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ABSTRACT 

Estimation of evapotranspiration and recharge flux are 

fundamental to sustainable water resource management. 

These fluxes provide valuable insights for decision-makers, 

enabling them to implement effective strategies that balance 

water demand with available resources, promote resilience in 

the face of climate change, and ensure the long-term 

sustainability of water ecosystems. In-situ observations of 

evapotranspiration and recharge are scarce and not 

representative of large areas. An observation driven 

variational data assimilation system, named LIDA-2 (Land 

Integrated Data Assimilation framework) is developed to 

estimate the key parameters (evaporative fraction, bulk heat 

transfer coefficient, Brooks-Corey parameter) of 

evapotranspiration and recharge fluxes by assimilating 

GOES land surface temperature (LST) and SMAP surface 

soil moisture observations into a coupled water and dual-

source energy balance model. Second order information is 

used to estimate the uncertainty and guide the model toward 

a well-posed estimation problem. The algorithm is 

implemented in part of the US southern great plain, and its 

performance is evaluated through comparison tests, 

uncertainty analysis and consistency test. Soil moisture and 

evapotranspiration estimations are validated against in-situ 

observations. The spatial pattern of estimated annual recharge 

map is in good agreement with maps from literature. Overall, 

the VDA based framework demonstrated its efficacy to do 

largescale mapping of recharge, and evapotranspiration. 

Index Terms— Evapotranspiration, Recharge, Soil 

moisture, VDA 

1. INTRODUCTION 

Evapotranspiration and recharge fluxes are key components 

of global water, energy, and carbon cycles, and influence 

food production, water management, weather prediction, 

climate change etc. [1-3]. Evapotranspiration and recharge 

fluxes are interconnected via soil moisture content. The 

evaluation of moisture content at the top few centimeters to 

meters depth of soil holds critical information regarding the 

partitioning of precipitation which dictates the 

evapotranspiration and recharge rates [1]. 

In-situ methods of estimation of evapotranspiration (eddy 

covariance, Energy Balance Bowen ratio) and recharge 

(lysimeters, seepage meters, chemical tracers) fluxes provide 

good point scale approximation. However, the dynamic 

nature of the transfer process and land surface heterogeneity 

do not allow these in-situ observations to represent large 

areas [4-6]. Remote sensing can be an alternative to in-situ 

measurement as it provides good spatiotemporal coverage of 

land surface state observations from different sensors. 

However, the land surface fluxes cannot be estimated directly 

through remote sensing. Numerical models can estimate the 

states and fluxes, but their results are uncertain due to errors 

of model structure, initial condition, parameters, etc. Data 

assimilation combines observational data with numerical 

model output to produce an optimal estimate of the evolving 

system by taking advantages of both numerical modelling 

estimates and observations. Different data assimilation 

methods like Variational data assimilation (VDA) and 

ensemble Kalman filtering (EnKF) have been used 

extensively to retrieve land surface fluxes by utilizing remote 

sensing observation [7-10]. Optimal parameter estimation, 

robustness and stability of the method make VDA technique 

more suitable than other data assimilation methods in 

estimating land surface fluxes [11]. The time evolution of 

LST data implicitly contains information regarding the 

partitioning of available energy into turbulent heat fluxes and 

[7-9,12] The time evolution of surface soil moisture data 

implicitly contains information regarding the partitioning of 

precipitation into evapotranspiration, runoff, and infiltration. 

Remotely sensed surface soil moisture observations have also 

been utilized to estimate the root zone soil moisture profile 

and soil effective hydraulic parameters [18-21].  

Abdolghafoorian and Farhadi 2019, 2020 [25,4] developed a 

variational based data assimilation methodology, LIDA 

(Land Integration Data Assimilation) framework that 

assimilates land surface soil moisture and land surface soil 

temperature data into a parsimonious coupled water and 

energy balance model to effectively estimate flux of 

evapotranspiration.  LIDA contains an uncertainty 

quantification framework that uses second order information 

that guides the optimization and evaluates its uncertainty. 

Mahmood and Farhadi 2022 [26] (LIDA-2) advanced the 

LIDA framework to estimate recharge flux by including 

effective soil saturated hydraulic conductivity Ksat as an 

additional parameter of the LIDA. The feasibility and 

accuracy of the framework were tested in point scales through 
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a set of synthetic experiments in Mahmood and Farhadi 2022 

[26]. In this study the LIDA-2 [26] framework will be 

validated in the large areas of the US Southern great plain 

(SGP) and Oklahoma Panhandle region for three years from 

2016 to 2018 to estimate the optimal parameters (evaporative 

fraction, bulk heat transfer coefficient, Brooks-Corey 

parameter) of evapotranspiration and recharge fluxes by 

assimilating Geostationary Operational Environmental 

Satellite (GOES) land surface temperature and Soil Moisture 

Active Passive (SMAP) surface soil moisture observations 

into a coupled water and energy balance model. The 

evapotranspiration and recharge fluxes are estimated using 

the optimum parameters.  

2. METHODOLOGY 

2.1. Coupled Energy and Water Model 

A grid-based model is used in this study where different 

processes of energy and water cycle are simulated in each 

grid separately using a parsimonious coupled water and 

energy balance model.  The energy balance model is based 

on the dual-source surface energy balance (SEB) model. In 

this model the contributions from soil and canopy are 

considered separately. Key parameters of energy balance 

model to estimate sensible and latent heat fluxes are soil and 

canopy evaporative fraction and neutral bulk heat transfer 

coefficient. A simple water balance (SWB) scheme adopted 

from Schaake et al. 1996 [28] is used to calculate the surface 

runoff. Brooks-Corey model is used to estimate the hydraulic 

properties of unsaturated soil [31]. A simple water balance 

(SWB) scheme adopted from Schaake et al. 1996 [28] is used 

to calculate the surface runoff. 

2.2. VDA Based Modeling Framework 

Variational data assimilation (VDA) is based on 

minimization of cost function that leads to a set of Euler‐

Lagrange equations to estimate the adjoint variables and 

parameters. The cost function constitutes of mismatch 

between simulated state and observations, estimated 

parameter and its prior estimates. Physical models are added 

to the cost function using adjoint variables and act as a 

physical constraint. Parameters of the VDA are daily 

evaporative fraction for soil EFs and canopy EFc, monthly R 

[R=ln (CHN, Neutral bulk heat transfer coefficient)] and 

Brooks-Corey parameter B. Physical models in the VDA 

system are heat diffusion equation and Richard equation. The 

state observations are land surface temperature (LST) and 

surface SM. 

The Hessian matrix is formed using the gradient of cost 

function at the optimum point following the Lagrangian 

method [32]. Hessian matrix at the optimum point must be 

positive definite (all the eigenvalues are positive). 

Uncertainty of parameters can be approximated from error 

covariance matrix which is the inverse of the hessian matrix 

[11, 33-34]. Uncertainty of fluxes can be estimated using 

Monte Carlo algorithm [25]. 

The basic algorithm of the VDA is to make initial guess of 

unknown parameters, then run the coupled water and energy 

balance model with these parameters, assimilate the land 

surface temperature and surface soil moisture, run the adjoint 

models and estimate the updated parameters. The run 

continues through the loop until updated parameters reach 

stabilization. Then the hessian matrix is calculated at this 

point and if all the eigen values of the hessian matrix are 

positive it means the solution has reached the optimum point. 

3. STUDY AREA AND DATA 

A rectangular bounding box [35.5 N to 37.2 N, 97.0 W to 

101.4 W] that covers part of the Oklahoma Panhandle 

regions, and part of Southern great plain (SGP) is selected for 

this study. Groundwater recharge is very vital in the 

Panhandle region as 98% of the total water demand in this 

region comes from groundwater. The adjacent part of 

Southern great plain (SGP) is also included in the study area 

due to its higher concentration of in-situ stations that will be 

used to validate the framework. 

 

Figure 1: Study area elevation map with station’s 

locations 

Detailed descriptions of the data used in this study are 

reported in Table 1.  

A simple look up table with 12 soil classes, GSWP2 [35], is 

used to estimate the soil hydraulic parameters (except for the 

Brooks-Corey parameter B) based on the soil texture data that 

is available for this region. Using a simple look up table 

makes the framework less dependent on the accuracy of the 

soil texture data and therefore more applicable for large scale 

application.  
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Table 1: Detailed descriptions of data 

 

4. RESULTS 

4.1. Soil Moisture 

Soil moisture profiles are validated using in-situ observation 

shown in Figure 1. Soil moisture profiles from April to 

September 2017 at two different depths (5 cm and 50 cm) are 

demonstrated in Figure 2 at the location of USCRN station 

Stillwater. As seen in the figure, the VDA estimated soil 

moisture profiles match better with the observed soil moisture 

profiles than the open loop estimates at both depths in terms 

of values and trend. The corresponding error metrices RMSE 

and unbiased RMSE (ubRMSE) both are also reported in the 

figure for OL and VDA estimated soil moisture profiles. Both 

the error metrics reduce from OL estimate to VDA estimate 

which indicates the efficacy of the VDA framework. 

 

Figure 2: Soil moisture profile at two different depths 

4.2. Recharge 

The Gravitational drainage at the bottom of the soil column 

is taken as the measure of diffuse recharge in this study.  

Estimated recharge are compared with the annual recharge 

values reported in literature for this area (Wyatt et al. 2017 

[37] and Reitz et al. 2017 [38]). The estimated recharge 

values for the pixels at those station’s location are reported in 

the table. The estimated annual recharge values are within the 

range reported in the literature and close to the average annual 

recharge values reported. 

Table 2: Annual Recharge estimations at different 

Mesonet station’s locations 

 

The spatial pattern of estimated annual recharge are also 

validated by comparing the maps of estimated recharge with 

the maps from Wyatt et al. 2017 and Reitz et al. 2017 [37-

38].  The spatial pattern of estimated annual recharge matches 

well with the maps from literature. 

4.3. Evapotranspiration 

Latent heat flux can be used as a measure of 

evapotranspiration flux. In-situ latent heat flux observations 

from two Atmospheric Radiation Measurement (ARM) SGP 

sites are used to validate the evapotranspiration flux 

estimated by LIDA-2 framework. Table 3 demonstrates the 

RMSE of estimated hourly latent heat flux at E13 and E39 

ARM stations. Assimilation of LST and surface SM has 

improved the latent heat flux estimation by reducing RMSE 

significantly from open loop estimation at both the stations’ 

locations. 

Table 3: RMSE (W/m^2) of hourly latent heat flux at 

ARM stations for the year 2017 

 

 

5. CONCLUSION 

A VDA based framework (LIDA-2) has been developed to 

map the evapotranspiration and recharge flux by assimilating 

GOES LST and SMAP surface soil moisture into a coupled 

water energy balance model. Optimum values of essential 

states (soil temperature and soil moisture) and parameters 

Site Name

Average 

Recharge 

(mm/yr): 

Wyatt et al. 

2017

Average 

Recharge 

(mm/yr): 

Reitz et al 

2017

Range of 

Recharge 

(mm/yr): 

Reitz et al 

2017

Estimated 

Recharge 

(mm/yr)

Arnett 17 68.19 13.93-127.34 26.77

Cheyenne 32 81.46 16.83-151.01 90.56

Watonga 88 58.5 22.4-310.4 62.22

Seiling 19 32.46 22.8-50.55 43.94

Site Name
ARM 

code
Lat Lon VDA

Open 

Loop 

(OL)

Lamont,OK E13 36.60 97.49 81.58 117.64

Morrison, OK E39 36.37 97.07 83.13 100.64
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(Soil and canopy EF, CHN, B) of evaporative and recharge 

fluxes are estimated using variational data assimilation 

method and analyzing second order information. Uncertainty 

information is estimated from error covariance matrix which 

is the inverse of hessian matrix at the point of optimum. 

LIDA-2 framework is used to map a large area of Southern 

great plain and part of Oklahoma panhandle region for three 

years from 2016 to 2018. Comparison shows VDA simulated 

soil moisture profiles match better with the in-situ 

observation than the open loop estimates in term of values 

and trend both in case of surface and root zone soil moisture. 

The annual recharge estimates are within the range of values 

reported in the literature. The spatial pattern of annual 

recharge estimates matches well with the maps reported in 

literature. Comparison with latent heat flux observations from 

two ARM sites demonstrates improvement due to 

assimilation of LST and surface soil moisture. Overall, the 

VDA based framework presented in this study demonstrated 

efficacy in largescale mapping of recharge, and 

evapotranspiration. Accurate mapping and estimation of 

these two important water cycle fluxes provide valuable 

insights for decision-makers, enabling them to implement 

effective strategies that balance water demand with available 

resources, promote resilience in the face of climate change, 

and ensure the long-term sustainability of water ecosystems. 
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