
Toward Strategies for Characterizing NISQ

Device Requirements in Linear Systems

Control via Stability and Profitability Analysis

1st Shilpa Narasimhan

Dept. of Chemical Engineering

and Materials Science

Wayne State University

Detroit, MI, USA

shilpa.narasimhan@wayne.edu

1st Keshav Kasturi Rangan
Dept. of Chemical Engineering

and Materials Science

Wayne State University

Detroit, MI, USA

keshav@wayne.edu

2nd Helen Durand

Dept. of Chemical Engineering

and Materials Science

Wayne State University

Detroit, MI, USA

helen.durand@wayne.edu

Abstract—Classical computing systems find utility in
performing engineering computations in both design and
operation of chemical manufacturing processes. During
operation, computing systems may be used within process
control systems (PCSs) to operate processes by computing
control actions. Control engineers may eventually need to
determine the utility of other computing devices such as
quantum devices (QCs) within PCSs. A QC that is not
fault-tolerant may introduce errors in control computations
due to the noise (e.g., quantum noise) and result in the
process states (e.g., temperature, concentration) deviating
from desired operating limits. Deviations of process states
may result in one or both of two undesirable consequences
that need to be addressed: (1) unsafe situations (e.g., due to
loss of containment) and (2) reduction in the profitability
of the process (e.g., due to low quality product). Thus,
it is currently unclear to what extent errors in noisy
intermediate-scale quantum (NISQ) devices would need
to be eliminated before they could have potential utility
for control action computation. In the current work, we
investigate how control theory might aid in guiding answers
to this question. We first characterize the stability of
linear processes with proportional control implemented on
a QC by treating quantum noise as a bounded disturbance
exogenous to the process. Then, we analyze the extent to
which an optimal control formulation for processes with
noise and plant/model mismatch might apply to processes
with unexpected control actions from a NISQ device. We
demonstrate the results using a single-input/single-output
system under a control law implemented using a quantum
simulator with a depolarizing error noise model affecting
the control action computations.

Index Terms—Control applied on quantum devices, Sys-
tems engineering, Stability and profitability of chemical
processes

I. INTRODUCTION

Automation systems play a key role in manufactur-

ing toward keeping processes running efficiently online.

Financial support from the National Science Foundation CBET-
2143469 and Wayne State University is gratefully acknowledged.

They automate operation through monitoring and adjust-

ing the process behavior using online sensors and com-

puting devices that interface with actuators. To enhance

efficiency, various computing and networking advances

have been incorporated into process control as they have

been developed. As examples, control algorithms have

been designed that consider the use of wireless networks

in data transmission between different elements of the

automation system [1], or that consider that the comput-

ing unit is capable of carrying out nonlinear optimization

algorithms [2]. Thus, just as control engineers have

evaluated the utility of other advances in computing, they

will need to evaluate whether quantum devices have any

control-relevant applications.

Given that classical computers are used to determine

control actions today, it is reasonable to ask whether

quantum devices could have any utility for that same

task. This question is particularly relevant for control

laws for which control engineers make approximations

today (e.g., using model order reduction of process

models [3]) due to a lack of sufficiently fast algorithms

for problems such as incorporating large-scale process

models within optimization-based control laws. One

direction that needs to be undertaken in answering this

question is to evaluate existing quantum algorithms and

investigate new ones to see whether they could provide

benefits for such problems. However, another problem

specific to control that would need to be addressed is

evaluating how any new algorithms need to be designed

to safely interact with the physical systems that would be

then impacted by the results of the quantum algorithm,

without significantly reducing profits compared to using

a classical device.

This second question remains relatively unexplored,

and the answer to this question should help define

directions for the first. Applications of quantum com-



puting related to control have included discussions of

potential algorithms in quantum computation that might

be relevant toward control [4], studies exploring the use

of quantum computing in optimal control calculations

for quantum systems [5], using a quantum annealer for

model predictive control [6], or in reinforcement learn-

ing [7]. However, control-theoretic safety/stability no-

tions have not been the focus. Our group has performed

several analyses of control algorithms implemented on

quantum devices, primarily with simple control laws and

quantum algorithms to chart a path toward understanding

the interactions between nondeterminism in quantum

algorithm outputs (due to either noise or probabilistic

algorithm outputs) and the stability of the process on

which the control actions are implemented [8], [9], [10].

However, these studies either did not provide control the-

ories for the observations (in the case of noisy quantum

devices) or did not consider noise. Also, none of our

prior studies examined how the potentially unexpected

control actions could impact profitability of operation.

In this work, we present safety and profitability of

operation as key metrics in understanding the potential of

NISQ devices to be used for computing control actions.

We study the potential of control-theoretic approaches

for creating safe and optimal control formulations for

linear dynamic systems in providing guidance on the

degree of error mitigation required by NISQ devices

for them to be potentially considerable for control, and

we discuss control and dynamic systems techniques as

an idea for mitigating the effects of device noise when

applying quantum computing in control action selection.

In these analyses, we consider two theoretical premises

(practical stability under bounded disturbances and op-

timal operation in the presence of disturbances under a

linear quadratic Gaussian (LQG) control law). Through

these studies, we identify areas where these theories

succeed at providing insights into the potential of using

noisy intermediate-scale quantum (NISQ) [11] devices

for control law implementation, and where they describe

the interaction of the NISQ devices with the control

problem inadequately (which guides future directions for

providing improved theories).

II. PRELIMINARIES

A. Notation and Definitions

The set of real numbers is represented by R, the set

of integers is represented by Z, and the set of complex

numbers is represented by C. I is the identity matrix. The

eigenvalues of a matrix A ∈ Rn×n, are those values of

λ for which Av = λv (v ∈ Rn is the corresponding

eigenvector). The spectral radius of A ∈ Rn×n is

defined as ρ(A) := maxnp=1|λp|. The Euclidean norm

of x = [x1 . . . xn]
T ∈ Rn is ∥x∥ =

(
x21 + . . .+ x2n

) 1

2 .

N (µ, σ) denotes a Gaussian distribution with mean µ

and standard deviation σ. Given A ∈ Cn×m, its Eu-

clidean norm is defined as ∥A∥ =
√

Σn
i=1Σ

m
j=1∥aij∥

2,

where aij are the elements of A. Given a constant

c ∈ R, ∥cA∥ = |c|∥A∥. Given matrices A ∈ Rn×o and

B ∈ Ro×m, the submultiplicative inequality of matrix

norms states that ∥AB∥ ≤ ∥A∥∥B∥. Similarly, given

matrices A ∈ Rn×m and B ∈ Rn×m, the triangle

inequality of norms states that ∥A+B∥ ≤ ∥A∥+ ∥B∥.

B. Control Theory for Discrete-Time Linear Dynamic

Systems

We highlight control-theoretic principles for processes

that can be modeled as discrete-time linear dynamic

systems as follows:

x(t+ 1) = Ax(t) (1a)

y(t) = x(t) (1b)

where x ∈ Rn is the state vector, y(t) ∈ Rn is the

state measurement (measured output) from the sensors,

A ∈ Rn×n is a matrix, and t ∈ Z is the time step.

A typical goal in control is the following: given any

initial state (state at time step t = 0), x(0) ∈ Rn,

it is desired to drive the process states to the desired

setpoint which is the origin x = 0. To characterize

when this occurs for the system in Eq. 1, we utilize

precise definitions of “stability.” The process in Eq. 1 is

considered to be stable if the response of the process is

bounded, i.e., ∥x(t)∥ < M < ∞ for all t ∈ Z, where

M ∈ R+ is a positive constant. The process in Eq. 1

is called asymptotically stable if it is stable and if the

states of the process converge to the origin after extended

period of operation, i.e., if limt→∞∥x(t)∥ → 0. Because

Eq. 1a implies that, given an initial state x(0) ∈ R,

the state at any time step t > 0 is x(t) = At−1x(0),
and by writing x(0) as a linear combination of an

orthonormal set of eigenvectors for A, the state x(t)
can be written as a linear combination of the basis

vectors where the coefficients of the linear combination

include the eigenvectors to the power t− 1. Thus, if the

complex magnitudes of the eigenvalues are less than one

(i.e., ρ(A) < 1), each of the coefficients of the linear

combination will decay to zero as t → ∞ so that the

process will be asymptotically stable [12].

C. Quantum Computing Notation and Definitions

A quantum state |ψ⟩ ∈ Cn may be represented in

vector form as: [a1 a2 a3 . . . an]
T , where ai ∈ C, for

p = 1, 2, 3, . . . , n, are coefficients such that Σn
p=1|ap|

2 =
1 and the square of the complex magnitude of the p-

th coefficient |ap|
2 represents the probability that the

system may be found in state i when measured. The

computational basis states for qubits are |0⟩ = [1 0]T

and |1⟩ = [0 1]T . A |x⟩ describes the evolution of the



quantum state |x⟩ under the operation as prescribed by

the gate A ∈ Cn×n.

III. TOWARD NISQ BENCHMARKING CONCEPTS

THROUGH STABILITY AND PROFITABILITY

ANALYSIS OF LINEAR SYSTEMS UNDER

PROPORTIONAL CONTROL ON QUANTUM

DEVICES

If quantum computers are used to compute control

actions, then it is important to understand how nonde-

terminism (e.g., due to noise in today’s quantum devices)

would impact safety of processes and profitability of op-

eration compared to using a classical device. It would be

preferable if full fault-tolerance was not required before

we could consider implementing control algorithms on

quantum devices; however, it is not currently known how

to establish targets for quantum device error mitigation

to make them suitable for various control actions. This

section provides a first effort toward utilizing control

theory to move toward filling this gap.

A. Stability of Linear Systems Under Proportional Con-

trol On Quantum Devices

In this section, we focus on the stability analysis of a

linear system (with no inherent plant/model mismatch)

for which the proportional control law is implemented

using a quantum device. We demonstrate that practical

stability can be achieved, but in practice this result pro-

vides useful guarantees only for inherently safe systems

or systems where the control actions are restricted to

being very small. To develop these results, we first

describe the class of process systems considered when

a classical computer is used for defining the control

actions. We then discuss the change in the closed-

loop dynamics when the quantum device with noise is

used, followed by a description of the practical stability

guarantees that result due to finite quantum register sizes.

However, for larger quantum register sizes, this result

may fail to bring useful stability results, so we suggest

a method for post-processing inputs computed by the

quantum device to reduce the size of the bounded set

into which the closed-loop state would be driven. We

discuss how setting a target size for that set may help

with assessing the noise characteristics required by a

NISQ device for it to be useful in control.

1) Class of Systems Without Quantum Noise

In this section, we describe the structure of the system

to which control actions will be applied (which in

subsequent sections will be considered to come from a

quantum device, but in this section is developed in the

absence of perturbations to the control law due to noise).

Though mathematical models describing the dynamics of

chemical processes are typically derived using a variety

of physics-based and/or data-based approaches for spe-

cific systems [13], we derive the results of this section

without reference to a specific process but instead for

any system that can be modeled through the following

class of discrete-time linear dynamic systems [14]:

x(t+ 1) = Ax(t) +Bu(t) (2a)

y(t) = x(t) (2b)

where u(t) ∈ Rm is the control input communicated by

the controller and B ∈ Rn×m is a matrix.

We define the following proportional control law

which we would like to implement on the process:

u(t) = −K ′y(t) = −K ′x(t) (3)

where the factor K ′ ∈ Rm×n is the controller gain and

is a controller design parameter. Combining Eq. 2a and

Eq. 3, the dynamics of the closed-loop process (when the

desired control law is implemented at every sampling

time, i.e., a noisy quantum device is not used in the

implementation of the control law) may be described as:

x(t+ 1) = (A−BK ′)x(t) (4)

The control objective of the PCS is to cause the origin

x = 0 to be asymptotically stable. Therefore, as dis-

cussed in Section II-B, it is necessary that ρ(A−BK ′) <
1 (i.e., K ′ is assumed to be picked such that this is true).

2) Class of Systems With Quantum Noise

In the prior section, we developed the closed-loop

dynamic model in the case that the desired (and sta-

bilizing) control action is implemented on the process.

In this section, we update the closed-loop dynamics to

include the effects of noise from quantum devices on

the process. This requires the development of a strategy

for representing the noise. One way to do this would

be to represent the result of the quantum computation

as the desired result plus an additional bias that could

take a range of values. To develop theoretical results

which characterize the impacts of noise specifically

on the process dynamics (and to avoid obscuring the

noise effects via also considering nondeterminism due to

quantum algorithms), we consider that the computation

of the desired control action can be carried out by a

theoretically deterministic algorithm (e.g., QFT-based

addition [15]). with this assumption, and denoting u as

the result of Eq. 3, we model the effect of the noise on

the process through its creation of a modified input u′:

u′(t) = u(t) + δ(t) = −K ′x(t) + δ(t) (5)

where δ(t) ∈ Rm represents the error introduced because

of quantum noise, and u(t) is the correct value of the

control input. Combining Eq. 20 and Eq. 5, the dynamics

of the closed-loop process with control implemented on

the quantum device may be represented as:

x(t+ 1) = (A−BK ′)x(t) +Bδ(t) (6a)

y(t) = x(t) (6b)

Fig. 1 illustrates the block diagram of a PCS using a

quantum device to compute the control input per Eq. 5.



Process
x(t + 1) = Ax(t) + Bu(t) + Bδ(t)

QuantumDevice
u(t) = −Kx(t)

Sensors
y(t) = x(t)

Actuators
u(t) + δ(t)

Fig. 1: Block diagram of a PCS implemented using a

quantum device.

3) Theoretical Results and Implications

If δ(t) in Eq. 6a can be arbitrarily large in magnitude,

it can cause x(t + 1) to move farther from the origin,

despite that K ′ was chosen to cause x(t + 1) to move

toward x = 0 in the case that δ ≡ 0. However, if we

assume that δ can take only finite and bounded values

(e.g., the qubit register size is fixed such that the range

of values which might be output on a noisy device

is limited to those which can be represented on that

register), then practical stability can be achieved (i.e., the

closed-loop state will remain bounded within a compact

set whose size depends on the magnitudes of the values

of δ within the compact set ∆ ⊂ Rm of all values that

it can take). The following proposition, a well-known

result in control theory (e.g., [12]) for linear systems with

bounded disturbances, formalizes this result. We repeat

the proof here to tie it directly to quantum computing

and to analyze some of the implications for attempting to

mitigate the impacts of error in NISQ devices as revealed

by analyzing the proof.

Proposition 1: Consider the closed-loop process in

Eq. 6 with a noisy quantum device with a finite reg-

ister size used to compute control inputs per Eq. 5.

Let the controller gain K ′ be selected to render the

nominal (noise-free) process asymptotically stable with

ρ(A − BK ′) < 1 and let all possible values of δ

be bounded within a compact set ∆ ⊂ Rm. Given

x(0) ∈ Rn, ∥x(t)∥ < M as t → ∞, where M ∈ R+ is

a positive constant.

Proof 1: The proof of this theorem follows [12].

Consider the process in Eq. 6 with ρ(A − BK ′) < 1,

where x(0) ∈ Rn. The evolution of the process states is

driven by the realization of the quantum noise acting on

the process at each time step, so that the norm of the

realization of the process state at a time step t = n is:

∥x(n)∥ = ∥(A−BK ′)nx(0)+

(A−BK ′)n−1Bδ(0) + (A−BK ′)n−2Bδ(1)

+ . . .+Bδ(n− 1)∥
(7)

Using the triangle inequality and the submultiplicative

properties of norms, Eq. 7 can be simplified to:

∥x(n)∥ ≤ ∥(A−BK ′)n∥∥x(0)∥

+ ∥(A−BK ′)n−1∥∥B∥∥δ(0)∥

+ ∥(A−BK ′)n−2∥∥B∥∥δ(1)∥+ . . .

+ ∥B∥∥δ(n− 1)∥

(8)

The norm of the mth term containing δ in Eq. 8,

where 1 ≤ m ≤ n, is ∥(A − BK ′)n−m∥∥δ(m −
1)∥∥B∥. By writing (A−BK ′)k in its Jordan canonical

form PJP−1 for an invertible P and block diagonal

J , and using the submultiplicative property of norms,

∥(A − BK ′)n−m∥ ≤ ∥P∥∥P−1∥∥Jn−m∥. Considering

p distinct eigenvalues with mi repetitions of the i-th

eigenvalue, we obtain the following expression for ∥Jn∥:

∥Jn∥ =

√
√
√
√

p
∑

i=1

mi∑

k=1

k−1∑

j=0

(
n!

(n− j)!j!

)2

∥λi∥2(n−j) (9)

Each term within the square root of ∥Jn∥ is the n-

th element of a convergent sequence. The sums of

convergent sequences are convergent, meaning that the

whole of the term under the square root in Eq. 9 is a

convergent sequence, and its square root also converges.

Since convergent sequences are bounded, this implies

that for every value of n, the right-hand side of Eq. 9

can be bounded by M̄n. Then, ∥(A − BK ′)n−m∥ ≤
∥P∥∥P−1∥M̄n−m := Cn−m, so that the mth term

containing δ in Eq. 8 can be simplified to: Cn−m∥δ(m−
1)∥∥B∥. Since the quantum noise is bounded within a

compact set (∆) at all times (i.e., δ(m− 1) ∈ ∆ for all

m > 1), we have:

∥δ(m− 1)∥ ≤ Rδ := max
δ′∈∆

∥δ′∥ for all m > 1 (10)

Thus, the mth term containing δ of Eq 8 can be

simplified to: Cn−mRδ∥B∥. Substituting this in Eq. 8:

∥x(n)∥ ≤ Cn∥x(0)∥

+ (Cn−1 + Cn−2 + . . .+ C0)
︸ ︷︷ ︸

Cδ,n

Rδ∥B∥ (11)

Since the sequence of values of Cn converges to zero and

∥x(0)∥ > 0 is finite, the first term in Eq. 11 converges

to 0 as n→ ∞, and is a finite and decreasing value for

all other n. Furthermore, Cδ,n is a convergent sequence.

Calling its upper bound C̄ indicates that when n is finite,

∥x(n)∥ is bounded by a finite sequence of bounded terms

and thus is also bounded (we will call that upper bound

M ) in Eq. 11 and as n → ∞, ∥x(n)∥ converges to

C̄Rδ∥B∥ < M . This completes the proof.

Though the result above is well-known in control

theory, we have presented it to enable discussion of what

this proof indicates about error mitigation (in the sense

of improving the stability results) for NISQ devices.

Thus, we will now make several observations based on

different aspects of the closed-loop behavior based on

Proposition 1.

Observation 1. Proposition 1 demonstrates that the

closed-loop state of Eq. 6 with a quantum device com-

puting control inputs per Eq. 5 will remain bounded,

with an upper bound given by Eq. 11 for every n and

therefore dependent on Rδ . Specifically, despite that the

device noise may prevent the closed-loop state from



converging to 0 (the desired setpoint), practical stability

is ensured (which means that the process states remain

finite). Based on the definition of Rδ in Eq. 10, the

magnitude of Rδ depends on the size of the set ∆ in

which δ lies. Since u(t) must always be within the

set of values that are possible for a quantum device to

compute, δ is restricted by the quantum register size.

However, for larger quantum registers, this value may

become very large. Thus, the boundedness of the closed-

loop state may not translate to safety (i.e., the bound on

the state may be so large that there are states which

satisfy ∥x(n)∥ ≤ M but which correspond to some

problematic operating condition from a manufacturing

viewpoint such as excessively high temperatures which

might create a hazardous operating condition). Thus, it is

necessary to consider how the result of Proposition 1 can

be made more practical to provide meaningful guidelines

regarding the use of NISQ devices for manufacturing

systems control.

One idea would be to restrict the value of Rδ (e.g.,

using only small quantum devices) to attempt to ensure

that no unsafe states satisfy ∥x(n)∥ < M with M

dependent on Rδ from Eq. 11. This could be considered

an approach toward inherently safe design with the NISQ

device in the sense that it would not permit the NISQ

device to open the possibility that unsafe conditions

could be reached. However, this could also translate

into Rδ being small such that a very limited number of

control actions can be computed by the quantum register,

which may reduce the ability to use the actuators to

their full potential. Thus, to ensure practical stability

and safety through the specific result of Proposition 1,

one way to interpret the result is that if we would like

to continuously apply u = −K ′x, we may need the

noise profile on the NISQ device (due to the device

construction and algorithm used) to keep δ(n) bounded

within smaller sets than would be suggested via the full

register size.

Observation 2. As mentioned in Observation 1, the

specific result guaranteed by Proposition 1 may not be

useful from a manufacturing perspective in cases where

larger quantum registers are considered. Thus, we wish

to find ways to adjust the result to make it more useful

for guaranteeing safety of a manufacturing system and

thereby guiding NISQ device requirements (combined

with algorithm properties/gate depth which also affect

the degree of noise observed in a result). In [10], our

group proposed that one way to achieve safety during

operation would be to define a safe operating region (a

set of states denoted Ωρ) and a sufficiently conservative

subset of this region of operation (a sets of states denoted

Ωρe
) such that if the state is initialized within Ωρe

, then

between two time steps, it cannot leave Ωρ. Then, when

it is outside Ωρe
, a control law is implemented classically

(such that δ = 0 for all times over which the classical

controller is implemented) to drive the closed-loop state

back into Ωρe
so that the quantum computer can be

used to compute control actions again. The underlying

assumption was that the quantum device was computing

a control law that was more computationally-intensive

than the classical back-up controller such that there

was a motivation to using the quantum computer for

some of the control action computations. We can try

to understand what the extension of that concept might

look like for the linear system of Eq. 6 with control

inputs computed using the quantum computer per Eq. 5,

to see whether this method of attempting to circumvent

the issues with state boundedness in a potentially large

set in Proposition 1 due to the consistent application

of the quantum computer (i.e., no back-up control law)

provides insights into requirements for a NISQ device

and algorithm implemented on such a device.

The requirement for the design of Ωρe
above could be

written as follows:

Ωρe
:= {x(n) ∈ Rn : x(n+ 1) ∈ Ωρ, ∀ δ(n) ∈ ∆}

(12)

Making this explicit for the closed-loop dynamics of

Eq. 6 under Eq. 5, the requirement becomes that x(n) ∈
Ωρe

if x(n + 1) = (A − BK)x(n) + Bδ(n) is in Ωρ,

for all δ(n) ∈ ∆. This begins to become a requirement

that could be tested. Specifically, one could define a

region Ωρe
and a set ∆ based on the register size and

check what the worst-case value of x(n + 1) is given

that register size. Then, Ωρ needs to be large enough to

contain all such x(n + 1). The region Ωρe
may need

to be very small if δ(n) can be large; furthermore,

depending on the set of safe states for the system,

with large δ(n), there may not exist any Ωρ and Ωρe

combination which is suitable. One way to interpret

that would be that until the values of δ(n) produced

by a NISQ device/algorithm combination are reduced

(i.e., there is a bound on the error that they produce in

the computations) to a level that enables Ωρ and Ωρe

to be characterized, that would imply that the back-

up controller-based strategy for mitigating the effects of

noise in a NISQ device is not viable.

Another approach to analyzing this idea, however,

would be to loosen the requirement that the state needs

to remain bounded within Ωρ at all times under the

NISQ-computed control actions to instead requiring that

it needs to do so a certain percentage of the time. This

idea would utilize a risk management-based approach,

where a sufficiently small risk that the closed-loop state

may leave Ωρ is tolerated because there is no process

without risk. If we were to frame this concept, this might

include, for example, that given x(n) ∈ Ωρe
, x(n + 1)

needs to be within Ωρ with a certain probability. As a



first step toward understanding how this impacts device

requirements, one might try simulating the closed-loop

state under various device noise profiles to see which

translate to this requirement being met. That could help

to then showcase what types of noise profiles could lead

to acceptable behavior.

Observation 3. The third observation that we make

concerns the closed-loop behavior of the process. In

particular, the time evolution of the state as suggested

by the equation within the norm on the right-hand side

of Eq. 8 occurs under the assumption that u = K ′x(t) (in

the absence of device noise). However, we could imag-

ine attempting to create different closed-loop dynamics

through updating u(t) for several sampling periods.

Specifically, consider x(1), with u(0) = −K ′x(0) +
δ(0), as follows:

x(1) = (A−BK ′)x(0) +Bδ(0) (13)

When u(1) is being computed, δ(0) has already

been realized. Thus, in principle, one could design

u(1) to attempt to cancel its effect. Specifically, con-

sider the prediction x(2) = Ax(1) + Bu(1) =
A [(A−BK ′)x(0) +Bδ(0)] + Bu(t) (for the case

that δ(1) is predicted to be zero). If the goal of

the controller is to drive x(n) to 0, we could at-

tempt to choose u(1) such that, if the next realiza-

tion of the quantum device noise is δ(1) = 0, then

x(2) = 0. The control law that would achieve this

is u(t) = −B−1 [A(A−BK ′)x(0) +ABδ(0)] (as-

suming an invertible B). Since the actual control ac-

tion that is then applied to the system is u(t) =
−B−1 [A(A−BK ′)x(0) +ABδ(0)] + Bδ(1) (due to

the device noise), the value of x(2) becomes:

x(2) = Bδ(1) (14)

We could then perform the same concept to develop u(2)
in an attempt to drive x(3) to zero, given δ(1). Specifi-

cally, since x(3) = Ax(2)+Bu(2) = ABδ(1)+Bu(2),
we can attempt to design u(2) such that it causes

x(3) to go to zero if δ(2) = 0. This would lead to

u(2) = −B−1ABδ(1) (again assuming an invertible

B). With this, the actual closed-loop dynamics would

be x(3) = Bδ(2), which has the same form as Eq. 14.

Thus, we can apply the procedure recursively (i.e., use

u(i) = −B−1ABδ(i−1) for i ≥ 2), and continue to get

that x(i) = Bδ(i− 1), i ≥ 2. The significance of this is

that this control strategy causes the value of x(i) to be an

explicit function of only B and δ(i), which can make it

more straightforward to examine the consequences of a

given noise profile on the state trajectory. For example,

if one would like to specify that ∥x(i)∥ ≤ ν with a

certain probability constitutes acceptable behavior for

the closed-loop system, then since ∥x(i)∥ ≤ ∥B∥∥δ(i−
1)∥ ≤ ∥B∥∥δ(i−1)∥, i ≥ 2, this implies that meeting the

requirement corresponds to requiring that ∥δ(i)∥ ≤ ν
∥B∥

the required percentage of the time that the result must

hold. This then becomes an explicit requirement on the

noise profile, which can be useful from the perspective

of understanding whether a given NISQ device/algorithm

combination would “meet the mark.” We note that the

ease with which the benchmarking was performed here

comes from choosing a specific control law. However, we

could consider using this same type of principle to obtain

similar results from Eq. 11. Specifically, replacing Rδ

with ∥δ(n−1)∥ (based on Eq. 10), then the requirement

that ∥x(n)∥ ≤ ν could translate to a requirement that

Cn∥x(0)∥ + Cδ,n∥B∥∥δ(n − 1)∥ ≤ ν, which can be

solved for ∥δ(n − 1)∥ to specify the conditions on

the noise required to meet the control objective under

this control scheme. We note, however, that the specific

requirement on ∥δ(i)∥ may be different with the control

scheme of Proposition 1 and with the control scheme

of Observation 3, highlighting that the specific control

strategy can impact what device/algorithm requirements

are needed to hit a specific control objective metric with

the quantum computer.

Observation 4. As a fourth observation, we note that

one of the challenges with using Proposition 1 is the

magnitude of Rδ . One idea for attempting to create

a more practical control situation would be to use a

classical post-processing strategy on a control action

computed by a quantum device. The post-processing

strategy may receive the control input from the quantum

device before it is implemented on the process and

“correct” the value computed by the quantum device so

that the control action applied does not exceed safety

bounds. For example, the post-processing classical filter

may check if at each time step, ∥u(t) + K ′x(t)∥ < ν̄,

where ν̄ > 0 is a pre-specified tolerance on the control

input applied at the time step t. If the control input

computed by the quantum device exceeds the tolerance,

then the classical computer may override the quantum

computer and communicate a control input of u(t) =
K ′x(t) to the actuators. In this case, ∥δ(n)∥ is restricted

by ν̄ (rather than Rδ) in the proof of Proposition 1,

which means that the bound in Eq. 11 can be arbitrarily

specified by specifying the value of ν̄ used in the post-

processing filter. This would be unmotivated if u(t) was

truly intended to be −K ′x (since the post-processing

algorithm is then also classically computing that value).

Nevertheless, the strategy might be studied for cases

where u is computed via other control laws to see

whether it aids with mitigating the effects of noise on

closed-loop stability.

These observations demonstrate the potential benefits

of control theory for guiding the design of control laws

and post-processing strategies that are appropriate for

NISQ devices, both in terms of their ability to serve the

needs of control and to attempt to both mitigate device



errors and reflect what characteristics are needed from a

quantum device/algorithm combination in terms of noise

profiles.

B. Profitability of Linear Systems Under Proportional

Control On Quantum Devices

The results related to stability in the prior section

inspire asking whether another important metric for

process operation, profitability/optimality, can also be

handled similarly (i.e., if control theory can guide the

formulation of control algorithms and post-processing

strategies that can reach performance goals in the midst

of NISQ era noise while providing guidelines for what

the noise profiles would need to be to hit such per-

formance goals for control action computation using

quantum devices). As a first step toward investigating

this, we consider a control law known as the linear

quadratic Gaussian (LQG) formulation. This is a control

law which is optimal with respect to a specific objective

function/metric in the presence of noise with a certain

shape. We discuss the formulation of this strategy and

demonstrate that despite its utility for systems with mea-

surement noise and uncertainty, it causes a component of

the control law to become unimportant when used with

the proportional part of the controller implemented using

a quantum device, suggesting a fundamental difference

in noise-handling for systems affected by measurement

noise and plant/model mismatch compared to quantum

noise. This section is structured as follows: first, we

discuss the class of systems to which LQG is typically

applied. Then, we make analogy between the closed-loop

dynamics of such systems and of a linear system under a

controller implemented with the aid of a noisy quantum

device. We then discuss differences between the LQG

formulation when implemented for the system with mea-

surement noise and plant/model mismatch versus with

the quantum noise, despite the analogies noted between

them. We close with a simulation that demonstrates that

the design of control strategies for noise-handling may

be different between the traditional control-theoretic case

with disturbances and plant/model mismatch and the case

of quantum noise.

1) Class of Systems Without Quantum Noise

In this section, we seek to analyze whether for optimal

operation of a linear system, we can perform a task sim-

ilar to that in the Section III-A. Specifically, we investi-

gate whether we can take a well-known control-theoretic

result and make an analogy between its application to the

traditional process systems (impacted by measurement

noise and plant/model mismatch) and those corrupted

by a noisy quantum device to understand the extent

to which the traditional control-theoretic results provide

insights on how control-theoretic principles might be

used in both understanding the effects of quantum device

noise on closed-loop dynamics and determining what

such studies imply for the requirements on NISQ era

devices/algorithms for control applications. In this sec-

tion, we thus describe the traditional process systems to

which LQG is applied, so that we can proceed in the next

section to make an analogy between these dynamics and

those of a linear system with control action computations

corrupted by quantum device noise.

The LQG-based control strategy [16] is designed for

processes that are subject to process disturbances and

measurement noise per the following equation:

x(t+ 1) = Ax(t) +Bu(t) + w(t) (15a)

y(t) = x(t) + v(t) (15b)

where w ∈ Rn is the process disturbance, and v ∈ Rn is

the measurement noise vector. w and v are assumed to be

independent and both are white Gaussian noise with zero

mean. LQG is a controller given by u(t) = −Kx̂(t),
where x̂(t) ∈ Rn is called the “state estimate” and is

determined by the following equation:

x̂(t+ 1) = Ax̂(t) +Bu(t) + L(y(t)− ŷ(t)) (16a)

ŷ(t) = x̂(t) (16b)

where ŷ ∈ Rn is the estimate of the measured output

generated by the state estimator, and L ∈ Rn×n is the

estimator gain. Thus, the closed-loop dynamics of the

process of Eq. 15 under LQG become:

x(t+ 1) = Ax(t)−BKx̂(t) + w(t) (17)

x̂(t+ 1) = Ax̂(t)−BKx̂(t) + Lx(t) + Lv(t)− Lx̂(t)
(18)

We note that in general, x(t + 1) and x̂(t + 1) are not

equivalent for all t, even if x(0) = x̂(0), as long as w(t)
or v(t) are not both zero. To see this, we can analyze

the error dynamics of the system of Eqs. 17-18, where

the error is given by e(t) := x− x̂ as follows:

e(t+ 1) = (A− L)e(t) + w(t)− Lv(t) (19)

This equation is structurally similar to Eq. 6, but with

BK ′ replaced by L and Bδ(t) replaced by w(t)−Lv(t).
If ρ(A − L) < 1, then by the same steps as in Eq. 11,

∥e(n)∥ is bounded by a term that decays to zero as

t→ ∞ and another term that depends on the magnitude

of the disturbances. If w(t) and v(t) are unbounded, then

we would not guarantee practical stability because the

bounds on the disturbance in Eq. 11 could not be estab-

lished; however, if we consider a finite value of n and

consider that the disturbance realizations until that point

were bounded, we can place an upper bound on ∥e(n)∥
that depends on the maximum value of ∥w(t)− Lv(t)∥
observed until t = n and thereby conclude that in general

we do not expect e(n) = 0 when w(t) and v(t) are not

both zero for all t.

The LQG control law is optimal with respect to a

certain objective function. Thus, if we are able to make



analogies between the process in this section and one

in which errors come from a quantum device (instead

of plant/model mismatch and measurement noise), there

could be potential for making statements regarding prof-

itability of operation with respect to that same objective

function. This motivates exploring potential analogies in

the subsequent section.

2) Class of Systems With Quantum Noise

We now make the analogy between the dynamics

of the system of Eq. 20 when u(t) is computed by a

quantum device with noise and Eq. 15. Specifically, if

u(t) = ū(t)+δ(t), where ū(t) is the control action corre-

sponding to the intended control law and δ(t) represents

the deviation from this intended control action due to the

device noise, we obtain the following dynamics:

x(t+ 1) = Ax(t) +Bū(t) +Bδ(t) (20a)

y(t) = x(t) (20b)

Comparing Eqs. 20a-20b with Eqs. 15a-15b, we see that

Eqs. 20a-20b are equivalent to Eqs. 15a-15b in that case

that v(t) ≡ 0 in Eq. 15b and that Bδ(t) is white Gaussian

noise with zero mean. Though the specific noise profile

corresponding to a device/algorithm may not result in

practice in Bδ(t) being white Gaussian noise with zero

mean, the analogy between these equations inspires us

to examine the closed-loop dynamics to see whether

the process of Eqs. 20a-20b may obtain any type of

optimality result in analogy to LQG for the system of

Eq. 15.

Because LQG involves both a proportional control

computation and a computation of a state estimate,

we must designate which parts of the LQG will be

computed using the quantum device. In the study that

follows, we consider a control architecture that uses both

a classical computer and a quantum device. While the

quantum device computes the control inputs, the classical

computer generates the estimates of states. Under the

proposed architecture, at each time step, the measured

output communicated by the sensors is received by the

classical computer that generates estimates of process

states. The quantum device receives the estimates of

state from the classical computer and computes the

control inputs to be applied on the process. The control

input is communicated to the actuators which implement

the control action on the process, and to the classical

computer for use within the state estimate computation.

Using this framework, if we again consider the esti-

mate to be generated from Eq. 16, but with the control

action given by u(t) = −Kx̂ + δ(t) due to the quan-

tum device noise, we obtain the following closed-loop

dynamics:

x(t+ 1) = Ax(t)−BKx̂(t) +Bδ(t) (21)

x̂(t+ 1) = Ax̂(t)−BKx̂(t) + Lx(t) +Bδ(t)− Lx̂(t)
(22)

Notably, these dynamics are different from those in

Eqs. 17-18 in an important way: the error dynamics

in this case are always zero if x(0) = x̂(0) (which is

reasonable to expect given that full state feedback is

assumed to be available with uncorrupted measurements

according to Eq. 20b. To see this, consider the state

evolution in the presence of quantum noise at t = 1:

x(1) = Ax(0) +Bū(0) +Bδ(0) (23)

The state estimate is then given by:

x̂(1) = Ax̂(0)+Bū(0)+Bδ(0)+L(y(0)− ŷ(0)) (24)

Since perfect full state feedback is available, y(0) =
ŷ(0). Thus, the final term in Eq. 24 is zero. Since also

x(0) = x̂(0), at time t = 1, the state and the state

estimate values are exactly the same. This means that

again y(1) = x(1) and ŷ(1) = x̂(1) are equal, so

that applying this result recursively, x̂(t) and x(t) are

equivalent for all t, such that e(t) = 0, ∀ t ≥ 0, when

x̂(0) = x(0). We note that this is a fundamentally dif-

ferent result from Eq. 19. Furthermore, this is dependent

only on the general structure of the dynamics of x̂(t)
being given by Eq. 16 (i.e., in Eqs. 23-24, we did not

specify what control law ū(t) follows). This indicates a

significant structural difference between linear systems

impacted by measurement noise and disturbances versus

those impacted by the quantum noise in the controller

alone; in particular, it suggests that state estimators of the

form in Eq. 16 have no ability to play a role in strategies

for mitigating quantum noise impact when x(0) = x̂(0).

To make the significance of this more clear, for the

process with plant/model mismatch and measurement

noise in Eqs. 15, the role of the state estimator term is

to create control actions −Kx̂(t) that are different from

those which would have been computed using −Kx(t)
(since in general there is an error between x̂(t) and

x(t) from Eq. 19 when w(t) ̸≡ 0 and v(t) ̸≡ 0. This

means that in that case, the estimator can be used to

create control actions that can be considered to have

an “awareness” of, for example, the measurement noise

(since it explicitly appears in Eq. 18), and also the

disturbances (since from Eq. 19, those also create a

deviation of x(t + 1) from x̂(t + 1) and x(t), which

is impacted by w(t), appears in the right-hand side of

Eq. 18). However, this filter structure has no ability

to make the controller “aware” of any realizations of

the quantum noise since regardless of the control law

implemented, it causes e(t+ 1) = 0, ∀t.
This result implies several points regarding NISQ

device usage for control, and attempting to maintain

profitability of operation with a noisy computation de-

vice. On one hand, it shows that for the system of

Eq. 20 with x(0) = 0 and x̂(0) = 0, a filter with the

form in Eq. 16 cannot be used to attempt to modify

control actions on-line to attempt to maintain profitability



despite the noise. However, since the LQG solves a

specific optimal control problem, it could be beneficial to

seek to solve an optimal control problem that explicitly

considers u(t) = ū(t) + δ(t) in the objective function

definition.

3) Insights from Simulation Studies with Simulated

Noise

In the prior section, we presented a case where

measurement noise and plant/model mismatch create

a fundamentally different behavior in the design of a

control law than quantum noise does. This is significant

because it helps to clarify that despite the utility of

classical control-theoretic principles for systems sub-

ject to disturbances in developing concepts for NISQ

devices to be used in process control as discussed in

Section III-A, there may be cases where the techniques

used for handling disturbances in traditional control do

not create the same effects for processes impacted by

noise from quantum devices. This helps to clarify that the

problem of analyzing how and when NISQ devices can

be used in control is not a fully solved problem by simply

applying all results of disturbance or noise-handling from

traditional control techniques without further analysis.

To emphasize this, this section presents a numerical

example that showcases similarities between the results

of applying LQG with and without a filter to a linear

system when the proportional component of the control

law is computed using a quantum simulator with the

depolarizing error noise model.

The specific process under consideration is as follows:

x(t+ 1) = x(t) + u(t) (25a)

y(t) = x(t) (25b)

The process in Eq. 25 fits the model for the process

considered in Eq. 2a-2b with A = 1 and B = 1. The

operational objective is to design a control law that drives

the state to the origin. We analyze the behavior of the

process under two strategies for control implemented

on a quantum device: (1) LQG with x̂(t) = x(t) (i.e.,

no noise filtering) and (2) LQG with noise filtering

over a classical computer. Through these simulations,

we demonstrate the point from the prior section that the

use of the state estimator does not create an appreciable

difference between these strategies. We consider 100

different runs of the process of Eq. 25a under both

control laws, each for 500 time steps. In each case, the

process state is initialized at the setpoint of the process

x(0) = 0. To model actuator limitations, we restrict the

allowable control inputs to −1 ≤ u(t) ≤ 1 for all t ≥ 0,

meaning that if u(t) at some time step is less than -1, we

set u(t) = −1, and if u(t) computed is greater than 1, we

set u(t) = 1. All classical processing is performed using

a 64-bit processor. The quantum computer is represented

using a 32-qubit quantum simulator qasm_simulator

provided by provided by IBM’s open source software

development kit, Qiskit (Version 0.46.0) [17]. We use the

depolarizing error function within IBM’s quantum sim-

ulator [18] by setting the error parameter (α) to 0.005.

The control law u(t) = −Kx(t) is implemented using

a quantum Fourier transform (QFT)-based multiplication

algorithm that is deterministic in the absence of noise.

The specific algorithm that we implement leverages

the fact that multiplication may be thought of as repeated

addition and is discussed in [9]. Quantum addition and

multiplication algorithms can be carried out using a

QFT [15], [19]. The sequence of gates used by the QFT

operator to achieve the desired transformation include

Hadamard (H) and controlled Z-rotation (Zk) gates. We

give a condensed description of the use of the quantum

simulator in the computation of the control actions here.

At every time t, either x̂ or x is obtained. In the de-

scription of the algorithm that follows, we will consider

that x is obtained (but it can be readily replaced with x̂

when the LQG with state estimation is used). To work

with binary representations of numbers, scale x and K

by 10, round the result to the nearest integer, and convert

it to its binary equivalent. Either x or K (whichever

requires a larger number of bits to represent its binary

equivalent) is then designated as “a”, and the other as

“b”. Leading “0”s are appended to set b to be the same

length as a. Shifted partial sums are then used to develop

the multiplication result, where:

a× b =a0(2
0 × b) + a1(2

1 × b) + a2(2
2 × b) + . . .+

an−2(2
n−2 × b) + an−1(2

n−1 × b)
(26)

where ai represents a digit of a in binary. Specifically,

each bit in the binary representation of b is scaled up or

“shifted” by a factor of 2t where t = 0, 1, . . . , n − 1.

The length of each partial sum term on the right had

side of Eq. 26, ai(2
ib), is fixed to 2n. This will result in

a set of terms which if multiplied by the corresponding

bit of a and added will give the product of a and b. To

reduce the number of partial sum terms to be computed,

if ai = 0, such that i = 0, 1, . . . , n − 2, n − 1, then the

partial sum term ai(2
ib) is set to 0 and represented as a

2n-bit long set of zeros.

To compare the LQG with and without the state

estimator, we first consider the case with no estima-

tor. We set K = 0.6180 to minimize the quadratic

cost J =
∑∞

i=0(x(i)Qx(i)
T + u(i)Ru(i)T ), with the

weighting matrices chosen as Q = 5 and R = 5. The

trajectories of the state observed over all simulations

remain bounded (as expected the realizations of the

noise are sufficiently small according to the proof of

Proposition 1), the states are continuously perturbed due

to the presence of quantum noise around the equilibrium



(a)

(b)

Fig. 2: Distribution of the quadratic cost over 100

simulations of the process under control implemented

on a quantum simulator with: (a) no noise filtering, and

(b) noise filtering via an estimator implemented on a

classical computer.

value. The values of the process states observed over

all simulations had a mean of -0.07 and a standard

deviation of 0.29. Over each of the 100 simulations,

we evaluate the value of the quadratic cost function

Je =
∑500

i=0(x(i)Qx(i)
T + u(i)Ru(i)T ) and observed

that Je values had a mean of 646.67 and a standard

deviation of 48.75.

We now consider implementing an LQG-based control

law with the proposed control architecture under which

control actions are computed over a quantum device

using state estimates from a classical computer with

a Kalman filter. Similar to the first case, we select

K = 0.6180 to minimize the quadratic cost J , with

Q = 5 and R = 5. To choose the Gaussian distributions

for modeling quantum noise for the design of L, we

compared the realizations of process states over two

case studies with each consisting of 100 simulations

considering the process for 500 time steps. Under the

first case study, a linear control law with K = 0.6
is implemented over a classical computer modeling the

process subject to additive process disturbances and mea-

surement noise, whereas, under the second case study,
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Fig. 3: Trajectories of state and estimated state over a

simulation of process under control implemented on a

quantum simulator with noise filtering over a classical

computer.

we implemented the same control law over the quan-

tum simulator modeling noise with a depolarizing error

parameter α = 0.005. Within the classical simulation

case study, we varied the values of standard deviations

of the disturbances and noise to choose the distribution

which fit all realizations of process states generated

over the case study considering the quantum simulator.

The best fit Gaussian distributions were N (0, 0.666)
and N (0, 0.0333) for the process disturbances and mea-

surement noise, respectively. We utilize the covariances

of the equivalent process disturbance and measurement

noise to compute an observer gain of L = 0.9975. Over

the simulations, we round the gain value to L = 0.9
(instead of L = 1) to avoid instability.

The trajectories of x and x̂, as shown in Fig. 2b

indicate that again the state is continuously perturbed

but bounded, and the values that of process states over

all simulations had a mean of -0.07 and 0.29, remaining

at the same values as for the controller without a filter.

The quadratic cost Je computed over all simulations for

the LQG with the filter had a mean of 645.54 and a

standard deviation of 52.59, which is comparable to the

performance of the control law without a filter (despite

that different realizations of the noise were used for the

two sets of simulations). Fig. 2a and Fig. 2b illustrate

the distribution of the quadratic costs Je over the first

simulation set with no filter, and the second simulation

set considering the LQG-based design strategy, respec-

tively, which differ due to the different realizations of the

noise. The estimation error for the LQG observed over

all 100 simulations remained at zero as predicted from

the discussion of the prior section. This is illustrated

in Fig. 3 for one simulation of the process, where the

state and the state estimate values are exactly the same

for all time. Thus, as discussed in the prior section,

for these conditions, a state estimator has no ability

to mitigate the impact of the noise on a process from

control implemented on a quantum device.
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