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Healthcare system resilience and 
adaptability to pandemic disruptions in the 
United States

Lu Zhong1,2,4, Dimitri Lopez    1,4, Sen Pei3 & Jianxi Gao    1,2 

Understanding healthcare system resilience has become paramount, 
particularly in the wake of the COVID-19 pandemic, which imposed 
unprecedented burdens on healthcare services and severely impacted 
public health. Resilience is defined as the system’s ability to absorb, recover 
from and adapt to disruptions; however, despite extensive studies on 
this subject, we still lack empirical evidence and mathematical tools to 
quantify its adaptability (the ability of the system to adjust to and learn 
from disruptions). By analyzing millions of patients’ electronic medical 
records across US states, we find that the COVID-19 pandemic caused two 
successive waves of disruptions within the healthcare systems, enabling 
natural experiment analysis of the adaptive capacity of each system to adapt 
to past disruptions. We generalized the quantification framework and found 
that the US healthcare systems exhibit substantial adaptability (ρ = 0.58) 
but only a moderate level of resilience (r = 0.70). When considering system 
responses across racial groups, Black and Hispanic groups were more 
severely impacted by pandemic disruptions than white and Asian groups. 
Physician abundance was the key characteristic for determining healthcare 
system resilience. Our results offer vital guidance in designing resilient and 
sustainable healthcare systems to prepare for future waves of disruptions 
akin to COVID-19 pandemics.

Global crises such as climate change, environmental pollution, conflicts 
or global pandemics continue to pose great challenges to the health-
care system1,2. These challenges are not solely a result of the escalating 
scale of these crises but also their prolonged duration with successive 
disruptions. The COVID-19 pandemic is a convergence of these dual 
challenges—an unprecedentedly large-scale crisis that has persisted 
for over 2 years, occurred in multiple waves and resulted in millions of 
hospitalizations and over 1.2 million deaths in the United States (US; 
Fig. 1a). The pandemic has led to disruptions to routine medical services, 
stemming from factors such as public fear of infections during visits to 
healthcare facilities3, stay-at-home policies4, patient access to care and 

limited supply of services. This has led to delays and cancellations in 
non-COVID-19 emergency services and essential care4, and the inability 
to maintain essential services led to adverse and lasting consequences. 
For instance, in the US, 9.4 million cancer screenings, and treatments 
were either delayed or canceled due to the pandemic5 and the maternal 
mortality rate increased from 0.017% in 2019 to 0.032% deaths in 2021 
(refs. 6,7). Furthermore, the pandemic has disproportionately impacted 
marginalized groups such as people of color, low-income populations 
and those with underlying health conditions8,9.

To improve overall public health outcomes and mitigate the 
negative consequences, it is important to enhance the resilience of 
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In this study, we analyzed millions of patients’ records using elec-
tronic medical record (EMR) data (Methods; Supplementary Tables 2 
and 3) to create a comprehensive assessment of healthcare systems’ 
resilience and adaptability to disruptions caused by the COVID-19 
pandemic in the US. We examined 23 essential healthcare services 
over a broad range of health needs (Methods; Supplementary Table. 4), 
including chronic disease care (for example, Alzheimer’s disease, can-
cer and heart diseases) and maternal care (for example, pregnancy). 
For the healthcare system in each state, we first identified the number 
of disruptions that the healthcare system encountered and quantified 
their durations and amplitudes. By comparing a system’s performance 
in absorbing and recovering across disruptions, we were then able 
to evaluate the system’s adaptability and compare it across various 
health services and distinct patient groups. We also quantified the total 
system resilience by assessing the loss of patient visits due to the pan-
demic. Using the COVID-19 pandemic as an example, this study offered 
a quantification framework for assessing healthcare resilience and 
adaptability. Table 1 summarizes the findings and policy implications.

Results
Adaptive responses to successive disruptions in  
healthcare systems
The resilience of healthcare systems measures the collective response 
of diverse entities, such as healthcare providers, hospitals, insurers, 
pharmacists, the general public and government entities, in sustain-
ing the uninterrupted provision of essential services for patients4,18,  

the healthcare system to maintain essential health services despite 
disruptions10–12. Substantial research has been conducted in this area, 
including investigations into the conceptual framework of healthcare 
systems13–19, examination of the impact of COVID-19 pandemic on 
disrupting health service delivery and degrading healthcare qual-
ity2,4,20–22 and proposals of measures, such as the social vulnerability 
index (SVI)23,24 and preparedness index (PPI)25,26. However, so far, no 
standard definition and measurement for healthcare system resilience 
have been established27.

Resilience is typically defined as the system’s ability to absorb 
and recover from every single disruption28–31 and also the system’s 
ability to adapt to multiple successive disruptions27,32 (Supplementary 
Table 1). Existing research on system resilience, spanning various fields 
including healthcare, ecology, business and industry, predominantly 
focuses on the static aspect of absorbing and recovery that enables a 
system to bounce back after the disruption33–36. However, its ability to 
adapt to disruptions from disasters is rarely explored. As illustrated in 
Fig. 1b, mentioned in refs. 32,37, adaptability is defined as an adaptive 
cycle marked by recurrent disruptions and the innate system capabil-
ity to learn from previous disturbances, ultimately leading to a more 
resilient system38. As recurrent disruptions are rarely observed and 
recorded, the practical observation and quantitative assessment of 
this adaptive cycle in real-world systems remain absent. The COVID-19  
pandemic, which results in successive waves of disruptions, pro-
vides a natural experiment to study the adaptability in a real-world  
healthcare system.
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Fig. 1 | Adaptive responses to successive disruptions in healthcare systems.  
a, As seen in the data on COVID-19 hospitalizations, the pandemic brought 
successive disruptions to healthcare systems. b, The adaptive response cycle 
within the healthcare system involves multiple cycles of disruption and recovery, 
leading to enhanced resilience through learning from previous disruptions. By 
examining the system’s performance in maintaining non-COVID-19 patient visits 
(c–f), we assess its adaptability and resilience during successive disruptions. With 
two disruptions as the example in c, when the disruption event i (for example, onset 
of the COVID-19 pandemic and second wave of the outbreak) occurs at time t

s

i

,  

the healthcare system’s performance (non-COVID-19 visits) begins to decline, 
reaches a negative peak and then returns to the target performance level at t

r

i

. 
Each disruption i undergoes a disruption and recovery phase, characterized by 
disruption amplitude (αi), disruption duration (T

i

= t

r

i

− t

s

i

), disruption rate (ui) 
and recovery rate (vi). c, A system with low resilience and low adaptability.  
d, A system with high resilience is characterized by smaller amplitude/duration.  
e, A system with high adaptability is characterized by its ability to better absorb 
disruptions ui + 1 < ui or quicker recover vi + 1 > vi during the second disruption.  
f, A system with high resilience and high adaptability.
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as visualized in Fig. 1b. As the COVID-19 pandemic has progressed, it has 
given rise to several new virus variants, some of which have triggered 
multiple disruptions in health services. However, the existing quantifi-
cation framework has primarily focused on a single disruption35. Here 
we extend the quantification framework to multiple disruptions. Spe-
cifically, if there are no external disruptions, the system will maintain 
its expected performance P(t), represented by non-COVID-19 patient 
visits for essential services. As illustrated in the example in Fig. 1c, 
the actual performance features two disruptions. The dynamics of 
every single disruption i can be captured by its disruption amplitude 
αi (disruption severity), duration Ti, disruption rate ui and recovery rate 
vi (equation (1) and Supplementary Fig. 1). Disruption amplitude and 
duration gauge the severity of a disruption; higher values mean a more 
severe impact. Meanwhile, the disruption rate reflects the system’s 
management of the disruption’s progress, and the recovery rate indi-
cates how efficiently the system returns to normalcy. Using Fig. 1c as a 
comparison, a more resilient healthcare system (Fig. 1d) can minimize 
amplitude and duration, ultimately leading to a smaller loss of patient 
visits. A higher adaptive healthcare system (Fig. 1e) can slow current 
disruption rates (or increase recovery rates) than previous ones, as 
evidenced by u2 < u1 or v2 > v1. In Fig. 1f, a healthcare system exhibits  
both high adaptability and resilience. Please refer to the Methods  
for further detailed measurements of the resilience index (r) and  
adaptability index (ρ).

Figure 2a shows the trend of patient visits to essential services in 
US states. During the prepandemic period (2017–2020), patient visits 
increased steadily. This increase can be attributed to the increased 
adoption of certified EMR technology by US hospitals, coupled with 
the Affordable Care Act’s expansion of healthcare resources. We used a 

predictive model, which incorporates the real-world increasing adop-
tion of EMR technology among physicians within the data, to estimate 
the expected number of patient visits if the COVID-19 pandemic had not 
occurred (Methods; Extended Data Fig. 1 and Supplementary Figs. 2–5). 
In comparison to the expected patient visits P(t), the observed patient 
visits O(t) started to fluctuate and then decrease sharply at around the 
beginning of 2020 in Fig. 2a. Among the 49 analyzed states, 40 of them 
encountered two consecutive disruptions (Extended Data Table 1). 
The initial disruption generally occurred between January 2020 and 
May 2021, followed by a second disruption from June 2021 to the end 
of 2022. The two disruptions are highly correlated to the waves of the 
COVID-19 pandemic, with the initial disruption corresponding to the 
onset of the pandemic, and the second one being exacerbated by the 
emergence of new, more contagious variants (such as the Omicron 
variant in the last quarter of 2021). The disruption duration aligns with 
the results obtained from external datasets on emergency department 
visits and hospital discharges (Extended Data Fig. 2). All these findings 
of two disruptions contrast with previous studies that assumed that 
the COVID-19 pandemic caused a single disruption2,4,22.

To quantify the system’s adaptive response, it first needs to decode 
each disruption. Figures 2 and 3 illustrate the characteristics of the two 
disruptions. On average, the second disruption tends to have a longer 
duration and a larger amplitude than the initial disruption. However, 
the disruption rate during the second event was lower than that of 
the first event. The comparison between these two disruptions sug-
gests that the healthcare system primed during the initial disruption 
can absorb disruption to decelerate its disruption rates. Regarding 
recovery, 25 states do not return to expected levels during the first 
disruption, while 38 of them remain unrecovered until the end of 2022 
during the second disruption (Extended Data Table 1). As the recovery 
rate is largely unknown, we use the disruption rate to measure the 
system’s adaptability. As depicted in Fig. 2b, systems with a disruption 
rate smaller than that of the first disruption tend to exhibit higher 
adaptability. Systems experiencing greater amplitude and extended 
durations in both disruptions tend to have lower resilience.

Figure 2c,d displays the ranking of adaptability and resilience of 
healthcare systems in US states. Most states exhibit a positive adapt-
ability index, indicating their ability to improve during the second 
disruption. Five states stood out with notably negative adaptability 
indices, suggesting that states didn’t have enough resources to better 
prepare for the following disruptions. Michigan achieves the highest 
resilience scores with nearly no loss of patient visits (r = 0.98), while 
Wyoming and Louisiana have the lowest resilience scores (r = 0.48 and 
r = 0.41). States that exhibit high adaptivity tend to also demonstrate 
high resilience (Pearson coefficient = 0.24, P value around 0.09; Sup-
plementary Fig. 6). This reflects states with high adaptability being 
better equipped to handle subsequent disruptions, ultimately resulting 
in less loss of patient visits during the whole period and high resilience. 
When comparing the indices with the SVI23,24, we find that the resilience 
indices are negatively correlated with the SVI for the state (Pearson 
coefficient = −0.38, P value around 0.001; Extended Data Fig. 3). These 
results provide a reasonable validity of the resilience indices. States 
characterized by higher social vulnerability to disasters tend to have 
lower resilience scores.

Adaptability and resilience among essential services
To explore healthcare system resilience and adaptability in more 
detail, we group patient visit data based on the services that patients 
received for their disease. Among essential health services, we focused 
on chronic disease care and maternal care within the availability of  
our dataset. For the states with records exceeding a threshold of  
1,000 patients in both of these services, 82.6% of chronic disease  
care and 100% of maternal care experienced two disruptions (Extended 
Data Table 1). For chronic disease care, 52.2% of states did not achieve 
recovery by the end of the first disruption, and 83.6% remained 

Table 1 | Policy summary

Background Resilience is defined as the system’s ability to absorb 
and recover from each single disruption, as well as its 
adaptability—to adapt or transform itself to better respond 
to multiple successive disruptions. However, despite the 
COVID-19 pandemic bringing multiple waves of disruptions 
to healthcare systems, there has been limited research 
dedicated to quantifying their adaptability to successive 
disruptions and their resilience during the pandemic.

Main findings 
and limitations

By analyzing extensive EMR data across US states, we 
find that the COVID-19 pandemic led to two successive 
disruptions within healthcare systems. We generalized 
the quantification framework and assessed the resilience 
of healthcare systems across various states for different 
essential services and populations according to race 
and ethnicity. The results show that healthcare systems 
demonstrate substantial adaptability but only a moderate 
level of resilience. Services for chronic disease treatment 
exhibit higher resilience compared to maternal services. 
Black and Hispanic populations were most affected by 
severe disruptions when compared to white and Asian 
groups. By examining the relationship between system 
resilience and factors such as pandemic severity, physician 
shortages and socioeconomic variables, we identified 
physician abundance as the pivotal characteristic 
influencing healthcare system responses. Limitations of 
this study include bias in the data collection process and 
missing attributes within the EMR dataset, potentially 
compromising the accuracy and reliability of predictive 
trends related to patient visits based on historical data.

Policy 
implications

Our results highlight the importance of improving the 
system’s adaptability to effectively respond to ongoing 
disruptions, especially for maternal care, minority 
populations in the US and states with a scarcity of 
physicians, high poverty and low employment. The 
resilience and adaptability indexes we have introduced, 
founded on a dynamic perspective, complement existing 
metrics like the SVI and PPI, offering guidance for future 
disasters that spike waves of disruptions akin to COVID-19 
pandemics.
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unrecovered in the second disruption, which extends until the end of 
2022. For maternal care, a more severe situation was observed, with 
66.6% of states failing to recover during the initial disruption and 86.8% 
of states still not recovering in the second disruption.

As illustrated in Fig. 3, during the second disruption, health-
care services demonstrated substantial disruption amplitude and 

prolonged durations. Their enhanced capacity to mitigate disruptions 
in the second phase results in an overall positive adaptability index 
for the healthcare system across US states (ρ = 0.58 ± 0.05). Maternal 
care displayed less adaptability (ρ = 0.48 ± 0.10), in contrast to chronic 
disease care, which displayed higher adaptability (ρ = 0.61 ± 0.06). For 
overall resilience, the healthcare system across US states exhibited a 

M
ic

hi
ga

n
Ill

in
oi

s
M

ai
ne

Rh
od

e 
is

la
nd

N
or

th
 d

ak
ot

a
N

ew
 h

am
ps

hi
re

N
ew

 y
or

k
So

ut
h 

da
ko

ta
H

aw
ai

Ve
rm

on
t

C
on

ne
ct

ic
ut

Ar
ka

ns
as

Al
as

ka
M

on
ta

na
W

is
co

ns
in

Ke
nt

uc
ky

Ut
ah

N
ev

ad
a

In
di

an
a

Pe
nn

sy
lv

an
ia

M
in

ne
so

ta
Te

nn
es

se
e

Ar
iz

on
a

M
as

sa
ch

us
et

ts
N

eb
ra

sk
a

O
hi

o
C

al
ifo

rn
ia

C
ol

or
ad

o
Vi

rg
in

a
N

ew
 je

rs
ey

W
as

hi
ng

to
n

Io
w

a
W

es
t v

irg
in

a
N

ew
 m

ex
ic

o
Fl

or
id

a
So

ut
h 

ca
ro

lin
a

M
ar

ry
la

nd
Te

xa
s

De
la

w
ar

e
G

eo
rg

ia
O

kl
ah

om
a

O
re

go
n

M
is

so
ur

i
M

is
si

ss
ip

pi
Id

ah
o

Al
ab

am
a

N
or

th
 c

ar
ol

in
a

Ka
ns

as
W

yo
m

in
g

Lo
ui

si
an

a

−0.4
−0.2

0
0.2
0.4
0.6
0.8
1.0

M
ic

hi
ga

n
Ill

in
oi

s
M

ai
ne

Rh
od

e 
is

la
nd

N
or

th
 d

ak
ot

a
N

ew
 h

am
ps

hi
re

N
ew

 y
or

k
So

ut
h 

da
ko

ta
H

aw
ai

Ve
rm

on
t

C
on

ne
ct

ic
ut

Ar
ka

ns
as

Al
as

ka
M

on
ta

na
W

is
co

ns
in

Ke
nt

uc
ky

Ut
ah

N
ev

ad
a

In
di

an
a

Pe
nn

sy
lv

an
ia

M
in

ne
so

ta
Te

nn
es

se
e

Ar
iz

on
a

M
as

sa
ch

us
et

ts
N

eb
ra

sk
a

O
hi

o
C

al
ifo

rn
ia

C
ol

or
ad

o
Vi

rg
in

a
N

ew
 je

rs
ey

W
as

hi
ng

to
n

Io
w

a
W

es
t v

irg
in

a
N

ew
 m

ex
ic

o
Fl

or
id

a
So

ut
h 

ca
ro

lin
a

M
ar

ry
la

nd
Te

xa
s

De
la

w
ar

e
G

eo
rg

ia
O

kl
ah

om
a

O
re

go
n

M
is

so
ur

i
M

is
si

ss
ip

pi
Id

ah
o

Al
ab

am
a

N
or

th
 c

ar
ol

in
a

Ka
ns

as
W

yo
m

in
g

Lo
ui

si
an

a

0

0.2

0.4

0.6

0.8

1.0

Non-COVID-19 patient visits across US states (from January 2017 to December 2022)

Disruption phase
Recovery phase

Second disruption
First disruption

Non-COVID-19 patient visits O(t)
Expected non-COVID-19 patient visits P(t)

b c

Ad
ap

ta
bi

lit
y

Re
si

lie
nc

e

H
ig

h 
ad

ap
ta

bi
lit

y 
(>

0.
50

)
Lo

w
 a

da
pt

ab
ili

ty
 (<

0.
50

)

High adaptability (>0.50)

High resilience (>0.70)

Disruption rate

Amplitude

Amplitude Amplitude

DurationDuration

DurationDuration

Amplitude

Disruption rate

Disruption rateDisruption rate

Low resilience (<0.70)

High resilience (>0.70)d

a Maine

Alaska Vermont New Hampshire

Washington Idaho Montana North Dakota Minnesota Illinois Wisconsin Michigan New York Rhode Island Massachusetts

Oregon Nevada Wyoming South Dakota Iowa Indiana Ohio Pennsylvania New Jersey Connecticut

California Utah Colorado Nebraska Missouri Kentucky West Virgina Virgina Marryland Delaware

Arizona New Mexico Kansas Arkansas Tennessee North Carolina South Carolina

Oklahoma Louisiana Mississippi Alabama Georgia

Texas Florida

Fig. 2 | Adaptability and resilience assessment of US healthcare systems.  
a, Temporal trend of non-COVID-19 patient visits across US states, from January 
2017 to December 2022. Among the 49 analyzed states, 40 (81.63%) experienced 
two successive disruptions. The initial disruption generally occurred between 
January 2020 and May 2021, followed by a second disruption starting in June 
2021, and 38 of them were not recovered by the end of 2022. b, Disruption 
amplitude αi, duration Ti and disruption rate ui characterize each disruption for 

states in high or low levels of adaptability and resilience. c, State rankings for 
adaptability with index ρ in the range of (−1, 1), where a positive value indicates 
a capacity to adapt. d, State rankings for resilience with index r ∈ (0,1), where a 
higher value indicates a greater capacity to encounter disruptions and sustain 
the volume of visits. For better comparison, the plots in c and d are in descending 
order of resilience index. A system is considered to have high adaptability when 
ρ > 0.5 and high resilience when r > 0.7, highlighted in a gray band.
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moderate level of resilience (r = 0.70 ± 0.03). Maternal care thus exhib-
ited lower resilience (r = 0.74 ± 0.03) and experienced disruptions of 
greater duration, while chronic disease treatment exhibited higher 
resilience (r = 0.76 ± 0.03). Supplementary Fig. 4 shows the sensitiv-
ity analysis of predictive models across various healthcare services. 
Supplementary Fig. 7 shows the resilience and adaptability indexes 
of subservices like chronic obstructive pulmonary disease (COPD), 
cancer, heart disease and diabetes. Extended Data Fig. 4 shows the 
results for services for dialysis.

Adaptability and resilience among patient groups
Besides maintaining essential services, a resilient healthcare system 
should be able to provide adequate care to all patients, regardless of 
their socioeconomic status, race or ethnicity. We performed subgroup 
analyses according to race and ethnicity, to measure the number of their 
visits during the COVID-19 pandemic. More than 22 states experienced 
two disruptions across all patient groups (Extended Data Table 1).

Using data from New York State as an example (Fig. 4a), across 
all patient groups, there is a decrease in disruption rates during the 
second wave of disruption, demonstrating positive adaptability. The 
Asian population had the lowest adaptability index (ρAsian = 0.36 ± 0.10), 
while the white population had the highest adaptability index 
(ρwhite = 0.56 ± 0.06; see Fig. 4b). This suggests that the Asian popula-
tion is well-prepared to mitigate the impact of the first disruption, 
indicating limited room for further improvement and adaptability. 
The Asian population experienced a minimal decline in patient visits 
and the shortest duration, highlighting the highest resilience score. 
Meanwhile, the Hispanic and Black populations encountered severe 
disruptions in amplitude and duration, exhibiting the lowest resilience 
index. When considering all states (Fig. 4c–e), the Asian population 
garners the highest resilience score (rAsian = 0.80 ± 0.02), followed 
by the white population (rwhite = 0.74 ± 0.03). Conversely, the Black 
and Hispanic populations present the least amount of resilience  
with scores of rBlack = 0.73±0.03 and rHispanic = 0.72 ± 0.03, respectively. 
Supplementary Fig. 4 shows the sensitivity analyses of predictive 
models across populations according to race.

Association with pandemic severity, physician shortages and 
socioeconomic factors
The different performance of the healthcare system in US states during 
the COVID-19 pandemic is complex and multifactorial, with a range 
of factors, including pandemic severity, healthcare infrastructure, 
resources, lockdown policies, socioeconomic factors and the political 
climate all having a role. To incorporate these factors into healthcare 
system planning and decision-making processes, we need to sort out 
their effects on the resilience index r, adaptability index ρ and dis-
ruption amplitude α. We thus extensively collect state-level COVID-19 
cases, physician abundance and socioeconomic factors to estimate 
their correlations (Methods). As presented in Table 2, there was a posi-
tive correlation between states’ resilience index and the abundance of 
physicians (0.313 (P = 0.001)), while there were negative correlations 
between resilience index and local poverty levels (−0.328 (P = 0.001)) 
and also the unemployment rates (−0.156 (P = 0.001)). We also observed 
significant correlations between the adaptability index and these fac-
tors. For the two pandemic disruptions, their amplitudes exhibit nega-
tive associations with physician abundance (−0.241 (P = 0.005); −0.205 
(P = 0.005)) and positive associations with local poverty levels (0.253 
(P = 0.003); 0.234 (P = 0.015)) and uninsurance levels (0.333 (P = 0.001); 
0.401 (P = 0.001)). The results indicate that states with low physician 
abundance, high poverty rates, high unemployment and low insurance 
coverage are at a higher risk of severe disruption during the pandemic, 
presenting smaller healthcare system resilience and adaptability.

Discussion
By analyzing EMR data across US states, we measure the number of 
patient visits to essential services to analyze the collective response of 
diverse entities within the healthcare system in the face of consecutive 
disruptions during the COVID-19 pandemic. Our quantification frame-
work of resilience encompasses key metrics such as the resilience index, 
adaptability index and parameters that describe the amplitude and 
duration of each disruption, as well as the system performance in man-
aging disruption and recovery rate. Our findings reveal that the health-
care system underwent two waves of disruptions, demonstrating an 
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Fig. 3 | Adaptability and resilience assessment for essential services.  
To measure healthcare system responses for essential services, we categorize 
non-COVID-19 patient visits into the following two specific services across  
US states: chronic disease care and maternal care. The ‘all’ category encompasses 
all services. a, The average adaptability (ρ). b, The average resilience (r).  

c,d, Parameters characterize each disruption for services. The parameters 
include (c) disruption rate (ui) and recovery rate (vi) and (d) disruption amplitude 
(αi) and disruption duration (Ti). The adaptability and resilience indices and 
parameters across all states are expressed by the average, along with the lower 
and upper limits of the 95% CI. CI, confidence level.
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adaptive response wherein lessons from the initial disruption enhance 
the system’s capacity to absorb disruptions and expedite recovery. Over 
90% of the healthcare systems performed better during the second 
disruption. As of the end of 2022, about 77% of healthcare systems 
have yet to fully rebound to normal levels. Consistent with previous 
research4, state demographic attributes, such as high poverty levels 
and high rates of unemployment, were correlated with low resilience 
and adaptability. The abundance of the physician workforce has an 

essential role in determining healthcare resilience and adaptability39–41. 
The findings highlight the importance of strategically organizing the 
physician workforce during disasters and enhancing collaborations 
across states42.

By examining different healthcare services, we found that chronic 
disease care is more resilient and adaptive than maternal care. This is 
because chronic disease care needs long-term treatments and is more 
flexible in delivery across primary care clinics, specialty clinics and 
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Black (2nd disruption)
Black (1st disruption)
Asian (2nd disruption)
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White (2nd disruption)
White (1st disruption)
Hispanic (2nd disruption)
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Black (1st disruption)
Asian (2nd disruption)
Asian (1st disruption)
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0.72 0.75 0.78 0.81

Value
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Asian

Resilience
Est. (95% CI)

0.05 0.10 0.15 0.20 0.25
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White (2nd disruption)
White (1st disruption)
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Black (2nd disruption)
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0.40 (0.36–0.45)
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0.45 (0.37–0.52)
0.51 (0.44–0.59)
0.36 (0.25–0.46)
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Fig. 4 | Adaptability and resilience assessment for patient groups by race 
and ethnicity. To measure healthcare system responses for patients by race 
and ethnicity, we group non-COVID-19 visits according to patients’ attributes 
across US states. a, Illustration of the temporal trend of non-COVID-19 patient 
visits for Asian, Black, Hispanic and white groups in the New York state. b, The 
average adaptability (ρ). c, The average resilience (r) of patient groups. d,e, The 

parameters characterize each disruption. The parameters include (d) disruption 
rate (ui) and recovery rate (vi) and (e) disruption amplitude (αi) and disruption 
duration (Ti). The adaptability and resilience indices and parameters across all 
states are expressed by the average, along with the lower and upper limits of the 
95% confidence level.
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home health services, adding resilience through diverse ways of care4. 
Meanwhile, maternal care relies on short-term specialized services, 
its acute nature makes it more vulnerable to external disruptions43. 
Among the subservices for chronic disease care (Supplementary Fig. 7), 
services for heart disease management demonstrate lower resilience 
and adaptability compared to services for conditions such as asthma, 
COPD, cancer and diabetes. These findings emphasize the pressing 
requirement for heightened assistance and focus on heart disease 
care during a pandemic.

We also examined the healthcare resilience of populations by race 
and ethnicity. We found that the pandemic severely affected Black and 
Hispanic populations, leading to harsher disruptions and lower resil-
ience indexes for these populations. These disparities are likely rooted 
in socioeconomic inequalities that Black and Hispanic communities 
typically encounter greater obstacles in accessing healthcare services, 
particularly during external disruptions44,45. The findings underscore 
the importance of enhancing chronic disease care and maternal care 
to alleviate the exacerbation of inequality, especially for Black and 
Hispanic communities during crises.

During the COVID-19 pandemic, the number of patient visits to 
healthcare providers was jointly affected by the supply of services 
and patient demand. The availability of resources can limit access to 
healthcare services, and patient’s perception of infection risk may 
reduce the demand for nonessential services. Our analysis considered 
the impact of both the supply- and demand-side factors. Using essential 
service dialysis as an illustration, we disentangle the two factors and 
offer a rigorous assessment of the availability of delivering services 
from healthcare infrastructure and resources (the supply side). Patients 
undergoing dialysis usually need to attend several sessions each week, 
and their treatment is dependent on consistent and uninterrupted 
access to these services. Patient visits to dialysis services exhibit two 
distinct disruptions, differing in duration from other healthcare ser-
vices. The first disruption occurred from December 2019 to March 
2022, while the second disruption commenced in April 2022 with no 
observed recovery. The dialysis service exhibits delayed disruptions 
and higher resilience (r = 0.89). The results suggest that the healthcare 
system still underwent two disruptions without substantial change in 
service demand, indicating that the finding of two successive disrup-
tions is replicated.

Nevertheless, the quantification framework has several limita-
tions. First, although the EMR dataset we used is extensive within the 
US, the incomplete collection and biased data sampling in the dataset 
can affect the accuracy of our assessment. Specifically, the dataset may 
primarily represent states that have broadly adopted and implemented 
the EMR technology, potentially introducing bias into our analysis, 
particularly in regions where EMR adoption was low. Second, the miss-
ing attribute in the dataset can also potentially introduce bias into 
the analysis. Efforts to mitigate biases in data collection methodolo-
gies46,47 and integrating additional data sources can further validate 

the findings. Third, our assessment relies on the appropriate selection 
of a predictive model for forecasting expected patient visits. While we 
conduct various sensitivity analyses using alternative models, a more 
sophisticated model is needed to account for uncertainty in data and 
state variations within the system. Addressing structural uncertainty 
by considering multiple potential models and assessing their implica-
tions for predictions will also be needed for more comprehensive and 
reliable assessment.

Several avenues merit exploration for future research for a more 
comprehensive quantification of healthcare system resilience. It is 
crucial to consider excessive recovery as a new dimension of system resi-
lience, aiming not only to return to its original state but to recover lost 
visits and progress toward a more optimal state (Supplementary Fig. 8). 
It is necessary to untangle the intertwined impacts of successive disrup-
tions, particularly when disruptions stem from different crises. Further-
more, there is also a necessity to broaden the scope beyond COVID-19 
waves to comprehend healthcare system performance across different 
crises, especially for future guiding healthcare system resilience against 
more deadly diseases associated with climate change. For example, 
conducting a comparative analysis of responses to the 2003 severe 
acute respiratory syndrome (SARS) outbreak and the 2019 COVID-19 
pandemic could serve as a guide. Additionally, while our measure reflects 
the overall resilience of the healthcare system, it is crucial to exclude 
demand factors to concentrate solely on the dynamics of service avail-
ability when evaluating the resilience for specific hospitals and other 
healthcare facilities. Moreover, our macroscopic measures are limited in 
offering higher-resolution guidance on each system component. Future 
studies should delve into sophisticated computational methods and 
consider additional factors such as the intricate connections between 
healthcare facilities, resource management, the healthcare workforce, 
supply chain dynamics and the quality of patient care18,41. Finally, our 
measures can only be assessed retrospectively. Future endeavors should 
strive to provide real-time estimates for proactive decision-making.

In summary, our study provides a quantification framework for 
healthcare system resilience that can be applied generically to vari-
ous healthcare services, patient groups and different regions48,49. The 
proposed adaptability index and resilience index allow the characteri-
zation of healthcare system performance during and across multiple 
disruptions. These two indices can also offer a valuable complement 
to existing crisis management tools, such as SVI24 and PPI25,26, which 
predominantly focus on either the socioeconomic status of a region 
or the availability of healthcare resources before disruption strikes. 
In brief, this framework could provide policymakers with the essen-
tial insights to make informed adaptations to successive disruptions 
caused by prolonged disasters17,50,51.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 

Table 2 | Pearson correlation coefficients assessing the relationships between system adaptability/resilience and pandemic 
severity, physician shortages and socioeconomic factors in US states

Parameters COVID-19 
cases

Physician per 
100,000

Poverty 
percentile

Unemployment 
percentile

Uninsurance 
percentile

Age ≥65 
percentile

Age ≤17 
percentile

Minority 
percentile

Adaptability index −0.033 
(P = 0.507)

0.102 
(P = 0.039)

−0.082 
(P = 0.046)

−0.146 
(P = 0.003)

−0.010 
(P = 0.828)

0.040 
(P = 0.404)

−0.009 
(P = 0.847)

−0.0.046 
(P = 0.350)

Resilience index −0.054 
(P = 0.278)

0.313 
(P = 0.001)

−0.328 
(P = 0.001)

−0.156 
(P = 0.001)

−0.47 
(P = 0.001)

0.116 
(P = 0.019)

−0.209 
(P = 0.001)

−0.217 
(P = 0.009)

Amplitude α  
(first disruption)

0.114 
(P = 0.198)

−0.241 
(P = 0.005)

0.253 
(P = 0.003)

0.093  
(P = 0.295)

0.333 
(P = 0.001)

−0.116 
(P = 0.191)

0.175 
(P = 0.047)

0.054 
(P = 0.369)

Amplitude α  
(second disruption)

0.132 
(P = 0.178)

−0.205 
(P = 0.035)

0.234 
(P = 0.015)

0.206 
(P = 0.034)

0.401 
(P = 0.001)

−0.042 
(P = 0.668)

0.143 
(P = 0.144)

0.103 
(P = 0.292)

Significant correlations, determined by a two-sided test and indicated by a P value less than the threshold of 0.05, are given in bold.
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Methods
Data
The EMR dataset we used, referred to as the Healthjump dataset, is 
provided by the COVID-19 Research Database52. Healthjump is a data 
integration platform that exports EMR and practice management sys-
tems. It aggregates data from over 70,000 hospitals and clinics, as well 
as more than 1,500 healthcare organizations, covering all states in the 
US. With records dating back to 1995, the dataset encompasses informa-
tion on over 33 million patients and 1 million healthcare providers. It 
includes a wide array of patient data, including diagnoses, procedures, 
encounters and medical histories, sourced from participating members 
of the Healthjump network. Additionally, it contains patients’ sociode-
mographic attributes, such as race, sex and others. The dataset details, 
statistics and limitations are presented in Supplementary Tables 2 and 3.

In examining the correlation between states’ resilience/adaptabil-
ity index with COVID-19 infections, physician abundance and sociode-
mographic factors, we first gather cumulative infection cases in each 
state from the Johns Hopkins Coronavirus Resource Center53. We col-
lect physician abundance data regarding physician numbers for each 
state, drawing from the 2019 State Physician Workforce Data54. The 
sociodemographic factors analyzed include poverty levels, unemploy-
ment rates, uninsured levels, the proportion of the youth (less than 17), 
the proportion of the elderly (greater than 65) and the proportion of 
minority populations, all sourced from the CDC/ATSDR SVI24.

Ethics statement
Ethical approval was not required for this study, as the data used for 
analysis was from the fully anonymized Healthjump EMR database52. 
The database complies with the Health Insurance Portability and 
Accountability Act of 1996, ensuring the protection of patient informa-
tion through strict privacy policies and agreements with patients and 
healthcare providers. Therefore, ethical approval was not needed, as 
the database has no identifiable information about individual patients.

Demographic information
Demographic information was restricted to race and ethnicity. For the 
EMR-reported race and ethnicity, patients were designated by them-
selves or by a healthcare provider. For race, patients were designated as 
‘American Indiana or Alaska Native’, ‘Asian’, ‘Black or African American’, 
‘white’, ‘Native Hawaiian or other Pacific Islander’ and ‘other race’. For 
ethnicity, patients were designated as ‘Hispanic or Latino’, ‘not Hispanic 
or Latino’ and ‘unknown’. For simplification, we consider the main race/
ethnic categories in the study.

Essential health services of concern
Essential health services encompass vital healthcare provisions crucial 
for enhancing and preserving public health1,4. These services typically 
comprise maternal care, chronic disease management, diagnostic and 
laboratory services, vaccination, primary care, emergency care and 
others. Due to limitations in data availability and the exclusion of data 
related to care for patients with COVID-19, our study focuses solely on 
chronic disease care and maternal care across a spectrum of 23 diseases 
(Supplementary Table 4). We analyzed the absolute number of visits 
for these services. Additionally, we normalized the data to mitigate 
the impact of state population size and policies related to joining 
Healthjump’s EMR system in our analyses.

Quantification framework for successive disruptions
We used mathematical models that provide key parameters to charac-
terize the system’s behavior during disruption and recovery processes. 
While numerous models exist55, the beta family equations uniquely 
offer flexibility (Supplementary Fig. 1). Building upon the framework 
that describes the system’s behavior under a single disruption35,  
we generalize this framework to multiple successive disruptions, as 
given below:
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where O(t) is the actual observed performance of patient visits and  
P(t) is the predicted performance if the pandemic didn’t occur.  
Suppose there are n disruptions. Each disruption i has an amplitude αi, 
which is the scale factor, defined as the severity of disruption on the 
system. The other two parameters θi and 𝜗𝜗

i

 determine the curve’s  
shape for disruption and recovery respectively, as reflected in the 
system’s ability to manage the processes. Within the same duration  
Ti (Ti

= t
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, a slow disruption is followed by a fast recovery; if θ
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, a  
fast disruption is followed by a slow recovery. We define disruption  
rate as u

i

=

1

θ

i

T

i

 and its recovery rate as v
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. A smaller value of θi or  
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 leads to quick disruption or recover. A shorter duration Ti results  
in a rapid deterioration of performance to its maximum extent.

To assess the system’s performance across n disruptions, we  
introduce the adaptability index in terms of disruption rate across 
consecutive disruptions i and i + 1,

ρ =

1

n

n

∑

i=1

−(u

i+1

− u

i

)

max(u

i+1

,u

i

)

, (2)

where ρ ∈ (−1, 1). Specifically, ρ > 0 indicates that the system exhibits 
adaptability with u

i+1

< u

i

, signifying that the rate of disruption i + 1 is 
smaller than that of disruption i. Conversely, ρ < 0 suggests that  
the system lacks adaptability with u

i+1

> u

i

, indicating that the rate of 
disruption i + 1 is larger than that of disruption i. Higher values of ρ 
signify an increased level of adaptability of the system. In the case of a 
single disruption, ρ = 1. The adaptability index can also be measured 
in terms of recovery rate. As the recovery rate is largely unknown in  
our results, we only use the disruption rate to measure the system 
adaptivity.

Following the classic way29,30,55, we measure system resilience in 
terms of performance loss as

r = 1 −

∫

t

r

t

s

(P (t) −O(t))dt
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t

s

P (t)dt

, (3)

where r ∈ (0, 1). The term ∫t

r

t

s

(P (t) −O(t))dt  is the total loss between 
expected P(t) and observed patient visits O(t). The division by integral 
of expected performance ∫t

r

t

s

P (t)dt

 normalizes the results to a range 
between 0 and 1. A value of 1 indicates no performance loss (perfect 
resilience), while 0 indicates a complete loss.

Predictive model for quantification framework
For the analysis of healthcare resilience during the COVID-19 pandemic, 
we extracted data from 2017 to the end of 2022. Commencing from 
January 2020, the onset of the pandemic, we designate this as the 
starting date, denoted as ts, The dataset is subsequently divided into 
the following two distinct periods: the prepandemic period (t < ts, from 
January 2017 to December 2019) and the pandemic period (t ≥ ts, from 
January 2020). With the growing adoption of EMR technology in US 
hospitals and increased accessibility to healthcare facilities due to the  
Affordable Care Act, there has been a noticeable rise in patient visit  
volumes in our datasets. To capture the expected patient visits in equa-
tion (1), we leverage the number of physicians in the data that participate 

Content courtesy of Springer Nature, terms of use apply. Rights reserved



Nature Medicine

Article https://doi.org/10.1038/s41591-024-03103-6

in EMR technology, state population and physician-to-population 
ratio54 to assess expected patient visits,

P(t) = 𝒫𝒫

v

(t)σn, (4)

where 𝒫𝒫
v

(t) is the monthly number of physicians that adopted EMR 
technology in the state, n is the state population and σ is the state 
physician-to-population ratio, adjusted by monthly visit frequency in 
the prepandemic period. Through the models, we can predict the 
expected patient visits that digital health platforms would accumulate 
if no disruptions occurred beyond ts. We also use the innovation (EMR) 
adoption model56 and time-series model57, that is, the generalized 
logistic model and exponential smoothing model, and consider the 
seasonality for the sensitivity test. The comparisons of predictive 
models are provided in Extended Data Fig. 1 and Supplementary  
Figs. 2–5. To smooth out seasonal fluctuations and identify underlying 
trends or patterns, we use the 3-month moving average on data. For 
comparison across states and services, the volume of patient visits at 
t = 0 is norma lized to 1.

Identification of disruptions
To fit the observed performance O(t) with equation (1), we first identify 
the number of disruptions n and the duration Ti of each disruption i. 
The disruptions are identified through segmented least squares, which 
enables the detection of both the peak of decline and subsequent 
increase in performance and divides the duration Ti into disruption 
and recovery phases. Disruptions failing to meet the following criteria 
will be excluded: (1) those lasting less than 3 months (where Ti < 3) and 
(2) those with a minimum performance loss ratio below 5%. These two 
criteria are used to exclude disruptions with not significant losses and 
those attributed to data fluctuations caused by seasonal effects (see 
Supplementary Fig. 5 for the sensitivity test of criteria). Then we infer 
the parameters αi, θi and 𝜗𝜗

i

 for the observed performance for each 
disruption i by using the iterative optimization method58,59.

Statistical analysis
To demonstrate the resilience and adaptability of various services and 
races, we represent their average across analyzed states with the lower 
and upper limits of 95% confidence level in Figs. 3 and 4. For a total of 
M analyzed state, the average of resilience for services is calculated as  
r

i

=

∑

m

r

i

m

M

, where ri
m

 represents the resilience at state m for services i.  
Similarly, the average of resilience for racial groups is calculated  

as r j

=

∑

m

r

j

m

M

, where r j

m

 represents the resilience at state m for race j.  
The same calculations are applied for the average of adaptability.

We use the Pearson correlation coefficient to gauge the correlation 
between state resilience (or adaptability) with various factors, such as 
COVID-19 infections, physician abundance, sociodemographic factors 
and SVI. This coefficient, ranging between −1 and 1, quantifies both 
the strength and direction of the relationship between two variables.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The EMR dataset that supports the findings of this study is available 
from the Healthjump database, provided by the COVID-19 Research 
Database Consortium (https://covid19researchdatabase.org/). How-
ever, restrictions apply to accessing these data, which were used under 
license for the current study. The EMR dataset is not publicly available. 
The data on COVID-19 infection cases in each state are collected from 
the Johns Hopkins Coronavirus Resource Center (https://github.com/
CSSEGISandData/COVID-19). The general physician abundance data 
regarding physician numbers in each state are collected from the 2019 

State Physician Workforce Data (https://www.aamc.org/data-reports/
workforce/report/state-physician-workforce-data-report). The soci-
odemographic factors in each state are collected from the CDC/ATSDR 
SVI (https://www.atsdr.cdc.gov/placeandhealth/svi/index.html). For 
validation, external summary datasets on patient visits to physicians, 
emergency departments and the number of hospital discharges  
during the pandemic are sourced from the National Center for Health 
Statistics (https://www.cdc.gov/nchs/index.htm) and the US Census 
Bureau (https://www.census.gov/). For the results dashboard, please 
see the website ResilienceHealthSys.com.

Code availability
The code used in the study for the quantification framework is  
available at https://github.com/lucinezhong/healthcare_resilience_ 
quantification_framework.
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Extended Data Fig. 1 | Comparison of predictive models P(t) using national 
volume of Non-COVID-19 patient visits in Healthjump dataset. Comparison 
of predictive models P(t) using national volume of Non-COVID-19 patient visits 
of Healthjump dataset. (a) Estimation model incorporating physician EMR 
technology adoption counts within Healthjump database. (b) Generalized 

logistic model utilizing AHA (American Hospital Association) EMR adoption 
rates. (c) Simple exponential smoothing model integrated with AHA EMR 
adoption rates. (d) Seasonal exponential smoothing model incorporating AHA 
EMR adoption rates. (e) Constant population who have active visits during the 
pre-pandemic period. All models identify two disruptions.
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Extended Data Fig. 2 | Volume of non-COVID-19 patient care in the US from 
2019 to 2022 provided by other datasets. (a) Patient visits to physicians, 
sourced from the National Center for Health Statistics. (b) Patient visits to 
emergency departments, also sourced from the National Center for Health 
Statistics. (c) Number of hospital discharges, provided by the US Census Bureau. 

Compared against a baseline represented by a blue line, indicative of average 
patient visits before the pandemic, the observed patient visits (represented 
by a red line) show two disruptions, marked by dashed vertical lines. The first 
disruption spans from the first quarter of 2020 to the second/third quarter of 
2021, while the second disruption begins in the third/fourth quarter of 2021.
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Extended Data Fig. 3 | Resilience index of states versus social vulnerability index. (a) State resilience index. (b) State social vulnerability index. (c) Pearson 
correlation coefficient. The resilience index is negatively correlated with the social vulnerability index. The correlation significance is determined by a two-sided test 
and indicated by a P value.
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Extended Data Fig. 4 | Temporal trend of patient visits for dialysis service. Similar to conclusions drawn for other essential services, two disruptions are observed, 
but the period differs, with the first occurring from December 2019 to March 2022 and the second beginning in April 2022 with no observed recovery.
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Extended Data Table 1 | Successive disruptions on healthcare system from 2020 to 2022

Successive disruptions on US healthcare systems from 2020 to 2022. We classify the healthcare system as ‘not recovered’ if the observed non-COVID-19 patient visits keep less than 95% of 
the expected counts.
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