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Understanding healthcare system resilience has become paramount,
particularly in the wake of the COVID-19 pandemic, which imposed
unprecedented burdens on healthcare services and severely impacted

public health. Resilience is defined as the system’s ability to absorb, recover
fromand adapt to disruptions; however, despite extensive studies on

this subject, we still lack empirical evidence and mathematical tools to
quantify its adaptability (the ability of the system to adjust to and learn

from disruptions). By analyzing millions of patients’ electronic medical
records across US states, we find that the COVID-19 pandemic caused two
successive waves of disruptions within the healthcare systems, enabling
natural experiment analysis of the adaptive capacity of each system to adapt
to past disruptions. We generalized the quantification framework and found
that the US healthcare systems exhibit substantial adaptability (p = 0.58)
but only amoderate level of resilience (r = 0.70). When considering system
responses across racial groups, Black and Hispanic groups were more
severely impacted by pandemic disruptions than white and Asian groups.
Physician abundance was the key characteristic for determining healthcare
system resilience. Our results offer vital guidance in designing resilient and
sustainable healthcare systems to prepare for future waves of disruptions
akinto COVID-19 pandemics.

Global crises such as climate change, environmental pollution, conflicts
or global pandemics continue to pose great challenges to the health-
care system"?. These challenges are not solely a result of the escalating
scale of these crises but also their prolonged duration with successive
disruptions. The COVID-19 pandemic is a convergence of these dual
challenges—an unprecedentedly large-scale crisis that has persisted
for over 2 years, occurred in multiple waves and resulted in millions of
hospitalizations and over 1.2 million deaths in the United States (US;
Fig.1a). The pandemic hasled to disruptions toroutine medical services,
stemming from factors such as public fear of infections during visits to
healthcare facilities®, stay-at-home policies*, patient access to care and

limited supply of services. This has led to delays and cancellations in
non-COVID-19 emergency services and essential care*, and the inability
to maintainessential servicesled to adverse and lasting consequences.
Forinstance, in the US, 9.4 million cancer screenings, and treatments
were either delayed or canceled due to the pandemic’ and the maternal
mortality rateincreased from 0.017%in 2019 to 0.032% deaths in 2021
(refs. 6,7). Furthermore, the pandemic has disproportionately impacted
marginalized groups such as people of color, low-income populations
and those with underlying health conditions®”’.

To improve overall public health outcomes and mitigate the
negative consequences, it is important to enhance the resilience of
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Fig.1|Adaptive responses to successive disruptions in healthcare systems.

a, Asseenin the dataon COVID-19 hospitalizations, the pandemic brought
successive disruptions to healthcare systems. b, The adaptive response cycle
within the healthcare system involves multiple cycles of disruption and recovery,
leading to enhanced resilience through learning from previous disruptions. By
examining the system’s performance in maintaining non-COVID-19 patient visits
(c-f), we assess its adaptability and resilience during successive disruptions. With
two disruptions as the example in ¢, when the disruption event i (for example, onset
ofthe COVID-19 pandemic and second wave of the outbreak) occurs at time &,

Non-COVID-19 patient visits O(t)
— Expected Non-COVID-19 patient visits P(t)

the healthcare system'’s performance (non-COVID-19 visits) begins to decline,
reaches a negative peak and then returns to the target performance level at by
Eachdisruptioniundergoes adisruption and recovery phase, characterized by
disruption amplitude (a,), disruption duration (7; = b, = ts,-)' disruption rate (u;)
andrecoveryrate (v,). ¢, Asystem with low resilience and low adaptability.

d, Asystemwith highresilience is characterized by smaller amplitude/duration.
e, Asystem with high adaptability is characterized by its ability to better absorb
disruptions u;,, < u;or quicker recover v;,, > v;during the second disruption.

f, A system with high resilience and high adaptability.

the healthcare system to maintain essential health services despite
disruptions'®?, Substantial research has been conductedin this area,
including investigationsinto the conceptual framework of healthcare
systems” ™", examination of the impact of COVID-19 pandemic on
disrupting health service delivery and degrading healthcare qual-
ity>*?°? and proposals of measures, such as the social vulnerability
index (SVI)*** and preparedness index (PP1)**, However, so far, no
standard definition and measurement for healthcare systemresilience
have been established”.

Resilience is typically defined as the system’s ability to absorb
and recover from every single disruption®® and also the system’s
ability toadapt to multiple successive disruptions”*? (Supplementary
Tablel). Existing research on systemresilience, spanning various fields
including healthcare, ecology, business and industry, predominantly
focuses on the static aspect of absorbing and recovery that enablesa
system to bounce back after the disruption®~*°. However, its ability to
adapttodisruptions from disastersisrarely explored. Asillustrated in
Fig.1b, mentionedinrefs. 32,37, adaptability is defined as an adaptive
cyclemarked by recurrent disruptions and the innate system capabil-
ity tolearn from previous disturbances, ultimately leading to a more
resilient system®. As recurrent disruptions are rarely observed and
recorded, the practical observation and quantitative assessment of
thisadaptive cycleinreal-world systems remain absent. The COVID-19
pandemic, which results in successive waves of disruptions, pro-
vides a natural experiment to study the adaptability in a real-world
healthcare system.

Inthis study, we analyzed millions of patients’ records using elec-
tronic medical record (EMR) data (Methods; Supplementary Tables 2
and 3) to create a comprehensive assessment of healthcare systems’
resilience and adaptability to disruptions caused by the COVID-19
pandemic in the US. We examined 23 essential healthcare services
over abroad range of health needs (Methods; Supplementary Table. 4),
including chronic disease care (for example, Alzheimer’s disease, can-
cer and heart diseases) and maternal care (for example, pregnancy).
Forthehealthcare systemin eachstate, wefirstidentified the number
of disruptions that the healthcare system encountered and quantified
their durations and amplitudes. By comparing a system’s performance
in absorbing and recovering across disruptions, we were then able
to evaluate the system’s adaptability and compare it across various
health services and distinct patient groups. We also quantified the total
systemresilience by assessing the loss of patient visits due to the pan-
demic. Using the COVID-19 pandemic as an example, this study offered
a quantification framework for assessing healthcare resilience and
adaptability. Table 1summarizes the findings and policy implications.

Results

Adaptive responses to successive disruptionsin

healthcare systems

Theresilience of healthcare systems measures the collective response
of diverse entities, such as healthcare providers, hospitals, insurers,
pharmacists, the general public and government entities, in sustain-
ing the uninterrupted provision of essential services for patients*$,
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Table 1| Policy summary

Resilience is defined as the system’s ability to absorb

and recover from each single disruption, as well as its
adaptability—to adapt or transform itself to better respond
to multiple successive disruptions. However, despite the
COVID-19 pandemic bringing multiple waves of disruptions
to healthcare systems, there has been limited research
dedicated to quantifying their adaptability to successive
disruptions and their resilience during the pandemic.

Background

Main findings
and limitations

By analyzing extensive EMR data across US states, we
find that the COVID-19 pandemic led to two successive
disruptions within healthcare systems. We generalized
the quantification framework and assessed the resilience
of healthcare systems across various states for different
essential services and populations according to race

and ethnicity. The results show that healthcare systems
demonstrate substantial adaptability but only a moderate
level of resilience. Services for chronic disease treatment
exhibit higher resilience compared to maternal services.
Black and Hispanic populations were most affected by
severe disruptions when compared to white and Asian
groups. By examining the relationship between system
resilience and factors such as pandemic severity, physician
shortages and socioeconomic variables, we identified
physician abundance as the pivotal characteristic
influencing healthcare system responses. Limitations of
this study include bias in the data collection process and
missing attributes within the EMR dataset, potentially
compromising the accuracy and reliability of predictive
trends related to patient visits based on historical data.

Our results highlight the importance of improving the
system’s adaptability to effectively respond to ongoing
disruptions, especially for maternal care, minority
populations in the US and states with a scarcity of
physicians, high poverty and low employment. The
resilience and adaptability indexes we have introduced,
founded on a dynamic perspective, complement existing
metrics like the SVI and PPI, offering guidance for future
disasters that spike waves of disruptions akin to COVID-19
pandemics.

Policy
implications

asvisualizedinFig.1b. Asthe COVID-19 pandemic has progressed, it has
givenrise to several new virus variants, some of which have triggered
multiple disruptionsin health services. However, the existing quantifi-
cation framework has primarily focused on asingle disruption®. Here
we extend the quantification framework to multiple disruptions. Spe-
cifically, if there are no external disruptions, the system will maintain
itsexpected performance P(t), represented by non-COVID-19 patient
visits for essential services. As illustrated in the example in Fig. 1c,
the actual performance features two disruptions. The dynamics of
every single disruption i can be captured by its disruption amplitude
a;(disruption severity), duration T, disruption rate u;and recovery rate
v; (equation (1) and Supplementary Fig. 1). Disruption amplitude and
duration gauge the severity of a disruption; higher values meanamore
severe impact. Meanwhile, the disruption rate reflects the system’s
management of the disruption’s progress, and the recovery rate indi-
cates how efficiently the system returns to normalcy. Using Fig. Icasa
comparison,amoreresilient healthcare system (Fig. 1d) can minimize
amplitude and duration, ultimately leading to asmaller loss of patient
visits. A higher adaptive healthcare system (Fig. 1e) can slow current
disruption rates (or increase recovery rates) than previous ones, as
evidenced by u, < u, or v, > v,. In Fig. 1f, a healthcare system exhibits
both high adaptability and resilience. Please refer to the Methods
for further detailed measurements of the resilience index (r) and
adaptability index (p).

Figure 2a shows the trend of patient visits to essential servicesin
US states. During the prepandemic period (2017-2020), patient visits
increased steadily. This increase can be attributed to the increased
adoption of certified EMR technology by US hospitals, coupled with
the Affordable Care Act’s expansion of healthcare resources. We used a

predictive model, whichincorporates the real-world increasing adop-
tion of EMR technology among physicians within the data, to estimate
the expected number of patient visitsif the COVID-19 pandemic had not
occurred (Methods; Extended Data Fig.1and Supplementary Figs. 2-5).
Incomparisonto the expected patient visits P(t), the observed patient
visits O(¢) started to fluctuate and then decrease sharply ataround the
beginning of 2020 in Fig. 2a. Among the 49 analyzed states, 40 of them
encountered two consecutive disruptions (Extended Data Table 1).
The initial disruption generally occurred between January 2020 and
May 2021, followed by a second disruption from June 2021 to the end
0f2022. The two disruptions are highly correlated to the waves of the
COVID-19 pandemic, with the initial disruption corresponding to the
onset of the pandemic, and the second one being exacerbated by the
emergence of new, more contagious variants (such as the Omicron
variantinthelast quarter of 2021). The disruption duration aligns with
theresults obtained from external datasets on emergency department
visits and hospital discharges (Extended Data Fig. 2). Allthese findings
of two disruptions contrast with previous studies that assumed that
the COVID-19 pandemic caused a single disruption®**,

To quantify the system’sadaptiveresponse, it first needs to decode
eachdisruption. Figures 2and 3illustrate the characteristics of the two
disruptions. Onaverage, the second disruption tends to have alonger
duration and a larger amplitude than the initial disruption. However,
the disruption rate during the second event was lower than that of
the first event. The comparison between these two disruptions sug-
gests that the healthcare system primed during the initial disruption
can absorb disruption to decelerate its disruption rates. Regarding
recovery, 25 states do not return to expected levels during the first
disruption, while 38 of them remain unrecovered until the end 0f2022
during the second disruption (Extended Data Table1). As the recovery
rate is largely unknown, we use the disruption rate to measure the
system’s adaptability. As depicted in Fig. 2b, systems with adisruption
rate smaller than that of the first disruption tend to exhibit higher
adaptability. Systems experiencing greater amplitude and extended
durations in both disruptions tend to have lower resilience.

Figure 2c,d displays the ranking of adaptability and resilience of
healthcare systems in US states. Most states exhibit a positive adapt-
ability index, indicating their ability to improve during the second
disruption. Five states stood out with notably negative adaptability
indices, suggesting that states didn’t have enough resources to better
prepare for the following disruptions. Michigan achieves the highest
resilience scores with nearly no loss of patient visits (r=0.98), while
Wyomingand Louisiana have the lowest resilience scores (r= 0.48 and
r=0.41). States that exhibit high adaptivity tend to also demonstrate
high resilience (Pearson coefficient = 0.24, P value around 0.09; Sup-
plementary Fig. 6). This reflects states with high adaptability being
better equipped to handle subsequent disruptions, ultimately resulting
inlessloss of patient visits during the whole period and high resilience.
When comparing the indices with the SVI***, we find that theresilience
indices are negatively correlated with the SVI for the state (Pearson
coefficient =-0.38, Pvalue around 0.001; Extended Data Fig. 3). These
results provide a reasonable validity of the resilience indices. States
characterized by higher social vulnerability to disasters tend to have
lower resilience scores.

Adaptability and resilience among essential services

To explore healthcare system resilience and adaptability in more
detail, we group patient visit data based on the services that patients
received for their disease. Among essential health services, we focused
on chronic disease care and maternal care within the availability of
our dataset. For the states with records exceeding a threshold of
1,000 patients in both of these services, 82.6% of chronic disease
careand100% of maternal care experienced two disruptions (Extended
Data Table 1). For chronic disease care, 52.2% of states did not achieve
recovery by the end of the first disruption, and 83.6% remained
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Non-COVID-19 patient visits across US states (from January 2017 to December 2022)
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Fig.2| Adaptability and resilience assessment of US healthcare systems.

a, Temporal trend of non-COVID-19 patient visits across US states, from January
2017 to December 2022. Among the 49 analyzed states, 40 (81.63%) experienced
two successive disruptions. The initial disruption generally occurred between
January 2020 and May 2021, followed by a second disruption starting in June
2021, and 38 of them were not recovered by the end 0f2022. b, Disruption
amplitude a;, duration T;and disruption rate u;characterize each disruption for
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states in high or low levels of adaptability and resilience. ¢, State rankings for
adaptability withindex p in the range of (-1,1), where a positive value indicates
acapacity toadapt. d, State rankings for resilience with index r € (0,1), where a
higher value indicates a greater capacity to encounter disruptions and sustain
the volume of visits. For better comparison, the plotsin cand d are in descending
order of resilience index. A system is considered to have high adaptability when
p>0.5and highresilience when r > 0.7, highlighted in a gray band.

unrecovered in the second disruption, which extends until the end of
2022. For maternal care, a more severe situation was observed, with
66.6% of states failing torecover during the initial disruption and 86.8%
of states still not recovering in the second disruption.

Asillustrated in Fig. 3, during the second disruption, health-
care services demonstrated substantial disruption amplitude and

prolonged durations. Their enhanced capacity to mitigate disruptions
in the second phase results in an overall positive adaptability index
for the healthcare system across US states (p = 0.58 £ 0.05). Maternal
caredisplayed less adaptability (p = 0.48 £ 0.10), in contrast to chronic
disease care, which displayed higher adaptability (p = 0.61 + 0.06). For
overall resilience, the healthcare system across US states exhibited a
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Fig.3| Adaptability and resilience assessment for essential services.

To measure healthcare system responses for essential services, we categorize
non-COVID-19 patient visits into the following two specific services across

US states: chronic disease care and maternal care. The ‘all’ category encompasses
all services. a, The average adaptability (p). b, The average resilience (r).
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c,d, Parameters characterize each disruption for services. The parameters
include (c) disruption rate (u;) and recovery rate (v;) and (d) disruption amplitude
(a;) and disruption duration (7;). The adaptability and resilience indices and
parameters across all states are expressed by the average, along with the lower
and upper limits of the 95% CI. CI, confidence level.

moderate level of resilience (r = 0.70 + 0.03). Maternal care thus exhib-
ited lower resilience (r=0.74 + 0.03) and experienced disruptions of
greater duration, while chronic disease treatment exhibited higher
resilience (r=0.76 £ 0.03). Supplementary Fig. 4 shows the sensitiv-
ity analysis of predictive models across various healthcare services.
Supplementary Fig. 7 shows the resilience and adaptability indexes
of subservices like chronic obstructive pulmonary disease (COPD),
cancer, heart disease and diabetes. Extended Data Fig. 4 shows the
results for services for dialysis.

Adaptability and resilience among patient groups
Besides maintaining essential services, a resilient healthcare system
should be able to provide adequate care to all patients, regardless of
their socioeconomic status, race or ethnicity. We performed subgroup
analyses according to race and ethnicity, to measure the number of their
visits during the COVID-19 pandemic. More than 22 states experienced
two disruptions across all patient groups (Extended Data Table 1).
Using data from New York State as an example (Fig. 4a), across
all patient groups, there is a decrease in disruption rates during the
second wave of disruption, demonstrating positive adaptability. The
Asian population had the lowest adaptability index (0., = 0.36 + 0.10),
while the white population had the highest adaptability index
(Pwhite = 0.56 £ 0.06; see Fig. 4b). This suggests that the Asian popula-
tion is well-prepared to mitigate the impact of the first disruption,
indicating limited room for further improvement and adaptability.
The Asian population experienced a minimal decline in patient visits
and the shortest duration, highlighting the highest resilience score.
Meanwhile, the Hispanic and Black populations encountered severe
disruptionsinamplitude and duration, exhibiting the lowest resilience
index. When considering all states (Fig. 4c—e), the Asian population
garners the highest resilience score (r,,, = 0.80 + 0.02), followed
by the white population (7. = 0.74 + 0.03). Conversely, the Black
and Hispanic populations present the least amount of resilience
with scores of rgj, = 0.73£0.03 and riyigpanic = 0.72 £ 0.03, respectively.
Supplementary Fig. 4 shows the sensitivity analyses of predictive
models across populations according torace.

Association with pandemic severity, physician shortages and
socioeconomic factors

The different performance of the healthcare systemin US states during
the COVID-19 pandemic is complex and multifactorial, with a range
of factors, including pandemic severity, healthcare infrastructure,
resources, lockdown policies, socioeconomic factors and the political
climate all having arole. To incorporate these factors into healthcare
system planning and decision-making processes, we need to sort out
their effects on the resilience index r, adaptability index p and dis-
ruption amplitude a. We thus extensively collect state-level COVID-19
cases, physician abundance and socioeconomic factors to estimate
their correlations (Methods). As presented in Table 2, there was a posi-
tive correlation between states’ resilience index and the abundance of
physicians (0.313 (P=0.001)), while there were negative correlations
betweenresilience index and local poverty levels (-0.328 (P=0.001))
and also the unemploymentrates (-0.156 (P=0.001)). We also observed
significant correlations between the adaptability index and these fac-
tors. For the two pandemic disruptions, theiramplitudes exhibit nega-
tive associations with physician abundance (-0.241 (P = 0.005); -0.205
(P=0.005)) and positive associations with local poverty levels (0.253
(P=0.003);0.234 (P=0.015)) and uninsurance levels (0.333 (P= 0.001);
0.401 (P=0.001)). The results indicate that states with low physician
abundance, high poverty rates, high unemployment and low insurance
coverageare ata higherrisk of severe disruption during the pandemic,
presenting smaller healthcare system resilience and adaptability.

Discussion

By analyzing EMR data across US states, we measure the number of
patient visits to essential services to analyze the collective response of
diverse entities within the healthcare systemin the face of consecutive
disruptions during the COVID-19 pandemic. Our quantification frame-
work of resilience encompasses key metrics such as the resilience index,
adaptability index and parameters that describe the amplitude and
duration of each disruption, as well as the system performance in man-
aging disruptionand recovery rate. Our findings reveal that the health-
care system underwent two waves of disruptions, demonstrating an
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Fig. 4| Adaptability and resilience assessment for patient groups by race parameters characterize each disruption. The parameters include (d) disruption
and ethnicity. To measure healthcare system responses for patients by race rate (u;) and recovery rate (v;) and (e) disruption amplitude (a;) and disruption
and ethnicity, we group non-COVID-19 visits according to patients’ attributes duration (7;). The adaptability and resilience indices and parameters across all
across US states. a, Illustration of the temporal trend of non-COVID-19 patient states are expressed by the average, along with the lower and upper limits of the
visits for Asian, Black, Hispanic and white groups in the New York state. b, The 95% confidence level.

average adaptability (p). ¢, The average resilience (r) of patient groups. d,e, The

adaptive response wherein lessons from theinitial disruptionenhance  essential rolein determining healthcare resilience and adaptability* .
the system’s capacity to absorb disruptions and expedite recovery.Over  The findings highlight the importance of strategically organizing the
90% of the healthcare systems performed better during the second  physician workforce during disasters and enhancing collaborations
disruption. As of the end of 2022, about 77% of healthcare systems  across states*.

have yet to fully rebound to normal levels. Consistent with previous By examining different healthcare services, we found that chronic
research®, state demographic attributes, such as high poverty levels  disease care is more resilient and adaptive than maternal care. Thisis
and high rates of unemployment, were correlated with low resilience  because chronic disease care needs long-term treatments and is more
and adaptability. The abundance of the physician workforce hasan flexible in delivery across primary care clinics, specialty clinics and
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Table 2 | Pearson correlation coefficients assessing the relationships between system adaptability/resilience and pandemic
severity, physician shortages and socioeconomic factors in US states

Parameters COVID-19 Physician per Poverty Unemployment Uninsurance Age 265 Age <17 Minority
cases 100,000 percentile percentile percentile percentile percentile percentile
Adaptability index -0.033 0.102 -0.082 -0.146 -0.010 0.040 -0.009 -0.0.046
(P=0.507) (P=0.039) (P=0.046) (P=0.003) (P=0.828) (P=0.404) (P=0.847) (P=0.350)
Resilience index -0.054 0.313 -0.328 -0.156 -0.47 0.116 -0.209 -0.217
(P=0.278) (P=0.001) (P=0.001) (P=0.001) (P=0.001) (P=0.019) (P=0.001) (P=0.009)
Amplitude a 0114 -0.241 0.253 0.093 0.333 -0.116 0175 0.054
(first disruption) (P=0.198) (P=0.005) (P=0.003) (P=0.295) (P=0.001) (P=0.191) (P=0.047) (P=0.369)
Amplitude a 0132 -0.205 0.234 0.206 0.401 -0.042 0.143 0.103
(second disruption) (P=0.178) (P=0.035) (P=0.015) (P=0.034) (P=0.001) (P=0.668) (P=0.144) (P=0.292)

Significant correlations, determined by a two-sided test and indicated by a P value less than the threshold of 0.05, are given in bold.

home health services, adding resilience through diverse ways of care®.
Meanwhile, maternal care relies on short-term specialized services,
its acute nature makes it more vulnerable to external disruptions*.
Among the subservices for chronic disease care (Supplementary Fig. 7),
services for heart disease management demonstrate lower resilience
and adaptability compared to services for conditions such as asthma,
COPD, cancer and diabetes. These findings emphasize the pressing
requirement for heightened assistance and focus on heart disease
careduring a pandemic.

We also examined the healthcareresilience of populations by race
and ethnicity. We found that the pandemic severely affected Black and
Hispanic populations, leading to harsher disruptions and lower resil-
ienceindexes for these populations. These disparities are likely rooted
in socioeconomic inequalities that Black and Hispanic communities
typically encounter greater obstaclesin accessing healthcare services,
particularly during external disruptions***. The findings underscore
the importance of enhancing chronic disease care and maternal care
to alleviate the exacerbation of inequality, especially for Black and
Hispanic communities during crises.

During the COVID-19 pandemic, the number of patient visits to
healthcare providers was jointly affected by the supply of services
and patient demand. The availability of resources can limit access to
healthcare services, and patient’s perception of infection risk may
reduce the demand for nonessential services. Our analysis considered
theimpact of both the supply- and demand-side factors. Using essential
service dialysis as an illustration, we disentangle the two factors and
offer a rigorous assessment of the availability of delivering services
from healthcareinfrastructure and resources (the supply side). Patients
undergoingdialysis usually need to attend several sessions each week,
and their treatment is dependent on consistent and uninterrupted
access to these services. Patient visits to dialysis services exhibit two
distinct disruptions, differing in duration from other healthcare ser-
vices. The first disruption occurred from December 2019 to March
2022, while the second disruption commenced in April 2022 with no
observed recovery. The dialysis service exhibits delayed disruptions
and higherresilience (r= 0.89). Theresults suggest that the healthcare
system stillunderwent two disruptions without substantial changein
service demand, indicating that the finding of two successive disrup-
tionsisreplicated.

Nevertheless, the quantification framework has several limita-
tions. First, although the EMR dataset we used is extensive within the
US, theincomplete collection and biased datasamplingin the dataset
canaffectthe accuracy of our assessment. Specifically, the dataset may
primarily represent states that have broadly adopted and implemented
the EMR technology, potentially introducing bias into our analysis,
particularly in regions where EMR adoption was low. Second, the miss-
ing attribute in the dataset can also potentially introduce bias into
the analysis. Efforts to mitigate biases in data collection methodolo-
gies®*” and integrating additional data sources can further validate

thefindings. Third, our assessment relies onthe appropriate selection
ofapredictive model for forecasting expected patient visits. While we
conduct various sensitivity analyses using alternative models, amore
sophisticated modelis needed to account for uncertainty in dataand
state variations within the system. Addressing structural uncertainty
by considering multiple potential models and assessing theirimplica-
tionsfor predictions will also be needed for more comprehensive and
reliable assessment.

Several avenues merit exploration for future research for a more
comprehensive quantification of healthcare system resilience. It is
crucialto consider excessive recovery as anew dimension of systemresi-
lience, aiming not only to return to its original state but to recover lost
visitsand progress toward amore optimal state (Supplementary Fig. 8).
Itisnecessary to untangle theintertwined impacts of successive disrup-
tions, particularly when disruptions stem from different crises. Further-
more, there is also a necessity to broaden the scope beyond COVID-19
waves to comprehend healthcare system performance across different
crises, especially for future guiding healthcare systemresilience against
more deadly diseases associated with climate change. For example,
conducting a comparative analysis of responses to the 2003 severe
acute respiratory syndrome (SARS) outbreak and the 2019 COVID-19
pandemiccouldserveasaguide. Additionally, while our measure reflects
the overall resilience of the healthcare system, it is crucial to exclude
demand factors to concentrate solely on the dynamics of service avail-
ability when evaluating the resilience for specific hospitals and other
healthcarefacilities. Moreover, our macroscopic measures are limitedin
offering higher-resolutionguidance on each system component. Future
studies should delve into sophisticated computational methods and
consider additional factors such as the intricate connections between
healthcarefacilities, resource management, the healthcare workforce,
supply chain dynamics and the quality of patient care'®*., Finally, our
measures canonly be assessed retrospectively. Future endeavors should
strive to provide real-time estimates for proactive decision-making.

In summary, our study provides a quantification framework for
healthcare system resilience that can be applied generically to vari-
ous healthcare services, patient groups and different regions*®*’, The
proposed adaptability index and resilience index allow the characteri-
zation of healthcare system performance during and across multiple
disruptions. These two indices can also offer a valuable complement
to existing crisis management tools, such as SVI** and PPI**?°, which
predominantly focus on either the socioeconomic status of a region
or the availability of healthcare resources before disruption strikes.
In brief, this framework could provide policymakers with the essen-
tial insights to make informed adaptations to successive disruptions
caused by prolonged disasters'”*%*,

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
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Methods
Data
The EMR dataset we used, referred to as the Healthjump dataset, is
provided by the COVID-19 Research Database®’. Healthjump is a data
integration platform that exports EMR and practice management sys-
tems. It aggregates datafrom over 70,000 hospitals and clinics, as well
asmorethan1,500 healthcare organizations, covering all statesin the
US. Withrecords dating back to 1995, the dataset encompasses informa-
tion on over 33 million patients and 1 million healthcare providers. It
includes awidearray of patient data, including diagnoses, procedures,
encountersand medical histories, sourced from participating members
ofthe Healthjump network. Additionally, it contains patients’ sociode-
mographicattributes, suchasrace, sexand others. The dataset details,
statistics and limitations are presented in Supplementary Tables2and 3.
Inexamining the correlation between states’ resilience/adaptabil-
ity index with COVID-19 infections, physician abundance and sociode-
mographic factors, we first gather cumulative infection cases in each
state from the Johns Hopkins Coronavirus Resource Center*’, We col-
lect physician abundance data regarding physician numbers for each
state, drawing from the 2019 State Physician Workforce Data**. The
sociodemographicfactors analyzed include poverty levels, unemploy-
mentrates, uninsured levels, the proportion of the youth (less than17),
the proportion of the elderly (greater than 65) and the proportion of
minority populations, all sourced from the CDC/ATSDR SVI*.

Ethics statement

Ethical approval was not required for this study, as the data used for
analysis was from the fully anonymized Healthjump EMR database®.
The database complies with the Health Insurance Portability and
Accountability Act of 1996, ensuring the protection of patient informa-
tionthrough strict privacy policies and agreements with patients and
healthcare providers. Therefore, ethical approval was not needed, as
the database has noidentifiable information about individual patients.

Demographicinformation

Demographicinformation wasrestricted to race and ethnicity. For the
EMR-reported race and ethnicity, patients were designated by them-
selves or by ahealthcare provider. For race, patients were designated as
‘AmericanIndianaor Alaska Native’,‘Asian’, ‘Black or African American’,
‘white’, ‘Native Hawaiian or other Pacific Islander’ and ‘other race’. For
ethnicity, patients were designated as ‘Hispanic or Latino’, ‘not Hispanic
orLatino’and ‘unknown’. For simplification, we consider the mainrace/
ethnic categoriesin the study.

Essential health services of concern

Essential health services encompass vital healthcare provisions crucial
forenhancingand preserving public health*. These services typically
comprise maternal care, chronic disease management, diagnostic and
laboratory services, vaccination, primary care, emergency care and
others. Dueto limitationsin dataavailability and the exclusion of data
related to care for patients with COVID-19, our study focuses solely on
chronic disease care and maternal care across aspectrum of 23 diseases
(Supplementary Table 4). We analyzed the absolute number of visits
for these services. Additionally, we normalized the data to mitigate
the impact of state population size and policies related to joining
Healthjump’s EMR system in our analyses.

Quantification framework for successive disruptions

We used mathematical models that provide key parameters to charac-
terize the system’s behavior during disruption and recovery processes.
While numerous models exist>, the beta family equations uniquely
offer flexibility (Supplementary Fig. 1). Building upon the framework
that describes the system’s behavior under a single disruption®,
we generalize this framework to multiple successive disruptions, as
givenbelow:

P(t); 0<t<t,
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where O(¢) is the actual observed performance of patient visits and
P(t) is the predicted performance if the pandemic didn’t occur.
Suppose there are ndisruptions. Each disruptionihas anamplitude a;,
which is the scale factor, defined as the severity of disruption on the
system. The other two parameters 6;and §; determine the curve’s
shape for disruption and recovery respectively, as reflected in the
system’s ability to manage the processes. Within the same duration
T;(T; = t, - t,), if 6, = §;, a symmetric disruption and recovery occur;
if 6; > 9;, a slow disruption is followed by a fast recovery; if 6, < 9;, a
fast disruption is followed by a slow recovery. We define disruption
rateasu; = ﬁ and itsrecoveryrateasv; = % A smaller value of 6, or

9; leads to quick disruption or recover. A shorter duration 7, results
inarapid deterioration of performance to its maximum extent.

To assess the system’s performance across n disruptions, we
introduce the adaptability index in terms of disruption rate across
consecutive disruptionsiandi+1,

n
—(Uiy1 — )

1
P=q ; max(u,1, u;)’

2

where p € (-1,1). Specifically, p > O indicates that the system exhibits
adaptability with u;,; < u;, signifying that the rate of disruption i + 1is
smaller than that of disruption i. Conversely, p < 0 suggests that
the system lacks adaptability with u;,; > u;, indicating that the rate of
disruption i +1is larger than that of disruption i. Higher values of p
signify anincreased level of adaptability of the system. Inthe case of a
single disruption, p =1. The adaptability index can also be measured
in terms of recovery rate. As the recovery rate is largely unknown in
our results, we only use the disruption rate to measure the system
adaptivity.

Following the classic way
terms of performance loss as

293055 we measure system resilience in

Ly JaP@-owyde .
‘Poydt

where r € (0,1). The term fZ(P(t) — O(t))dt is the total loss between
expected P(t) and observed patient visits O(¢). The division by integral
of expected performance fZP(t) dt normalizes the results to a range
between 0 and 1. A value of 1 indicates no performance loss (perfect
resilience), while O indicates acomplete loss.

Predictive model for quantification framework

For the analysis of healthcare resilience during the COVID-19 pandemic,
we extracted data from 2017 to the end of 2022. Commencing from
January 2020, the onset of the pandemic, we designate this as the
starting date, denoted as t,, The dataset is subsequently divided into
the following two distinct periods: the prepandemic period (¢ < ¢, from
January 2017 to December 2019) and the pandemic period (¢ > ¢,, from
January 2020). With the growing adoption of EMR technology in US
hospitals and increased accessibility to healthcare facilities due to the
Affordable Care Act, there has been a noticeable rise in patient visit
volumesinour datasets. To capture the expected patient visitsin equa-
tion (1), we leverage the number of physiciansin the datathat participate
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in EMR technology, state population and physician-to-population
ratio® to assess expected patient visits,

P(t) = B(H)on, @)

where 2(t) is the monthly number of physicians that adopted EMR
technology in the state, n is the state population and ¢ is the state
physician-to-populationratio, adjusted by monthly visit frequencyin
the prepandemic period. Through the models, we can predict the
expected patient visits that digital health platforms would accumulate
ifnodisruptions occurred beyond ¢,. We also use the innovation (EMR)
adoption model*® and time-series model”, that is, the generalized
logistic model and exponential smoothing model, and consider the
seasonality for the sensitivity test. The comparisons of predictive
models are provided in Extended Data Fig. 1 and Supplementary
Figs.2-5.To smooth out seasonal fluctuations and identify underlying
trends or patterns, we use the 3-month moving average on data. For
comparison across states and services, the volume of patient visits at
t=0isnormalizedtol.

Identification of disruptions

Tofitthe observed performance O(¢) withequation (1), we firstidentify
the number of disruptions n and the duration T, of each disruption i.
Thedisruptions areidentified through segmented least squares, which
enables the detection of both the peak of decline and subsequent
increase in performance and divides the duration T;into disruption
andrecovery phases. Disruptions failing to meet the following criteria
will be excluded: (1) those lasting less than 3 months (where T;< 3) and
(2) those with aminimum performance loss ratio below 5%. These two
criteriaare used to exclude disruptions with not significant losses and
those attributed to data fluctuations caused by seasonal effects (see
Supplementary Fig. 5 for the sensitivity test of criteria). Then we infer
the parameters a;, 6, and ¢; for the observed performance for each
disruption i by using the iterative optimization method***.

Statistical analysis

To demonstrate theresilience and adaptability of various services and
races, werepresent their average across analyzed states with the lower
and upper limits of 95% confidence level in Figs. 3 and 4. For a total of
Manalyzed state, the average of resilience for servicesis calculated as

r= ZLM” where ri, represents the resilience at state m for services i.

Similarly, the average of resilience for racial groups is calculated

. J i oqe i
asr/= % where r}, represents the resilience at state m for race.

The same calculations are applied for the average of adaptability.

We use the Pearson correlation coefficient to gauge the correlation
betweenstateresilience (or adaptability) with various factors, such as
COVID-19infections, physician abundance, sociodemographic factors
and SVLI. This coefficient, ranging between -1 and 1, quantifies both
the strength and direction of the relationship between two variables.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The EMR dataset that supports the findings of this study is available
from the Healthjump database, provided by the COVID-19 Research
Database Consortium (https://covid19researchdatabase.org/). How-
ever, restrictions apply to accessing these data, which were used under
license for the current study. The EMR dataset is not publicly available.
The dataon COVID-19 infection cases in each state are collected from
theJohns Hopkins Coronavirus Resource Center (https://github.com/
CSSEGISandData/COVID-19). The general physician abundance data
regarding physiciannumbers in each state are collected from the 2019

State Physician Workforce Data (https://www.aamc.org/data-reports/
workforce/report/state-physician-workforce-data-report). The soci-
odemographicfactorsineachstateare collected fromthe CDC/ATSDR
SVI (https://www.atsdr.cdc.gov/placeandhealth/svi/index.html). For
validation, external summary datasets on patient visits to physicians,
emergency departments and the number of hospital discharges
during the pandemic are sourced from the National Center for Health
Statistics (https://www.cdc.gov/nchs/index.htm) and the US Census
Bureau (https://www.census.gov/). For the results dashboard, please
see the website ResilienceHealthSys.com.

Code availability

The code used in the study for the quantification framework is
available at https://github.com/lucinezhong/healthcare_resilience_
quantification_framework.
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Extended Data Fig. 1| Comparison of predictive models P(t) using national
volume of Non-COVID-19 patient visits in Healthjump dataset. Comparison
of predictive models P(t) using national volume of Non-COVID-19 patient visits
of Healthjump dataset. (a) Estimation model incorporating physician EMR
technology adoption counts within Healthjump database. (b) Generalized
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logistic model utilizing AHA (American Hospital Association) EMR adoption
rates. (c) Simple exponential smoothing model integrated with AHA EMR
adoptionrates. (d) Seasonal exponential smoothing model incorporating AHA
EMR adoption rates. (e) Constant population who have active visits during the
pre-pandemic period. All models identify two disruptions.
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Extended Data Fig. 2| Volume of non-COVID-19 patient care in the US from Compared against a baseline represented by ablue line, indicative of average
2019 t0 2022 provided by other datasets. (a) Patient visits to physicians, patient visits before the pandemic, the observed patient visits (represented
sourced from the National Center for Health Statistics. (b) Patient visits to by ared line) show two disruptions, marked by dashed vertical lines. The first
emergency departments, also sourced from the National Center for Health disruption spans from the first quarter of 2020 to the second/third quarter of

Statistics. (¢) Number of hospital discharges, provided by the US Census Bureau. 2021, while the second disruption begins in the third/fourth quarter of 2021.
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Extended Data Fig. 3 | Resilience index of states versus social vulnerability index. (a) State resilience index. (b) State social vulnerability index. (c) Pearson
correlation coefficient. The resilience index is negatively correlated with the social vulnerability index. The correlation significance is determined by a two-sided test
andindicated by a Pvalue.
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Extended Data Fig. 4 | Temporal trend of patient visits for dialysis service. Similar to conclusions drawn for other essential services, two disruptions are observed,
but the period differs, with the first occurring from December 2019 to March 2022 and the second beginning in April 2022 with no observed recovery.
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Extended Data Table 1| Successive disruptions on healthcare system from 2020 to 2022

Disruptions
Percentage Not recovered (1st disruption) | Not recovered (2nd disruption) | States
Once Twice
All 18.3% 81.63% 51.0% 77.5% 49
Chronic Disease Care | 17.3% 82.6% 52.2% 82.6% 23
Maternal Care 0% 100% 66.6% 86.8% 15
Asian Population 31.2% 68.7% 37.5% 56.2% 32
Black Population 18.7% 81.2% 53.1% 78.1% 32
Hispanic Population 17.1% 83.8% 60.0% 771% 35
White Population 25% 74% 47.2% 65.9% 44

Successive disruptions on US healthcare systems from 2020 to 2022. We classify the healthcare system as ‘not recovered’ if the observed non-COVID-19 patient visits keep less than 95% of
the expected counts.
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