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Abstract: The introduction of benchtop NMR instruments has made NMR spectroscopy a more ac-
cessible, affordable option for research and industry, but the lower spectral resolution and SNR of
a signal acquired on low magnetic field spectrometers may complicate the quantitative analysis of
spectra. In this work, we compare the performance of multiple neural network architectures in the
task of converting simulated 100-MHz NMR spectra to 400-MHz with the goal of improving the
quality of the low-field spectra for analyte quantification. Multi-layered perceptron networks are
also used to directly quantify metabolites in simulated 100 and 400-MHz spectra for comparison.
The transformer network was the only architecture in this study capable of reliably converting the
low-field NMR spectra to high-field spectra in mixtures of 21 and 87 metabolites. Multi-layered per-
ceptron-based metabolite quantification was slightly more accurate when directly processing the
low-field spectra compared to high-field converted spectra, which for at least for the current study
precludes the need for low-to-high field spectral conversion; although, this comparison of low and
high-field quantification necessitates further research, comparison, and experimental validation. In
conclusion, the transformer method of NMR data processing was effective in converting low-field
simulated spectra to high-field for metabolomic applications and could be further explored to auto-
mate processing in other areas of NMR spectroscopy.

Introduction

NMR spectroscopy is an indispensable tool across physical and life sciences with an
incredibly broad range of applications across academia, healthcare, government, and in-
dustry; but the expensive upfront cost, cost of maintenance, personnel requirements, and
housing requirements of high-field magnets are barriers for many researchers that could
potentially benefit from the NMR technology. Recent advances in magnet technology and
NMR hardware have led to the development of a new generation of low-field (LF) NMR
spectrometers that fit on the benchtop. These instruments are affordable with almost no
maintenance cost, do not require dedicated lab personnel or cryogenic liquids, and the
magnetic field extending beyond the device housing is negligible [1, 2]. High-field (HF)
instruments are very large and can take up a significant portion of a room, while benchtop
instruments fit on a table and are portable and easy to operate — opening up possibilities
for widespread use and point-of-care applications. Compared to HF NMR, LF NMR spec-
troscopy is less sensitive and has lower spectral resolution, making it harder to interpret
spectra for metabolomics; thus, alternate methods may be required for optimal metabolite
profiling. This research trains neural networks (NNs) to improve LF NMR signal quality
for metabolite profiling by converting simulated LF spectra into their HF counterpart and
will compare this to direct LF NMR metabolite quantification.

Numerous commonly used sequence-to-sequence NN models may prove useful for
the task of converting LF spectra to HF spectra such as autoencoders, temporal convolu-
tional neural networks, recurrent methods (like long short-term memory (LSTM) or gated
recurrent units (GRUs)), or transformers [3]. Autoencoders employ encoder-decoder
structures like densely connected autoencoders (DAEs), convolutional autoencoders
(CAEs), and U-Nets [4] and find use in applications like signal denoising [5, 6] or image
processing [7]. Temporal convolutional networks (TCNs) gained popularity due to their



impressive performance on sequence modeling tasks like forecasting [8, 9] or time-series
classification [10] which had generally employed CNNs or recurrent methods. Transform-
ers are attention-based networks which have achieved impressive, state-of-the-art perfor-
mance across sequence modelling tasks, especially in natural language processing tasks
as exemplified by large language models like BERT and ChatGPT [3, 11-13]. Transformers
employ a self-attention mechanism to capture short and long-range dependencies within
an input sequence, i.e. each member of the input sequence learns parameters relating it to
all other members of the sequence and thus each member takes its context within the se-
quence into account [14]. Transformers are also attractive due to their high parallelizabil-
ity compared to convolutional or recurrent methods - making them faster to train on mod-
ern graphics processing units (GPUs) [3].

This work implements DAE, CAE, U-Net, TCN, and transformer models for the task
of transforming the spectral resolution of simulated LF 100-MHz NMR spectra of metab-
olite mixtures to HF 400-MHz spectra. Under the assumption that the entire spectra may
potentially not be required simultaneously for successful conversion of LF to HF spectra,
we also experiment with an approach that divides spectra into smaller spectral regions
which are independently fed into a model before being recombined into output spectra.
Additionally, we train and test multi-layered perceptron (MLP) networks for both direct
LF and HF quantification and compare this to first converting a simulated LF spectra to
HF prior to inputting into the model trained for HF quantification. In summation, this
study introduces and validates a novel NN-based NMR data processing approach for con-
verting simulated spectra from 100-MHz spectral resolution to 400-MHz.

Methods
Data Generation

Simulated LF (100-MHz) and HF (400-MHz) 1D-'H NMR spectra for 21 metabolites
were downloaded from the human metabolome database (Maleic acid, histidine, 1-
methylhistidine, acetic acid, creatine, glycine, formic acid, hypoxanthine, L-alanine, ly-
sine, lactic acid, inosine, pyruvic acid, succinic acid, xanthine, creatinine, leucine, L-valine,
NAD, niacinamide, and alpha-D-glucose). The simulated spectra in the HMDB were com-
puted by predicting chemical shifts using a combination of machine learning and HOSE-
code methods, determining coupling constants using empirical rules, and then spin ma-
trix calculations were used to generate the spectra [15]. Simulated spectra largely resemble
their experimentally acquired counterparts, with 'H chemical shifts generally differing by
less than 0.15 ppm root mean squared error (RMSE) per spectrum [15]. Data processing
was performed using Python (version 3.11.5) with the numpy library (version 1.24.3) for
matrix operations and the nmrglue library (version 0.10) for NMR pre-processing opera-
tions (reading files, peak shifts, and Fourier transformations). To generate spectra, all 21
simulated spectra were scaled independently using scalars ranging uniformly from 1-50
and were summed to produce simulated mixture spectra with concentrations ranging
from 1-50 mM. A singlet signal at 0.0 ppm was added to mimic a 3-(Trimethylsilyl)propi-
onic-2,2,3,3-d 4 acid (TSP-d4) resonance of 2.96 mM in each spectrum to mimic a quanti-
tative reference signal. Data augmentation was employed on each spectrum to produce a
more varied dataset and mimic experimental signal variations by adding uniformly dis-
tributed noise (peak-to-peak maximum amplitude of ~0.1% of the quantitative reference
peak height), randomly shifting metabolite peaks left or right (0-3.4 ppb), shifting baseline
(up to ~0.6% of the quantitative reference peak height), and the addition of up to three
randomly scaled singlets (using the acetic acid peak for a generic singlet) and up to three
randomly scaled triplets (using the succinic acid signal for a generic triplet downloaded
from the HMDB) at random chemical shifts. These steps were repeated 10,000 times with
all 21 metabolites present in all spectra and 10,000 times with each metabolite having a
50% chance of being left out for a total of 20,000 spectra. This dataset was split 16,000:4,000
for training and validation, respectively. A testing dataset of 4 simulated spectra was gen-
erated with all 21 metabolites present in all spectra. Several further example spectra, each
with mean intensity noise added, were generated for testing analyte quantification



including: all 21 metabolites at 5 mM, all metabolites at 25 mM, and all metabolites at 50
mM. For all spectra in this study, only 46,000 data points from -0.32 ppm to 10.2 ppm
corresponding to the signal containing spectral regions were used for network training,
testing, and validation.

Every spectrum generated using the above-described method was further generated
following two alternative protocols. One dataset is generated with four times greater noise
intensity added to LF than was added to HF spectra to simulate a lower signal-noise ratio
(S5NR) in LF spectra. The other dataset was generated with 87 metabolites rather than 21
(additional metabolites include: 2-Hydroxybutyric acid, 3-hydroxybutyric acid, alpha-ke-
toisovaleric acid, adenine, adenosine monophosphate, acetoacetic acid, dimethylglycine,
citric acid, choline, ethanol, D-glucose, fructose 6-phosphate, glutathione, glycerol, fu-
maric acid, glutamic acid, L-tyrosine, phenylalanine, proline , L-threonine, L-asparagine,
D-mannose, isoleucine , inosinic acid, serine , L-aspartic acid, isocitric acid, L-acetyl-
carnitine, oxoglutaric acid, myo-inositol, ornithine, NADP, oxalacetic acid, taurine, sarco-
sine, uridine 5'-monophosphate, uridine, 3-methyl-2-oxovaleric acid, L-arginine, acetyl-
glycine, adenosine triphosphate, L-cysteine, glutamine, D-alpha-aminobutyric acid, ke-
toleucine, methionine, isovaleric acid, 3-hydroxyisovaleric acid, trimethylamine N-oxide,
L-tryptophan, succinyl-CoA, fructose 1,6-bisphosphate, FADH, acetyl-CoA, FAD, ADP,
NADH, phosphocreatine, nicotinic acid mononucleotide, acetone, caffeine, methanol, pro-
pylene glycol, itaconic acid, selenocysteine, and oxidized glutathione) and with four times
greater noise for LF spectra relative to HF.

Three training and validation datasets were generated for metabolite quantification
by MLP. These datasets were generated using the same data generation workflow as the
above-described datasets (i.e., 21 metabolites, 21 metabolites with adjusted SNR, and 87
metabolites with adjusted SNR), with the only difference being no triplets were added in
data generation. Three testing spectra, each with mean intensity noise added, were gen-
erated for assessing analyte quantification including: all 21 (or 87) metabolites at 5 mM,
all metabolites at 25 mM, and all metabolites at 50 mM.

To explore how the model performs on metabolites it hasn’t yet seen, a testing dataset
of 50 spectra was generated using the workflow described above (vary noise, vary peak
shift, vary baseline shift, and with SNR 4 times lower for 100-MHz spectra compared to
400-MHz). This unseen metabolite dataset contained 12 metabolites using simulated spec-
tra downloaded from the HMDB for: deoxyuridine, p-hydroxyphenylacetic acid, 3-meth-
oxytryramine, dihydrobiopterin, adenosine, cyclic AMP, deoxyinosine, dopamine, cyste-
inylglycine, dihydrothymine, cytidine triphosphate, and dimethylamine.

Network Architectures, Training, Validation, and Testing

Pytorch (version 2.2.1) was used for data loading, model development, and training.
All models were trained using LF 100 MHz spectra as input, HF 400 MHz spectra as the
target, mean squared error (MSE) as a loss function, Adam as an optimizer using the de-
fault learning rate, and ReLU as the activation function. Models were trained for 300
epochs or until 25 epochs passed without a new best validation loss value achieved. All
models were evaluated using MSE between the 100 ground truth testing high field spectra
and predicted high field spectra, testing and four testing output spectra were assessed
visually against ground truth 100- and 400-MHz spectra. The best model was further val-
idated on 50 spectra of 12 metabolites — all which were not seen by the model in training.

The DAE was instantiated with an encoder of densely connected layers consisting of
46000, 2000, and 200 nodes respectively (with 46000 data points being the size of each
input spectra), and the decoder was the reciprocal (200-2000-46000 nodes). The CAE was
developed with a four convolutional layer encoder consisting of 16, 32, 64, and 128 kernels
respectively, and the decoder was the reciprocal (128-64-32-16 kernels). CAE kernels were
of a size of 3 units with a stride and padding of 1. The U-Net model employed the same
architecture as the CAE but with a skip connection between the 32 kernel layers. To reduce
computational requirements, an alternate U-Net approach was tested where each input
spectrum was separated into 46 bins of 1000 data points each before being fed into the



model and subsequently concatenating after inference. This binned U-Net approach is re-
ferred to as UNet-Chunks for the remainder of this manuscript. The TCN implementation
used the Pytorch framework described by Bai et al and found on Github
(https://github.com/locuslab/TCN) [16]. The TCN used a kernel size of two, dropout rate
of 20%, and three temporal blocks with 25, 50, and 100 channels respectively. ReLU was
used for all activation functions.

For the transformer, an encoder-only transformer was followed by a simple linear
layer — a minor modification of the transformer architecture described by Vaswani et al
[3]. The 46,000 data point spectra inputs were separated into 46 bins of 1000 data points
each prior to model input, and model inputs were considered sequences of length 46 with
1000 features each. Inputs were passed to a linear layer converting features to 512 embed-
dings. No positional encodings were applied to these embeddings before passing them
into a 6-layer transformer encoder with 8 attention heads, a feedforward dimension of
2048 nodes, and dropout applied at a rate of 10%.

MLPs with 46,000 input nodes, a 200-node hidden layer, and 21 (or 87 depending on
the testing dataset) output nodes were trained for quantification of analytes at 100-MHz
and 400-MHz using the same datasets used to train for LF-to-HF conversion. These mod-
els were assessed on the three example spectra with all metabolites at 5, 25, or 50 mM
using mean absolute percent error (MAPE) as an accuracy metric, and these models were
compared to the method of first converting LF spectra to HF using the transformer and
then applying the HF-MLP for inference.

Results

The DAE, CAE, UNet, UNet-Chunks, TCN, and transformer model were all trained
for the conversion of 'TH-NMR spectra of 21 metabolite mixtures from 100-MHz to 400-
MHz. All models besides the transformer performed poorly in the task of LF-to-HF con-
version with testing MSEs ranging from 2E-4 to 3E-4 (MSE for all models listed in Table 1
below). The DAE with a testing MSE of 2E-4 performed poorly on testing data by always
predicting HF spectra with ~20 mM of each metabolite and with some peaks not matching
up with ground truth signals regardless of the input, as seen for four overlays of ground
truth (red) and predicted (blue) HF spectra in Figure 1 and in several zooms of one spec-
trum showed in supplementary Figure S1. The CAE, UNet, UNet-Chunks, and TCN mod-
els each achieved a testing MSE of 3.0E-4 and produced unsuccessful conversions result-
ing in noisy spectra that did not resemble ground truth signals. Four spectral overlays for
the CAE HF predicted spectra and ground truth testing spectra are shown in Figure 2 (also
one spectrum and two zoomed regions for the CAE model are displayed in supplemen-
tary Figure S2, and four spectra for the UNet, UNet-Chunks, and TCN are shown in sup-
plementary Figure S3, 54, and S5 respectively). The UNet, UNet-Chunks, and TCN models
all performed similarly to the CAE.

Table 1. Neural network performance metrics for 100-MHz to 400-MHz conversion of 10

NMR spectra. MSE between ground truth HF spectra and predicted HF spectra are dis-

played for eight models
Model CAE UNet UNet- TCN Transformer- Transformer- Transformer-
Chunks 21 Metabolites | 21 Met. Adjust SNR 87 Met. Adjust SNR
MSE 2.0E-4 | 3.0E-4 | 3.0E-4 | 3.0E4 3.0E-4 | 6.5E-5 1.0E-4 1.0E-4

Abbreviations: MSE = mean-squared error; HF = high-field; LF = low-field; DAE = densely
connected autoencoder; CAE = convolutional autoencoder; TCN = temporal convolutional

network; Met. = metabolites; SNR = signal-to-noise ratio.
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Figure 1. DAE performance results for 100-MHz to 400-MHz conversion of four testing spectrum
from the dataset of 21 metabolites. The ground truth HF spectrum is shown in red overlaid with
the corresponding LF to HF converted spectra in blue, and the MSE between spectra is displayed
for each conversion. Abbreviations: LF = low-field; HF = high-field; DAE = densely con-

nected autoencoder; MSE = mean-squared error.
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Figure 2. CAE performance results for 100-MHz to 400-MHz conversion of four testing spectra from
the dataset of 21 metabolites. The ground truth HF spectrum is shown in red overlaid with the cor-
responding LF to HF converted spectrum in blue, and the MSE between spectra is displayed for
each conversion. Abbreviations: LF = low-field; HF = high-field; CAE = convolutional auto-

encoder; MSE = mean-squared error.

The transformer was the only successful neural network architecture in the current
study for LF-to-HF conversion. Figure 3 displays four converted HF spectra in blue over-
laid with the ground truth HF spectra in red — with each estimated HF spectrum closely
resembling its respective ground truth spectrum. A closer look at the converted reso-
nances and how they compare to each model LF input and corresponding HF ground
truth spectrum are shown in Figure 4. The transformer achieved a low MSE of 6.5E-5 for
this conversion on 100 testing spectra.
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Figure 3. Transformer performance results for 100-MHz to 400-MHz conversion of four testing spec-
tra from the dataset of 21 metabolites. The ground truth HF spectrum is shown in red overlaid with
the corresponding LF to HF converted spectrum in blue, and the MSE between spectra is displayed
for each conversion. Abbreviations: LF = low-field; HF = high-field; MSE = mean-squared error.
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Figure 4. Transformer performance results for 100-MHz to 400-MHz conversion of one testing spec-
trum from the dataset of 21 metabolites. The top row shows the input LF spectrum, the middle row
shows the ground truth HF spectrum, and the bottom row shows the predicted HF spectrum. The
left column shows the full spectra, and the middle and right columns show zoomed in portions of

the same spectra. Abbreviations: LF = low-field; HF = high-field.

After successful conversion of simulated 100-MHz to 400-MHz spectra for 21 metab-
olites, the same transformer architecture was trained for converting spectra with the same
21 metabolites but with four times lower SNR in LF spectra. Results were highly similar
to model performance before adding noise (testing MSE of 1.0E-4), and four spectra



overlays of estimated HF and ground truth HF spectra are displayed as supplementary
Figure S6.

The same transformer architecture was next trained for LE-to-HF conversion in spec-
tra containing up to 87 metabolites and with four times lower SNR for LF spectra, and
four output spectra overlay with ground truth signals are displayed in supplementary
Figure S7 along with respective MSE values. A closer look at an individual spectrum prior
to and after conversion, along with the ground truth spectrum, are shown in Figure 5
below. The model does well for many metabolites; although, some smaller SNR reso-
nances are not as successfully converted as before in spectra with 21 metabolites (testing
MSE of 1.0E-4).
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Figure 5. Transformer performance results for 100-MHz to 400-MHz conversion of one testing spec-
trum from the dataset of 87 metabolites with adjusted SNR (four times higher noise in 100-MHz
compared to 400-MHz spectra). The top row shows the input LF spectrum, the middle row shows
the ground truth HF spectrum, and the bottom row shows the predicted HF spectrum. The left col-
umn shows the full spectra, and the middle and right columns show zoomed in portions of the same

spectra. Abbreviations: LF = low-field; HF = high-field.

The transformers trained on 21 and 87 metabolites, respectively, with adjusted SNR
were further tested on 50 spectra of 12 metabolites — all which had not been seen in train-
ing. The model trained on 21 metabolites achieved an MSE of 2.2E-4, and the model
trained on 87 metabolites achieved an MSE of 1.2E-4. The lower MSE is corroborated in
visual comparison of a predicted and ground truth high field spectra shown in figures 6
and 7, where it is shown that both models do fairly poorly on the lower SNR multiplets in
the zoom from ~2.8-3.4 ppm but the transformer trained on 87 metabolites performs better
in the zoom from ~0.5-1.05 ppm. Supplementary figure S8 shows the quantitative compar-
ison for four spectra for the model trained with 21 metabolites, and S9 shows the quanti-
tative comparison for four spectra for the model trained with 87 metabolites.
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Fig. 6. Transformer (trained with 21 metabolites and four times lower SNR for low-field
spectra) performance results for 100-MHz to 400-MHz conversion of one test spectrum
from the dataset of 12 metabolites not seen in training. The top row shows the input LF
spectrum, the middle row shows the ground truth HF spectrum, and the bottom row
shows the predicted HF spectrum. The left column shows the full spectra, and the middle
and right columns show zoomed in portions of the same spectra. Abbreviations: LF =low-
field; HF = high-field; Met. = Metabolites.
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Fig. 7. Transformer (trained with 87 metabolites and four times lower SNR for low-field
spectra) performance results for 100-MHz to 400-MHz conversion of one test spectrum
from the dataset of 12 metabolites not seen in training. The top row shows the input LF
spectrum, the middle row shows the ground truth HF spectrum, and the bottom row
shows the predicted HF spectrum. The left column shows the full spectra, and the middle
and right columns show zoomed in portions of the same spectra. Abbreviations: LF =low-
field; HF = high-field; CAE = convolutional autoencoder; Met. = Metabolites.

Representative testing spectra with all metabolites at 5, 25, or 50 mM were prepared
in the same manner as the three datasets utilized in this study for comparing LF and HF
metabolite profiling by neural networks in simulated spectra. MAPE values reflecting
quantitative accuracy for all examples are shown in Figure 8 below (Table S1 lists these
values in the supplement.. For all three datasets (21 metabolites, 21 metabolites with ad-
justed SNR, and 87 metabolites with adjusted SNR), MLPs trained on LF spectra consist-
ently achieved slightly higher accuracy for all three concentration testing spectra (ranging
from ~22-104% lower MAPE for LF quantification) compared to the HF-MLP MAPE on
HF validation spectra. The HF-MLPs were further tested on HF spectra produced by con-
verting spectra from 100-MHz to 400-MHz using the appropriate transformer model (i.e.,
21 or 87 metabolite model). In spectra with 21 metabolites, LF-to-HF conversion prior to
quantification using the HF-MLP resulted in a ~80-153% drop in accuracy compared to
direct LF quantification. The decrease in accuracy was greater for spectra with 87 metab-
olites at ~299-673%.



[ ]
8- 21 Metabolites
weqi *
o
S41 @
2
B
* *
[ ]
81 21 Metabolites - Adjusted SNR Model Type
-t_:'.- . L‘F
w7 % HF
oo
"-'1: 5] LF-to-HF
= 41 @
2.
= g
L J *
m
20 87 Metabolites - Adjusted SNR
15
L
=
= o A
il -
& 3 3
: L » |
5 mM 25 mM 50 mM
Concentration

Figure 8. Performance for direct LF spectra quantification using the LF-MLP (blue circle), direct HF
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datasets and each model was assessed for quantification accuracy using MAPE as a metric on 3
testing spectra with all trained metabolites (i.e. 21 or 87 metabolites) at 5 mM, 25 mM, and 50 mM.
Abbreviations: HF = high-field; LF = low-field; SNR = signal-to-noise ratio, MAPE = mean
absolute percent error.

Discussion

The current study investigated the feasibility of converting low field NMR spectra to
higher magnetic field strength spectra using a neural network approach. This work com-
pared DAE, CAE, UNet, TCN, and transformer neural networks for the sequence trans-
duction task of converting 100-MHz 'H-NMR spectra to 400-MHz spectra. Additionally,
MLPs were trained for analyte quantification directly at LF and HF for comparing with
the model performing LF-to-HF conversion prior to quantification. All models were as-
sessed on simulated spectra with up to 21 metabolites, and the most effective model, the
transformer, was further assessed on two datasets with adjusted SNR for LF spectra and
up to 21 or 87 metabolites, respectively. Only the transformer produced satisfactory se-
quence conversion, while the DAE, CAE, UNet, UNet-Chunks, and TCN models all over-
fit. This result was evident visually and was confirmed by lower MSE values achieved by
the transformer model. The transformer reliably converted spectra with up to 21 metabo-
lites for the original and adjusted SNR datasets. Increasing to a highly complex 87 metab-
olites decreased the performance of the LF-to-HF conversion.

Interestingly, the direct quantification of HF spectra did not reveal higher accuracy
compared to direct quantification of LF spectra as we expected — with the LF quantifica-
tion producing slightly more accurate estimations in our analysis for all three example
spectra from each testing dataset. Despite not achieving as high accuracy metrics as the
direct LE-MLP, the HE-MLP quantification of converted LF-to-HF spectra was reasonably
accurate and thus further proved the quality of the LF-to-HF conversion, especially for



spectra with 21 metabolites. The surprising result of higher accuracy for quantification
directly in LF spectra could be because the lower resolution 100-MHz resonances are
wider and thus each resonance interacts with a greater number of tunable model param-
eters. Our results are similar to research by Burger et al who found little difference be-
tween performance of 43, 60, 500, and 600-MHz spectrometers in the task of molecular
weight determination [17]. It is possible quantification methods other than an MLP net-
work, such as peak deconvolution followed by concentration computation or using alter-
native neural networks, might affect analyte quantification results seen in this study and
lead to lower quantitative performance at lower field strengths. While our current study
proves the feasibility of our proposed low field to high field conversion method, not per-
forming analysis in experimentally acquired spectra is a limitation andfuture work should
include performing a similar analysis to this study with experimentally collected spectra
and biological spectra to validate our findings in simulated spectra.

The results of the transformer models on spectra containing only metabolites not seen
by the models during training revealed that the model trained on 87 metabolites outper-
formed the model trained on 21 metabolites; although, the model trained on 87 metabo-
lites still struggled to convert some resonances. This result suggests that the more reso-
nances of varied chemical structures the model sees in training, the better it may general-
ize to structures it did not see in training. Thus, the model and data generation workflow
deployed in the current study might be best suited for a targeted analysis in well-defined
samples (i.e., the samples being studied have a suite of expected metabolites and a model
is trained specifically for these metabolites), and practitioners seeking to convert any given
metabolite in less well-defined samples should generate training spectra covering a much
larger number of metabolites and thus a much wider chemical space.

As simulated spectra were used, it is also possible that our comparison does not fully
reflect what would be encountered in experimentally collected LF and HF spectra in terms
of SNR. Further validation of this LF-to-HF procedure should take care to ensure realistic
SNR for all spectra. Our study applied a linear SNR dependency as mentioned in several
publications [18, 19] (4 times higher for 400-MHz compared to 100-MHz); however, it may
be more accurate to scale SNR by the power of 3/2 [20, 21] (8 times higher for 400-MHz).
Additionally, other factors beyond field strength affect SNR (e.g., the probe) [22], which
could further confound comparisons between instruments. Despite the SNR limitations,
the transformers effectively converted the spectral resolution of LF spectra to 400-MHz.
Future work should include conversion between spectra with greater differences in mag-
netic field strengths than the 100 to 400-MHz spectra used in this study.

The transformer was effective in LF-to-HF conversion, but it is likely that modifica-
tions could improve model performance. The training/validation dataset of 20,000 spectra
is relatively low for a transformer, and it is very likely that increasing to hundreds of thou-
sands or even more spectra would increase LF-to-HF conversion performance for the
transformer, and potentially for the other models which did not perform well. As only one
set architecture and set of parameters were tested per model in this study, it's possible
that through hyperparameter optimization, performance could be improved for all mod-
els assessed in this study, which warrants future investigation. Performance may improve
by testing different architectures like an encoder-decoder architecture, convolutional au-
toencoders, or exploring modified attention mechanisms like local attention or customized
attention (e.g., input data points which correspond to a particular analyte attend data
points from the same analyte, as well as data points corresponding to common interfer-
ences, plus some noisy and randomly selected data points). It is also possible that dataset
modifications (e.g., peak alignment, vary training concentration distribution, denoising,
etc.) could further improve LF-to-HF performance, which is beyond the scope of the cur-
rent study. Results from the current study show that conversion of low field to high field
spectra is feasible, and future studies should investigate the potential performance en-
hancing modifications outlined above.

The transformer in this study did not utilize positional encoding yet still achieved
quality results, but preliminary experiments with positional encodings did not harm or
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improve performance. No positional encodings might have been necessary due to the
highly ordered structure of the NMR data (i.e., 46 bins of 1000 features are transformed
simultaneously and concatenated, thus each member of the 46-member sequence remains
in the same chemical shift order), or possibly because the model learned to convert indi-
vidual bins. It is also likely that dataset modifications or hyperparameter optimization
could alter model performance for improved LF-to-HF conversion.

The transformer use case in this study may not yet be proven necessary given the
higher accuracy achieved for metabolites quantified directly in LF spectra; however, the
overall signal transduction method could be effective in automating and increasing speed
for a myriad of NMR data processing. Operations such as reference deconvolution, de-
noising/signal enhancement, and general processing (phase and baseline correction)
could be implemented via transformer. The transformer could also be used for metabo-
lomics use cases like peak alignment or metabolite quantification. It could be used for
other exploratory methods as well such as increasing realism in simulated NMR spectra.

In conclusion, this study explored several NN architectures for the conversion of LF
NMR spectra to HF spectra with the goal of improving LF NMR metabolomics, and results
found the transformer network to be the optimal model. The methods in this manuscript
have produced promising results in the area of LF-to-HF conversion, and they represent
an extensible approach to data processing by transformer which could be applied in many
other areas of NMR spectroscopy.
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