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Abstract: Neural networks (NNs) are emerging as a rapid and scalable method for quantifying me-
tabolites directly from nuclear magnetic resonance (NMR) spectra, but the nonlinear nature of NNs
precludes understanding of how a model makes predictions. This study implements an explainable
artificial intelligence algorithm called integrated gradients (IG) to elucidate which regions of input
spectra are the most important for the quantification of specific analytes. The approach is first vali-
dated in simulated mixture spectra of eight aqueous metabolites and then investigated in experi-
mentally acquired lipid spectra of a reference standard mixture and a murine hepatic extract. The
IG method revealed that, like a human spectroscopist, NNs recognize and quantify analytes based
on an analyte’s respective resonance line-shapes, amplitudes, and frequencies. NNs can compensate
for peak overlap and prioritize specific resonances most important for concentration determination.
Further, we show how modifying a NN training dataset can affect how a model makes decisions,
and we provide examples of how this approach can be used to de-bug issues with model perfor-
mance. Overall, results show that the IG technique facilitates a visual and quantitative understand-
ing of how model inputs relate to model outputs, potentially making NNs a more attractive option
for targeted and automated NMR-based metabolomics.

Keywords: explainable AL; neural networks; NMR metabolomics; NMR spectroscopy; integrated
gradients; metabolite profiling; machine learning

1. Introduction

Nuclear magnetic resonance (NMR) spectroscopy is a non-destructive, highly repro-
ducible, quantitative analytical technique used primarily for identifying molecules based
on their atomic structure [1]. NMR spectroscopy is also one of the major techniques used
in complex mixture analysis for applications such as metabolomics, reaction monitoring,
food analysis, and more [1-4]. Traditionally, the manual quantification of analytes in
NMR spectra has been a tedious, slow, user-dependent process requiring a trained spec-
troscopist with domain knowledge of the analytes. Semi-automated and automated soft-
ware have been developed for metabolite profiling from NMR data (e.g., Chenomx, Mag-
met, and LipSpin) [5,6]; however, these techniques are slower and less scalable compared
to processing using neural networks (NNs). Despite past approaches described in the lit-
erature [7,8] and the current surge of interest in artificial intelligence (AI), NNs have yet
to gain traction in the realm of targeted NMR profiling. The black box nature of NNs may
hinder widespread acceptance. In this work, we aim to make neural networks a more
attractive option for NMR analyte profiling by proposing the use of explainable AI (XAI)
to address the issue of model understandability.

NNs have proven exceptional across many tasks and domains; however, the many
layers and nonlinear transformations of a NN make understanding how a model reaches
a decision essentially impossible by simply inspecting model outputs and parameters [9].
This lack of model understanding undermines user trust in the model and may mask un-
derlying bugs or bias, discouraging use in critical applications. The black box nature of



NNs has driven the emergence of the burgeoning field of XAI, which aims to facilitate an
understanding of how Al models make predictions. Despite the extensive use of regres-
sion in Al, most of the work and research in XAl has pertained to classification problems,
primarily in computer vision applications [10]. One major subset of XAlI, attribution meth-
ods, aim to compute scores for each input feature, representing the contribution of that
feature to the model’s output [11]. In this study, we implement the attribution-based inte-
grated gradients (IG) algorithm [12] as an XAI approach to relate model inputs (NMR
spectra of analyte mixtures) to outputs (predicted analyte concentrations). To the best of
our knowledge, this is the first time XAl has been applied to NMR spectroscopic data.

The challenge involved in determining what influences a model’s decisions is a draw-
back to the NN approach to NMR-based analyte quantification. This work addresses this issue
by applying a post hoc algorithm facilitating model interpretation —first in simulated mixture
spectra of aqueous metabolites and then in experimentally acquired spectra of a complex lipid
standard mixture and a hepatic lipid extract. This study explores and validates the IG method
for improving the understanding of NN-based processing for NMR metabolite profiling.

2. Materials and Methods
2.1. Data Generation and Neural Network Training

Simulated 400-MHz '"H-NMR spectra of common aqueous metabolites (taurine, cho-
line, creatine, lactic acid, niacinamide, L-alanine, L-valine, maleic acid, and acetic acid)
were downloaded from the human metabolome database (HMDB.ca). Subsequent pro-
cessing steps were performed in Python (version 3.11.5) using the PyTorch (version 2.2.1)
and NumPy (version 1.24.3) libraries for matrix operations and the nmrglue library (ver-
sion 0.10) for processing NMR data (reading data, apodization, peak shifts, and Fourier
transformations). The workflow for generating spectra for model training, testing, and
validation is shown in Figure 1. Simulated spectra were individually scaled and summed
to produce simulated mixture spectra. Eight metabolites (taurine, choline, creatine, lactic
acid, niacinamide, alanine, and valine) were considered analytes and were scaled ran-
domly to concentrations ranging uniformly from 1-50 mM, and maleic acid was added at
13.3 mM in each spectrum as a quantitative reference signal. This was repeated 10,000
times using all 8 metabolites in every spectrum and 10,000 times where each metabolite
had a 50% chance of being left out to generate a total of 20,000 spectra which were split
16,000:4000 for training and testing, respectively. A further 5000-spectra validation dataset
was generated using all 8 metabolites. Throughout this manuscript, this first set of train-
ing, testing, and validation data is referred to as the ‘Simulated Dataset’. A second dataset
was generated using the same workflow but incorporating data augmentation mimicking
realistic potential experimental variations including line-broadening (0.1-1.0 Hz), adding
normally distributed noise (mean of zero and maximum standard deviation of ~1.3% of
maleic acid peak height), shifting metabolite spectra (0-3.4 ppb for all resonances of a
given analyte), shifting the baseline (up to ~7.5% of the maleic acid peak height), and add-
ing up to three randomly scaled singlets at random chemical shifts (using the simulated
acetic acid signal as a generic singlet). The second generated dataset is referred to as the
‘Experimental-Like Dataset’.
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Figure 1. Data generation and neural network training workflows. The top two panels describe the
datasets used in model training and testing, while the bottom panel provides an overview of the
MLP training process. Abbreviations: MLP = multi-layered perceptron, MSE = mean squared error,
IFFT = inverse fast Fourier transform, FFT = fast Fourier transform.

Synthetic spectra with specified compositions were generated in the same manner as
the Simulated Dataset for validating XAl methods, including all eight analytes at 25 mM,
5 mM, and 1 mM, and all eight analytes at 25 mM plus two singlets added at randomly
selected chemical shifts and amplitudes. To compare XAl results on models trained using
either the Simulated or Experimental-Like Dataset, an additional spectrum with two
added singlets was generated with noise added at the mean magnitude seen in training.
A further spectrum was generated with only six metabolites (valine, alanine, creatine, cho-
line, lactic acid, and niacinamide) at 25 mM each plus noise, which was generated to assist
in comparisons between similar spectra with and without peak overlap.

Multi-layered perceptron (MLP) networks were developed with an input layer of
39,500 nodes (corresponding to 39,500 datapoints containing the relevant metabolite sig-
nal region [0.48 to 9.52 ppm]), a 200-node hidden layer, and an output layer of eight nodes
(corresponding to the eight analyte concentrations). Before model training, the intensity
values of the synthetic spectra in both training and testing datasets were normalized by
dividing the intensity at each data point by the overall maximum intensity value achieved
in the training/testing data. MLPs were trained using the Simulated Dataset and Experi-
mental-like Dataset and are referred to as MLP-Sim and MLP-Exp, respectively, through-
out the rest of this article. The mean squared error (MSE) between predictions and ground-
truth concentrations was used as the loss function and the Adam optimizer was selected
for optimization. A batch size of 128 was used and models were trained until loss con-
verged. MLPs were developed using PyTorch. All computations were performed using a
Quadro RTX 6000 (Nvidia, Santa Clara, CA, USA) and two Xeon Silver 4216s (Intel, Santa
Clara, CA, USA).

2.2. XAI Implementation and Validation



The IG method is a post hoc analytical method for XAI compatible with differentiable
machine learning models like NNs. The Captum library (version 0.7.0) was accessed for the
IG algorithm, which was applied to MLP-Sim and MLP-Exp. The IG algorithm approxi-
mates the integral of the gradients of a model’s output with respect to its input [12]. IG re-
quires the use of a baseline input, which is a neutral input used as a reference point when
computing feature importance and represents the absence of features contributing to spe-
cific outputs (i.e., the baseline for alanine quantification should represent an alanine concen-
tration of 0 mM). Therefore, a baseline was generated and utilized consisting of only the
quantitative reference maleic acid at 13.3 mM (without noise added for MLP-Sim, and with
noise added at the mean value used in data generation for MLP-Exp). Using the IG method,
numbers termed attribution scores are computed for each input on a per-feature basis based
on each feature’s contribution to the model’s prediction (i.e., we gain insight into how each
datapoint in an input spectrum contributes to model-estimated concentrations).

Model predictions and attribution scores were evaluated on representative synthetic
input spectra. Attribution scores were first calculated for three simple examples, with all
eight metabolites present at equal concentrations (1, 5, and 25 mM). To examine how mod-
ification of the training dataset may affect attributions, we examined both MLP-Sim and
MLP-Exp attribution scores for an input signal of all eight analytes at 25 mM plus two
singlets randomly added near analyte resonances. XAl results were evaluated visually by
comparing attribution scores to their respective input spectra and ground truth metabolite
signals and assessing what was important for quantification (i.e., do the signals the algo-
rithm determines as most important agree with the preferred resonances selected by spec-
troscopists for analyte quantification [5,13]). The XAI approach was additionally assessed
quantitatively by summing the whole range as well as specific regions of interest (ROlIs)
of the attribution scores to determine if attribution score magnitude directly corresponds
to analyte concentration.

2.3. XAl in Experimentally Acquired Lipid Spectra

After validating the IG approach for NN-based metabolite profiling in simulated
spectra of aqueous metabolite mixtures, we explored the use of this XAI method in exper-
imentally acquired spectra of complex lipid mixtures. Fifteen lipid reference standards
from Nu-Chek Prep. (Elysian, MN, USA): tridocosahexaenoin [TriDHA], trilinolein, trio-
lein, tripalmitin, cholesterol, methyl eicosapentaenoate [mEPA], palmitic acid, cholesteryl
linoleate, and cholesteryl arachidonate, Tokyo Chemical Industry Co. (Tokyo, Japan):1,2-
dipalmitoyl-sn-glycero-3-phosphocholine, 1,2-dioleoyl-sn-glycero-3-phosphocholine, 1,2-
dipalmitoyl-sn-glycero-3-phosphoethanolamine, 1,2-dimyristoyl-sn-glycero-3-phos-
phoethanolamine, Avanti Polar Lipids, Inc. (Alabaster, AL, USA): 1-palmitoyl-2-hydroxy-
sn-glycero-3-phosphocholine, and Matreya LLC (State College, PA, USA): sphingomyelin
[bovine]). The standards were weighed individually to prepare 30 NMR samples (2 sam-
ples per standard) at various concentrations, and 'H-NMR scans of these 30 samples ob-
tained using a 400-MHz JEOL ECZ spectrometer (JEOL Lt., Tokyo, Japan) were used to
train an MLP for lipid quantification similar to MLP-Exp above (i.e., Adam optimizer, 200-
node hidden layer, MSE loss function, and using a training dataset utilizing experimental
variations and additional non-analyte signals [tetramethylsilane, water, and random sin-
glets]) [14]. A spectrum for each lipid reference standard is shown in Figure 2. Eighteen
lipid parameters were quantified and thus the final output layer consisted of 18 nodes
(corresponding to total triglycerides [Tg], total cholesterol [TC], total phospholipids
[TPL], total fatty acids [TFA], polyunsaturated fatty acids [PUFA], monounsaturated fatty
acids [MUFA], saturated fatty acids [SFA], linoleic acid [LA], docosahexaenoic acid
[DHA], phosphatidylcholine [PC], lysophosphatidylcholine [LPC], phosphatidylethano-
lamine [PE], sphingomyelin [SM], omega-3 fatty acids [Om3], omega-6 fatty acids [Om6],
omega-9 fatty acids [Om9], free cholesterol [FC], and esterified cholesterol [EC]).
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Figure 2. NMR spectra of 15 reference lipid standards used to train the MLP for lipid quantification,
with the name of the standard listed on the left and the lipid groups quantified on the right. The "**’
symbol indicates that there are small amounts of unknown lipids in the SM. Abbreviations: DHA =
docosahexaenoic acid; EC = esterified cholesterol; FC = free cholesterol; LA = linoleic acid; LPC =
lysophosphatidylcholine; MUFA = monounsaturated fatty acids; Om3 = omega-3 fatty acids; Om6 =
omega-6 fatty acids; Om9 = omega-9 fatty acids; PC = phosphatidylcholine; PE = phosphatidyleth-
anolamine; PUFA = polyunsaturated fatty acids; SFA = saturated fatty acids; SM = sphingomyelin;
TC = total cholesterol; TFA = total fatty acids; Tg = total triglycerides; TPL = total phospholipids.

A mixture spectrum containing 13 lipid standards (all standards used in training ex-
cept 1-palmitoyl-2-hydroxy-sn-glycero-3-phosphocholine and SM) was evaluated with
the IG algorithm using a baseline spectrum of only the quantitative reference substance
(dimethyl sulfone [DMSO2]) and NMR solvent (deuterated chloroform, deuterated meth-
anol, and deuterium oxide —16:7:1—0/v/v). A spectrum of hepatic lipids extracted from a
Nile Grass rat obtained in a prior study [15] was similarly assessed with the IG algorithm.
A more detailed description of the sample preparation, data acquisition, and model train-
ing can be found in the previous manuscript, which validated this lipid-profiling MLP
model [14] (MLP-3 is the specific model and Mix 2 is the specific lipid mixture used for
this study). Attribution results for lipids are assessed primarily visually, with peaks
deemed important by the IG method compared both to lipid standard signals (Figure 2)



and to resonances used by human spectroscopists for lipid quantification (Supplementary
Figure S1) [5,15].

3. Results
3.1. XAl with Simulated Aqueous Spectra

Loss converged for MLP-Sim and MLP-Exp, with the lowest test losses achieved at
2996 (out of 5000) and 16,489 (out of 100,000) epochs, respectively. The IG method was
first assessed on three input spectra with all eight analytes present at equal concentrations
(25, 5, and 1 mM) using the MLP-Sim network. Figure 3 displays the resulting attribution
scores for each of these inputs along with the actual input signal (panels b-d), as well as
the ground truth analyte signals for comparison (panel a). This figure notes the model’s
high accuracy by showing the predicted concentration for each analyte above its respec-
tive attribution scores. Each output node’s attribution scores highly resemble its respective
analyte’s ground truth signal in terms of line shape and frequency. Attribution scores scale
according to predicted concentration, and the sum of attribution scores for each output
node correlates very highly with the predicted concentration (mean absolute percent dif-
ferences between attribution sum and prediction concentration across all eight metabolites
of 0.004%, 0.03%, and 0.14% for mixtures at 25, 5, and 1 mM, respectively). This result
confirms that the computed attribution scores accurately reflect the contribution (in the
appropriate units, mM) of each input data point to the predicted concentration.
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Figure 3. Ground truth metabolite signals (panel (a)) for the eight metabolites the model is trained
to quantify, and MLP-Sim attribution scores and their respective input signals for inputs with all 8




analytes at 25, 5, and 1 mM for the panels (b—d), respectively. The predicted concentrations are dis-
played above each output node’s attribution scores. Abbreviations: Attr. = Attribution scores.

A closer look at attribution scores reveals a mechanism for dealing with peak overlap.
Figure 4 highlights this mechanism for two sets of analytes with overlapping resonances,
glutamine/alanine (panel a) and taurine/choline (panel b), for the input of all eight ana-
lytes at 25 mM. Glutamine and alanine have peak multiplets which overlap at ~3.7 ppm
at 400-MHz, which appears to induce regions of negative attribution at chemical shifts
corresponding to the other, non-overlapping signals of the overlapping analyte (i.e., areas
of negative attribution for glutamine quantification at frequencies associated with non-
overlapping alanine resonances, and areas of negative attribution for alanine quantifica-
tion at non-overlapping glutamine resonances, all denoted by red arrows in Figure 4).
Negative regions of attribution are not seen at frequencies corresponding to the remain-
ing, non-overlapping analytes. The same patterns of positive and negative attribution due
to resonance overlap are seen with attributions for taurine and choline which overlap near
3.1 ppm (note that this overlap is seen in the simulated spectra utilized in our study, but
experimentally these metabolites will not overlap in this manner).
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Figure 4. Glutamine and alanine attributions (panel (a)) and taurine and choline attributions (panel
(b)) for the MLP-Sim input spectra of all eight analytes at 25 mM. The black arrow highlights the
frequency range in which these signals overlap in the mixture spectrum. Blue arrows denote areas
of positive attribution corresponding directly to that output node’s respective metabolite. Red ar-
rows denote frequencies of negative attribution scores which compensate for the increased intensity
experienced with the overlapping resonances. Abbreviations: Attr. = Attribution scores.

To examine how training dataset modification can affect model behavior, both MLP-
Sim and MLP-Exp attribution scores were computed for an input signal of all eight ana-
lytes at 25 mM plus two singlets added at random. On the left side of Figure 5, it can be
seen that for a model trained in the absence of such interfering signals such as MLP-5im,
the model attributes the non-analyte signals to the nearest analyte. Boxes marked “1” and
“2” in panel a are regions of interest shown zoomed-in in panels c and e, respectively.
Zoom 1 (panel c) shows a non-analyte singlet signal at ~3.83 ppm wrongly attributed to
creatine, and zoom 2 (panel e) shows a non-analyte singlet at ~8.70 ppm wrongly at-
tributed to niacinamide. Panel a includes the predicted concentrations for each metabolite
and it is shown that the concentrations for creatine and niacinamide are overestimated
while the concentration predictions for the other six metabolites are slightly overesti-
mated. The right side of Figure 5 shows the same scenario for MLP-Exp. Panels d and f
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Figure 5. Attributions for MLP-Sim (left side) and MLP-Exp (right side) for the input spectrum of
all eight analytes at 25 mM plus two randomly added singlets (peak maxima at ~2.82 and ~8.70
ppm). Zoomed in regions of creatine and niacinamide are shown in the bottom four panels, with
the ROIs denoted by “1” and “2” in panel a. The panels show: (a) MLP-Sim attribution scores for all
8 metabolites plus the input spectrum, (b) MLP-Exp attribution scores for all 8 metabolites plus the
input spectrum, (c) zoom of MLP-Sim creatine attribution scores, (d) zoom of MLP-Exp creatine
attribution scores, (e) zoom of MLP-Sim niacinamide attribution scores, and (f) zoom of MLP-Exp
niacinamide attribution scores. Abbreviations: Attr. = attribution scores.

As can be seen in Figure 5, the model trained with variations in linewidth, SNR, peak
shift, baseline shift, and added non-analyte signals resulted in more complex attributions
than seen with MLP-Sim. Unlike MLP-Sim, MLP-Exp attributions at ROIs not directly cor-
responding to a given node’s analyte show noisy, low-intensity attribution scores
(whereas for MLP-Sim these signals were essentially ignored unless they overlapped the
target analyte). To better understand these complexities, the attributions for alanine were
further examined for the same input of all eight metabolites at 25 mM (Supplementary
Figure 52). These ROIs were summed to determine the area of each attribution region (and
thus approximate the contribution to predicted concentration of each ROI) and the results
are displayed in Supplementary Tables S1 and S2 which, respectively, show each ROI area
and the sum of all ROIs per metabolite. ROI areas for non-overlapping metabolites essen-
tially sum to cancel themselves out (e.g., alanine attributions at the four niacinamide res-
onances have a sum of -0.01). Supplementary Tables S1 and S2 further show ROI sums for
an input with six of eight metabolites (leaving out glutamine and taurine, which overlap
with alanine and choline, respectively, to observe model behavior without analyte



overlap). MLP-Exp attribution scores reveal that overlapping signals induce model behav-
ior similar to the signal overlap compensation seen with MLP-5im. A further insight from
Figure 5 is that not all resonances from a particular analyte are required for quantification
as it is shown that only the valine peak near 0.70 ppm has meaningful attribution score
intensity. This example is enlarged and compared to ground-truth-simulated analyte sig-
nals in Supplementary Figure S3.

3.2. XAl with Experimental Lipid Spectra

The XAI approach was next applied to spectra acquired using a 400-MHz NMR spectrom-
eter and an MLP trained for the quantification of lipid groups in mixtures. Attribution
scores determined by the IG algorithm for a model input spectrum of a lipid reference
standard mixture are shown in Figure 6. Also displayed are the fairly accurate lipid con-
centrations predicted by the model, as well as ground truth concentrations. As with sim-
ulated spectra, the attribution scores determined in the lipid mixture spectra scale with
concentration and attributions associated with certain frequencies are positive, negative,
or neutral depending on their effect on analyte concentration. To help visualize specific
spectral regions, zoomed in regions of the lipid attributions in Figure 6 are supplied as
Supplementary Figures S4-56, with attribution scores scaled to a max intensity of 1.0 for
each analyte to help the smaller signals be seen.

The positive regions of attribution for each lipid group largely correspond to reso-
nances expected to contribute to predicted concentrations at a given output node (com-
pare attributions to standard spectra in Figure 2 and to the annotated spectrum denoting
important lipid signals provided as Supplementary Figure S1 for help in identifying spe-
cific lipid signals and resonances used by spectroscopists). A representative example is
discussed for cholesterol attributions (Figure S4). TC shows positive attribution scores
from 0.63 to 0.98 ppm corresponding to cholesterol-specific C18, C19, C21, C26, and C27
methyl groups. However, due to the extensive overlap between cholesterol protons and
fatty acid (FA) methyl protons (~0.8-0.94 ppm), TC shows negative attribution scores at
the (FA) methylene chain (~1.15-1.35 ppm) for compensating for the overlap. The remain-
der of the TC attribution scores are relatively low amplitude and noisy regions of attribu-
tion. For both EC and FC, many signal regions overlap with each other. FC’s largest region
of positive attribution is induced by the FC C19 peak at 0.96 ppm, and the attribution
quickly transitions into a region of large negative attribution caused by the EC C19 peak
at 0.98 ppm to compensate for the extensive overlap with EC. EC reciprocates this behav-
ior, with the model prioritizing the less overlapped peak at 0.98 ppm as the most im-
portant for quantification, with a sharp cutoff between the side-by-side overlapping FC
and EC resonances, and negative attribution scores to compensate for the overlapped sig-
nals of these highly homologous lipid groups.



Experimental Lipid Mixture Attributions
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Figure 6. Attributions scores determined on a lipid reference standard mixture spectrum (bottom
spectrum) containing tridocosahexaenoin, trilinolein, triolein, tripalmitin, cholesterol, methyl
eicosapentaenoate, palmitic acid, cholesteryl linoleate, cholesteryl arachidonate, 1,2-dipalmitoyl-sn-
glycero-3-phosphocholine, 1,2-dioleoyl-sn-glycero-3-phosphocholine, 1,2-dipalmitoyl-sn-glycero-3-
phosphoethanolamine, 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine, and SM. Abbrevia-
tions: GT = ground truth; DHA = docosahexaenoic acid; EC = esterified cholesterol; FC = free choles-
terol; LA =linoleic acid; LPC =lysophosphatidylcholine; MUFA = monounsaturated fatty acids; Om3
= omega-3 fatty acids; Om6 = omega-6 fatty acids; Om9 = omega-9 fatty acids; PC = phosphatidyl-
choline; PE = phosphatidylethanolamine; PUFA = polyunsaturated fatty acids; SFA = saturated fatty
acids; SM = sphingomyelin; TC = total cholesterol; TFA = total fatty acids; Tg = total triglycerides;
TPL = total phospholipids.

Many further logical model behaviors are indicated by the attribution scores. The
triglyceride-specific glycerol backbone multiplets found near 4.10 and 4.26 ppm are major
areas of positive attribution for Tg quantification. The glycerol signals at 4.10 ppm from
triglycerides overlap significantly with phospholipid signals, and both Tg and TPL show
positive attribution towards their respective analyte and negative attribution towards the
overlapping analyte. As expected, olefinic protons near 535 ppm show positive



attribution scores for FA species containing double bonds like PUFA/Om3/DHA, while
very low attribution scores for SFA. In general, the model attributes a significant magni-
tude of positive concentration with respect to the peak used by spectroscopists for lipid
profiling.

Attribution scores and predicted concentrations computed on the hepatic extract
spectrum are displayed as Figure 7. Zoomed in regions of the lipid attributions in Figure
7 are supplied as Supplementary Figures S7-S9, with attribution scores scaled to a maxi-
mum intensity of 1.0 for each analyte. The attribution score patterns discussed above for
the lipid standard mixture also apply to the hepatic lipid mixture spectrum. Additionally,
a case of bias for the quantification of MUFA and Om9 is seen in the form of nearly iden-
tical attributions and thus the same predicted concentration.

Hepatic Lipid Extract Attributions
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Figure 7. Attributions scores for the 18 lipid analytes determined using the integrated gradients
approach on a murine hepatic lipid extract spectrum (bottom spectrum). Abbreviations: DHA = do-
cosahexaenoic acid; EC = esterified cholesterol; FC = free cholesterol; LA = linoleic acid; LPC = lyso-
phosphatidylcholine; MUFA = monounsaturated fatty acids; Om3 = omega-3 fatty acids; Om6 =
omega-6 fatty acids; Om9 = omega-9 fatty acids; PC = phosphatidylcholine; PE = phosphatidyleth-
anolamine; PUFA = polyunsaturated fatty acids; SFA = saturated fatty acids; SM = sphingomyelin;
TC = total cholesterol; TFA = total fatty acids; Tg = total triglycerides; TPL = total phospholipids.



4. Discussion

This research explored the use of XAl to facilitate the understanding of NN-based
quantification of analytes in mixtures measured by NMR spectroscopy. Knowing what
influences a model’s predictions can improve user confidence and promote the adoption
of NN methods compared to the more conventional, slower, and generally more manual
methods that operate via user domain knowledge and/or more widely understood statis-
tical principles. XAI was used to assign scores attributing the magnitude of contribution
to quantification for every data point in simulated aqueous metabolite mixture spectra as
well as several experimentally acquired lipid spectra. Our results, obtained from simu-
lated and experimental spectra, confirm that the XAI computed attribution scores for each
analyte agree accurately with their resonance locations and ground truth concentrations
(in the appropriate units, mM).

Using the IG approach promoted an understanding of how NNs make decisions
when predicting metabolite concentrations from NMR spectra. Results with simulated
aqueous metabolite spectra revealed that, much like a spectroscopist, the models identify
and quantify analytes based on their characteristic combination of resonance frequencies,
amplitudes, and linewidths. Attribution scores further revealed mechanisms for compen-
sating for peak overlap by subtracting analyte concentration based on the presence and
concentration of overlapping analytes. These results were confirmed visually with regions
of positive attribution scores highly resembling ground truth simulated signals and re-
gions of negative attribution occurring at frequencies corresponding to competing analyte
signals. Summing all attribution scores and specified ROISs for representative inputs pro-
vided a quantitative analysis to back up visual results and revealed that attribution scores
for a given analyte can be interpreted as the contribution in millimolar of each data point
in an input spectrum (a desirable trait for regression XAl, as proposed by Letzgus et al.
[10]). Our results are similar to recent XAl regression studies which note that the magni-
tude of attribution scores reflect the degree of contribution towards a prediction for a
given feature, and the sign of attribution scores reflects whether a feature increases or
decreases the magnitude of the model output [11,16].

The IG method provides a way to visualize how a model’s behavior can change when
utilizing different training datasets. MLP-Sim, which did not see any interfering signals
in training, attributed non-overlapping, non-analyte singlets to the analyte with the closest
resonance; however, changing to a training dataset implementing randomly inserted and
scaled singlets revealed that the network can effectively ignore non-overlapping, non-an-
alyte singlets through noisy regions of attribution scores that integrate to a near-zero mag-
nitude. Comparing MLP-Sim and MLP-Exp attributions revealed that the models take a
slightly different approach to metabolite quantification. While MLP-Sim mostly ignored
the signals of the seven other analytes for the quantification of each metabolite (except for
overlapping resonances), MLP-Exp attributed positive and negative attribution scores to
these signals in a manner in which they canceled one another out. Unlike MLP-5im, MLP-
Exp did not always utilize 100% of analyte resonances for the quantification of a given
metabolite (e.g., valine).

After an initial validation of the IG method in simulated spectra, the XAI approach
was utilized to understand MLP behavior in the task of NMR lipid profiling in proton
spectra acquired using a 400-MHz NMR spectrometer. Attribution scores for lipid ana-
lytes measured in a complex lipid reference standard mixture and murine hepatic lipid
extract revealed similar mechanisms of analyte quantification as seen with simple simu-
lated spectra; however, the larger number of analytes and high structural similarity found
among biological lipids contributed to much more extensive overlap and thus more com-
plex attribution allocation by the model. The NN attributes positive concentration to ana-
lyte-specific resonances, accounts for overlapping signals, and is generally agnostic to-
wards less significant signals for quantifying a particular analyte. The effectiveness of the
model to prioritize the least ambiguous signals for each lipid analyte is further confirmed
by noting that each output node attributes a significant level of positive concentration to-
wards peaks used by human spectroscopists for lipid group quantification [5,13,15]. The



IG method shows that MLP-based processing for the quantification of analytes in NMR
spectra can use the entire spectra for quantification, like line-fitting software (e.g., LipSpin
and Chenomx), can focus on individual peaks like a human spectroscopist might, and can
flexibly focus on the most important subset of resonances for quantification. The model is
able to quantify analytes that do not have any isolated, unambiguous resonances, as seen
with lipid groups like TFA, TPL, LPC, Om6, MUFA, and PUFA.

In addition to providing a quantitative means of understanding how a machine learn-
ing model makes its decisions, XAl can potentially be used as a tool for detecting bias for
model de-bugging. Despite the high degree of homology among lipid structures, the lipid
model was trained using only 15 lipid reference standards; therefore, there is potential for
bias, especially when scaling up to quantification in tissue extracts which likely contain
several orders of magnitude more lipid species. One bias detected in the lipid quantifica-
tion NN is that MUFA and Om9 quantification have essentially the same set of attribution
scores, resulting from the fact that oleic-acid-containing lipids were the only MUFAs or
Om9Ys utilized in model training. This is likely to affect accuracy in the quantification of
mixtures containing lipid species the model has not been trained to quantify, such as
omega-5 or omega-7 FAs (which are primarily MUFAs), non-oleic acid Om9s, or non-
MUFA Om9s. Despite this potential bias, oleic acid is the most abundant and widely dis-
tributed FA in nature and thus is expected to be the major Om9 and MUFA in most bio-
logical extracts [17,18] and most Om9 are MUFAs [19]; therefore, the effects on the analysis
of murine hepatic lipids are likely limited. Training with further types of Om9s and
MUFAs should eliminate this bias caused by our limited training dataset.

A second case of bias was noted in the attributions determined in the experimental
lipid mixture. TriDHA and mEPA were the only Om3s used in training, with TriDHA
being the only DHA-containing compound. This training dataset limitation caused the
model to associate the FA methyl ester signal of mEPA with Om3. The model leveraged
this FA methyl signal as a way to distinguish between mEPA and the only other omega-3,
DHA, causing the node quantifying DHA to associate negative attribution at the FA me-
thyl ester resonance to accommodate peak overlap between these two Om3s (while an un-
biased model would not find any association between the FA methyl ester resonance and
DHA or Om3). We expect these biases to diminish with increasingly representative training
datasets (in this case, adding non-Om3 FA methyl esters and further Om3 species).

The IG gradient method of XAI permitted the user-understanding of what influences
MLP-based concentration prediction in analyte mixtures. One limitation of this study is
the use of only one XAI method. It is possible that other gradient-based feature attribution
methods, or possibly perturbation or contrastive attribution methods, may provide more
useful insights, which warrants future investigation. While NN-based quantification can
take away much of the burden of user knowledge during metabolite identification and
quantification, expertise is required to understand how attribution scores relate to model
input spectra. Simulated spectra were used for the aqueous metabolite analysis in this
study, and it is worth noting that simulated spectra do not perfectly replicate spectra that
are collected experimentally, although they are generally close approximations.

Future work should include testing the current IG method’s effectiveness in NNs
more advanced (e.g., convolutional neural networks) than the simple MLP and in multi-
dimensional NMR spectra. The NNs used in this study were trained using 8-15 metabolite
reference signals, but most biological samples can be expected to have dozens to thou-
sands of metabolites. Future studies should incorporate chemical shift variations inspired
by temperature, pH, and other experimental effects and should include more unknown
signals (like non-analyte metabolites, randomly placed multiplets, residual lipid/protein
signals, and potential contaminants) and more analyte aqueous metabolites to eventually
test NN and XAI methods in aqueous tissue extracts. More lipid metabolite signals should
be included in training to reduce our current model’s bias, although our XAI approach
with the current MLP was still capable of identifying important resonances among the
likely thousands of hepatic lipids. The IG method could be used in an exploratory fashion
to determine resonances or resonance patterns important for the quantification of an



analyte in a given scenario. Further, this XAI approach can be extended to other spectro-
scopic or similar analyses where users are interested in determining the important portion
of a signal for a given task.

5. Conclusions

The NN approach has advantages in terms of ease of use, speed, automation, and
scalability compared to conventional NMR metabolite profiling methods, and with XAl
concentration prediction need not occur in a black box. The IG algorithm facilitated the
understanding that the NN models in this study identify and quantify analytes based on
their respective signal frequencies, line-shapes, and amplitudes while prioritizing peaks
with less overlap and accounting for resonance overlap with other analytes. This XAl ap-
proach allowed us to visualize different model behaviors induced by differing training
datasets and to detect potential model biases. Overall, this work confirms the utility of the
IG approach to XAl for uncovering which features are most important for analyte quanti-
fication in NMR spectra.

Supplementary Materials: The following supporting information can be downloaded at:
www.mdpi.com/xxx/s1, Figure S1: Annotated structures contributing to lipid resonances; Figure S2:
Alanine MLP-Exp attributions; Table S1: Alanine attributions: per-resonance attribution sums; Table
S2: Alanine attributions: per-metabolite attribution sums; Figure S3: Valine MLP-Exp attributions;
Figure S4: Lipid mixture attributions (0.60-1.38 ppm); Figure S5: Lipid mixture attributions (1.83—
3.34 ppm); Figure S6: Lipid mixture attributions (3.48-5.40 ppm).; Figure S7: Hepatic lipid extract
attributions (0.60-1.38 ppm); Figure S5: Hepatic lipid extract attributions (1.83-3.34 ppm); Figure S9:
Hepatic lipid extract attributions (3.48-5.40 ppm).
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