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ABSTRACT

Estimation of evapotranspiration and recharge flux are
fundamental to sustainable water resource management.
These fluxes provide valuable insights for decision-makers,
enabling them to implement effective strategies that balance
water demand with available resources, promote resilience in
the face of climate change, and ensure the long-term
sustainability of water ecosystems. In-situ observations of
evapotranspiration and recharge are scarce and not
representative of large areas. An observation driven
variational data assimilation system, named LIDA-2 (Land
Integrated Data Assimilation framework) is developed to
estimate the key parameters (evaporative fraction, bulk heat
transfer  coefficient, Brooks-Corey  parameter) of
evapotranspiration and recharge fluxes by assimilating
GOES land surface temperature (LST) and SMAP surface
soil moisture observations into a coupled water and dual-
source energy balance model. Second order information is
used to estimate the uncertainty and guide the model toward
a well-posed estimation problem. The algorithm is
implemented in part of the US southern great plain, and its
performance is evaluated through comparison tests,
uncertainty analysis and consistency test. Soil moisture and
evapotranspiration estimations are validated against in-situ
observations. The spatial pattern of estimated annual recharge
map is in good agreement with maps from literature. Overall,
the VDA based framework demonstrated its efficacy to do
largescale mapping of recharge, and evapotranspiration.

Index Terms— Evapotranspiration, Recharge, Soil
moisture, VDA

1. INTRODUCTION

Evapotranspiration and recharge fluxes are key components
of global water, energy, and carbon cycles, and influence
food production, water management, weather prediction,
climate change etc. [1-3]. Evapotranspiration and recharge
fluxes are interconnected via soil moisture content. The
evaluation of moisture content at the top few centimeters to
meters depth of soil holds critical information regarding the
partitioning of  precipitation  which dictates  the
evapotranspiration and recharge rates [1].

In-situ methods of estimation of evapotranspiration (eddy
covariance, Energy Balance Bowen ratio) and recharge
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(lysimeters, seepage meters, chemical tracers) fluxes provide
good point scale approximation. However, the dynamic
nature of the transfer process and land surface heterogeneity
do not allow these in-situ observations to represent large
areas [4-6]. Remote sensing can be an alternative to in-situ
measurement as it provides good spatiotemporal coverage of
land surface state observations from different sensors.
However, the land surface fluxes cannot be estimated directly
through remote sensing. Numerical models can estimate the
states and fluxes, but their results are uncertain due to errors
of model structure, initial condition, parameters, etc. Data
assimilation combines observational data with numerical
model output to produce an optimal estimate of the evolving
system by taking advantages of both numerical modelling
estimates and observations. Different data assimilation
methods like Variational data assimilation (VDA) and
ensemble Kalman filtering (EnKF) have been used
extensively to retrieve land surface fluxes by utilizing remote
sensing observation [7-10]. Optimal parameter estimation,
robustness and stability of the method make VDA technique
more suitable than other data assimilation methods in
estimating land surface fluxes [11]. The time evolution of
LST data implicitly contains information regarding the
partitioning of available energy into turbulent heat fluxes and
[7-9,12] The time evolution of surface soil moisture data
implicitly contains information regarding the partitioning of
precipitation into evapotranspiration, runoff, and infiltration.
Remotely sensed surface soil moisture observations have also
been utilized to estimate the root zone soil moisture profile
and soil effective hydraulic parameters [18-21].

Abdolghafoorian and Farhadi 2019, 2020 [25,4] developed a
variational based data assimilation methodology, LIDA
(Land Integration Data Assimilation) framework that
assimilates land surface soil moisture and land surface soil
temperature data into a parsimonious coupled water and
energy balance model to effectively estimate flux of
evapotranspiration. LIDA contains an uncertainty
quantification framework that uses second order information
that guides the optimization and evaluates its uncertainty.
Mahmood and Farhadi 2022 [26] (LIDA-2) advanced the
LIDA framework to estimate recharge flux by including
effective soil saturated hydraulic conductivity Kg as an
additional parameter of the LIDA. The feasibility and
accuracy of the framework were tested in point scales through
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a set of synthetic experiments in Mahmood and Farhadi 2022
[26]. In this study the LIDA-2 [26] framework will be
validated in the large areas of the US Southern great plain
(SGP) and Oklahoma Panhandle region for three years from
2016 to 2018 to estimate the optimal parameters (evaporative
fraction, bulk heat transfer coefficient, Brooks-Corey
parameter) of evapotranspiration and recharge fluxes by
assimilating Geostationary Operational Environmental
Satellite (GOES) land surface temperature and Soil Moisture
Active Passive (SMAP) surface soil moisture observations
into a coupled water and energy balance model. The
evapotranspiration and recharge fluxes are estimated using
the optimum parameters.

2. METHODOLOGY

2.1. Coupled Energy and Water Model

A grid-based model is used in this study where different
processes of energy and water cycle are simulated in each
grid separately using a parsimonious coupled water and
energy balance model. The energy balance model is based
on the dual-source surface energy balance (SEB) model. In
this model the contributions from soil and canopy are
considered separately. Key parameters of energy balance
model to estimate sensible and latent heat fluxes are soil and
canopy evaporative fraction and neutral bulk heat transfer
coefficient. A simple water balance (SWB) scheme adopted
from Schaake et al. 1996 [28] is used to calculate the surface
runoff. Brooks-Corey model is used to estimate the hydraulic
properties of unsaturated soil [31]. A simple water balance
(SWB) scheme adopted from Schaake et al. 1996 [28] is used
to calculate the surface runoff.

2.2. VDA Based Modeling Framework

Variational data assimilation (VDA) is based on
minimization of cost function that leads to a set of Euler-
Lagrange equations to estimate the adjoint variables and
parameters. The cost function constitutes of mismatch
between simulated state and observations, estimated
parameter and its prior estimates. Physical models are added
to the cost function using adjoint variables and act as a
physical constraint. Parameters of the VDA are daily
evaporative fraction for soil EF; and canopy EF., monthly R
[R=In (Cun, Neutral bulk heat transfer coefficient)] and
Brooks-Corey parameter B. Physical models in the VDA
system are heat diffusion equation and Richard equation. The
state observations are land surface temperature (LST) and
surface SM.

The Hessian matrix is formed using the gradient of cost
function at the optimum point following the Lagrangian
method [32]. Hessian matrix at the optimum point must be
positive definite (all the eigenvalues are positive).
Uncertainty of parameters can be approximated from error
covariance matrix which is the inverse of the hessian matrix
[11, 33-34]. Uncertainty of fluxes can be estimated using
Monte Carlo algorithm [25].

The basic algorithm of the VDA is to make initial guess of
unknown parameters, then run the coupled water and energy
balance model with these parameters, assimilate the land
surface temperature and surface soil moisture, run the adjoint
models and estimate the updated parameters. The run
continues through the loop until updated parameters reach
stabilization. Then the hessian matrix is calculated at this
point and if all the eigen values of the hessian matrix are
positive it means the solution has reached the optimum point.

3.STUDY AREA AND DATA

A rectangular bounding box [35.5 N to 37.2 N, 97.0 W to
101.4 W] that covers part of the Oklahoma Panhandle
regions, and part of Southern great plain (SGP) is selected for
this study. Groundwater recharge is very vital in the
Panhandle region as 98% of the total water demand in this
region comes from groundwater. The adjacent part of
Southern great plain (SGP) is also included in the study area
due to its higher concentration of in-situ stations that will be
used to validate the framework.
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Figure 1: Study area elevation map with station’s
locations

Detailed descriptions of the data used in this study are
reported in Table 1.

A simple look up table with 12 soil classes, GSWP2 [35], is
used to estimate the soil hydraulic parameters (except for the
Brooks-Corey parameter B) based on the soil texture data that
is available for this region. Using a simple look up table
makes the framework less dependent on the accuracy of the
soil texture data and therefore more applicable for large scale
application.
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Table 1: Detailed descriptions of data

Spatial Temporal
S . .
Data O | Resolution |Resolution
Assimilated | Soil Moisture | SMAP 9 Km 2-3 days
state
Land Surface
: GOES 5Km 1h
variables temperature '
Longwave and
shortwave
Tnput radiation, Wind NL];AS_ 0.125° 1hr
Frocing speed, Air
temperature
Precipitation GPM 10 Km 30 min
Leaf Area Index| MODIS 500 m 8 days
Ancillary Soil Texture | SMAP 9 km
Land cover MODIS 500m 1 year
Latent and
Sensible heat ARM | pointscale | 30 min
fluxes
USCRN,
Valiadation Soil moisture | Mesonet, | point scale |  Daily
ARM
Reitz et
enze 800 m Yearly
al. 2017 -
Recharge
Wyatt et oint scale | Yearl
al. 2017 | P Y
4. RESULTS

4.1. Soil Moisture

Soil moisture profiles are validated using in-situ observation
shown in Figure 1. Soil moisture profiles from April to
September 2017 at two different depths (5 cm and 50 cm) are
demonstrated in Figure 2 at the location of USCRN station
Stillwater. As seen in the figure, the VDA estimated soil
moisture profiles match better with the observed soil moisture
profiles than the open loop estimates at both depths in terms
of values and trend. The corresponding error metrices RMSE
and unbiased RMSE (ubRMSE) both are also reported in the
figure for OL and VDA estimated soil moisture profiles. Both
the error metrics reduce from OL estimate to VDA estimate
which indicates the efficacy of the VDA framework.
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Figure 2: Soil moisture profile at two different depths

4.2. Recharge

The Gravitational drainage at the bottom of the soil column
is taken as the measure of diffuse recharge in this study.
Estimated recharge are compared with the annual recharge
values reported in literature for this area (Wyatt et al. 2017
[37] and Reitz et al. 2017 [38]). The estimated recharge
values for the pixels at those station’s location are reported in
the table. The estimated annual recharge values are within the
range reported in the literature and close to the average annual
recharge values reported.

Table 2: Annual Recharge estimations at different
Mesonet station’s locations

Average Average Range of
Recharge Recharge Recharge |Estimated
Site Name | (mm/yr): (mm/yr): (mm/yr): | Recharge
Wyatt etal. | Reitzetal Reitz etal | (mm/yr)
2017 2017 2017
Arnett 17 68.19 13.93-127.34 | 26.77
Cheyenne 32 81.46 16.83-151.01 | 90.56
Watonga 88 58.5 22.4-3104 62.22
Seiling 19 32.46 22.8-50.55 43.94

The spatial pattern of estimated annual recharge are also
validated by comparing the maps of estimated recharge with
the maps from Wyatt et al. 2017 and Reitz et al. 2017 [37-
38]. The spatial pattern of estimated annual recharge matches
well with the maps from literature.

4.3. Evapotranspiration

Latent heat flux can be wused as a measure of
evapotranspiration flux. In-situ latent heat flux observations
from two Atmospheric Radiation Measurement (ARM) SGP
sites are used to validate the evapotranspiration flux
estimated by LIDA-2 framework. Table 3 demonstrates the
RMSE of estimated hourly latent heat flux at E13 and E39
ARM stations. Assimilation of LST and surface SM has
improved the latent heat flux estimation by reducing RMSE
significantly from open loop estimation at both the stations’
locations.

Table 3: RMSE (W/m*2) of hourly latent heat flux at
ARM stations for the year 2017

Open

Site Name Acx(})ﬁ\e/[ Lat | Lon | VDA | Loop

(0L

Lamont,OK E13 |36.60 | 97.49 | 81.58 | 117.64

Morrison, OK | E39 |36.37|97.07 | 83.13 | 100.64
5. CONCLUSION

A VDA based framework (LIDA-2) has been developed to
map the evapotranspiration and recharge flux by assimilating
GOES LST and SMAP surface soil moisture into a coupled
water energy balance model. Optimum values of essential
states (soil temperature and soil moisture) and parameters
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(Soil and canopy EF, Cun, B) of evaporative and recharge
fluxes are estimated using variational data assimilation
method and analyzing second order information. Uncertainty
information is estimated from error covariance matrix which
is the inverse of hessian matrix at the point of optimum.
LIDA-2 framework is used to map a large area of Southern
great plain and part of Oklahoma panhandle region for three
years from 2016 to 2018. Comparison shows VDA simulated
soil moisture profiles match better with the in-situ
observation than the open loop estimates in term of values
and trend both in case of surface and root zone soil moisture.
The annual recharge estimates are within the range of values
reported in the literature. The spatial pattern of annual
recharge estimates matches well with the maps reported in
literature. Comparison with latent heat flux observations from
two ARM sites demonstrates improvement due to
assimilation of LST and surface soil moisture. Overall, the
VDA based framework presented in this study demonstrated
efficacy in largescale mapping of recharge, and
evapotranspiration. Accurate mapping and estimation of
these two important water cycle fluxes provide valuable
insights for decision-makers, enabling them to implement
effective strategies that balance water demand with available
resources, promote resilience in the face of climate change,
and ensure the long-term sustainability of water ecosystems.
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