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Abstract—Classical computing systems find utility in
performing engineering computations in both design and
operation of chemical manufacturing processes. During
operation, computing systems may be used within process
control systems (PCSs) to operate processes by computing
control actions. Control engineers may eventually need to
determine the utility of other computing devices such as
quantum devices (QCs) within PCSs. A QC that is not
fault-tolerant may introduce errors in control computations
due to the noise (e.g., quantum noise) and result in the
process states (e.g., temperature, concentration) deviating
from desired operating limits. Deviations of process states
may result in one or both of two undesirable consequences
that need to be addressed: (1) unsafe situations (e.g., due to
loss of containment) and (2) reduction in the profitability
of the process (e.g., due to low quality product). Thus,
it is currently unclear to what extent errors in noisy
intermediate-scale quantum (NISQ) devices would need
to be eliminated before they could have potential utility
for control action computation. In the current work, we
investigate how control theory might aid in guiding answers
to this question. We first characterize the stability of
linear processes with proportional control implemented on
a QC by treating quantum noise as a bounded disturbance
exogenous to the process. Then, we analyze the extent to
which an optimal control formulation for processes with
noise and plant/model mismatch might apply to processes
with unexpected control actions from a NISQ device. We
demonstrate the results using a single-input/single-output
system under a control law implemented using a quantum
simulator with a depolarizing error noise model affecting
the control action computations.

Index Terms—Control applied on quantum devices, Sys-
tems engineering, Stability and profitability of chemical
processes

I. INTRODUCTION

Automation systems play a key role in manufactur-
ing toward keeping processes running efficiently online.
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They automate operation through monitoring and adjust-
ing the process behavior using online sensors and com-
puting devices that interface with actuators. To enhance
efficiency, various computing and networking advances
have been incorporated into process control as they have
been developed. As examples, control algorithms have
been designed that consider the use of wireless networks
in data transmission between different elements of the
automation system [1], or that consider that the comput-
ing unit is capable of carrying out nonlinear optimization
algorithms [2]. Thus, just as control engineers have
evaluated the utility of other advances in computing, they
will need to evaluate whether quantum devices have any
control-relevant applications.

Given that classical computers are used to determine
control actions today, it is reasonable to ask whether
quantum devices could have any utility for that same
task. This question is particularly relevant for control
laws for which control engineers make approximations
today (e.g., using model order reduction of process
models [3]) due to a lack of sufficiently fast algorithms
for problems such as incorporating large-scale process
models within optimization-based control laws. One
direction that needs to be undertaken in answering this
question is to evaluate existing quantum algorithms and
investigate new ones to see whether they could provide
benefits for such problems. However, another problem
specific to control that would need to be addressed is
evaluating how any new algorithms need to be designed
to safely interact with the physical systems that would be
then impacted by the results of the quantum algorithm,
without significantly reducing profits compared to using
a classical device.

This second question remains relatively unexplored,
and the answer to this question should help define
directions for the first. Applications of quantum com-



puting related to control have included discussions of
potential algorithms in quantum computation that might
be relevant toward control [4], studies exploring the use
of quantum computing in optimal control calculations
for quantum systems [5], using a quantum annealer for
model predictive control [6], or in reinforcement learn-
ing [7]. However, control-theoretic safety/stability no-
tions have not been the focus. Our group has performed
several analyses of control algorithms implemented on
quantum devices, primarily with simple control laws and
quantum algorithms to chart a path toward understanding
the interactions between nondeterminism in quantum
algorithm outputs (due to either noise or probabilistic
algorithm outputs) and the stability of the process on
which the control actions are implemented [8], [9], [10].
However, these studies either did not provide control the-
ories for the observations (in the case of noisy quantum
devices) or did not consider noise. Also, none of our
prior studies examined how the potentially unexpected
control actions could impact profitability of operation.

In this work, we present safety and profitability of
operation as key metrics in understanding the potential of
NISQ devices to be used for computing control actions.
We study the potential of control-theoretic approaches
for creating safe and optimal control formulations for
linear dynamic systems in providing guidance on the
degree of error mitigation required by NISQ devices
for them to be potentially considerable for control, and
we discuss control and dynamic systems techniques as
an idea for mitigating the effects of device noise when
applying quantum computing in control action selection.
In these analyses, we consider two theoretical premises
(practical stability under bounded disturbances and op-
timal operation in the presence of disturbances under a
linear quadratic Gaussian (LQG) control law). Through
these studies, we identify areas where these theories
succeed at providing insights into the potential of using
noisy intermediate-scale quantum (NISQ) [11] devices
for control law implementation, and where they describe
the interaction of the NISQ devices with the control
problem inadequately (which guides future directions for
providing improved theories).

II. PRELIMINARIES
A. Notation and Definitions

The set of real numbers is represented by R, the set
of integers is represented by Z, and the set of complex
numbers is represented by C. [ is the identity matrix. The
eigenvalues of a matrix A € R™*", are those values of
A for which Av = Av (v € R" is the corresponding
eigenvector). The spectral radius of A € R™ " is
defined as p(A) := max}_;|\,|. The Euclidean norm
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N (u, o) denotes a Gaussian distribution with mean g
and standard deviation o. Given A € C"*™, its Eu-
clidean norm is defined as [|Al| = /37 37, [la; |2,
where a;; are the elements of A. Given a constant
¢ € R, ||cAll = |c|||A]l. Given matrices A € R™*° and
B € R°*™, the submultiplicative inequality of matrix
norms states that ||AB| < ||A||||B]|. Similarly, given
matrices A € R™ ™ and B € R™*™, the triangle
inequality of norms states that ||A + B|| < ||A]| + || B]|-

B. Control Theory for Discrete-Time Linear Dynamic
Systems

We highlight control-theoretic principles for processes
that can be modeled as discrete-time linear dynamic
systems as follows:

x(t+1) = Ax(t) (1a)
y(t) = x(t) (1b)
where © € R™ is the state vector, y(t) € R™ is the
state measurement (measured output) from the sensors,
A € R™™ is a matrix, and ¢t € Z is the time step.
A typical goal in control is the following: given any
initial state (state at time step t = 0), z(0) € R",
it is desired to drive the process states to the desired
setpoint which is the origin x = 0. To characterize
when this occurs for the system in Eq. 1, we utilize
precise definitions of “stability.” The process in Eq. 1 is
considered to be stable if the response of the process is
bounded, i.e., ||z(t)|| < M < oo for all ¢ € Z, where
M € RT is a positive constant. The process in Eq. 1
is called asymptotically stable if it is stable and if the
states of the process converge to the origin after extended
period of operation, i.e., if lim;_, o ||z(t)|| = 0. Because
Eq. la implies that, given an initial state z(0) € R,
the state at any time step ¢t > 0 is z(t) = A""12(0),
and by writing x(0) as a linear combination of an
orthonormal set of eigenvectors for A, the state x(t)
can be written as a linear combination of the basis
vectors where the coefficients of the linear combination
include the eigenvectors to the power ¢ — 1. Thus, if the
complex magnitudes of the eigenvalues are less than one
(i.e., p(A) < 1), each of the coefficients of the linear
combination will decay to zero as ¢ — oo so that the
process will be asymptotically stable [12].

C. Quantum Computing Notation and Definitions

A quantum state |¢)) € C™ may be represented in
vector form as: [a; az az ... a,|’, where a; € C, for
p=1,2,3,...,n, are coefficients such that %27, lay|? =
1 and the square of the complex magnitude of the p-
th coefficient |a,|? represents the probability that the
system may be found in state ¢ when measured. The
computational basis states for qubits are [0) = [1 0]7
and |1) = [0 1]T. A|z) describes the evolution of the



quantum state |x) under the operation as prescribed by
the gate A € C™"*".

III. TOwWARD NISQ BENCHMARKING CONCEPTS
THROUGH STABILITY AND PROFITABILITY
ANALYSIS OF LINEAR SYSTEMS UNDER
PROPORTIONAL CONTROL ON QUANTUM
DEVICES

If quantum computers are used to compute control
actions, then it is important to understand how nonde-
terminism (e.g., due to noise in today’s quantum devices)
would impact safety of processes and profitability of op-
eration compared to using a classical device. It would be
preferable if full fault-tolerance was not required before
we could consider implementing control algorithms on
quantum devices; however, it is not currently known how
to establish targets for quantum device error mitigation
to make them suitable for various control actions. This
section provides a first effort toward utilizing control
theory to move toward filling this gap.

A. Stability of Linear Systems Under Proportional Con-
trol On Quantum Devices

In this section, we focus on the stability analysis of a
linear system (with no inherent plant/model mismatch)
for which the proportional control law is implemented
using a quantum device. We demonstrate that practical
stability can be achieved, but in practice this result pro-
vides useful guarantees only for inherently safe systems
or systems where the control actions are restricted to
being very small. To develop these results, we first
describe the class of process systems considered when
a classical computer is used for defining the control
actions. We then discuss the change in the closed-
loop dynamics when the quantum device with noise is
used, followed by a description of the practical stability
guarantees that result due to finite quantum register sizes.
However, for larger quantum register sizes, this result
may fail to bring useful stability results, so we suggest
a method for post-processing inputs computed by the
quantum device to reduce the size of the bounded set
into which the closed-loop state would be driven. We
discuss how setting a target size for that set may help
with assessing the noise characteristics required by a
NISQ device for it to be useful in control.

1) Class of Systems Without Quantum Noise

In this section, we describe the structure of the system
to which control actions will be applied (which in
subsequent sections will be considered to come from a
quantum device, but in this section is developed in the
absence of perturbations to the control law due to noise).
Though mathematical models describing the dynamics of
chemical processes are typically derived using a variety
of physics-based and/or data-based approaches for spe-
cific systems [13], we derive the results of this section

without reference to a specific process but instead for
any system that can be modeled through the following
class of discrete-time linear dynamic systems [14]:

z(t+1) = Az(t) + Bu(t) (2a)

y(t) = =(t) (2b)

where u(t) € R™ is the control input communicated by
the controller and B € R™*™ is a matrix.

We define the following proportional control law
which we would like to implement on the process:

u(t) = —K'y(t) = —K'z(t) 3)
where the factor K’ € R™*" is the controller gain and
is a controller design parameter. Combining Eq. 2a and
Eq. 3, the dynamics of the closed-loop process (when the
desired control law is implemented at every sampling
time, i.e., a noisy quantum device is not used in the
implementation of the control law) may be described as:

z(t+1) = (A— BK")z(t) 4)
The control objective of the PCS is to cause the origin
x = 0 to be asymptotically stable. Therefore, as dis-
cussed in Section II-B, it is necessary that p(A—BK') <
1 (i.e., K’ is assumed to be picked such that this is true).

2) Class of Systems With Quantum Noise

In the prior section, we developed the closed-loop
dynamic model in the case that the desired (and sta-
bilizing) control action is implemented on the process.
In this section, we update the closed-loop dynamics to
include the effects of noise from quantum devices on
the process. This requires the development of a strategy
for representing the noise. One way to do this would
be to represent the result of the quantum computation
as the desired result plus an additional bias that could
take a range of values. To develop theoretical results
which characterize the impacts of noise specifically
on the process dynamics (and to avoid obscuring the
noise effects via also considering nondeterminism due to
quantum algorithms), we consider that the computation
of the desired control action can be carried out by a
theoretically deterministic algorithm (e.g., QFT-based
addition [15]). with this assumption, and denoting u as
the result of Eq. 3, we model the effect of the noise on
the process through its creation of a modified input u':

u'(t) = u(t) + 8(t) = —K'z(t) + §(t) (5)
where 0(t) € R™ represents the error introduced because
of quantum noise, and w(t) is the correct value of the
control input. Combining Eq. 20 and Eq. 5, the dynamics
of the closed-loop process with control implemented on
the quantum device may be represented as:

z(t+1) = (A— BK")z(t) + Bi(t) (6a)

y(t) = x(t) (6b)

Fig. 1 illustrates the block diagram of a PCS using a
quantum device to compute the control input per Eq. 5.
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Fig. 1: Block diagram of a PCS implemented using a
quantum device.

3) Theoretical Results and Implications

If 6(t) in Eq. 6a can be arbitrarily large in magnitude,
it can cause x(t + 1) to move farther from the origin,
despite that K’ was chosen to cause z(t + 1) to move
toward x = 0 in the case that 6 = 0. However, if we
assume that § can take only finite and bounded values
(e.g., the qubit register size is fixed such that the range
of values which might be output on a noisy device
is limited to those which can be represented on that
register), then practical stability can be achieved (i.e., the
closed-loop state will remain bounded within a compact
set whose size depends on the magnitudes of the values
of § within the compact set A C R™ of all values that
it can take). The following proposition, a well-known
result in control theory (e.g., [12]) for linear systems with
bounded disturbances, formalizes this result. We repeat
the proof here to tie it directly to quantum computing
and to analyze some of the implications for attempting to
mitigate the impacts of error in NISQ devices as revealed
by analyzing the proof.

Proposition 1: Consider the closed-loop process in
Eq. 6 with a noisy quantum device with a finite reg-
ister size used to compute control inputs per Eq. 5.
Let the controller gain K’ be selected to render the
nominal (noise-free) process asymptotically stable with
p(A — BK’) < 1 and let all possible values of &
be bounded within a compact set A C R™. Given
z(0) € R, ||z(t)|| < M as t — oo, where M € R™T is
a positive constant.

Proof 1: The proof of this theorem follows [12].
Consider the process in Eq. 6 with p(A — BK') < 1,
where z(0) € R™. The evolution of the process states is
driven by the realization of the quantum noise acting on
the process at each time step, so that the norm of the
realization of the process state at a time step ¢ = n is:

lz(n)|| = (A — BK')"z(0)+
(A— BK"""'B§(0) +
+...+Bs(n—1)|

(A— BK")"2B§(1)

(7
Using the triangle inequality and the submultiplicative
properties of norms, Eq. 7 can be simplified to:

lz(r)ll < [I(A = BK)"[[[l(0)]]
+ (A= BE)" [ BIl5(0)]]
+ (A= BE)" 2| BI[|sL)]| + ...
+1Blll6(n — 1)

®)

The norm of the m!* term containing § in Eq. 8,
where 1 < m < n, is ||(A BEK")™™||||6(m —
D)||| B||. By writing (A— BK')* in its Jordan canonical
form PJP~! for an invertible P and block diagonal
J, and using the submultiplicative property of norms,
I(A = BE")"=| < || P|[[|[P=*][|.7"~™]|. Considering
p distinct eigenvalues with m; repetitions of the i-th
eigenvalue, we obtain the following expression for || J" |:
b my
S (o

=1 k=1 j=0

HE ) e o
Each term within the square root of ||J"|| is the n-
th element of a convergent sequence. The sums of
convergent sequences are convergent, meaning that the
whole of the term under the square root in Eq. 9 is a
convergent sequence, and its square root also converges.
Since convergent sequences are bounded, this implies
that for every value of n, the right-hand side of Eq. 9
can be bounded by M,,. Then, ||(A — BK')"~™| <
IPI|P~ My := Cp_m, so that the m'" term
containing 4 in Eq. 8 can be simplified to: C,_, |6 (m—
||| B]|- Since the quantum noise is bounded within a
compact set (A) at all times (i.e., §(m — 1) € A for all
m > 1), we have:

|6(m —1)|| < Rs :== max||¢’|| for all m > 1
5eA

(10)

Thus, the m'" term containing & of Eq 8 can be
simplified to: C),_,, Rs||B||. Substituting this in Eq. 8:

[z(n)[| < Cullz(0)]

+ (Cpe1 +Cra + . ..

Cs.n

Since the sequence of values of C,, converges to zero and
[lz(0)|| > 0 is finite, the first term in Eq. 11 converges
to 0 as n — oo, and is a finite and decreasing value for
all other n. Furthermore, Cs ,, is a convergent sequence.
Calling its upper bound C' indicates that when 7 is finite,
|lz(n)]| is bounded by a finite sequence of bounded terms
and thus is also bounded (we will call that upper bound
M) in Eq. 11 and as n — oo, ||z(n)|| converges to
CRs||B|| < M. This completes the proof.

Though the result above is well-known in control
theory, we have presented it to enable discussion of what
this proof indicates about error mitigation (in the sense
of improving the stability results) for NISQ devices.
Thus, we will now make several observations based on
different aspects of the closed-loop behavior based on
Proposition 1.

Observation 1. Proposition 1 demonstrates that the
closed-loop state of Eq. 6 with a quantum device com-
puting control inputs per Eq. 5 will remain bounded,
with an upper bound given by Eq. 11 for every n and
therefore dependent on Rs. Specifically, despite that the
device noise may prevent the closed-loop state from

+Co) Rs|| Bl (11)




converging to O (the desired setpoint), practical stability
is ensured (which means that the process states remain
finite). Based on the definition of Rs in Eq. 10, the
magnitude of Rs depends on the size of the set A in
which d lies. Since w(t) must always be within the
set of values that are possible for a quantum device to
compute, § is restricted by the quantum register size.
However, for larger quantum registers, this value may
become very large. Thus, the boundedness of the closed-
loop state may not translate to safety (i.e., the bound on
the state may be so large that there are states which
satisfy ||z(n)|| < M but which correspond to some
problematic operating condition from a manufacturing
viewpoint such as excessively high temperatures which
might create a hazardous operating condition). Thus, it is
necessary to consider how the result of Proposition 1 can
be made more practical to provide meaningful guidelines
regarding the use of NISQ devices for manufacturing
systems control.

One idea would be to restrict the value of R; (e.g.,
using only small quantum devices) to attempt to ensure
that no unsafe states satisfy ||z(n)|| < M with M
dependent on Rs from Eq. 11. This could be considered
an approach toward inherently safe design with the NISQ
device in the sense that it would not permit the NISQ
device to open the possibility that unsafe conditions
could be reached. However, this could also translate
into R; being small such that a very limited number of
control actions can be computed by the quantum register,
which may reduce the ability to use the actuators to
their full potential. Thus, to ensure practical stability
and safety through the specific result of Proposition 1,
one way to interpret the result is that if we would like
to continuously apply u = —K’z, we may need the
noise profile on the NISQ device (due to the device
construction and algorithm used) to keep §(n) bounded
within smaller sets than would be suggested via the full
register size.

Observation 2. As mentioned in Observation 1, the
specific result guaranteed by Proposition 1 may not be
useful from a manufacturing perspective in cases where
larger quantum registers are considered. Thus, we wish
to find ways to adjust the result to make it more useful
for guaranteeing safety of a manufacturing system and
thereby guiding NISQ device requirements (combined
with algorithm properties/gate depth which also affect
the degree of noise observed in a result). In [10], our
group proposed that one way to achieve safety during
operation would be to define a safe operating region (a
set of states denoted 2,) and a sufficiently conservative
subset of this region of operation (a sets of states denoted
,,) such that if the state is initialized within €2,,_, then
between two time steps, it cannot leave €2,. Then, when
it is outside €1,,_, a control law is implemented classically

(such that § = 0 for all times over which the classical
controller is implemented) to drive the closed-loop state
back into €2, so that the quantum computer can be
used to compute control actions again. The underlying
assumption was that the quantum device was computing
a control law that was more computationally-intensive
than the classical back-up controller such that there
was a motivation to using the quantum computer for
some of the control action computations. We can try
to understand what the extension of that concept might
look like for the linear system of Eq. 6 with control
inputs computed using the quantum computer per Eq. 5,
to see whether this method of attempting to circumvent
the issues with state boundedness in a potentially large
set in Proposition 1 due to the consistent application
of the quantum computer (i.e., no back-up control law)
provides insights into requirements for a NISQ device
and algorithm implemented on such a device.

The requirement for the design of €2, above could be
written as follows:

Q. ={z(n) e R" : z(n+1)€Q,, Vin)ecA}

12)
Making this explicit for the closed-loop dynamics of
Eq. 6 under Eq. 5, the requirement becomes that xz(n) €
Q,, if z(n+1) = (A — BK)z(n) + Bd(n) is in Q,,
for all 6(n) € A. This begins to become a requirement
that could be tested. Specifically, one could define a
region 2, and a set A based on the register size and
check what the worst-case value of xz(n + 1) is given
that register size. Then, (2, needs to be large enough to
contain all such z(n + 1). The region €2, may need
to be very small if 6(n) can be large; furthermore,
depending on the set of safe states for the system,
with large (n), there may not exist any 2, and ,,
combination which is suitable. One way to interpret
that would be that until the values of d(n) produced
by a NISQ device/algorithm combination are reduced
(i.e., there is a bound on the error that they produce in
the computations) to a level that enables 2, and 2,
to be characterized, that would imply that the back-
up controller-based strategy for mitigating the effects of
noise in a NISQ device is not viable.

Another approach to analyzing this idea, however,
would be to loosen the requirement that the state needs
to remain bounded within €, at all times under the
NISQ-computed control actions to instead requiring that
it needs to do so a certain percentage of the time. This
idea would utilize a risk management-based approach,
where a sufficiently small risk that the closed-loop state
may leave (2, is tolerated because there is no process
without risk. If we were to frame this concept, this might
include, for example, that given z(n) € Q,_, z(n + 1)
needs to be within €, with a certain probability. As a



first step toward understanding how this impacts device
requirements, one might try simulating the closed-loop
state under various device noise profiles to see which
translate to this requirement being met. That could help
to then showcase what types of noise profiles could lead
to acceptable behavior.

Observation 3. The third observation that we make
concerns the closed-loop behavior of the process. In
particular, the time evolution of the state as suggested
by the equation within the norm on the right-hand side
of Eq. 8 occurs under the assumption that uw = K'z(t) (in
the absence of device noise). However, we could imag-
ine attempting to create different closed-loop dynamics
through updating u(t) for several sampling periods.
Specifically, consider z(1), with u(0) = —K'z(0) +
5(0), as follows:

x(1) = (A — BK")z(0) + B&(0) (13)
When wu(1l) is being computed, §(0) has already
been realized. Thus, in principle, one could design
u(1) to attempt to cancel its effect. Specifically, con-
sider the prediction z(2) = Az(l) + Bu(l) =
A[(A—BK'")x(0) + B4(0)] + Bu(t) (for the case
that &(1) is predicted to be zero). If the goal of
the controller is to drive z(n) to 0, we could at-
tempt to choose w(1) such that, if the next realiza-
tion of the quantum device noise is d(1) = 0, then
x(2) = 0. The control law that would achieve this
is u(t) = —B '[A(A— BK")x(0) + ABS§(0)] (as-
suming an invertible B). Since the actual control ac-
tion that is then applied to the system is u(t) =
—B71[A(A — BK")z(0) + AB§(0)] + Bd(1) (due to
the device noise), the value of x(2) becomes:
x(2) = B6(1) (14)
We could then perform the same concept to develop u(2)
in an attempt to drive z(3) to zero, given §(1). Specifi-
cally, since z(3) = Ax(2) + Bu(2) = AB4(1) + Bu(2),
we can attempt to design w(2) such that it causes
x(3) to go to zero if 6(2) = 0. This would lead to
u(2) = —B 'AB6§(1) (again assuming an invertible
B). With this, the actual closed-loop dynamics would
be z(3) = B4(2), which has the same form as Eq. 14.
Thus, we can apply the procedure recursively (i.e., use
u(i) = —B71ABG§(i—1) for i > 2), and continue to get
that (i) = B(i — 1), ¢ > 2. The significance of this is
that this control strategy causes the value of x(%) to be an
explicit function of only B and 6(¢), which can make it
more straightforward to examine the consequences of a
given noise profile on the state trajectory. For example,
if one would like to specify that ||z(i)| < v with a
certain probability constitutes acceptable behavior for
the closed-loop system, then since ||z (7)|| < || B]|||é6(i —
DI < ||BJ|||6(¢=1)]|, ¢ > 2, this implies that meeting the
requirement corresponds to requiring that ||d(7)]] < BT

the required percentage of the time that the result must
hold. This then becomes an explicit requirement on the
noise profile, which can be useful from the perspective
of understanding whether a given NISQ device/algorithm
combination would “meet the mark.” We note that the
ease with which the benchmarking was performed here
comes from choosing a specific control law. However, we
could consider using this same type of principle to obtain
similar results from Eq. 11. Specifically, replacing Rj;
with ||§(n—1)]|| (based on Eq. 10), then the requirement
that ||z(n)|] < v could translate to a requirement that
Cpllz(0)]| + Csnl|Blll|6(n — 1)|| < v, which can be
solved for ||[6(n — 1)|| to specify the conditions on
the noise required to meet the control objective under
this control scheme. We note, however, that the specific
requirement on ||§(7)|| may be different with the control
scheme of Proposition 1 and with the control scheme
of Observation 3, highlighting that the specific control
strategy can impact what device/algorithm requirements
are needed to hit a specific control objective metric with
the quantum computer.

Observation 4. As a fourth observation, we note that
one of the challenges with using Proposition 1 is the
magnitude of Rs;. One idea for attempting to create
a more practical control situation would be to use a
classical post-processing strategy on a control action
computed by a quantum device. The post-processing
strategy may receive the control input from the quantum
device before it is implemented on the process and
“correct” the value computed by the quantum device so
that the control action applied does not exceed safety
bounds. For example, the post-processing classical filter
may check if at each time step, ||u(t) + K'z(t)|| < 7,
where 7 > 0 is a pre-specified tolerance on the control
input applied at the time step ¢. If the control input
computed by the quantum device exceeds the tolerance,
then the classical computer may override the quantum
computer and communicate a control input of wu(t) =
K'z(t) to the actuators. In this case, ||§(n)]| is restricted
by v (rather than Rs) in the proof of Proposition 1,
which means that the bound in Eq. 11 can be arbitrarily
specified by specifying the value of v used in the post-
processing filter. This would be unmotivated if u(t) was
truly intended to be —K’x (since the post-processing
algorithm is then also classically computing that value).
Nevertheless, the strategy might be studied for cases
where w is computed via other control laws to see
whether it aids with mitigating the effects of noise on
closed-loop stability.

These observations demonstrate the potential benefits
of control theory for guiding the design of control laws
and post-processing strategies that are appropriate for
NISQ devices, both in terms of their ability to serve the
needs of control and to attempt to both mitigate device




errors and reflect what characteristics are needed from a
quantum device/algorithm combination in terms of noise
profiles.

B. Profitability of Linear Systems Under Proportional
Control On Quantum Devices

The results related to stability in the prior section
inspire asking whether another important metric for
process operation, profitability/optimality, can also be
handled similarly (i.e., if control theory can guide the
formulation of control algorithms and post-processing
strategies that can reach performance goals in the midst
of NISQ era noise while providing guidelines for what
the noise profiles would need to be to hit such per-
formance goals for control action computation using
quantum devices). As a first step toward investigating
this, we consider a control law known as the linear
quadratic Gaussian (LQG) formulation. This is a control
law which is optimal with respect to a specific objective
function/metric in the presence of noise with a certain
shape. We discuss the formulation of this strategy and
demonstrate that despite its utility for systems with mea-
surement noise and uncertainty, it causes a component of
the control law to become unimportant when used with
the proportional part of the controller implemented using
a quantum device, suggesting a fundamental difference
in noise-handling for systems affected by measurement
noise and plant/model mismatch compared to quantum
noise. This section is structured as follows: first, we
discuss the class of systems to which LQG is typically
applied. Then, we make analogy between the closed-loop
dynamics of such systems and of a linear system under a
controller implemented with the aid of a noisy quantum
device. We then discuss differences between the LQG
formulation when implemented for the system with mea-
surement noise and plant/model mismatch versus with
the quantum noise, despite the analogies noted between
them. We close with a simulation that demonstrates that
the design of control strategies for noise-handling may
be different between the traditional control-theoretic case
with disturbances and plant/model mismatch and the case
of quantum noise.

1) Class of Systems Without Quantum Noise

In this section, we seek to analyze whether for optimal
operation of a linear system, we can perform a task sim-
ilar to that in the Section III-A. Specifically, we investi-
gate whether we can take a well-known control-theoretic
result and make an analogy between its application to the
traditional process systems (impacted by measurement
noise and plant/model mismatch) and those corrupted
by a noisy quantum device to understand the extent
to which the traditional control-theoretic results provide
insights on how control-theoretic principles might be
used in both understanding the effects of quantum device

noise on closed-loop dynamics and determining what
such studies imply for the requirements on NISQ era
devices/algorithms for control applications. In this sec-
tion, we thus describe the traditional process systems to
which LQG is applied, so that we can proceed in the next
section to make an analogy between these dynamics and
those of a linear system with control action computations
corrupted by quantum device noise.

The LQG-based control strategy [16] is designed for
processes that are subject to process disturbances and
measurement noise per the following equation:

x(t+1) = Ax(t) + Bu(t) + w(t) (15a)

y(t) = z(t) + v(t) (15b)

where w € R" is the process disturbance, and v € R™ is

the measurement noise vector. w and v are assumed to be

independent and both are white Gaussian noise with zero

mean. LQG is a controller given by u(t) = —Ki(t),

where Z(t) € R™ is called the “state estimate” and is
determined by the following equation:

2(t+1) = Az(t) + Bu(t) + L(y(t) — g(t)) (16a)

g(t) = &(t) (16b)

where § € R™ is the estimate of the measured output

generated by the state estimator, and L € R™*"™ is the

estimator gain. Thus, the closed-loop dynamics of the
process of Eq. 15 under LQG become:

x(t+1) = Ax(t) — BKZ(t) + w(t) (17)

2(t+1) = Az(t) — BK%(t) + Lz(t) + Lv(t) — Li(t)
(18)
We note that in general, (¢t 4+ 1) and &(t + 1) are not
equivalent for all ¢, even if £(0) = £(0), as long as w(t)
or v(t) are not both zero. To see this, we can analyze
the error dynamics of the system of Eqs. 17-18, where
the error is given by e(t) := x — % as follows:
e(t+1)=(A— L)e(t) + w(t) — Lv(t) (19)
This equation is structurally similar to Eq. 6, but with
BK' replaced by L and Bé(t) replaced by w(t) — Lu(t).
If p(A— L) < 1, then by the same steps as in Eq. 11,
|le(n)|| is bounded by a term that decays to zero as
t — oo and another term that depends on the magnitude
of the disturbances. If w(t) and v(¢) are unbounded, then
we would not guarantee practical stability because the
bounds on the disturbance in Eq. 11 could not be estab-
lished; however, if we consider a finite value of n and
consider that the disturbance realizations until that point
were bounded, we can place an upper bound on ||e(n)||
that depends on the maximum value of ||w(t) — Lu(t)||
observed until ¢ = n and thereby conclude that in general
we do not expect e(n) = 0 when w(t) and v(¢) are not
both zero for all ¢.
The LQG control law is optimal with respect to a
certain objective function. Thus, if we are able to make



analogies between the process in this section and one
in which errors come from a quantum device (instead
of plant/model mismatch and measurement noise), there
could be potential for making statements regarding prof-
itability of operation with respect to that same objective
function. This motivates exploring potential analogies in
the subsequent section.

2) Class of Systems With Quantum Noise

We now make the analogy between the dynamics
of the system of Eq. 20 when u(t) is computed by a
quantum device with noise and Eq. 15. Specifically, if
u(t) = u(t)+0(t), where @(t) is the control action corre-
sponding to the intended control law and J(¢) represents
the deviation from this intended control action due to the
device noise, we obtain the following dynamics:

x(t+1) = Az(t) + Bu(t) + Bo(t) (202)
y(t) = x(t) (20b)
Comparing Eqs. 20a-20b with Eqs. 15a-15b, we see that
Eqgs. 20a-20b are equivalent to Eqs. 15a-15b in that case
that v(¢) = 0 in Eq. 15b and that BJ(t) is white Gaussian
noise with zero mean. Though the specific noise profile
corresponding to a device/algorithm may not result in
practice in Bd(t) being white Gaussian noise with zero
mean, the analogy between these equations inspires us
to examine the closed-loop dynamics to see whether
the process of Egs. 20a-20b may obtain any type of
optimality result in analogy to LQG for the system of
Eq. 15.

Because LQG involves both a proportional control
computation and a computation of a state estimate,
we must designate which parts of the LQG will be
computed using the quantum device. In the study that
follows, we consider a control architecture that uses both
a classical computer and a quantum device. While the
quantum device computes the control inputs, the classical
computer generates the estimates of states. Under the
proposed architecture, at each time step, the measured
output communicated by the sensors is received by the
classical computer that generates estimates of process
states. The quantum device receives the estimates of
state from the classical computer and computes the
control inputs to be applied on the process. The control
input is communicated to the actuators which implement
the control action on the process, and to the classical
computer for use within the state estimate computation.

Using this framework, if we again consider the esti-
mate to be generated from Eq. 16, but with the control
action given by u(t) = —KZ + §(¢t) due to the quan-
tum device noise, we obtain the following closed-loop
dynamics:

a(t+1) = Az(t) — BK&(t) + Bs(t)  (21)

#(t+1) = Ai(t) — BK#(t) + La(t) + Bo(t) — La(t)
(22)

Notably, these dynamics are different from those in
Egs. 17-18 in an important way: the error dynamics
in this case are always zero if 2(0) = #(0) (which is
reasonable to expect given that full state feedback is
assumed to be available with uncorrupted measurements
according to Eq. 20b. To see this, consider the state
evolution in the presence of quantum noise at ¢t = 1:

z(1) = Az(0) + Bu(0) + B4(0) (23)
The state estimate is then given by:

(1) = Az(0) 4+ Bu(0)+ Bo(0) + L(y(0) — g(0)) (24)
Since perfect full state feedback is available, y(0) =
9(0). Thus, the final term in Eq. 24 is zero. Since also
x(0) = 2(0), at time ¢ = 1, the state and the state
estimate values are exactly the same. This means that
again y(1) = z(1) and ¢(1) = Z(1) are equal, so
that applying this result recursively, Z(¢) and x(t) are
equivalent for all ¢, such that e(t) = 0, V ¢ > 0, when
Z(0) = 2(0). We note that this is a fundamentally dif-
ferent result from Eq. 19. Furthermore, this is dependent
only on the general structure of the dynamics of Z(t)
being given by Eq. 16 (i.e., in Egs. 23-24, we did not
specify what control law @(¢) follows). This indicates a
significant structural difference between linear systems
impacted by measurement noise and disturbances versus
those impacted by the quantum noise in the controller
alone; in particular, it suggests that state estimators of the
form in Eq. 16 have no ability to play a role in strategies
for mitigating quantum noise impact when z(0) = Z(0).

To make the significance of this more clear, for the
process with plant/model mismatch and measurement
noise in Egs. 15, the role of the state estimator term is
to create control actions —K % (t) that are different from
those which would have been computed using — K x(t)
(since in general there is an error between Z(¢) and
x(t) from Eq. 19 when w(t) # 0 and v(¢) # 0. This
means that in that case, the estimator can be used to
create control actions that can be considered to have
an “awareness” of, for example, the measurement noise
(since it explicitly appears in Eq. 18), and also the
disturbances (since from Eq. 19, those also create a
deviation of z(t + 1) from &(¢ + 1) and z(¢), which
is impacted by w(t), appears in the right-hand side of
Eq. 18). However, this filter structure has no ability
to make the controller “aware” of any realizations of
the quantum noise since regardless of the control law
implemented, it causes e(t + 1) = 0, Vt.

This result implies several points regarding NISQ
device usage for control, and attempting to maintain
profitability of operation with a noisy computation de-
vice. On one hand, it shows that for the system of
Eq. 20 with 2(0) = 0 and Z(0) = 0, a filter with the
form in Eq. 16 cannot be used to attempt to modify
control actions on-line to attempt to maintain profitability



despite the noise. However, since the LQG solves a
specific optimal control problem, it could be beneficial to
seek to solve an optimal control problem that explicitly
considers u(t) = @(t) + §(¢) in the objective function
definition.

3) Insights from Simulation Studies with Simulated

Noise

In the prior section, we presented a case where
measurement noise and plant/model mismatch create
a fundamentally different behavior in the design of a
control law than quantum noise does. This is significant
because it helps to clarify that despite the utility of
classical control-theoretic principles for systems sub-
ject to disturbances in developing concepts for NISQ
devices to be used in process control as discussed in
Section III-A, there may be cases where the techniques
used for handling disturbances in traditional control do
not create the same effects for processes impacted by
noise from quantum devices. This helps to clarify that the
problem of analyzing how and when NISQ devices can
be used in control is not a fully solved problem by simply
applying all results of disturbance or noise-handling from
traditional control techniques without further analysis.
To emphasize this, this section presents a numerical
example that showcases similarities between the results
of applying LQG with and without a filter to a linear
system when the proportional component of the control
law is computed using a quantum simulator with the
depolarizing error noise model.

The specific process under consideration is as follows:

z(t+1) =z(t) +u(t) (25a)

y(t) = =(t) (25b)

The process in Eq. 25 fits the model for the process
considered in Eq. 2a-2b with A = 1 and B = 1. The
operational objective is to design a control law that drives
the state to the origin. We analyze the behavior of the
process under two strategies for control implemented
on a quantum device: (1) LQG with &(t) = z(¢) (i.e.,
no noise filtering) and (2) LQG with noise filtering
over a classical computer. Through these simulations,
we demonstrate the point from the prior section that the
use of the state estimator does not create an appreciable
difference between these strategies. We consider 100
different runs of the process of Eq. 25a under both
control laws, each for 500 time steps. In each case, the
process state is initialized at the setpoint of the process
2(0) = 0. To model actuator limitations, we restrict the
allowable control inputs to —1 < u(t) < 1 for all ¢ > 0,
meaning that if u(¢) at some time step is less than -1, we
set u(t) = —1, and if u(t) computed is greater than 1, we
set u(t) = 1. All classical processing is performed using
a 64-bit processor. The quantum computer is represented

using a 32-qubit quantum simulator gasm_simulator
provided by provided by IBM’s open source software
development kit, Qiskit (Version 0.46.0) [17]. We use the
depolarizing error function within IBM’s quantum sim-
ulator [18] by setting the error parameter (a) to 0.005.
The control law u(t) = —Kxz(t) is implemented using
a quantum Fourier transform (QFT)-based multiplication
algorithm that is deterministic in the absence of noise.

The specific algorithm that we implement leverages
the fact that multiplication may be thought of as repeated
addition and is discussed in [9]. Quantum addition and
multiplication algorithms can be carried out using a
QFT [15], [19]. The sequence of gates used by the QFT
operator to achieve the desired transformation include
Hadamard (H) and controlled Z-rotation (Z) gates. We
give a condensed description of the use of the quantum
simulator in the computation of the control actions here.

At every time ¢, either & or x is obtained. In the de-
scription of the algorithm that follows, we will consider
that = is obtained (but it can be readily replaced with &
when the LQG with state estimation is used). To work
with binary representations of numbers, scale x and K
by 10, round the result to the nearest integer, and convert
it to its binary equivalent. Either = or K (whichever
requires a larger number of bits to represent its binary
equivalent) is then designated as “a”, and the other as
“b”. Leading “0”’s are appended to set b to be the same
length as a. Shifted partial sums are then used to develop
the multiplication result, where:

axb=ag(2° x b) + a1 (2" x b) +az(2® xb) + ...+
an—2(2n_2 X b) + an—1(2n_1 X b)

(26)
where a; represents a digit of a in binary. Specifically,
each bit in the binary representation of b is scaled up or
“shifted” by a factor of 2! where t = 0,1,...,n — 1.
The length of each partial sum term on the right had
side of Eq. 26, ai(2ib), is fixed to 2n. This will result in
a set of terms which if multiplied by the corresponding
bit of ¢ and added will give the product of a and b. To
reduce the number of partial sum terms to be computed,
if a; =0, such that ¢ = 0,1,...,n — 2,n — 1, then the
partial sum term a;(2%b) is set to 0 and represented as a
2n-bit long set of zeros.

To compare the LQG with and without the state
estimator, we first consider the case with no estima-
tor. We set K = 0.6180 to minimize the quadratic
cost J = >02 (x(i)Qx(i)T + u(i)Ru(i)T), with the
weighting matrices chosen as () = 5 and R = 5. The
trajectories of the state observed over all simulations
remain bounded (as expected the realizations of the
noise are sufficiently small according to the proof of
Proposition 1), the states are continuously perturbed due
to the presence of quantum noise around the equilibrium
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Fig. 2: Distribution of the quadratic cost over 100

simulations of the process under control implemented
on a quantum simulator with: (a) no noise filtering, and
(b) noise filtering via an estimator implemented on a
classical computer.

value. The values of the process states observed over
all simulations had a mean of -0.07 and a standard
deviation of 0.29. Over each of the 100 simulations,
we evaluate the value of the quadratic cost function
Je = 0% (2()Qx(4)T + u(i)Ru(i)T) and observed
that J¢ values had a mean of 646.67 and a standard
deviation of 48.75.

We now consider implementing an LQG-based control
law with the proposed control architecture under which
control actions are computed over a quantum device
using state estimates from a classical computer with
a Kalman filter. Similar to the first case, we select
K = 0.6180 to minimize the quadratic cost J, with
@ =5 and R = 5. To choose the Gaussian distributions
for modeling quantum noise for the design of L, we
compared the realizations of process states over two
case studies with each consisting of 100 simulations
considering the process for 500 time steps. Under the
first case study, a linear control law with K = 0.6
is implemented over a classical computer modeling the
process subject to additive process disturbances and mea-
surement noise, whereas, under the second case study,
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Fig. 3: Trajectories of state and estimated state over a
simulation of process under control implemented on a
quantum simulator with noise filtering over a classical
computer.

0 50

we implemented the same control law over the quan-
tum simulator modeling noise with a depolarizing error
parameter = (0.005. Within the classical simulation
case study, we varied the values of standard deviations
of the disturbances and noise to choose the distribution
which fit all realizations of process states generated
over the case study considering the quantum simulator.
The best fit Gaussian distributions were A (0,0.666)
and N (0,0.0333) for the process disturbances and mea-
surement noise, respectively. We utilize the covariances
of the equivalent process disturbance and measurement
noise to compute an observer gain of L = 0.9975. Over
the simulations, we round the gain value to L = 0.9
(instead of L = 1) to avoid instability.

The trajectories of x and %, as shown in Fig. 2b
indicate that again the state is continuously perturbed
but bounded, and the values that of process states over
all simulations had a mean of -0.07 and 0.29, remaining
at the same values as for the controller without a filter.
The quadratic cost J¢ computed over all simulations for
the LQG with the filter had a mean of 645.54 and a
standard deviation of 52.59, which is comparable to the
performance of the control law without a filter (despite
that different realizations of the noise were used for the
two sets of simulations). Fig. 2a and Fig. 2b illustrate
the distribution of the quadratic costs J¢ over the first
simulation set with no filter, and the second simulation
set considering the LQG-based design strategy, respec-
tively, which differ due to the different realizations of the
noise. The estimation error for the LQG observed over
all 100 simulations remained at zero as predicted from
the discussion of the prior section. This is illustrated
in Fig. 3 for one simulation of the process, where the
state and the state estimate values are exactly the same
for all time. Thus, as discussed in the prior section,
for these conditions, a state estimator has no ability
to mitigate the impact of the noise on a process from
control implemented on a quantum device.
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