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ABSTRACT

Ecosystems are undergoing unprecedented persistent deterioration due to unsustainable anthropogenic human activities, such as overfishing 
and deforestation, and the effects of such damage on ecological stability are uncertain. Despite recent advances in experimental and 
theoretical studies on regime shifts and tipping points, theoretical tools for understanding the extinction chain, which is the sequence of 
species extinctions resulting from overexploitation, are still lacking, especially for large-scale nonlinear networked systems. In this study, 
we developed a mathematical tool to predict regime shifts and extinction chains in ecosystems under multiple exploitation situations and 
verified it in 26 real-world mutualistic networks of various sizes and densities. We discovered five phases during the exploitation process: 
safe, partial extinction, bistable, tristable, and collapse, which enabled the optimal design of restoration strategies for degraded or collapsed 
systems. We validated our approach using a 20-year dataset from an eelgrass restoration project. Counterintuitively, we also found a specific 
region in the diagram spanning exploitation rates and competition intensities, where exploiting more species helps increase biodiversity. 
Our computational tool provides insights into harvesting, fishing, exploitation, or deforestation plans while conserving or restoring the 
biodiversity of mutualistic ecosystems.

  

1. Introduction

Increasing evidence has shown that human activities have pushed the Earth’s system outside its resilient and sustainable state, which in 
turn poses an existential risk to humans [1]. Therefore, quantifying the impact of humans on the resilience of complex systems to climatic 
change has become an urgent yet challenging mission, known as Safe Operating Spaces [2,3], as shown in Fig. 1(a). It quantifies safe 
boundaries for local stressors, such as exploitation rates, synchronized with climatic variations. Although conceptually powerful, a safe 
operating space is designed to model the properties of a highly abstract macroscopic system without considering the interactions between 
its dynamic components. However, real-world ecological systems, such as mutualistic networks (Fig. 1(b) [4]), contain interactions between 
many dynamic components governed by nonlinear dynamics [5,6]. Consequently, the boundaries can be described as the border between 
the safe and collapse regimes [7,8].

Studies on the boundaries between different operating spaces could help understand system resilience when considering human 
interventions such as exploitation and restoration [9,10]. The intrinsic characteristics observed in numerous complex systems underscore 
their capacity to adapt their operations in order to preserve their fundamental functionality in the presence of errors and failures. Resilience 
loss is rarely predictable and is often irreversible, described by a sudden downgrade among alternative stable states [11], also known as 
regime shift [12,13]. Regime shifts of ecosystems, such as mutualistic and food networks, are frequently triggered by disruptions such as 
species removal [14,15], weight reduction [16], and individual trait variation [17]. Such critical transitions, in which a system abruptly 
shifts from one stable state to another, could fundamentally alter the structure and function of ecosystems and have profound implications. 
Consequently, investigating regime shifts and identifying tipping points is essential for understanding ecosystem stability and resilience. 
By identifying and understanding the drivers, patterns, and mechanisms of these regime shifts, ecosystem changes can be better predicted 
and managed to protect and maintain ecosystem functionality and sustainability. Such research also aids in formulating effective ecological 
policies and management measures to address the impacts of environmental change and human activities on ecosystems. Thus, studying 
regime shifts is crucial to achieving sustainable ecosystem management and biodiversity conservation. 

Therefore, numerous efforts have been made to monitor system states, forecast extinction chains, and identify the most vulnerable species  
[18,19] by leveraging empirical data and network theory. Gao et al. [16] developed a dimension-reduction method that derives an effective 
one-dimensional dynamic by making full use of the topologies and dynamics of large-scale networks. Subsequently, a reduced two-
dimensional (2D) model of bipartite mutualistic networks was proposed to predict the tipping points [20]. Laurence et al. [21] established 
a spectral dimension-reduction framework with justifications for the necessary effective dimensions for studying critical breakdowns. Tu 
et al. [22] considered systems with heterogeneous dynamic mechanisms. Based on the interactions between network topology and dynamics, 
Morone et al. [23] discovered a k-core predictor of structural collapse in mutualistic ecosystems. Zhang et al. [24] introduced a scaling 
factor for recovery rates that places various systems with different dynamic parameters, network structures, and state perturbations on the 
same scale, enabling us to compare the distances to tipping points across multiple ecosystems.

Despite recent efforts, understanding the resilience of a networked system when a part of it is undergoing human overexploitation or 
other interventions remains an open question. This includes the intensive exploitation of certain fish species, high-value timber, and 
comprehensive development, all of which can result in significant environmental damage. This is because the nonlinear equation format is 
not identical and depends on the number of nearest neighbors when partial species are under exploitation. These limitations are rooted in a 
theoretical gap: Existing approaches usually consider a system that satisfies a mean-field approximation when all species are under a similar 
threat and will survive or become extinct simultaneously. However, depending on the exploitation rates and targeted ranges, the use of the 
mean-field approach to predict extinct species remains challenging. 

In this study, we developed an analytical tool to quantify the response of an ecosystem to human exploitation based on a dimension-
reduction method. This method allows us to quantitatively specify and predict species-level tipping points and extinction chains (Fig. 1(c)). 
Such analytical tools contribute to paving the way for studying the resilience of abundant natural, social, and engineering networks, 
predicting tipping points, and providing early warnings, thus guiding the conservation and restoration [25,26] of real large-scale systems. 
By applying the tool to real-world ecological networks, we revealed a previously unrecognized regime shift encompassing five distinct 
states: safe, partial extinction, bistable, tristable, and collapse, which is significantly different from the qualitative or downscaled boundaries 
(Fig. 1(a)) in Refs. [3,5]. Based on a phase diagram incorporating these five regimes, we developed an active reintroduction strategy to 
restore and revive degraded ecosystems. The ecological engineering approach, aimed at promoting human and ecological well-being, is 
further corroborated by the observed restoration data from eelgrass–fish mutualistic networks in the midwestern Atlantic coastal lagoons.
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Fig. 1. System resilience under human exploitation. (a) The boundary between the safe operating and collapse spaces. For an ecosystem, 
the safe boundaries of local stressors frequently shift in response to changing environmental conditions. (b) A conceptual anemone–fish 
mutualistic system. The image is from Ref. [4]. (c) System response to exploitation under different conditions: (i) system stays in the safe 
regime under minor local stress, such as exploitation rate, or environmental change after the removal of perturbations or environment 
restoration; (ii, iii) certain species may not recover under larger local stress or in harsh environment conditions. The functional tipping point 
𝑓𝑐1 indicates where the system crosses the safe-partial extinction boundary; (iv) in specific cases, the exploited species might “pull down” 
other unexploited species, leading to a collapse of the whole system. The ecological tipping point 𝑓𝑐2 marks the shift from partial extinction 
to collapse. Parameters are set as the intrinsic growth rate 𝛼𝑖 = −0.3, the intraspecific competition strength 𝛽𝑖𝑖 = 1, the interspecific 
competition strength  𝛽𝑖𝑗 = 0.001, the half-saturated constant ℎ = 0.2, the level of mutualistic strength 𝛾0 = 1, the impact of the tradeoff 

between interaction strength and the number of interactions 𝛿 = 0.5, and the extinction threshold Θ = 0.001. 

2. Materials and methods

2.1 Nonlinear dynamics in mutualistic systems under exploitation stressors

We use a generic bipartite mathematical model to evaluate the dynamic evolution of species abundance driven by intrinsic growth, 
intraspecific and interspecific competition, mutualistic interactions between species [20,27,28] (e.g., plants and pollinators), and external 
exploitation stresses: 
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where the 𝑁-dimensional system composes 𝑁P plants and 𝑁A pollinators with abundance 𝑃𝑖(𝑖= 1,…,𝑁P) and 𝐴𝑖(𝑖= 1,…,𝑁A), 
respectively. 𝑁P is the total number of the plants and 𝑁A is the total number of the pollinators. 𝑓P

𝑖  and 𝑓A
𝑖  are the exploitation rate on 

certain species i; 𝜎P
𝑖  and 𝜎A

𝑖  are the binary variables to indicate the exploited species. For simplicity without loss of generality, we apply 
the same exploitation rate 𝑓 to every exploited species. 𝛼P

𝑖   and 𝛼A
𝑖  are the intrinsic growth rates in the absence of any competition or 

external stresses; 𝛽𝑖𝑖  and 𝛽𝑖𝑗 represent the intraspecific and interspecific competition strength, respectively, depending on environmental 
conditions (typically, intraspecific competition weights are much higher than interspecific competition weights, 𝛽𝑖𝑖 ≫ 𝛽𝑖𝑗); 𝛾𝑖𝑗 = 𝜀𝑖𝑗𝛾0/𝐾𝛿𝑖  
is the benefit of mutualism regulated by a half-saturated constant ℎ, denoting the essence of mutualistic effects. γ0 is the level of mutualistic 

strength. 𝜀𝑖𝑗 = 1 suggests that species 𝑖 directly interacts with species 𝑗 (𝑗 ≠  i); otherwise, 𝜀𝑖𝑗 = 0. 𝐾𝑖 is the number of species that 
benefit from the interaction with species 𝑖; 𝛿 determines the impact of the tradeoff between interaction strength and the number of 
interactions, that is, the network topology’s influence on mutualistic interactions, which is normalized in the range [0,1]. Throughout the 
study, 𝑡 denotes time, the initial conditions of species abundance are randomly chosen, and the system is considered to have reached 
equilibrium when the difference between iterations is less than 0.00001. In this study, we apply the nonlinear dynamics in Eq. (1) to 26 
benchmark mutualistic networks from the Web of Life database, composed of four categories: plant–pollinator, seed–disperser, anemone–
fish, and plant–ant networks (Table S1 in Appendix A).

The concept of safe operating space for a mutualistic network is illustrated in Fig. 1(c). Within a safe regime (Fig. 1(c-i)), species 
abundance could recover after removing local stressors such as harvest or environmental change combinations. However, once local 
stressors or environmental conditions exceed the functional tipping point 𝑓𝑐1, the most endangered species become extinct, followed by an 
extinction chain as the local stressor continues to escalate (partial extinction regime). The system stays in the partial extinction regime 



  4

because of the high local stressor and proper environment (Fig. 1(c-ii)), or the low local stressor and hostile environment (Fig. 1(c-iii)). 
When the local stressor, such as the exploitation rate, exceeds the ecological tipping point 𝑓𝑐2—the “point of no return”—the entire 
mutualistic network could be severely degraded or even collapse (Fig. 1(c-iv)) and cannot spontaneously recover, even after unloading the 
exploitation stress. Here, we defined the number of layers in an extinction chain as its depth and the largest number of species in one layer 
as its width.

2.2. Tipping points and extinction chains prediction

We present a systematic tool for predicting tipping points and extinction in an ecosystem that considers both network structure and 
dynamics. The various fundamental processes highly depend on the exploitation range and rate; however, the beginning and endpoint are 
more discernible. Therefore, the general concept guiding our predictions is to retrace the extinction chains. The preliminary identification 
of species facing extinction is accomplished through network topology analysis, with particular emphasis placed on those detached from 
the largest cluster component following the removal of the exploited species. Subsequently, by employing dimension-reduction techniques, 
we estimate the system states at different stages along the extinction chains, which in this case refers to species abundances.

There are four steps for tipping points and extinction prediction:
Step 1: Estimate the extinct species set according to network topology.
The extinction set V = Vexploited ∪Vco―extinct  is obtained by excluding the exploited species set Vexploited , and identifying species 

detached from the largest cluster component as co-extinct species set Vco―extinct , including Z species. 
Step 2: Estimate the final system state when all species in V extinct.
As all species 𝑚 (𝑚= 1,...,𝑍) in V extinct, that is 𝜎P

𝑚𝑓P
𝑚𝑃𝑚 = 0, 𝜎A

𝑚𝑓A
𝑚𝐴𝑚 = 0 in Eq. (1), we estimate the abundances of other 

species using the dimension-reduction method. Detailed information is provided in Appendix A, and we develop the reduced four-
dimensional (4D) model as 
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                 (2)

Let 𝑃eff and 𝐴eff represent the effective abundances of plants and pollinators, respectively; 𝑃eco and 𝐴eco describe how different 
types of species influence each other and the strength of such interlayer effect. 𝛼eff-P, 𝛼eff-A, 𝛼eco-P, and 𝛼eco-A are the intrinsic growth 
terms. The dynamical interactions of species within plants/pollinators are also governed by their nearest neighbors through the interaction 
terms; here, the intraspecific competition strength of species is represented by 𝛽eff-P

s , 𝛽eff-A
s , 𝛽eco-P

s , and 𝛽eco-A
s , which is analogous to 𝛽𝑖𝑖 

in the 𝑁-dimensional model. Effective interspecific competition strengths are 𝛽eff-P, 𝛽eff-A, 𝛽eco-A, and 𝛽eco-A, while interacting 
mutualistic effects among different systems denoted by 𝛾eff-P, 𝛾eff-A, 𝛾eco-P, and 𝛾eco-A. With the effective states, the system states 𝑃𝑖 
and 𝐴𝑖—representing species abundance—could be estimated by decoupling the 𝑁-dimensional system. Eq. (1) could be converted as 
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We evaluate the equilibrium state when d𝑃𝑖/d𝑡=0 and d𝐴𝑖/d𝑡=0, ensuring the right-hand side of Eq. (3) is zero with 𝑃𝑖 ≥ 0, 𝐴𝑖 ≥ 0. 
Hence, the system states could be solved directly. This approach allows us to dynamically update the extinction set whenever a species’ 

abundance falls below the threshold Θ. (For more detailed influences of parameters such as Θ, refer to Appendix A Fig. S1.) The solutions 
align well with those obtained from the original 𝑁-dimensional model, demonstrating a mean error less than 0.1, as shown in Appendix A 
Figs. S2. Additionally, a comparison of the system-state estimation with existing methods is presented in Appendix A Figs. S3 and S4.

Step 3: Derive the exploitation rate 𝑓 when the species in V extinct.
We sort the species in V based on their degree of endangerment, as indicated by their original abundances arranged in descending order. 

This sorting strategy underscores that species with higher abundances and positioned further from the extinction threshold have a better 
chance of survival. When the extinction procedure approaches an end, the exploitation rate is estimated with the following procedure:

(1) Final state approximation: Gradually remove species from V until any effective state (𝑃eff or 𝐴eff) rises above 0, indicating an 
almost-final state of the system. This step helps in determining the critical juncture before system collapse.

(2) States estimation for surviving species: At the end of the extinction chain, we estimate the abundances of surviving species by solving 
Eq. (2) and (3). Here, the abundances of all species 𝑚 ∈ V are set to 0, focusing solely on those species that persist. 

(3) States approximation for extinct species: For species 𝑚 ∈ V, we approximate their abundances while holding the abundances of 
surviving species constants.

(4) Exploitation rate estimation: Calculate exploitation rate 𝑓 with Eq. (1), utilizing the approximated final effective states and system 
states. Considering potential inaccuracies arising from extinction order and system-state estimation, we define 𝑓 as the maximum of all 
calculated rates for both plants and animals, 𝑓= max[𝑓P

1,...,𝑓P
𝑁P,𝑓A

1,...,𝑓A
𝑁A], and then round it up as 𝑓= ⌈𝑓⌉. In single-species exploitation 

scenarios, 𝑓= 𝑓𝑐2.
Step 4: Peel back to get the extinction chain from the final degraded state.
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Gradually decrease the exploitation rate from 𝑓, and estimate the abundances for species in set V. The surviving species’ states are set 
as constants, thus releasing the computational complexity, now that only 𝑍 species’ abundances need to be tracked. The revived species, 
if any, comprise the latest layer of the extinction chain with the corresponding exploitation rates as their tipping points and then obtain the 
new extinction set V.

Repeat until all species in V are assigned in the extinction chain from the bottom up with their tipping points.
In addition, we predict extinction chains based on network structure and dynamics such as species abundance, average vertex strength, 

the mutualistic species ranking method MusRank [29], and nodal contribution to nested architecture [19]. Species abundance is obtained 
by the four-dimensional model free from exploitation. The average vertex strength (𝑠𝑖) is defined as the average of the species’ link 
strengths, 𝑠𝑖 = ∑𝑁𝑗≠i 𝜀𝑖𝑗(𝐾𝑖 + 𝐾𝑗)/∑𝑁𝑗≠i 𝜀𝑖𝑗. The accuracy of predicting extinction chains using such criteria when capturing one or two 
species is shown in Appendix A Figs. S5 and S6. The results of the proposed framework, as shown in Appendix A Figs. S5–S9 and Tables 
S2–S4, certainly outperform those methods.

3. Results and discussion

3.1. Regime shifts and extinction chains of ecosystems

We investigated the tipping points and extinction chains of the ecological network denoted as M_PL_017. The network comprises 25 
plants, 79 pollinators, and 299 interactions obtained from Bristol, United Kingdom. The network topology is illustrated in Fig. 2(a). To 
investigate how an ecosystem reacts to overexploitation, we introduce the exploitation term to a certain fraction of the species until the 

system reaches a new stable state and the abundance of extinct species falls below the threshold Θ. Subsequently, we withdraw the 
exploitation rate and observe whether the abundance recovers.

Mathematically, we start from the initial condition, 𝑃𝑖(0)≫ 0 and 𝐴𝑖(0)≫ 0 (healthy high state), numerically solve the ordinary 
differential equations (ODE) equations in Eq. (1) with given 𝑓, and then we set all 𝜎i to be 0 (no exploitation) and obtain its final steady 
state. Figs. 2(a)–(d) show the final steady states as a function of the exploitation rate 𝑓 if we only exploit a single species. When 𝑓 is 
small, the system always recovers its original state. However, co-extinction occurs as 𝑓 increases. For example, when capturing species 1, 
ten species spontaneously go extinct if 𝑓 ≥ 𝑓𝑐1 = 3.7, while the rest of the species can still recover to a high state close to their original 
state. As we continue to increase 𝑓, species 1 becomes extinct. The widths and depths of the extinction chains are 10 and 2, respectively. 
Similarly, we show the extinction chains when we exploit species 4 and 15 in Figs. 2(c) and (d), respectively. The tipping points and shapes 
of the extinction chains vary with the specific exploited species. More importantly, the generalists, such as species 1, with more interactions 
and higher abundance, often cause more co-extinction than others, such as species 4 and 15, not to say specialists. 



  6

Fig. 2. Extinction chains are ubiquitous and diverse. (a–d) Example of exploiting single species. All possible species that may trigger co-
extinction and the associated co-extinct species are highlighted in the structure of network M_PL_017. (b–d) Three cases of co-extinction 
evolution and the corresponding multilayer extinction chains with increasing exploitation rate 𝑓. More precisely, exploitation rates below 
the functional tipping points 𝑓𝑐1 will not cause species extinction, whereas exploited species extinct at the ecological tipping points 𝑓𝑐2. 
(e–l) Co-extinction phenomena become sophisticated when more species are under threat; (e–h) 20% of the system’s species are exploited, 
and (i–l) 80% are exploited, which may lead to system collapse. In the upper half of (b–d), (f–h), and (j–l), the colored solid lines are co-
extinct species corresponding to different layers of extinction chains in the lower half, and light gray lines represent other surviving species.

Our numerical findings suggest that an extinction chain reveals interdependencies for species survival. Identifying these 
interdependencies could provide insights into why certain species face extinction, even in the absence of direct exploitation. Consequently, 
detecting extinction chains could guide us in considering the most endangered species rather than only the exploited ones. Note that this 
process generalizes resilience studies focusing on node/link removal or weight reduction [16], as the node removal process is analogous to 
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the special case when 𝑓> 𝑓𝑐2. Such continual and gradual exploitation mimics the more widespread exploitation of the ecosphere and 
validates that the extinction chain can be triggered by both local extermination of species or a significant decline in abundance, 
corresponding to functional extinction [18].

We also present a common scenario in which a portion of the ecosystem is under exploitation. Fig. 2 shows examples of the exploiting 
20% and 80% of all species. We discovered that apart from the exploited species, other species without direct exploitation may also become 
extinct [31] owing to the loss of mutualistic interactions, forming extinction chains with various patterns. The co-extinct species are 
highlighted in the network (Figs. 2(a), (e), and (i)). When only a few species are exploited, extinction chains may not appear, and the 
ecosystem could maintain a safe or partial extinction state, even under high perturbation rates. By contrast, as the exploitation range 
increases, for example, to 80%, as shown in Figs. 2(i–l), the system may collapse even under a small exploitation rate. We present additional 
findings involving diverse networks characterized by varying growth rates and exploitation levels in Appendix A Figs. S10–S14 and Table 
S2.

By examining the exploitation process of 26 benchmark mutualistic networks, we encountered universal co-extinction phenomena and 
extinction chains in mutualistic ecosystems of different types, scales, and geographical locations. However, within the same network, 
exploiting various species results in distinct sizes and shapes of extinction chains. Moreover, their depths and widths varied significantly 
among the various networks (Figs. S15–S17 in Appendix A). Although ecosystems show resilience and revival under minor exploitation 
rates and ranges, they cross the safe operating space boundary and fall into undesirable regimes under augmented stress. Enlarging the 
exploitation rate triggers co-extinction, whereas an increased exploitation range scales up ecosystem degradation, decreases tipping points, 
and expands the width of extinction chains. Indeed, the shape of the extinction chain is vital for early warning of co-extinction and 
corresponding conservation strategies. For example, a flat but wide extinction chain requires more urgent safeguards than a deep but narrow 
chain because the collapse of the entire system may be abrupt and unexpected.

3.2. Regime shift prediction in large-scale networks

To effectively predict diverse exploitation patterns in complex systems, we extend the dimension-reduction approach [16] to bipartite 
networks that model the topology and dynamics of mutualistic networks. By estimating the influence of the exploited species on the overall 
species abundance, we derive an analytical method to accurately predict the co-extinction species and their tipping points in extinction 
chains (Figs. S1, S5, S10–14, and S18–19 in Appendix A). For simple cases, such as single species (Figs. 2(a)–(d)) or two-species 
exploitation scenarios (Figs. S6 and S20 in Appendix A), the order of the species in the extinction chain and its shape can be accurately 
predicted. In the multiple-species cases (Figs. 2(e)–(l) and Fig. S7 in Appendix A), extinction chain prediction becomes more challenging 
as the exploitation range or rate increases, and nontrivial phenomena appear, such as bistable and tristable regime shifts. Despite the extreme 
complexity of multiple-species exploitation, we precisely forecast the most endangered species (Fig. S7(e)), which can be used as an early 
warning signal of cascading extinction in mutualistic networks. All extinction chains presented in Fig. 2 were correctly predicted. The error 
estimation and analysis are shown in Appendix A.

3.3. Emergence of novel bistable and tristable regimes

To reveal the regimes of exploited ecosystems and define a safe operating space, we methodically expand the exploitation rate and range 
of mutualistic systems. Regime shifts occur as ecosystems are pushed from the “basin of attraction” of states, leading to “folded” multiple 
alternative stable states separated by unstable equilibrium [32]. When a part of the system is exploited, the final system state is determined 
not only by the exploitation rate and range but also by the specific exploited species. To reveal the connections among the exploitation rate, 
exploitation range, and system state, we performed extensive simulations exploiting randomly selected species, given specific exploitation 
rates and ranges (Fig.3; Figs. S5, S16, and S17 in Appendix A). Different simulations led to distinct system states owing to the variations 
in the exploited species. From all the simulation results, we calculate the probabilities of the system being in a state of safety, partial 
extinction, or collapse.

Under mild perturbations with low exploitation rates and ranges, the system remains in the safe or partial extinction regime even when 
all species are exploited (Fig. 3). In particular, given a certain exploitation range and rate, the system may fall into a multistable area (Fig. 
3(b)). Fig. 3(e) shows the corresponding degradation process: After decreasing from a single stable state, such as the safe or partial extinction 
(one basin of attraction), the system could enter into either a partial or a majority extinction state (bistable regime)–on some occasions, even 
collapsing with an increasing exploitation range (tristable regime)–and then gradually degrading to either the majority extinction or collapse 
state (bistable regime).
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Fig. 3. Exploitation of multiple species of network M_PL_017. (a–c) The probability of the system being in different regimes as a function 
of the exploitation range. The bars show the relative frequency of different states, and the curves represent logistic regression models. (d–
f) The corresponding Gaussian kernel density estimation of 4200 trials. The tristability area in (e) suggests a double catastrophe-fold, 
whereas subfigure (f) contains bistable areas. Cluster size was arcsine square-root transformed, and rare occasions detected at a frequency 
of < 5% were excluded. Stable equilibria correspond to peaks of the probability density curves and the solid lines beneath, while unstable 
equilibria correspond to the valleys of the probability density curves and dashed lines. Peaks too close to each other (difference less than 
14) are merged, and those with small prominence (smaller than 0.0001 or 0.5% of the highest peak) are excluded.

Ultimately, an irrational exploitation range leads to collapse. A sufficiently high perturbation rate (Figs. 3(c) and (f)) leads to more severe 
damage and deteriorates the system state to easily shift from safe to partial extinction, bistable (either majority extinction or collapse), and 
eventually to a certain collapse. The detection of bistability and tristability could help us understand the resilience patterns and regime shifts 
of mutualistic networks, which have profound implications for the restoration of degraded ecosystems [33–35] and for building sustainable 
systems.

3.4. Resilience of mutualistic networks in a deteriorating environment

When ecosystems suffer from drastic changes or hostile environments, such as those resulting from eutrophication, excessive interspecific 
competition leads to species extinction, even in the absence of exploitation stress (Figs. S21–S23 in Appendix A). The conventional result 
would be that more species decline, which gradually leads to a loss in biodiversity under fierce competition (large 𝛽𝑖𝑗) as the exploitation 
rate and range [19,29,36,37] increase. Counterintuitively, under specific scenarios (Fig. 4(a)), the decline in species diversity is mitigated 
at certain exploitation rates. Moreover, there are specific counterintuitive regions in the phase diagram where exploiting more species could 
even help increase ecosystem biodiversity. 

One plausible explanation for this phenomenon is rooted in ecological principles, according to which a reduction in the abundance of 
dominant species could mitigate interspecific competition within the ecosystem [38]. In many ecosystems, dominant species exert strong 
competitive pressure, thereby reducing overall biodiversity. However, strategically exploiting these dominant species could alleviate 
competitive pressure by decreasing their abundance. This creates opportunities for other species to thrive and boosts the overall biodiversity. 
This phenomenon has also been observed in various other ecological scenarios, including food webs and predator–prey relationships [39,40]. 
Protecting top predators is crucial because they regulate lower trophic levels, similar to how humans conduct harvesting activities. 
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Fig. 4. Counterintuitive areas and abrupt system collapse. (a) Average species abundance and biodiversity evolution with increasing 
exploitation range under different exploitation rate 𝑓 and intraguild competition intensity 𝛽𝑖𝑗. System’s average species abundance and 
biodiversity generally decrease as the exploitation range increases under certain 𝑓 and 𝛽𝑖𝑗, as in the blue area. (b–e) Correlations between 
cluster size or number of extinct species and different species’ abundance as exploitation range increase. (b, c) In most cases, species 
abundance (including leaf nodes and others) and cluster size decrease as the exploitation range expands. (d, e) For counterintuitive areas 
(red dots and area in (a)), the average species abundance of leaf nodes as well as biodiversity suddenly increased as the exploitation range 
expanded, whereas the average species abundance of other species showed opposing trends that were positively correlated with biodiversity 
loss. In (a), the red and yellow areas represent 95% confidence intervals for the counterintuitive and predicted areas, where the correctly 
predicted counterintuitive area is highlighted in orange (with a Jaccard’s index of similarity of 0.9530). A counterintuitive region is defined 
as the region with an average cluster size that rebounds by more than 3.3 (shaded area in (d)) and is predicted as a region where species 
abundance abnormally increases to more than 105% of the original unexploited value when all species in the ecosystem are being exploited 
(shaded area in (e)). Here the species abundance and cluster size have been normalized.

To elucidate the mechanisms underlying these counterintuitive phenomena, we conducted an in-depth analysis of the evolution of species 
abundance with an increasing exploitation range. In this analysis, specialists, characterized as leaf nodes within the system, are considered 
indicators because of their lower degree of connectivity and heightened sensitivity to critical transitions [41]. As shown in Fig. 4, the 
average species abundance of leaf nodes is positively correlated with cluster size, whereas the average species abundance of non-leaf nodes 
is negatively correlated with the number of co-extinct species. In counterintuitive cases, the average species abundance of leaf nodes shows 
a similar initial decrease followed by an increase in cluster size as the exploitation range expands with losses in average species abundance, 
and we determined that the anomalous twist occurs when the average species abundance with exploitation surpasses that under exploitation-
free conditions. We predict the counterintuitive area by focusing on system responses when all species are being exploited. More specifically, 
the counterintuitive area is predicted when the average species abundance of the leaf nodes surpasses 105% of the original scenario before 
exploitation. When most of an ecosystem is exploited in a hostile environment, a regime shift between degradation and disastrous collapse 
becomes more evident (Figs. S21–S23 in Appendix A).
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Fig. 5. Regime shift with contained threats and reintroduction. (a) Phase diagram of exploitation range and rate. The phase diagram is 
revealed by the probability density curves acquired through Gaussian kernel density estimation from 4200 trials. For the unimodal (safe, 
partial extinction) phases, we show the degradation process with a color bar and mark the multistable areas. (b–f) Restoration trajectory. 
We provide five different routes for restoration: constantly reintroducing 5% of the original biomass for extinct species or reducing the 
exploitation range, exploitation rate, or both. These approaches could compensate for overexploitation and rescue systems from collapse to 
safety. Solid lines represent cluster size, dotted lines mark regime boundaries, lines with triangle markers indicate the recovery process, 
while purple/green/blue lines correspond to low/medium/high states of the double catastrophe-fold. In (c) and (d), the exploitation range 
and rate decrease parabolically and proportionally, respectively, and in (e) they alternate.

3.5. Restoration trajectory in the phase diagram

We mapped multiple simulations and acquired a complete phase diagram of the M_PL_017 network (Fig. 5). The ecosystem exhibited 
first-order phase transitions on the partially extinction-bistable, bistable-tristable, and tristable-collapse boundaries, indicating tipping points 
from safe to degraded. Moreover, regardless of the initial conditions, the final status of the ecosystem in the exploitation rate-competition 
intensity space can be predicted solely according to the combinations of exploitation rate 𝑓 and competition intensity 𝛽. When ecosystems 
are already degraded or have collapsed owing to overexploitation, we seek practical strategies to restore them to prosperity using the 
revealed five-phase diagram. Using the derived exploitation rate-cluster size phase diagram, we provided systematic schemes for ecosystem 
restoration, which include both the reintroduction of extinct species and reduction in the exploitation range or rate. Furthermore, we 
simulated active restoration strategies on network M_PL_017, demonstrating the ongoing reintroduction of 5% of the original biomass for 
all extinct species. Threats were effectively contained by decreasing the exploitation range (Fig. 5(b)), exploitation rate (Fig. 5(f)), or both 
(Figs. 5(c)–(e)). These strategies successfully steered the damaged system back to safety through diverse trajectories, demonstrating trends 
similar to those of the degradation process caused by exploitation. 
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Fig. 6. Recovery of seagrass habitat from degradation in mid-western Atlantic coastal lagoons. (a) Network structure. The restored 
mutualistic network is constructed according to the restoration project data. The size of “fish” markers suggests their biomass. (b) Seagrass 
revival data. The reintroducing rate is obtained by annual seeded area and eelgrass cover. (c, d) Reintroduction strategy. Parameters are 
fitted according to the time series of seagrass cover and fish biomass in the first five years. Data have been normalized. Parameters: 𝛼=  
0.1400, 𝛾0 = 0.0005, 𝛽𝑖𝑖 = 1, 𝛽𝑖𝑗 = 0.0025, ℎ = 0.9995, and 𝛿=  0.9978.

We also verified the proposed model (Eq. (1)) and an active restoration strategy using actual revival data [30] for the midwestern Atlantic 
coastal lagoons (Fig. 6) over the last 20 years. The dataset includes information on eelgrass cover, reintroduced amounts of eelgrass, and 
fish biomass. We focus on reintroduced species of eelgrass (Zostera marina) and ten fish species (Bairdiella chrysoura, Anchoa mitchilli, 
Lagodon rhomboides, Leiostomus xanthurus, Sygnathus fuscus, Orthopristis chrysoptera, Menidia menidia, Centropristis striata, 
Paralichthys dentatus, and Chilomycterus schoepfii) most recorded over the years. Reintroducing rates are obtained using annual seeded 
area and eelgrass cover, as in Fig. 6(b), while parameters such as intrinsic growth rate 𝛼 and intraspecific and interspecific competition 
strengths 𝛽 are selected using a genetic algorithm, fitted to the time series of seagrass cover and fish biomass in the initial five years. The 
parameters are processed to minimize the mean square error (MSE) compared with real data. Initial abundance of fish as well as the 

reintroduced species of eelgrass are randomly chosen from (0, Θ), where the threshold for species extinction is Θ= 0.001. The system 
cannot automatically recover without reintroduction at a given initial abundance. As we conduct the reintroduction strategy, the normalized 
numerical simulation results match the real data quite well in terms of eelgrass cover (Fig. 6(c), correlation coefficient: 0.9848; MSE: 
0.0042) and fish biomass (Fig. 6(d), correlation coefficient: 0.9222; MSE: 0.0166). The simulation results for seagrass cover and fish 
biomass recovery aligned well with the data collected from the restoration project, thus, the feasibility of the proposed model is verified. In 
addition, we found that, in two of the 26 networks, adding a certain leaf node [42] partly enhanced the resilience (Fig. S24 in Appendix A). 
This suggests the potential application of active reintroduction or alien invasion in preventing massive extinctions (Table S5 in Appendix 
A).

4. Conclusions

In summary, we constructed a dynamic mutualistic model that incorporates internal driving mechanisms, interspecies interactions, human 
activities, and external environmental disturbances. We propose a dimension-reduction method designed to accurately predict tipping points 
and extinction chains under human exploitation, effectively bridging the gap between complex systems theory and practical predictions of 
natural ecosystem outcomes.

Although ecosystems exhibit resilience and revival under minor exploitation rates and ranges, they cross the safe operating space 
boundary and shift to undesirable regimes under augmented stress. This study introduces a comprehensive phase diagram that categorizes 
the exploitation rate range space into five distinct regions: safe, partial extinction, bistable, tristable, and collapse. The present study sheds 
light on the analysis of extinction evolution, the identification of extinction factors, and understanding of the mechanisms behind the 
counterintuitive functioning of exploited ecosystems. 

Furthermore, our research extends beyond a theoretical exploration to offer practical applications in ecological engineering. From a 
human intervention perspective, the revealed five-phase diagram guides systematic restoration schemes for ecosystems already degraded 
or on the edge of collapse due to overexploitation. Particularly, we focus on transitioning ecosystems from zones at risk of extinction to 
safe areas through strategic control measures. This includes the reintroduction of extinct species and a targeted reduction in exploitation 
rates and ranges to recover vulnerable ecosystems. 

This study mapped simulations to thoroughly understand phase transitions in the networked M_PL_017 ecosystem. To validate the 
approach, the proposed model and active restoration strategy were quantitatively verified using data from midwestern Atlantic coastal 
lagoons over the last 20 years. This not only underscores the practical relevance of the study but also reinforces its real-world applicability. 
The mutualistic system, involving eelgrass and ten fish species, showed simulation results that aligned well with data collected from the 
restoration project, particularly in terms of seagrass cover and fish biomass recovery. This robust, application-oriented approach contributes 
significantly to ecosystem management and restoration.

With the continuous expansion of open-source datasets for diverse ecosystems, the proposed prediction and rescue methods can be refined 
and expanded. This includes broader coverage of larger and more varied mutualistic ecosystems, as well as potential applications to different 
ecosystem types characterized by commensalism, parasitism, competition, and beyond. Such endeavors promise to deepen our 
understanding of ecological conservation and restoration, paving the way for more effective ecosystem management strategies in the future. 
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