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The Border Gateway Protocol (BGP) o�ers several “knobs” to control routing decisions, but they are coarse-
grained and only a�ect routes received from neighboring Autonomous Systems (AS). To enhance policy
expressiveness, BGP was extended with the communities attribute, allowing an AS to attach metadata to routes
and in�uence the routing decisions of a remote AS. The metadata can carry information to (e.g., where a
route was received) or request an action from a remote AS (e.g., not to export a route to one of its neighbors).
Unfortunately, the semantics of BGP communities are not standardized, lack universal rules, and are poorly
documented. In this work, we design and evaluate algorithms to automatically uncover BGP action communities
and ASes that violate standard practices by consistently using the information communities of other ASes,
revealing undocumented relationships between them (e.g., siblings). Our experimental evaluation with billions
of route announcements from public BGP route collectors from 2018 to 2023 uncovers previously unknown
AS relationships and shows that our algorithm for identifying action communities achieves average precision
and recall of 92.5% and 86.5%, respectively.
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1 Introduction
In the Internet, autonomous systems (ASes) de�ne routing policies that govern how tra�c is routed
and enforce them using the Border Gateway Protocol (BGP) [43]. The BGP protocol is �exible and
o�ers several parameters to control routing decisions—e.g., setting route preferences (LocalPref),
signaling preferred interconnections between a pair of neighboring ASes (MEDs), or minimizing
intradomain tra�c costs. These mechanisms, however, are coarse-grained and work only to control
decisions for routes received from neighboring ASes. Nonetheless, network operators often need
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�ner-grained control to, for example, avoid tra�c crossing a distant congested link or to spread
tra�c across multiple providers.

To enhance policy expressiveness, BGP was extended with the communities attribute [30], which
allows an AS to attach metadata to routes. A BGP community is a transitive and optional attribute,
which implies it should be carried across multiple ASes as routes propagate and ignored by ASes
that do not know how to handle the community. Each AS can de�ne its own action communities
that other ASes may tag on routes to request special treatment from the AS. An action community
can request the AS to prepend its AS number to the BGP AS-path to make a route arti�cially longer
and less attractive or to not advertise a particular pre�x to one of the AS’s peers to steer tra�c
destined to that pre�x away from a low-performance AS.

Unfortunately, the semantics of BGP communities are not standardized, do not follow universal
and well-accepted rules, and are not well-documented [28, 47]. Network operators must rely on
BGP community documentation manually built and provided by each individual AS, and the
documentation may be incomplete, incorrect, outdated, or completely missing. Also, determining
community semantics from route announcements presents many challenges, including partial
visibility of routes on the Internet, communities that are only available to customers, and ASes that
strip communities from route announcements after use.

In this work, we present mechanisms to uncover BGP action communities and an undocumented
type of confounding use of BGP communities in the wild, information that might help operators
understand BGP community uses and their implications. Speci�cally, we design and evaluate
algorithms to automatically identify BGP action communities and ASes that violate common
practice and consistently squat1 the BGP communities of another AS, which we label as a squatting
relationship. This behavior can impact previous researches that infer AS relationships or the
semantics of BGP communities [20, 27, 28, 32, 47, 49].
Our approach relies solely on public route announcements observed by BGP route collectors

(e.g., RouteViews [35] and RIPE RIS [44]). It fundamentally di�ers from previous e�orts that rely
on public documentation about BGP communities—published by the networks on Internet Routing
Registries (IRRs) or web pages—as a basis for classifying undocumented communities [28] or to
extract community semantics using natural language processing [18, 21]. These approaches do not
generalize well to ASes that do not follow common practices to de�ne their communities and are
limited in the number of communities they can infer because they depend on free text descriptions
provided by network operators, which may be incomplete or outdated.

Our key insight lies in the fundamental di�erence between the usage of information and action
communities. Information communities are used by ASes to pass information to other ASes, such as
where the AS learned a route or its business relationship (customer, provider, or peer) with the
previous AS on the route. Consequently, an information community should appear on routes that
traverse the community’s AS, as the AS is in charge of tagging routes with the relevant information.
Conversely, an action community is less likely to be tagged on routes where its AS is present, as the
community carries a request from and is tagged by a network other than the AS that de�nes the
community. Also, RFC7454 prescribes that the controlling AS should remove an action community
from a route after performing the requested action [15]. Therefore, if the AS that de�nes the
community is on the route, it should have removed its action communities. As such, an action
community should only appear if the route does not traverse its AS. Our algorithms rely on this

1We borrow the term squat and its derived forms from “IP address squatting” [45], where a network uses another’s IP
address space internally for its own purposes. In this work, however, an AS may squat the communities of another AS
legitimately, e.g., the communities of a sibling AS.
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fundamental di�erence to build reliable classi�ers of action communities and to uncover potential
squatters.

While our insight is simple to state, designing algorithms that perform well in the wild presents
signi�cant challenges, such as ASes that squat the information communities of other ASes, ASes
that do not remove their action communities after performing the requested actions, route an-
nouncements with a large number of communities, and limited visibility of the existing BGP route
collectors. We address these challenges by identifying squatting relationships based on how routes
with information communities propagate on the Internet. Then, we build an initial set with the
action communities that are mostly absent from routes traversing the ASes that de�ne them. Using
this initial set, we construct an e�cient data structure to identify action communities in route
announcements where the ASes that de�ne them can be present in the AS-paths.
We evaluate our algorithm for identifying action communities using a ground-truth dataset of

action and information communities from 17 Tier-1, 14 Tier-2, and 43 other ASes, totaling 74 ASes.
We use data gathered from IRRs, public web pages, and NL NOG [22] to determine the semantics
of the communities in the ground-truth dataset.
Our experimental evaluation with billions of route announcements from 2018 to 2023 shows

that the algorithm to identify action communities achieves precision and recall of 92.5% and 86.5%,
respectively, averaged over all communities in BGP dumps covered by our ground truth in the
longitudinal study. We also analyzed over 739 million announcements from December 2023 and
inferred 19,564 action communities from 2,099 autonomous systems. Our algorithm for uncovering
potential squatters found 54 pair-wise squatting relationships involving 105 ASes that systematically
used another AS’s communities in December 2023. These identi�ed squatting relationships may
uncover undocumented relationships between the ASes.
This work is a step towards a better understanding of the Internet’s complex routing system.

Our algorithms provide automatically updated metadata (i.e., a database of action communities
and potential squatters) that can bene�t novel tools and models. For example, action community
information can help operators troubleshoot routing anomalies, e.g., when routes that follow an
unexpected or undesired path carry speci�c action communities, and identify opportunities for
tra�c engineering, e.g.,when an operator observes preferable routes induced by action communities
not publicly documented. Our results can also be used to help identify and �ag announcements
carrying BGP communities to perform route manipulation attacks [4, 5, 37]. We show that operators
use action communities much more extensively than publicly available documentation would
indicate.We identi�ed action communities for 2,099ASes, but found BGP community documentation
for only 74 ASes.
Additionally, our algorithm to uncover squatting relationships can complement techniques for

validating AS-relationship inferences, tracking route changes, and inferring sibling ASes. Of the 54
pairs of squatting relationships we uncovered, �ve are sibling relationships that the state-of-the-art
technique described in [8] did not detect.

2 Background
Despite the �exibility built into BGP’s best path selection algorithm [42], additional �exibility is
provided by BGP communities to support, e.g., more complex or �ne-grained tra�c engineering
policies [30]. A BGP community is a 32-bit tag that can be attached to an announcement. A BGP
announcement can carry an arbitrary number of BGP communities. The standards suggest, andmost
operators (but not all) follow the convention that the �rst 16 bits represent the AS number (ASN,
a number that identi�es the AS) of the AS that de�nes the community’s semantics, in this paper
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referred from now on as the controlling AS, and that the last 16 bits is an arbitrary operator-de�ned
value [30].2

BGP communities are an optional, transitive attribute. Although transitivity means communities
should propagate broadly, all router vendors provide con�guration options to drop communities
from announcements, and some vendors drop communities by default (e.g., Cisco [24]). This limits
community propagation and visibility in an uncontrolled manner [27], which imposes a challenge
to inferring BGP community semantics and to our work.
Network operators have �exibility in de�ning semantics for BGP communities and are limited

only by the (increasing) community-handling capabilities of BGP routers. BGP community semantics
�t into two classes [14, 26, 27, 34]:
Action communities signal an action that an AS executes on behalf of another, and are usually

used to trigger actions at a provider on behalf of a customer. Action communities generally in�uence
the BGP path selection process or how routing announcements propagate to realize some tra�c
engineering policy [5, 27, 34]. Examples include adjusting LocalPref to make the route less preferable
at the transit provider, prepending the BGP AS-path to make it longer and thus less preferable
for other ASes (often used for backup routes), and constraining route propagation to a subset (or
none) of the transit provider’s neighbors. For example, 3356:70 is an action community that asks
Level3/Lumen (AS3356) to decrease the LocalPref of a route to 70 (from the default 100), making
the route less preferable. BGP communities can even impact tra�c forwarding on the data plane,
as it is commonly used to blackhole malicious tra�c [21, 49].
Informational communities add metadata to a route announcement. Use cases include assist-

ing operators with tra�c engineering [31], troubleshooting issues, re�ning policies, and capac-
ity planning [19, 32, 52]. Example metadata in informational communities include specifying
whether a route was originated either internally or learned externally; whether external routes
were learned from a customer, provider, or peer; or the location (city, country, or region) where the
route was learned or originated. For example, 3356:2009 is an informational community added by
Level3/Lumen to routes learned at San Francisco. Informational communities may be used by the
controlling AS itself as well as downstream ASes.
Recent years have seen increased adoption of BGP communities by network operators [14, 49].

The percentage of routes received by BGP collectors with at least one community increased from
59% in 2018 to 71% in 2023, even taking into account the 3,07⇥ increase (from 161,878,003 to
496,846,470) in the number of BGP routes in public table dumps across all RouteViews and RIPE
RIS collectors [35, 44].

3 Challenges in Identifying Action Communities on the Internet
This section initially describes the expected way action communities should propagate in BGP
routes. We then discuss common situations that violate the norm and present challenges for
identifying them in the wild.

3.1 BGP Community Propagation
Given BGP community semantics, information communities should be tagged only on routes
traversing their controlling ASes, as the controlling AS is the one that tags routes with the relevant
information [47]. For example, an information community X:Y specifying that AS X received a
route from a customer and a community X:Z specifying that AS X received a route in Europe can
only be meaningfully added to a route by AS X.

2In this paper, we consider only 32-bit communities [30]. Although we do not analyze extended [50] or large [23] communities
in this work as their use is still incipient, our techniques can be applied to them.
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Better route for F

B A

E D

F C

Better route for E

Prefix: PA
AS-path: A
Com: C:NAE

Prefix: PA
AS-path: B A
Com: C:NAE

Prefix: PA
AS-path: C B A
Com: 

Prefix: PA
AS-path: D B A
Com: C:NAE

Prefix: PA
AS-path: E D B A
Com: C:NAE

Prefix: PA
AS-path: B A
Com: C:NAE

Fig. 1. Example illustrating how an action community is more likely to appear in routes that do not include
its controlling AS. The community C:NAE instructs AS C not to advertise routes to AS E. We can observe the
community C:NAE on routes without AS C exported by ASes D, E, and F.

On the other hand, action communities are less likely to be tagged on routes after traversing
their controlling ASes due to multiple factors we discuss next. Figure 1 illustrates each factor; it
shows propagation of a pre�x % originated by AS A with action community C:NAE, which asks the
controlling AS C to not advertise the route to AS E. Such a community could be used, for example,
to steer tra�c from AS E through AS D for load balancing or performance reasons.
(1) An action community X:Y is added to a route by other ASes to request that AS X takes action Y.

A route tagged with X:Y may be received by other ASes and exported to BGP collectors without
traversing AS X. In Figure 1, AS A added the action community to its announcement. The route
propagates, carrying the community, and is exported to a collector by AS D without traversing
the controlling AS C.

(2) Many action communities make routes less preferable by making them longer (prepending),
reducing their preference (set LocalPref), or directly restricting propagation (no-advertise).
As a result, routes with action communities that traverse the controlling AS are less likely to
propagate compared to routes that avoid the target AS. In Figure 1, AS E does not receive a
route from AS C, leading AS E to choose the route received from AS D, which does not traverse
AS C.

(3) An action community has no use for ASes other than the controllingAS after the requested action
has been taken, so ASes often remove their action communities from routes before propagating
them [27, 49]. In Figure 1, AS C removes the community from the route it announced to AS F,
which chooses a route through AS C that does not carry the action community.

3.2 Challenges
Although we expect action communities not to be tagged on routes traversing their controlling
ASes, this is not always true. Several factors may lead to action communities being tagged on routes
traversing their controlling ASes, making their identi�cation challenging. Figure 2 illustrates some
scenarios on routes for a pre�x % announced by AS A.
(1) The controlling AS may take action on an action community and not untag it from the route

due to unintended BGP con�guration or by design (when the operator willfully propagates
action communities). In Figure 2, AS C does not untag action communities from routes after
taking the requested action. AS B tags community C:P2 asking AS C to prepend itself twice to
the AS-path, and the community is observed with the controlling AS C on the route exported
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Route with prepend C

Prefix: PA
AS-path: B A
Com: C:P2

Prefix: PA
AS-path: A
Com: C:P2

Prefix: PA
AS-path: Y D B A
Com: C:P2, B:P2

Prefix: PA
AS-path: C C C B A
Com: C:P2 C B A

DE

F

Prefix: PA
AS-path: B A
Com: C:P2

Prefix: PA
AS-path: D B A
Com: C:P2, B:P2

Prefix: PA
AS-path: C C C B A
Com: C:P2

Fig. 2. Example illustrating scenarios where action communities may appear in routes traversing their
controlling ASes. AS C does not remove its action communities from routes a�er taking the requested action,
and AS D adds an action community for AS B in routes that have already traversed AS B.

by AS F to the collector. If these ASes propagate their action and information communities
equally, then our inference algorithm may be penalized in accuracy and recall.

(2) The issue above is aggravated when the controlling AS does not act upon receiving an action
community because of router miscon�guration or depending on the relationship with the
neighboring AS from where it received the route, e.g., an AS’s routers may ignore action
communities received from providers. In this case, the action community remains tagged on
the route but does not reduce the route’s preference; as route propagation is unconstrained, the
route propagates broadly and causes the action community to be widely observed on routes
traversing its controlling AS.

(3) An AS may uselessly tag a route with an action community after the route has traversed the
controlling AS, which has no impact on the route itself but may happen depending on how the
router is con�gured. In Figure 2, AS D adds community B:P2 uselessly asking AS B, which is
already in the path and will not receive the community, to prepend AS B twice to the AS-path.
The community B:P2 is observed with the controlling AS B on the route exported by AS E to
the collector.

(4) An operator may de�ne non-standard BGP communities, where the �rst 2 bytes are set to a
value di�erent than the controlling AS’s number. For example, AS9002 (RETN) uses community
X:65533 as an action community that asks “prepend AS9002 three times when exporting the
route to AS X.” In this case, our algorithm would correctly infer the action communities but
associate them with incorrect controlling ASes.

4 Automatic Identification of Action Communities
In this section, we describe practical uses of BGP communities that violate the three factors described
in Section 3.1 and complicate the inference of action communities (§4.1). We then describe how we
identify communities that rarely appear with their controlling ASes as action communities (§4.2)
and how we use them to uncover other action communities that do not necessarily satisfy our
premise of appearing in route announcements without their controlling ASes (§4.3).

4.1 Identifying BGP Community Squa�ing
We observe that ASes may use BGP information communities de�ned by or belonging to other
ASes. As an AS X is not supposed to tag routes with AS Y’s information communities, we refer
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to this type of use as squatting. A common case is ASes using communities de�ned by one of
their siblings, i.e., another ASN under the control of the same organization [8, 17]. This behavior
seems particularly common after network mergers and could result from the homogenization of
routing policies de�ned using BGP communities across the merged ASes. For example, we observe
routes traversing AS3549 (Global Crossing, acquired by Level3/Lumen [36]) tagged with several
communities from AS3356 (Level3/Lumen); routes traversing AS286 (KPN, acquired by GTT [6])
tagged with communities from AS3257 (GTT); routes traversing AS5607 (British Sky Broadcasting,
BSB) tagged with communities from AS4589 (Easynet, owned by BSB between 2006–2010 [51]).
As a result, a BGP AS-path traversing a set of ASes S may include communities belonging to

other squatted ASes. This leads to information communities appearing in routes that do not traverse
the controlling AS, which violates our intuition that only action communities will appear in routes
without their controlling AS.

4.1.1 Inference Algorithm. We propose an algorithm to infer ASes that squat another AS’s com-
munities. Our goal is to identify an AS X that systematically tags routes with BGP information
communities whose �rst 16-bits is another AS Y. The challenge lies in di�erentiating between
(i) an AS X squatting AS Y’s information communities from (ii) an AS X simply using AS Y’s
action communities. We do this by assuming that action communities are used selectively for
speci�c, generally short-term, tra�c engineering policies. In contrast, information communities are
consistently applied after being de�ned, as routes are automatically tagged when an announcement
traverses a router. Thus, we identify an AS X consistently appearing with AS Y’s communities as a
potential squatter.
We identify squatting AS-pairs using the routes from each RIPE RIS and RouteViews collector

separately and then aggregate the inferences. Alternate approaches may be possible given di�erent
inference mechanisms; our approach strikes a compromise between obtaining enough routes for
inferences, combining routes from all ASes peering with each collector, while trying to capture
route properties speci�c to the view of the Internet’s topology captured by that collector [38, 40].
For instance, one collector might be unable to identify that AS X squats the communities of

another AS Y because an intermediate AS Z strips the squatted communities tagged by AS X.
Another collector may observe routes with AS X’s squatted communities if its routes do not traverse
AS Z.

Our algorithm uses only publicly available information from RouteViews and RIPE RIS collectors.
Consider the following notation:

• C(~) is the set of routes tagged with at least one community from AS Y;
• R(G) is the set of routes that traverse AS X; and
• R(¬~) is the set of routes that do not traverse AS Y.

We check if an AS X is related to another AS Y by computing the following three metrics for
each pair of ASes:

Coverage. Among the routes that do not traverse AS Y but are tagged with a community from
AS Y, we compute the fraction that traverse AS X. More precisely, we de�ne coverage ⇠ (G,~) =
|R(G) \ R(¬~) \ C(~) | ÷ |R(¬~) \ C(~) |. Coverage is high when AS X appears in most of the
routes tagged with AS Y communities even though they do not traverse AS Y. This implies
that AS X “explains” most of the unexpected observations of AS Y’s communities and could
be squatting. Coverage is low when there are many routes unexpectedly tagged with AS Y’s
communities that cannot be attributed to AS X.

Local Prevalence. Among the routes that traverse AS X but do not traverse AS Y, we compute
the fraction tagged with a community from AS Y. More precisely, we de�ne local prevalence
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%local (G,~) = |R(G) \ R(¬~) \ C(~) | ÷ |R(G) \ R(¬~) |. Local prevalence is high when most
routes traversing AS X are tagged with a community from AS Y even when the routes do
not traverse AS Y. This implies AS X may be squatting and using AS Y’s communities as its
own information communities. Prevalence is low when many routes traversing AS X do not
have a community from AS Y, which indicates AS X is not systematically squatting AS Y’s
communities: AS X may be simply using AS Y action communities or another AS on some
routes traversing AS X is tagging them with AS Y’s communities.

Global Prevalence. Among the routes that traverse AS X, we compute the fraction that do not
traverse AS Y but are tagged with a community from AS Y. More precisely, we de�ne global
prevalence %global (G,~) = |R(G) \ R(¬~) \ C(~) | ÷ |R(G) |  %local (G,~). Global prevalence is
low when the supporting evidence that an AS is squatting is small compared to the number of
routes observed through that AS. For example, AS Xmay appear on many routes through AS Y,
which may not remove action communities from routes it propagates to AS X. Alternatively,
AS X may be close to a BGP collector and appear on most collected routes, which may contain
AS Y’s action communities tagged by other ASes.

To infer if an AS Y is squatted by other ASes, we check if another AS X has coverage⇠ (G,~) > 0.9,
local prevalence %local (G,~) > 0.7, and global prevalence %global (G,~) > 0.3 (§6.1.1). To avoid
inferences with weak support and possibly caused by noise in the BGP dumps, we also require
that AS X appears squatting at least two communities from AS Y and that these communities are
observed in at least six routes each. We justify these choices in Section 6.1. If multiple ASes are
identi�ed as possibly squatting AS Y’s communities, we select the one with the largest coverage,
largest local prevalence, largest global prevalence, or appearing furthest away from the route
collector, in order. The high required coverage of 0.9 allows for at most one squatting relationship
with a target AS Y from each BGP collector, but multiple squatting relationships with the same
AS Y can be identi�ed across multiple collectors.

When handling squatting relationships, we consider that the inferred relationships are bidirec-
tional and transitive, such that if ASes A and B squat communities from AS C, we consider that
ASes A, B, and C are part of one squatting relationship.

4.1.2 Special Cases. Manual inspection of the identi�ed squatting AS-pairs indicates that some
pairs are likely caused by typing errors. For example, we observed a community 15985:9999 on
paths traversing AS15895, which leads to inferring AS15985 as squatting AS15895. We ignore a
squatting relationship between two ASes when their ASNs have �ve digits and the ASNs have an
edit distance of 1. We consider edit operations of substituting one digit for another or reordering
two consecutive digits. We ignore all communities involved in these squatting relationships when
inferring action communities to avoid errors. We consider only �ve-digit communities because
typos are more likely to occur in longer character sequences [46] and are more challenging for
an operator to detect visually. This choice is conservative, as typos in shorter communities may
decrease the precision of our algorithm. However, this length is not a fundamental limitation of the
approach and can be adjusted if necessary.

We also found some squatting AS-pairs likely caused by an integer over�ow when 32-bit ASNs
are used with classic 32-bit communities that store ASNs in just 16 bits. For example, we identi�ed
many communities from AS303 on routes traversing AS327983, where 303 = 0xffff & 327983. We
ignore all squatting relationships where the squatter ASN’s last 16 bits are identical to the squatted
ASN, and ignore all such communities when inferring action communities.
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We also ignore all squatting AS-pairs involving an IXP ASN, as identi�ed in CAIDA’s AS-
relationship database [7]. Many IXPs de�ne action communities to control announcement propa-
gation through route servers (e.g., [1]), but IXP route servers do not add their ASN to propagated
routes, which may lead to some ASes being identi�ed as squatting the IXP’s communities.

4.2 Inferring BGP Action Communities
Our inference algorithm centers around checking how often a community is tagged on a route that
does not traverse the controlling AS or any of its squatters, from now on collectively referred to as
controlling ASes. For the reasons stated in Section 3, enforcing a requirement that a community never
appears with its controlling ASes is too restrictive. We design and evaluate di�erent approaches
to account for lack of visibility and noise in observed community usage. Algorithm 1 presents
pseudocode covering all approaches.

Handling squatting ASes. We use the sets of squatting ASes identi�ed in §4.1 to avoid inferring
communities squatted upon as action communities.We compute the squatters for the same collectors
used to infer action communities resulting in di�erent AS relations. These relations will be used
during the inference of the action communities. Before we execute our algorithm, we rewrite ASNs
with squatting relationships when they appear in a route’s AS-path or communities. In particular,
we rewrite each ASNs with the smallest ASN among its set of squatting ASes (Line 2). This ensures
that if a route traverses a squatting AS X and is tagged with a community from a squatted AS Y, then
both ASNs will be rewritten with the smallest ASN in their set of squatting ASes. This e�ectively
prevents identifying squatted communities as action communities.

Filtering Low-Visibility Communities. We do not make inferences for communities that have
limited visibility in public BGP dumps. We require that a community 2 is observed by at least two
collector peers, and that each collector peer observes the community in at least four routes (counted
in # 2

vps, Line 7, and veri�ed in Ccandidates, Line 24). These thresholds are chosen empirically (§6.1);
however, we show that inferences are not sensitive to their values as long as they are large enough
to remove the long tail of rarely-seen communities from the inference process. This �lter removed
11,836 communities from our inferences, representing less than 11% of the communities on BGP
dumps. Our algorithm would be able to classify these communities if their use and visibility became
more widespread.

Inferring Action Communities. Our algorithm operates on each community independently (Line 5).
For each community, our inference relies on computing the fraction of routes tagged with a
community from AS Y that do not traverse AS Y. This is done by counting the number of routes
with each community 2 (Line 6) and the number of these routes that do not traverse any of 2’s
controlling ASes (Lines 8–10). Using these variables, we infer as action communities those that
are mostly absent from routes traversing their controlling ASes (Cabsent, Line 25). This approach
allows some occurrences of the controlling ASes and accommodates errors and unexpected cases,
like when an action community is not acted upon, e.g., because it was not set by a customer of the
controlling ASes, and remains tagged on the route after traversing the controlling AS.

Handling prepend communities. Action communities that ask an AS Y to prepend itself to the
AS-path will appear on routes traversing AS Y (prepended multiple times) if AS Y does not remove
action communities from announcements. To allow the detection of prepend communities in these
scenarios, we count the number of times a community appears on routes with AS-paths that have
the community’s controlling ASes prepended (Lines 13 and 26). This approach has the negative side-
e�ect of possibly inferring some information communities that often appear on routes prepended
with the respective controlling ASes as action communities.
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Handling action communities added after the controlling AS. An action community has no use
after the controlling AS has taken the requested action. However, an AS may (uselessly) tag a route
with an action community after it has traversed the controlling AS, which has no impact on the
route itself but may happen depending on when the tagging is performed. These behaviors directly
impact our inferences as they make action communities more likely to appear on routes traversing
controlling ASes and thus harder to di�erentiate from information communities. To �lter this case,
we use only uphill AS-paths, i.e., AS-paths composed entirely of customer-to-provider relationships
starting from the origin AS (Cbefore, Lines 16–21 and 27). Our intuition is that action communities
are often used by customers; and thus a community 2 tagged on an uphill AS-path traversing 2’s
controlling ASes is less likely to have been tagged after the controlling AS and more likely to be an
information community.

Handling ASes that do not remove action communities from route announcements. An action
community has no use after the controlling AS has taken the requested action. However, the
controlling AS is not required to untag the action community from the route. To sidestep the
uncertainty added by ASes that do not remove action communities, we apply a relaxation �lter
allowing the community to appear with its controlling AS in a small fraction � of the announcements
in each selected vantage point (Lines 25–27).

Algorithm 1 Inference of Action Communities
1: Input: R  set of all routes, each with AS-path % and set of communities C.
2: Requirement: AS-paths and communities rewritten with each ASN mapped to the lowest ASN in its set of squatting ASes, if any.

3: for each route with rewritten AS-path % and set of communities C in R do
4: Cglobal  Cglobal [ C {Track all communities visible in BGP dumps.}
5: for each community 2 in C do
6: # 2

routes  # 2
routes + 1 {Count routes tagged with community 2 .}

7: # 2
vps [%0 ]  # 2

vps [%0 ] + 1 {Count routes exported by BGP collector peer %0 tagged with community 2 .}
8: if 2’s controlling ASes 8 % then
9: # 2

absent  # 2
absent + 1 {Count routes tagged with community 2 that do not traverse 2’s controlling ASes.}

10: else if % is uphill then
11: # 2

info ! # 2
info + 1 {Count routes tagged with community 2 that traverse 2’s controlling ASes on uphill path.}

12: end if
13: if any of 2’s controlling ASes is prepended in % then
14: # 2

prepended  # 2
prepended + 1 {Count routes tagged with community 2 with its controlling ASes prepended.}

15: end if
16: if % is uphill then
17: # 2

uphill  # 2
uphill + 1 {Count uphill routes tagged with community 2 .}

18: if 2’s controlling ASes not in the customer cone of ASes in % then
19: # 2

before  # 2
before + 1 {Count uphill routes terminating before 2’s controlling ASes.}

20: end if
21: end if
22: end for
23: end for

24: Ccandidates  {2 | 2 2 Cglobal ^ |# 2
vps | � 3 ^min(values(# 2

vps ) ) � 4}
25: Cabsent  {2 | 2 2 Ccandidates ^ (# 2

absent/#
2
routes ) � 1 � � }

26: Cprepend  {2 | 2 2 Ccandidates ^ (# 2
absent + # 2

prepend )/#
2
routes � 1 � � }

27: Cbefore  {2 | 2 2 Ccandidates ^ (# 2
before/#

2
uphill ) � 1 � � }

28: Cpre�x_tree  Pre�xTree(⇠absent,⇠candidates ) {All communities that match the pre�x-tree leaves tagged as action.}

29: Output: Caction_communities  Cprepend [ Cpre�x_tree
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4.3 Uncovering Missing Action Communities
Our inference algorithm requires a minimum number of announcements carrying a community
to classify it as an action community with high con�dence. However, route collectors do not
provide complete coverage of the Internet routes, and some ASes �lter all communities before
forwarding route announcements, impacting the communities’ visibility and our algorithm’s recall.
To circumvent this limitation, we use the communities we infer with high con�dence in Algorithm 1
to build a pre�x tree from the decimal digits of the community labels and classify other communities
with low visibility or that fall under the special cases we list in Section 4.2.

The rationale behind using a pre�x tree is that ASes generally de�ne their communities by
numbering communities of the same type sequentially and leaving some space between types
to accommodate future expansions of the existing types. By following this pattern, communities
of the same type share a common pre�x, whose length can vary depending on the number of
communities of the same type de�ned sequentially and the space between the types. We observe
that most ASes on the Internet follow this pattern. Some use large blocks of �xed size for each type,
while others use smaller blocks of variable sizes. Figure 3 shows a pre�x tree for the communities
documented by AS3257. A leaf, annotated with A for action and I for information, indicates the
type of communities that share the pre�x starting at the root up to the leaf. For example, labels
3257:02XXX and 3257:1XXXX represent action communities, while 3257:08XXX and 3257:3XXXX
represent information communities.
Speci�cally, we build a pre�x tree for each AS that Algorithm 1 infers at least one action

community. We treat the label of a community as a string with �ve digits (i.e., the maximum
number of decimal digits a 16-bit label can represent), �lling in the string with zeros on the left
when the label has fewer than �ve digits. Then, we divide the communities into sets containing
communities with the longest common pre�xes. We build one branch of the pre�x tree for each set
using only the digits in the longest common pre�x of the communities in the set. As Algorithm 1
infers only action communities, all the leaves of the pre�x trees are labeled with A. We apply
the AS’s pre�x tree to all its communities that appear in R, i.e., the set of all routes from the
BGP collectors we process, and classify the communities that share a pre�x with a leaf as action
communities.
We validated this idea using the communities of 15 ASes in our ground-truth dataset that

have at least 20 communities. Speci�cally, we conducted experiments by building a pre�x tree
with a random subset of communities from an AS’s ground truth and testing with the remaining
communities from the same AS. We varied the subset sizes from 20% to 90% of the total communities
and ran 100 experiments for each subset size. We measured the average precision and recall, with
the average precision exceeding 99.5% for all subset sizes and the average recall ranging from
90.9% to 96.82%. These results indicate that the pre�x trees e�ectively capture the structure of the
community de�nitions of the selected ASes.

5 Datasets
We evaluate our algorithms using the �rst BGP routing table (RIB) dumps of Dec. 1st, 2023, from all
55 BGP route collectors operated by RIPE RIS [44] and RouteViews [35]. We use bgpscanner [41] to
process the RIB dumps and remove routes with AS-level loops (0.005% of routes) or AS-sets [29]
(0.03%). For each route, we extract the pre�x, the AS path, and the possibly-empty set of attached
BGP communities.

We use CAIDA’s AS-relationship database [20, 32] from Dec. 1st, 2023, to identify the uphill, peak,
and downhill regions of the AS-path. We ignore 0.27% of routes that violate valley-free routing
and attempt to infer relationships for AS-pairs in a route missing from CAIDA’s database. If the
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3257:

0

51 31 2 4 5 6 7 8 9

AA A A A AI I I I0

0

0
I

Fig. 3. A prefix tree for the documented BGP communities from AS 3257. The branch 05000 is unusually long
because it contains only one community, with no other communities sharing the 05* prefix.

existing relationships are compatible with valley-free routing and at most one relationship is
missing at the peak, we infer missing relationships as customer-to-provider in the uphill region,
provider-to-customer in the downhill region, and peer-to-peer if there is a missing relationship at
the peak.3 We perform this inference of missing relationships for each route separately; inferences
from one path do not carry over to other routes.

We parse public information from Internet Routing Registry (IRR), NLNOG [22], andOneStep [48]
databases to extract ground-truth information to classify BGP communities according to their
semantics. We use this ground-truth dataset to evaluate the precision and recall of our inference
algorithm. Our database includes information about the type of AS (i.e., Tier-1, Tier-2, and others)
of each community to evaluate how the performance metrics vary as a function of where the AS
is on the Internet hierarchy. It contains 16,421 action communities from 74 ASes: 14322, 532, and
1567 from Tier-1, Tier-2, and other ASes, respectively. Although our ground-truth dataset contains
a little over 1% of 6,158 ASes appearing on BGP communities in public BGP dumps, the ASes
we consider are large and make more signi�cant use of BGP communities than the average AS
on the Internet. Overall, the ASes in our ground-truth dataset account for 16.8% of visible BGP
communities in Dec. 2023. Also, our ground-truth dataset covers a variety of action communities,
including selective advertisements, blackholing, prepending, and changing the LocalPref; with
several ASes de�ning action communities that apply to speci�c peers or geographical locations.
To build the ground-truth dataset of ASes that squat the communities of other ASes, we also

use public information about organizations, their ASNs, and their pre�xes from the IRR databases.
We use these databases to map ASNs to their controlling organizations and determine if two ASes
are related by manually looking for similarities in organization names, geographical addresses,
descriptions, and domain names for peering, operations, and abuse e-mail addresses [2, 3, 47]. To
add relationships to the ground-truth dataset, we initially generated a set with the relationships
that our algorithm for identifying squatting inferred with very restrictive parameters—i.e., coverage
= 0.9, local prevalence = 0.9, and global prevalence = 0.9—and manually classi�ed the inferred
relationships. We then gradually reduced coverage and local and global prevalence from 0.9 to 0.1
to increase the number of classi�ed relationships until we could not validate the new ones.

3This approach is equivalent to reapplying steps 5 and 11 of the original algorithm [32], but visiting ASes in the route
from the peak toward the origin and from the peak toward the collector instead of following the transit and node degree
gradients.
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We classi�ed 59 relationships as con�rmed and 23 as uncon�rmed. To con�rm a relationship, we
used the similarities described previously. We consider a relationship uncon�rmed if we �nd the
documentation about the two ASes and it does not have any similar information that leads us to
believe they are related. Note that this approach is conservative, as the ASes may be related even
though the documentation does not re�ect their relationship either by lacking the information or
by being outdated.
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Fig. 4. Each of the graphs (a)-(c) shows the behavior of one of the parameters of our algorithm when we keep
the other two at their default (best) values. Increasing threshold values improves precision at the cost of recall,
as expected, and the default values represent the inflection points of the F1-score curves. Graph (d) shows the
impact of the minimum number of routes communities must appear to determine a squa�ing relationship.

6 Evaluation
This section describes how we con�gure the parameters of our inference algorithms, evaluates the
precision and accuracy of our inferences, and compares them with related prior work. We show
that our algorithms are not strongly dependent on speci�c parameter con�gurations, i.e., a broad
range of con�gurations yields positive results. We make our datasets and evaluation code public to
ease the replication of our results and independent executions of the inference algorithms [12].

6.1 Se�ing Parameters
6.1.1 Configuration of the Squa�ing Inference Algorithm. As described in Section 4.1, our algorithm
for identifying squatters relies on three parameters: coverage, local prevalence, and global prevalence.
These parameters are fractions in the interval [0, 1] computed over sets of routes. To determine the
best parameters and investigate if they generalize to other datasets, we use route announcements
from December 2022 to explore di�erent combinations of the parameters. Speci�cally, we vary
coverage, local prevalence, and global prevalence in the interval [0.1, 1] in steps of 0.1, resulting in
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1000 (i.e., 103) combinations. We validate the inferred squatting relationships by computing the
precision and recall for each parameter combination using the ground-truth dataset (Section 5).

The combination of coverage = 0.9, local prevalence = 0.7, and global prevalence = 0.3 yields the
highest F1 score, so we choose it as the default con�guration.4 The best con�guration achieves
a lower bound on precision of 0.71 and a recall of 0.65. We note that 0.71 is a lower bound on
precision because some of the inferred squatting relationships may be missing from our ground
truth dataset (i.e., we have not manually checked a pair of ASes); we take a conservative approach
and report these inferences as incorrect, but some could be correct.

Figures 4(a)-(c) show the precision, recall, and F1 score when we vary one parameter and keep the
other two parameters �xed at their default (best) values. As expected, increasing threshold values
improves precision at the cost of recall, and the selected values represent in�ection points of the
F1 score. We also observe that every parameter impacts the inferred relationships. Our algorithm
infers no squatters when coverage = 1; thus, both precision and recall are zero. Figure 4(d) shows
the results when we �x the minimum number of routes communities must appear to determine a
squatting relationship. The selected value six represents the in�ection point of the F1-score curve.
Our algorithm inferred 54 pairs of squatting relationships, with 7 ASes appearing in multiple

pairs, which we join for a �nal count of 48 (transitive) relationships. Of these relationships, the
validated inferences include 26 sibling ASes, 2 neighboring ASes, 19 missing from our ground truth,
and 7 uncon�rmed.

We believe our automated inference of ASes squatting BGP communities might have applications
for other studies relying on BGP communities (e.g., validation of AS-relationship inference [20,
25, 32] and route change tracking [13, 19]). It might also bene�t other e�orts that seek to identify
relationships between ASes. For example, the intersection of our community-based inference
of squatters and our ground truth dataset contains �ve sibling relationships not identi�ed by
Chen et al.’s recent technique [8]. Finally, it is unclear why apparently unrelated ASes squat
another’s communities in some cases. We note that this practice, even if well-intended, may confuse
troubleshooting e�orts and policy �lters not only for the ASes involved but also their neighbors [49].

6.1.2 Configuration of the Action Communities Inference Algorithm. Section 3 discussed the main
challenges in inferring action communities. We evaluated the parameters of Algorithm 1 to mitigate
those issues.

We evaluate precision and recall for di�erent community �ltering thresholds (� in Algorithm 1).
Figure 5a shows precision as we vary the �ltering threshold on the G-axis, while Figure 5b shows
the recall for the same con�gurations. We compare the more conservative Cbefore vs. the more
inclusive Cprepend. As expected, considering only uphill paths leads to higher precision overall, as we
avoid the case of ASes that uselessly tag their provider ?’s action communities on an AS-path that
has already traversed ? ; the drawback is lower recall as less information is available for inferences.
The �gures also show the results when using Cprepend

–Cpre�x_tree; overall, we �nd that the pre�x
tree nearly doubles the recall, at the cost of some loss of precision.
Figure 5 also shows that setting � to zero is too conservative. With this con�guration, our

algorithm infers few information communities as action communities, achieving very low recall.
Very low thresholds perform best, as they allow for some noise (i.e., action communities appearing

4We evaluated the Phi coe�cient (also known as the Matthews Correlation Coe�cient, MCC) [11, 33], and found that it is
strictly higher than the F1-score, quantitatively similar to recall, and has no in�ection point to aid in choosing default values
for each parameter (not shown). While the Phi coe�cient considers imbalance between classes, it is less suitable for our
evaluation because the number of true negatives—AS pairs that have no squatting relationship—is exceedingly large [9, 10].
Our use of the F1-score focuses on the worse-performing minority class (the positive inferences) and is thus a more relevant,
conservative result.
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Fig. 5. Inference performance as a function of the noise filter threshold � . Higher � values allow a BGP
community to appear on more routes with its controlling AS and still be inferred as an action community.
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Fig. 6. Impact of varying the minimum number of Vantage Points (VPs) observing a community in Algorithm 1
(#2

vps). We analyze the precision and recall from 2018 to 2023, showing stable performance for all datasets.

with their ASes) and signi�cantly improve recall without sacri�cing precision. After this initial
�ltering (increasing � from zero to, e.g., 0.01), the performance of our algorithm is stable across all
threshold values. Considering this �nding, in the rest of this paper we set � = 0.01.
We also require a minimum visibility of a BGP community at vantage points (VPs) to make

inferences. If we increase the number of VPs where a community must be observed, the precision
increases but recall decreases as we make fewer inferences. Figure 6 shows the precision and recall
achievable when we compare the inference of action communities using the �rst RIB of December
from 2018 to 2023, varying the number of vantage points (VPs). We note that the algorithm’s
performance as a function of con�guration parameters is consistent, meaning that the algorithm’s
con�guration does not need to be reevaluated often. Considering the in�ection points in the graphs,
we choose 3 VPs as the minimum for action community inference as a good trade-o� between
precision and recall. Di�erent applications can increase the number of VPs if they bene�t from
higher precision, or decrease to favor recall.
Finally, a VP observing very few routes with a community could lead to incorrect inferences.

Therefore, we also evaluate howmany routes with a particular community a VPmust have before we
consider that (VP, community) in our inference. Figure 7 shows the impact of the minimum number
of routes required when we �x � = 0.01 and the minimum number of VPs at 3, for every month
of December between 2018 and 2023. Again, we observe that performance is stable throughout
the period. We also �nd that the minimum number of required routes has limited impact, but
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(b)

Fig. 7. Performance as a function of the minimum number of required routes per (VP, community) pair before
making inferences. Results are stable across the evaluation period. We conservatively chose a minimum of 4
routes per VP.

��� ��� ��� ��	 ��
 ��� ��� ��
 ��� ��� ���
���������

���
���
��	
��

���
���
��

���
���
���

��
�
���
��
��
��
���
��
� ���

	��
���

��
���

(a) Precision

��� ��� ��� ��	 ��
 ��� ��� ��
 ��� ��� ���
������

���
���
��	
��

���
���
��

���
���
���

��
�
���
��
��
��
���

��
� ���

	��
���

��
���

(b) Recall

Fig. 8. Cumulative distributions of precision and recall for inferences made by the prefix trees built from a
random subset of inferred action communities. Di�erent lines vary the fraction of inferences used as input to
build the prefix tree and show that the prefix tree does not require many inferences to achieve high precision
and recall.

that setting it too low may hurt precision. We take a conservative approach and set the minimum
number of routes to 4 in the rest of the paper, which the graphs indicate should work in general.

6.1.3 Building the Prefix-Tree. Section 4.3 proposed using a pre�x tree for classifying communities.
We evaluate how practical this approach is by evaluating how many communities are needed to
build a pre�x tree that achieves high precision and recall.

Figure 8a shows the distributions of precision and recall for 8 ASes with at least 20 communities
in our ground-truth. We built pre�x trees using action communities inferred with Cabsent, which
avoids the loss of accuracy incurred by Cprepend. Each point in the distribution represents the
average of 100 executions with random subsets of the communities in Cabsent. The di�erent lines
vary the fraction of inferred communities used to build the tree. We report precision and recall
obtained when classifying the communities in our ground-truth dataset using the pre�x tree.

We can see that pre�x trees for most ASes achieve very high precision even when we build trees
with as few as 10% of an AS’s inferred action communities. Consequently, we need to infer only a
small number of action communities for the pre�x tree to be e�ective. Figure 8b shows that the
recall is also high, increasing from an average of 0.66 when using 10% of the inferred communities
to 0.95 when using 90%. For three of the 8 ASes, the recall is smaller than 0.4 for samples with 10%
of the inferred communities, but it increases signi�cantly for samples with 30% or more.
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Table 1. Evaluation for ASes Tier-1 and Tier-2 on the BGP dumps from December 2023. The table shows the
number of inferred communities (Num), precision (Prec), recall (Rec), and the number of inferred communities
not in our ground-truth dataset (Unk) for three configurations of our algorithm. The last three columns (GT
\ BGP) classify all communities appearing in the BGP dumps using our ground-truth dataset. The line Total
at the bo�om shows weighted averages of precision and recall.

Inf. without Prepend Inf. with Prepend Inf. Prepend with Tree
Cabsent Cprepend Cprepend [ Ctree GT \ BGP

ASN Num Prec Rec Unk Num Prec Rec Unk Num Prec Rec Unk Act Info Unk
1299 131 0.98 0.43 36 131 0.98 0.43 36 340 0.84 1.0 80 218 98 138
174 75 1.0 0.97 47 75 1.0 0.97 47 82 1.0 1.0 47 29 4 118
1764 2 0 0 2 13 1.0 0.18 6 13 1.0 0.18 6 38 38 16
2914 61 1.0 0.93 22 61 1.0 0.93 22 67 0.95 1.0 23 42 81 30
3257 36 0.88 0.38 19 36 0.88 0.38 19 61 0.87 0.85 23 39 844 26
3292 14 1.0 0.53 5 18 1.0 0.76 5 21 1.0 0.88 6 17 10 40
3356 27 0.75 0.6 23 37 0.5 0.6 31 239 0.38 0.6 231 5 144 331
33891 4 1.0 0.02 3 5 1.0 0.03 3 5 1.0 0.03 3 63 24 236
3491 62 0.94 0.25 12 69 0.95 0.28 13 252 0.94 0.99 50 16 139 60
3549 34 1.0 0.57 22 34 1.0 0.57 22 49 1.0 0.86 31 21 22 109
4589 0 0 0 0 0 0 0 0 0 0 0 0 4 4 0
5400 2 0 0 0 2 0 0 0 2 0 0 0 1 0 68
5511 18 0.86 0.35 4 18 0.86 0.35 4 39 0.94 0.88 7 35 51 253
6461 43 1.0 0.64 4 43 1.0 0.64 4 63 0.95 0.92 4 61 289 54
6663 2 1.0 1.0 1 6 1.0 1.0 5 6 1.0 1.0 5 1 0 23
6762 65 1.0 0.13 54 69 0.93 0.16 54 196 0.68 1.0 70 86 46 79
701 19 1.0 1.0 12 19 1.0 1.0 12 20 1.0 1.0 13 7 0 16
7922 5 1.0 0.83 0 5 1.0 0.83 0 5 1.0 0.83 0 6 0 35
Total 600 0.97 0.37 266 641 0.96 0.40 283 1460 0.87 0.86 599 862 1794 1632

Table 2. Longitudinal Evaluation of Inferred Action Communities by Semantics.
2018 2019 2020 2021 2022 2023

Semantics | C | BGP Frac | C | BGP Frac | C | BGP Frac | C | BGP Frac | C | BGP Frac | C | BGP Frac
Local Preference 36 48 0.75 40 55 0.72 43 57 0.75 52 59 0.88 59 66 0.89 78 82 0.95

No Advertise/Export 145 165 0.88 168 169 0.99 179 183 0.98 187 226 0.83 221 222 0.99 207 234 0.88
Prepend (1x, 2x, 3x) 368 414 0.89 389 443 0.88 402 433 0.93 413 438 0.94 436 474 0.92 461 505 0.91

Blackhole 8 12 0.67 8 10 0.8 9 13 0.69 11 14 0.79 7 10 0.7 7 10 0.7

6.2 Inference Accuracy
Table 1 shows the number of communities, the precision, and recall for every Tier-1 and Tier-
2 AS in our ground-truth dataset. The unknown columns (Unk) show the number of inferred
action communities that are not in our ground-truth dataset. We color values larger than 0.8
green and values between 0.5 and 0.8 orange. We show three con�gurations of our algorithm:
the baseline inferences (Cabsent), the inferences considering prepended paths (Cprepend), and the
inferences considering prepended paths and the pre�x tree (Cprepend [ Ctree). As expected, relaxing
the algorithm improves recall at the cost of precision. However, considering the small reduction in
precision and large improvements in recall, we recommend the use of the inferences considering
the prepended paths and the pre�x tree. Applications where precision is paramount, however, can
still opt for the more conservative con�guration for the highest precision.

The last column (GT \ BGP) classi�es the communities observed in the BGP dumps into action
communities, information communities, or unknown depending on their type in our ground-truth
dataset. This column shows that our algorithm achieves high precision and recall for the majority
of ASes whose communities have a signi�cant presence in the BGP dumps. Our algorithm makes
few inferences for ASes 4589 and 5400, which make limited use of BGP communities.
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Fig. 9. Results of our algorithms over six years (2018-2023): (a) the number of distinct communities found each
year and (b) the precision and recall achieved. The data is based on the first BGP RIB collected in December
from all RIPE and RouteViews collectors.

Table 3. Example of AS1764’s grouping of BGP communities by neighbor.

Community Meaning Category
1764:40020 Received via AS174 Information
1764:40021 Prepend (1x) to AS174 Action
1764:40022 Prepend (2x) to AS174 Action
1764:40023 Prepend (3x) to AS174 Action

We carried out a longitudinal evaluation considering the �rst RIB of the month of December
between 2018 and 2023. Figure 9 shows the results. On average, the precision is 92.5% (standard
deviation of 3.62%) and the recall is 86.5% (standard deviation of 1.76%). Table 2 shows the type
of correctly-inferred action communities across each year and demonstrates balanced semantic
coverage across all action community classes. We classi�ed the semantics of all but 1,617 action
communities in our ground-truth dataset into the four classes in Table 2. For these communities we
have no information to classify them, e.g., 51 communities from AS5511 are labeled simply “tune”
in the ����� documentation. Although we consider these action communities and correctly infer
them as such, we do not include them in the table.

6.3 Clustering vs. Prefix Tree
Krenc et al.recently presented a mechanism for classifying BGP communities as action versus
information [28]. They classify as action communities any community that often appears on AS-
paths that do not traverse the controlling AS.5 The technique then clusters communities with
integer values less than 140 apart and applies a majority vote across all communities in a cluster to
determine their type. It reclassi�es the communities in the minority group to match the type of the
majority. The paper evaluates the mechanism using ground truth from the NLNog database [22]
and communities classi�ed based on their descriptions using regular expressions.

We compared the inferences from our algorithm with the results available in their paper for the
period they considered (May 1–7, 2023). We consider their original and our extended ground-truth
datasets. On their ground-truth dataset, the prior work achieves an F1 score of 0.95 for the action
communities, while our technique achieves 0.94. On our extended ground-truth dataset, the prior
work achieves an F1 score of 0.92, while our technique also achieves 0.92.

However, there is a signi�cant di�erence in performance when we consider only communities
not in the original ground-truth dataset. Our algorithm achieves an F1 score of 0.80 vs. 0.50 for the
previous technique, and Phi coe�cient of 0.78 vs. 0.51. Table 4 shows a detailed evaluation of the
Tier-1 and Tier-2 ASes present in our extended ground-truth but missing from the ground-truth
5The speci�c threshold they use is 99.37% (a ratio of 160:1), which maximizes the F1 score for their ground-truth.
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Table 4. Comparison of cluster and prefix tree inferences for May 2023 by ASN that was not in the GT of the
cluster inference algorithm. We compute the inference of the first RIB from all available collectors for the
same interval used in [28] (who used all RIBs and updates). To be able to fully compare the communities
captured across all collectors, we relaxed our algorithm to restrict to just one announcement per VP, while
maintaining all other algorithm parameters. This way, both algorithms have the same visibility of all RIB
communities. We cannot compute the Phi coe�icient [11, 33] when there are no inferences (positives) or
when an AS has no documented information communities (true negatives).

Pre�x Tree GT vs BGP
7 days (First RIB) Cluster GT vs BGP

7 days (all RIB/Up)
ASN Infer Prec Rec F1 Sc. Phi Act Info Unk Infer Prec Rec F1 Sc. Phi Act Info Unk
701 16 1.0 0.71 0.83 — 7 0 17 24 1.0 1.0 1.0 — 9 0 43
703 3 1.0 1.0 1.0 — 2 0 1 3 1.0 1.0 1.0 — 2 0 1
1764 22 1.0 0.41 0.58 0.50 41 36 14 0 0 0 0 — 41 40 14
3257 50 0.88 0.79 0.83 0.83 38 860 25 30 0.6 0.23 0.33 0.36 39 911 26
3549 55 1.0 0.91 0.95 0.91 22 22 129 63 1.0 0.3 0.47 0.42 23 22 144
4589 0 0 0 0 — 4 4 0 8 0.5 1.0 0.67 — 4 4 0
5400 1 0 0 0 — 2 0 62 3 1.0 1.0 1.0 — 2 0 62
5511 38 0.94 0.86 0.9 0.84 35 51 32 39 1.0 0.72 0.84 0.78 36 52 32
6663 12 1.0 1.0 1.0 — 1 0 15 7 1.0 1.0 1.0 — 1 0 17
7922 3 1.0 0.43 0.6 — 7 0 39 34 1.0 1.0 1.0 — 7 0 39
33891 55 1.0 0.7 0.82 0.63 63 24 245 35 1.0 0.19 0.32 0.25 64 24 247
Total 255 0.96 0.68 0.80 0.78 222 997 579 246 0.89 0.35 0.50 0.51 228 1053 625

dataset used by the prior work. These di�erences may be explained by the more recent publication
of the communities of the ASes in the subset, which a�ects their visibility as fewer networks use
them. Also, some of these ASes assign community numbers in ways that violate the assumptions
of the prior approach. The prior approach performs poorly for AS1764 (NextLayer) because AS1764
intermixes action and information communities when assigning community numbers, violating
the assumption that ASes allocate communities in contiguous blocks. Table 3 shows how AS1764
groups information and action communities by neighbor, which leads to systematic errors when the
majority vote is applied to communities in each cluster. This behavior is not exclusive to AS1764;
e.g., AS33823 also groups communities by neighbor. This practice reduces the recall of our pre�x
tree, but there is no impact on precision as we do not overwrite inferences. AS3549 and AS33891
de�ne both action and information communities in intervals smaller than 140, leading to low
performance for the prior approach. Our approach performs better for these ASes, as the pre�x
tree can dynamically adjust group sizes.

Finally, the prior approach’s worse performance for AS3257 (GTT) results from it not handling
ASes squatting GTT’s communities. We �nd that AS286 (previously KPN, acquired by GTT) and
AS29140 (HostServer, unclear relationship to GTT) both squat GTT’s communities, leading the
previous work to incorrectly infer some of GTT’s information communities as action communities
because they appear on routes without AS3257 (but with AS286 or AS29140). The similar F1
scores for the extended ground-truth dataset indicate that both techniques have similar overall
performance, but our technique is more resilient to ASes with unknown operational practices or
BGP community squatting.

7 Related Work
AS Relationships. Characterizing the relationships between ASes is challenging, whether due

to constant changes on the Internet or the lack of reliable public information that does not expose
certain relationships, such as backup connections or regional connections that are not visible at
route collectors [39]. Also, ASes may have hybrid relationships [20, 25] that vary depending on
where they peer.
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Determining the relationship between two ASes, however, has many practical applications [32],
such as detecting if a customer AS is exporting routes from one of its providers to a peer or
another provider, which leads to route leaks and disrupts the tra�c on parts of the Internet [49, 53].
Recent research aims to infer sibling relationships using multiple data sources provided by network
operators [3, 8]. Our previous work [47], in turn, presents a heuristic for detecting the existence of
sibling ASes on a set of route announcements from BGP route collectors. The approach, however,
detects the relationship’s existence without identifying the ASes involved. Here we also use data
from route collectors, but go beyond detection and identi�es the ASes squatting the communities
of other ASes, which can indicate sibling ASes or some other agreed-upon relationship between
the ASes. By using public data from the route collectors, our approach can uncover undocumented
relationships that elude the current approaches relying on public documentation [3].

BGPCommunities. The use of BGP communities has increased signi�cantly in recent years [49],
whether to improve network quality, prevent DDoS attacks [21], or detect infrastructure failures [18]
or instability in route announcements [16]. However, the lack of standardization and documentation
for the semantics of BGP communities makes it di�cult for researchers and network operators to
reason about Internet routing dynamics or use them to implement more complex routing policies.
Several recent research e�orts propose di�erent techniques for building dictionaries of BGP

communities [18, 21, 28, 47] or inferring which ASes tag routes with communities [27]. Giotsas et
al. [18, 21] use natural language processing to extract the semantics of BGP communities from IIRs,
web pages, and public documents from the ASes. Krenc et al. [28] propose a clustering algorithm
for classifying information and action communities that depends on a ground-truth database to
de�ne the parameters that separate the two types of clusters. The paper shows high precision for
the algorithm. However, the evaluation uses the same communities that were used to de�ne the
parameters of the algorithm, i.e., it doesn’t split the communities into training and test datasets to
determine if the parameters generalize to the test dataset. As we show in Section 6, their approach
may not generalize to other ASes, resulting in lower precision and recall for the action communities
than the ones reported in [28]. The approaches of Giotsas et al. [18, 21] and Krenc et al. [28] depend
on the availability of documentation from the ASes, which is sometimes incomplete, outdated, or
nonexistent. In our work, we use the existing documentation only to build the ground-truth database
and evaluate the results of our inference algorithms. Our previous work [47] uses public information
from route collectors to infer location communities, which are information communities that tell
where a route is learned. This approach is complementary to our focus here on inferring action
communities and identifying squatters.

8 Conclusion
In this paper, we design and evaluate an algorithm for automatically identifying BGP action
communities that relies only on route announcements observed by BGP route collectors. We also
present an algorithm for uncovering ASes that consistently use (i.e., squat) other ASes’ communities,
revealing undocumented relationships and shedding light on the complex interactions between
networks on the Internet. These relationships help, for instance, �lter out information communities
that would otherwise be identi�ed as action communities. Our evaluation results show that our
algorithm for identifying action communities achieves average precision and recall of 92.5% and
86.5%, respectively, in a longitudinal study with BGP data from 2018 to 2023.

Our work uses only public data from BGP collectors and raises no ethical concerns. We employ
a non-invasive approach that does not disrupt Internet announcements, and all data processing is
performed o�ine.
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