depend on the AS pair. Figure 3
displays the veri�cation status for propagation between every pair
of neighboring ASes observed in BGP routes, with distinguished
propagation directions. Most AS pairs show either consistent sta-
tus for all propagated routes (single color) or two statuses in an
even split (two colors). An even split happens when each AS has
a consistent status di�erent from its neighbor’s. For imports, we
�nd 91.7% of AS pairs have a single consistent status; this number
is 92% for exports. Thus, although routes with di�erent pre�xes
and potentially di�erent AS-paths propagate through the same AS
pairs, these variations rarely impact route veri�cation.
Most unveri�ed routes traverse undeclaredpeerings.Although
Figure 3 shows over half of AS pairs have unveri�ed routes (418,328,
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Figure 3: Route veri�cation status for each AS pair.
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Figure 4: Veri�cation status for all hops in BGP routes.

63.0%), most of them (98.98%) fail veri�cation because the relation-
ship is not declared in the RPSL (i.e., no rules’ peering covers the
other AS in the pair).
Large ASes impact many routes. All ASes have the same weight
in Figure 2, but ASes with many neighbors contribute dispropor-
tionately when analyzing by AS pairs or routes (Figures 3 and 4).
The problem is aggravated because large ASes, including Tier-1s,
Tier-2s, and CDNs, often specify few to no rules. This explains the
large areas for unveri�ed routes in Figures 3 and 4 compared to
Figure 2.
Special cases cover most common RPSL misuses. Given most
(99.0%) unveri�ed cases are due to missing peering de�nitions, fur-
ther relaxing filter checks (Section 5.1.1) can hardly increase our
coverage. Moreover, since most ASes use simple peering de�nitions
(Section 4), rule mismatches due to incorrect peerings should be
rare, and are likely singular mistakes instead of common misuse of
the RPSL.
Veri�cation status is inconsistent within an AS-path. Figure 4
shows the di�erent veri�cation statuses for every import and export
in each AS-path. Multiple colors in one bar indicate that veri�cation
statuses within an AS-path vary. Only 6.6% of routes have the same
status across all hops, captured by having a bar of single color (1.6%
veri�ed, 3.0% unrecorded, and 1.6% unveri�ed). Most AS-paths
have a mix of two or three statuses, which impedes end-to-end
veri�cation and may limit the usefulness of the RPSL, in its current
state, for troubleshooting routing anomalies.

We also assess the veri�cation status of the �rst hop in AS-paths,
where �ltering is most e�ective in preventing route leaks and pre�x
hijacks [17]. Unfortunately, the results are similar (not shown),
except that slightly fewer routes are unveri�ed and slightly more
are safelisted, since many �rst hops involve customers exporting
routes uphill. Operator e�orts on improving RPSL coverage at the
edge could complement ongoing RPKI e�orts [25, 55] in securing
BGP announcements.

6 Related Work
BGP limitations. A large body of research focuses on address-
ing or alleviating BGP limitations including lack of authentica-
tion [8, 29, 44, 68], obliviousness to performance [57, 62, 66, 69],

and challenging con�guration [13, 22, 47, 52]. Although recom-
mended best practices exist [23], actual deployments are not always
compliant [14, 19, 21], and the mechanisms available for support-
ing interdomain routing coordination are ad-hoc and underdocu-
mented [40, 41, 55, 61]. The RPSL has useful information applicable
to all these challenges.
BGP security. Route Origin Validation (ROV) [30, 31, 53, 55] adop-
tion improves BGP resilience against miscon�guration, but it only
checks the �rst AS in the AS-path and provides limited protection
against malicious pre�x hijacks [17, 58]. The Autonomous System
Provider Authorization (ASPA) draft [10] allows operators to se-
curely specify their providers, which can then be used by other
networks to �lter invalid routes. Our analysis in Section 5 follows
this approach using the RPSL instead of ASPA’s provider relation-
ships. Although the RPSL lacks the strong authentication provided
by ROV and ASPA, it can specify richer intent than both ROV and
ASPA, and has uses other than authenticating announcements.
BGP miscon�guration detection. Given the impact of miscon-
�guration, there have been signi�cant e�orts towards verifying
BGP con�guration (see [13, 67] and references therein). However,
such checks overlook generated, semantically wrong BGP con�gu-
rations. Our work bene�ts con�guration checks and correctness
more generally by detecting inconsistencies with the RPSL.
IRR data mining. Several studies have mined speci�c informa-
tion from IRRs, e.g., to identify AS links [26, 27], business relation-
ships [18, 36, 59], peering information [11, 16, 32, 46], and other
information [9, 41, 64, 65]. The closest to our work are those com-
bining RPSL and BGP dumps to verify route origins [20, 35, 59, 70]
and AS paths [60]. These works, however, consider a smaller subset
of the RPSL compared to RPSLyzer and are limited to binary valida-
tion. RPSLyzer supports richer analyses not only for path validation,
but possibly other studies using the RPSL. One challenge shared
by these works and ours is that IRRs do not make historical data
available, which has been worked around by periodically scraping
the IRRs (e.g., [16, 20]).

7 Conclusion
We developed RPSLyzer, a novel tool to interpret RPSL policies.
We characterized RPSL policies in public IRRs and discovered sub-
stantial potential for improvements in RPSL usage: around half
of the ASes have yet to adopt the RPSL for documenting policies,
and existing RPSL users can detail their policies further. We recom-
mend operators adopt RPSL route-sets to increase policy accuracy
and reduce maintenance overhead. We also leveraged RPSLyzer
to verify routes on the Internet. We �nd that the RPSL covers less
than half of the interconnections, but routes traversing the covered
interconnections often match RPSL policies.

Future work includes the development of further RPSL tool-
ing such as linters, enhancing RPSL validation in IRRs, tracking
the evolution of RPSL policy usage over time, classifying ASes by
RPSL usage, and possibly amending the language itself to promote
expressing clear and correct routing policies. RPSL information
can also be applied to longstanding modeling challenges such as
AS-relationship inference and identi�cation of sibling ASes, or op-
erational tasks such as tra�c engineering.
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A Additional RPSL Examples
IRRs provide a number of interfaces to access RPSL objects. The
more classical approach is using WHOIS, but RADP and REST APIs

are becoming more widely available. Below is a query for a route
object showing a pre�x and the AS expected to originate it:
% whois -h whois.radb.net 8.8.8.8 | grep
route: 8.8.8.0/24
origin: AS15169
descr: Google

The two real RPSL rules that follow illustrate the �exibility of
the RPSL and the di�culty in parsing its semantics. The rule below
is de�ned by AS8323:
% whois -h whois.ripe.net AS8323 | grep
import: from AS8267:AS-Krakow-1014 action pref=50;

from AS8267:AS-Krakow-1015 action pref=50;
accept PeerAS

This rule contains two peering and action de�nitions, with a single
filter that applies to both peerings. The filter de�nition is the special
keyword PeerAS, which needs to be interpreted dynamically at
runtime as the neighboring AS each route is received from. This
rule can be interpreted as: For an AS X in the AS8267:AS-Krakow-
1014 or AS8267:AS-Krakow-1015 as-sets (peering), set the Pref to
50 (action), and accept the route only if its destination pre�x has
a matching route object with origin set to AS X (filter).5 AS8323
could have set di�erent Pref values for routes received from ASes
in each of the as-sets. Note that this policy, taken as written, would
allow only pre�xes with route objects with an origin set to the
neighboring AS X, which is very restrictive. Our relaxed import
customer �lter (Section 5.1.1) would allow any pre�xes received
from AS X.

The rule below is de�ned by AS199284:
% whois -h whois.ripe.net AS199284 | grep
mp-import: afi any { #1

from AS-ANY action community.delete(64628:10, 64628:11, 64628:12,
64628:13, 64628:14, 64628:15,
64628:20, 64628:21, 64628:22);

accept ANY;
} REFINE afi any { #2
from AS-ANY action pref = 65535; accept community(65535:0);
from AS-ANY action pref = 65435; accept ANY;

} REFINE afi any { #3
from AS-ANY accept NOT AS199284^+;

} REFINE afi ipv4 { #4
from AS-ANY accept NOT fltr-martian;

} REFINE afi ipv4 { #5
from AS-ANY accept { 0.0.0.0/0^0-24 } AND NOT community(65535:666);
from AS-ANY accept { 0.0.0.0/0^24-32 } AND community(65535:666);

} REFINE afi ipv6 { #6
from AS-ANY accept { 2000::/3^4-48 } AND NOT community(65535:666);
from AS-ANY accept { 2000::/3^64-128 } AND community(65535:666);

} REFINE afi any { #7
from AS15725 action community .= { 64628:20 };

accept AS-IKS AND <^AS-IKS+$>;
from AS196714 action community .= { 64628:20 };

accept AS-TNETKOM AND <^AS-TNETKOM+$>;
from AS199284:AS-UP action community .= { 64628:21 }; #8

accept ANY;
from AS35366 action community .= { 64628:22 };

accept AS-ISPPRO AND <^AS-ISPPRO+$>;
from AS20940 action community .= { 64628:22 };

accept <^AS-AKAMAI+$>;
... several other peers ...
from AS-ANY action community .= { 64628:22 }; #9

accept PeerAS and <^PeerAS+$>;
} REFINE afi any { #10
from AS-ANY EXCEPT (AS40027 OR AS63293 OR AS65535)

accept ANY;
}

5In the RPSL, Pref is de�ned as the complement of BGP’s LocalPref, i.e., LocalPref ⌘
65535 � Pref [6]. This implies that routes with lower Pref in an RPSL policy are
more preferred; while BGP LocalPref is the opposite (routes with higher LocalPref are
preferred). We have not investigated this, but suspect many operators may be unaware
of this priority inversion and specify rules as if Pref ⌘ LocalPref.
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This rule starts (#1) by specifying that the AS drops several BGP
communities starting with 64628 (a private AS number). These com-
munities are used internally by the AS, e.g., in router con�gurations
(see #7). (#2) The rule then speci�es that routes received with BGP
community 65535:0 will receive Pref 65535, while other routes will
receive Pref 65435. (#3) Routers are con�gured to not accept external
routes for AS199284’s own pre�xes. (#4) The fltr-martian �lter indi-
cates that IPv4 reserved, private, or unrouted pre�xes, commonly
referred to as “martians” or “bogons”, are also not accepted. (#5)
IPv4 pre�xes are accepted up to /24 granularity; however, routes
tagged with BGP community 65535:666, standardized to mean that
tra�c to this pre�x should be blackholed [37], are accepted with
granularities between /24 and /32. (#6) IPv6 pre�xes are handled
similarly. (#7) The AS de�nes speci�c actions to tag routes received
from di�erent peers with BGP communities; we call out that routes
from upstreams are tagged with BGP community 64628:21 (#8) and
that a catch-all rule allows importing routes from neighbors (#9).
(#10) Finally, the rule speci�es that routers do not accept routes
from Net�ix’s and Facebook’s o�nets (AS40027 and AS63293).

B Details on RPSL Handling
AS-Path Regex Matching. To match an AS-path regex R in a
rule’s filter against an observed AS-path A, we �rst replace each
AS token C8 (a speci�c ASN, an as-set , the PeerAS keyword, or a
wildcard) in R with a symbol f (C8 ), and generate a symbolic regex
R0. We convert each ASN = 9 in A to the set N9 of all symbols that
= 9 canmatch, i.e.,N9 = {f (C8 ) |= 9 matches f (C8 )}. We then generate
a set of symbol strings from the original AS-path A by taking the
Cartesian product ofN9 for all = 9 inA. Finally, if any symbol string
matches the symbolic regex R0, we consider the AS-pathA a match
to the AS-path regex R.
Nonstandard features. We add support for two cases of non-
standard but common syntax used by operators (4724 times in IRR
dumps from June 2023): We allow a route-set to be followed by
pre�x-range operators ^n and ^n-m, and apply the range to all
pre�xes in the set.
Performance. We �nd matching routes against filters that are
as-sets to be the slowest operation when verifying BGP routes.
As as-sets can be de�ned recursively, we �atten each as-set to its
member ASes and perform a binary search for the route’s pre�x
over each AS’s route objects.
Limitations.We leave the handling of 58 rules whose filters con-
tain AS-path regex with ASN ranges (19 rules) or same-pattern
unary post�x operators (e.g., ~*, 39 rules) as future work. These
constructs are not only rare but mostly used to create filters to drop
rare AS-paths containing private ASNs. We note that both cases can
be supported by our symbolic approach by treating each ASN range
and unary post�x operator as an AS token, similar to ASNs and
as-sets. We also do not handle two rules containing inline pre�x
sets followed by range operators.

Although our tool can correctly parse the syntax, we ignore 54
rules with BGP community attributes in their filters. We take this
conservative approach because BGP communities may be stripped
from BGP routes by intermediate ASes [40], and thus may not
be observed by downstream BGP collectors even though it was

attached to a route. This characteristic of BGP implementations is
outside our control and prevents us from reliably matching rules
using BGP communities in filters.

Ignoring these 114 rules may cause the veri�cation of related
imports and exports to be skipped (Section 5).

C Route Veri�cation Example
For a route with pre�x 103.162.114.0/23 and the BGP AS-path
h3257 1299 6939 133840 56239 141893i, the veri�cation report print-
out from RPSLyzer is shown below. We omit the numerous remote
ASN mismatches of AS3257’s rules.
BadExport { from: 141893, to: 56239, items: [MatchRemoteAsNum(58552),

MatchRemoteAsNum(131755)] }
MehImport { from: 141893, to: 56239, items: [MatchRemoteAsNum(55685),

MatchRemoteAsNum(133840), SpecOtherOnlyProviderPolicies] }
MehExport { from: 56239, to: 133840, items: [MatchRemoteAsNum(55685),

MatchFilterAsNum(56239, NoOp), MatchFilter, SpecUphill] }
MehImport { from: 56239, to: 133840, items: [MatchRemoteAsNum(55685),

SpecCustomerOnlyProviderPolicies] }
MehExport { from: 133840, to: 6939, items: [MatchRemoteAsNum(55685),

SpecUphill] }
OkImport { from: 133840, to: 6939 }
OkExport { from: 6939, to: 1299 }
OkImport { from: 6939, to: 1299 }
UnrecExport { from: 1299, to: 3257, items:

[UnrecordedAsSet(�AS1299:AS-TWELVE99-CUSTOMER-V4�),
UnrecordedAsSet(�AS1299:AS-TWELVE99-PEER-V4�)] }

MehImport { from: 1299, to: 3257, items: [MatchRemoteAsNum(12), ...,
SpecTier1Pair] }.

In this example, the export from AS141893 to AS56239 is un-
veri�ed (BadExport) because of peering mismatches: AS141893 de-
�nes two export rules, but none of them cover exporting routes to
AS56239 (MatchRemoteAsNum):
aut-num: AS141893
export: to AS58552 announce AS141893
export: to AS131755 announce AS141893

The import by AS56239 from AS141893 is safelisted as an “only
provider policies” case (MehImport and SpecOtherOnlyProvider-
Policies) because the route mismatches all the rules’ peerings of
AS56239, AS56239 only speci�es rules for providers, and AS141893
is classi�ed as a customer of AS56239 in CAIDA’s AS-relationship
database [46].

Another special case is the export from AS56239 to AS133840,
where the route matches the peering of AS56239’s rule below:
aut-num: AS56239
export: to AS133840 announce AS56239

However, the route does not match the rule’s filter because pre�x
103.162.114.0/23 does not have a route object originated by AS56239.
Additionally, AS137296, the only AS in AS56239’s customer cone,
does not have a route object for pre�x 103.162.114.0/23, therefore
the filter does not match even when we apply the “export self”
relaxation. Finally, AS56239 is classi�ed as a customer of AS133840,
so the route is safelisted as an “uphill propagation” case (MehImport
and SpecUphill). The import by AS133840 from AS56239 is also
safelisted as “only provider policies”, as AS133840 only speci�es
rules for its providers and AS56239 is classi�ed as a customer.

The export from AS133840 to AS6939 is also safelisted as “uphill
propagation”, but does not even match the peering of any rule
de�ned by AS133840 (MehExport and SpecUphill). The import by
AS6939 from AS133840 strictly matches the following rule de�ned
by AS6939 (OkImport):
aut-num: AS6939
import: from AS-ANY accept ANY
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Figure 5: Breakdown of route veri�cation failures due to
unrecorded RPSL objects.
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Figure 6: Breakdown of special cases per AS.

The export from AS1299 to AS3257 fails as “unrecorded” because
two as-sets supposedly covering AS1299’s customers and peers are
not de�ned in the IRRs we use (UnrecExport and UnrecordedAsSet).
Finally, the import by AS3257 from AS1299 does not match any rule
de�ned by AS3257 and ends up safelisted as propagation across a
pair of Tier-1 ASes (MehImport and SpecTier1Pair).

D BGP Route Veri�cation: Unrecorded and
Special Cases

Many ASes are missing or do not use the RPSL. Figure 5 zooms
in on ASes with routes of the unrecorded status, i.e., ASes in the
green stripe in Figure 2. For each unrecorded case, we identify what
type of information is missing.

Figure 5 shows that the most common unrecorded case is 22,562
ASes not having an aut-num object. These ASes have the same
color across the ~-axis because all routes traversing them have the
unrecorded status by de�nition. The second most common type
is for 20,048 ASes that have zero import (or export) rules when
verifying an import (or export).

Fewer ASes have rules that refer to ASes with no originating
route objects (zero-route ASes, 2706), or set objects (as-set , route-set ,
peering-set , and filter-set) missing in the IRRs (414 total). The white
area shown for these ASes indicates that although some of their
rules refer to zero-route ASes or missing objects, and thus prevent
us from verifying some routes, there are other routes matched by
other rules and properly checked.
Missing RPSL information explains most special cases. Fig-
ure 6 shows the prevalence of di�erent special cases among the
30.9% of ASes with at least one special-cased import or export. More
ASes (994, 1.2%) use “export self” compared to “import customer”
(325, 0.4%). A signi�cant portion (6.2%) of ASes have missing route
objects, corroborating our point on the need for maintenance. ASes
that have uphill propagation with no matching RPSL rules occupy a
large 28.1% of all ASes, much more than the 12.4% of ASes with un-
veri�ed routes, showing a lack of RPSL adoption for documenting
uphill propagation policies.

E Validation of Relaxed Filters
We ran a small survey with operators of ASes whose aut-num
objects include RPSL rules that we verify using the Export Self and
Import Customer relaxations (Section 5.1.1). We extracted all ASes
with rules of the following form:
import: from <X> import <X>
export: to <peer> export <self>

We then tried to �nd the email address of an operator from the
IRRs, but only succeeded for 181 ASes out of 1102, due to identi-
�able information being removed (e.g., for privacy or regulatory
reasons [56]). We emailed these operators one rule from their AS
following one of the patterns above, and asked them if the intended
meaning was that of (i) the RPSL (strict, no relaxation), (ii) the
Export Self or Import Customer relaxations, or (iii) others.

Of the three answers we received, all con�rmed that the rule’s in-
tended meaning was that of the relaxed filters in the Export Self and
Import Customer special cases. Although the number of responses
was low, the 100% con�rmation rate indicates that the relaxed filters
may better represent the semantics meant by operators compared
to the strict application of the RPSL.

F Ethics
RPSLyzer itself raises no ethical concerns. Although RPSLyzer im-
proves accessibility to information in the RPSL, it does not reveal
any additional information not already public.

In our email survey to validate the relaxed �lters, we prioritized
minimizing potential harm to operators while maximizing the ben-
e�ts of understanding their intentions. We sourced email addresses
publicly available from the IRRs; our emails were succinct to mini-
mize distraction for the operators and included only information
from their own RPSL entries; we do not directly report on any
response received from operators. We believe that the operators’
responses provide valuable insights into their usage of the RPSL,
thus contributing signi�cantly to the research.
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