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Abstract: The introduction of benchtop NMR instruments has made NMR spectroscopy a more ac-

cessible, affordable option for research and industry, but the lower spectral resolution and SNR of 

a signal acquired on low magnetic field spectrometers may complicate the quantitative analysis of 

spectra. In this work, we compare the performance of multiple neural network architectures in the 

task of converting simulated 100-MHz NMR spectra to 400-MHz with the goal of improving the 

quality of the low-field spectra for analyte quantification. Multi-layered perceptron networks are 

also used to directly quantify metabolites in simulated 100 and 400-MHz spectra for comparison. 

The transformer network was the only architecture in this study capable of reliably converting the 

low-field NMR spectra to high-field spectra in mixtures of 21 and 87 metabolites. Multi-layered per-

ceptron-based metabolite quantification was slightly more accurate when directly processing the 

low-field spectra compared to high-field converted spectra, which for at least for the current study 

precludes the need for low-to-high field spectral conversion; although, this comparison of low and 

high-field quantification necessitates further research, comparison, and experimental validation. In 

conclusion, the transformer method of NMR data processing was effective in converting low-field 

simulated spectra to high-field for metabolomic applications and could be further explored to auto-

mate processing in other areas of NMR spectroscopy. 

Introduction 

NMR spectroscopy is an indispensable tool across physical and life sciences with an 

incredibly broad range of applications across academia, healthcare, government, and in-

dustry; but the expensive upfront cost, cost of maintenance, personnel requirements, and 

housing requirements of high-field magnets are barriers for many researchers that could 

potentially benefit from the NMR technology. Recent advances in magnet technology and 

NMR hardware have led to the development of a new generation of low-field (LF) NMR 

spectrometers that fit on the benchtop. These instruments are affordable with almost no 

maintenance cost, do not require dedicated lab personnel or cryogenic liquids, and the 

magnetic field extending beyond the device housing is negligible [1, 2]. High-field (HF) 

instruments are very large and can take up a significant portion of a room, while benchtop 

instruments fit on a table and are portable and easy to operate – opening up possibilities 

for widespread use and point-of-care applications. Compared to HF NMR, LF NMR spec-

troscopy is less sensitive and has lower spectral resolution, making it harder to interpret 

spectra for metabolomics; thus, alternate methods may be required for optimal metabolite 

profiling. This research trains neural networks (NNs) to improve LF NMR signal quality 

for metabolite profiling by converting simulated LF spectra into their HF counterpart and 

will compare this to direct LF NMR metabolite quantification.  

Numerous commonly used sequence-to-sequence NN models may prove useful for 

the task of converting LF spectra to HF spectra such as autoencoders, temporal convolu-

tional neural networks, recurrent methods (like long short-term memory (LSTM) or gated 

recurrent units (GRUs)), or transformers [3]. Autoencoders employ encoder-decoder 

structures like densely connected autoencoders (DAEs), convolutional autoencoders 

(CAEs), and U-Nets [4] and find use in applications like signal denoising [5, 6] or image 

processing [7]. Temporal convolutional networks (TCNs) gained popularity due to their 



 

impressive performance on sequence modeling tasks like forecasting [8, 9] or time-series 

classification [10] which had generally employed CNNs or recurrent methods. Transform-

ers are attention-based networks which have achieved impressive, state-of-the-art perfor-

mance across sequence modelling tasks, especially in natural language processing tasks 

as exemplified by large language models like BERT and ChatGPT [3, 11-13]. Transformers 

employ a self-attention mechanism to capture short and long-range dependencies within 

an input sequence, i.e. each member of the input sequence learns parameters relating it to 

all other members of the sequence and thus each member takes its context within the se-

quence into account [14]. Transformers are also attractive due to their high parallelizabil-

ity compared to convolutional or recurrent methods - making them faster to train on mod-

ern graphics processing units (GPUs) [3].  

This work implements DAE, CAE, U-Net, TCN, and transformer models for the task 

of transforming the spectral resolution of simulated LF 100-MHz NMR spectra of metab-

olite mixtures to HF 400-MHz spectra. Under the assumption that the entire spectra may 

potentially not be required simultaneously for successful conversion of LF to HF spectra, 

we also experiment with an approach that divides spectra into smaller spectral regions 

which are independently fed into a model before being recombined into output spectra. 

Additionally, we train and test multi-layered perceptron (MLP) networks for both direct 

LF and HF quantification and compare this to first converting a simulated LF spectra to 

HF prior to inputting into the model trained for HF quantification. In summation, this 

study introduces and validates a novel NN-based NMR data processing approach for con-

verting simulated spectra from 100-MHz spectral resolution to 400-MHz.  

Methods 

Data Generation 

Simulated LF (100-MHz) and HF (400-MHz) 1D-1H NMR spectra for 21 metabolites 

were downloaded from the human metabolome database (Maleic acid, histidine, 1-

methylhistidine, acetic acid, creatine, glycine, formic acid, hypoxanthine, L-alanine, ly-

sine, lactic acid, inosine, pyruvic acid, succinic acid, xanthine, creatinine, leucine, L-valine, 

NAD, niacinamide, and alpha-D-glucose). The simulated spectra in the HMDB were com-

puted by predicting chemical shifts using a combination of machine learning and HOSE-

code methods, determining coupling constants using empirical rules, and then spin ma-

trix calculations were used to generate the spectra [15]. Simulated spectra largely resemble 

their experimentally acquired counterparts, with 1H chemical shifts generally differing by 

less than 0.15 ppm root mean squared error (RMSE) per spectrum [15].  Data processing 

was performed using Python (version 3.11.5) with the numpy library (version 1.24.3) for 

matrix operations and the nmrglue library (version 0.10) for NMR pre-processing opera-

tions (reading files, peak shifts, and Fourier transformations). To generate spectra, all 21 

simulated spectra were scaled independently using scalars ranging uniformly from 1-50 

and were summed to produce simulated mixture spectra with concentrations ranging 

from 1-50 mM. A singlet signal at 0.0 ppm was added to mimic a 3-(Trimethylsilyl)propi-

onic-2,2,3,3-d 4 acid (TSP-d4) resonance of 2.96 mM in each spectrum to mimic a quanti-

tative reference signal. Data augmentation was employed on each spectrum to produce a 

more varied dataset and mimic experimental signal variations by adding uniformly dis-

tributed noise (peak-to-peak maximum amplitude of ~0.1% of the quantitative reference 

peak height), randomly shifting metabolite peaks left or right (0-3.4 ppb), shifting baseline 

(up to ~0.6% of the quantitative reference peak height), and the addition of up to three 

randomly scaled singlets (using the acetic acid peak for a generic singlet) and up to three 

randomly scaled triplets (using the succinic acid signal for a generic triplet downloaded 

from the HMDB) at random chemical shifts. These steps were repeated 10,000 times with 

all 21 metabolites present in all spectra and 10,000 times with each metabolite having a 

50% chance of being left out for a total of 20,000 spectra. This dataset was split 16,000:4,000 

for training and validation, respectively. A testing dataset of 4 simulated spectra was gen-

erated with all 21 metabolites present in all spectra. Several further example spectra, each 

with mean intensity noise added, were generated for testing analyte quantification 



 

including: all 21 metabolites at 5 mM, all metabolites at 25 mM, and all metabolites at 50 

mM. For all spectra in this study, only 46,000 data points from -0.32 ppm to 10.2 ppm 

corresponding to the signal containing spectral regions were used for network training, 

testing, and validation. 

Every spectrum generated using the above-described method was further generated 

following two alternative protocols. One dataset is generated with four times greater noise 

intensity added to LF than was added to HF spectra to simulate a lower signal-noise ratio 

(SNR) in LF spectra. The other dataset was generated with 87 metabolites rather than 21 

(additional metabolites include: 2-Hydroxybutyric acid, 3-hydroxybutyric acid, alpha-ke-

toisovaleric acid, adenine, adenosine monophosphate, acetoacetic acid, dimethylglycine, 

citric acid, choline, ethanol, D-glucose, fructose 6-phosphate, glutathione, glycerol, fu-

maric acid, glutamic acid, L-tyrosine, phenylalanine, proline , L-threonine, L-asparagine, 

D-mannose, isoleucine , inosinic acid, serine , L-aspartic acid, isocitric acid, L-acetyl-

carnitine, oxoglutaric acid, myo-inositol, ornithine, NADP, oxalacetic acid, taurine, sarco-

sine, uridine 5'-monophosphate, uridine, 3-methyl-2-oxovaleric acid, L-arginine, acetyl-

glycine, adenosine triphosphate, L-cysteine, glutamine, D-alpha-aminobutyric acid, ke-

toleucine, methionine, isovaleric acid, 3-hydroxyisovaleric acid, trimethylamine N-oxide, 

L-tryptophan, succinyl-CoA, fructose 1,6-bisphosphate, FADH, acetyl-CoA, FAD, ADP, 

NADH, phosphocreatine, nicotinic acid mononucleotide, acetone, caffeine, methanol, pro-

pylene glycol, itaconic acid, selenocysteine, and oxidized glutathione) and with four times 

greater noise for LF spectra relative to HF.  

Three training and validation datasets were generated for metabolite quantification 

by MLP. These datasets were generated using the same data generation workflow as the 

above-described datasets (i.e., 21 metabolites, 21 metabolites with adjusted SNR, and 87 

metabolites with adjusted SNR), with the only difference being no triplets were added in 

data generation. Three testing spectra, each with mean intensity noise added, were gen-

erated for assessing analyte quantification including: all 21 (or 87) metabolites at 5 mM, 

all metabolites at 25 mM, and all metabolites at 50 mM.  

To explore how the model performs on metabolites it hasn’t yet seen, a testing dataset 

of 50 spectra was generated using the workflow described above (vary noise, vary peak 

shift, vary baseline shift, and with SNR 4 times lower for 100-MHz spectra compared to 

400-MHz). This unseen metabolite dataset contained 12 metabolites using simulated spec-

tra downloaded from the HMDB for: deoxyuridine, p-hydroxyphenylacetic acid, 3-meth-

oxytryramine, dihydrobiopterin, adenosine, cyclic AMP, deoxyinosine, dopamine, cyste-

inylglycine, dihydrothymine, cytidine triphosphate, and dimethylamine.  

Network Architectures, Training, Validation, and Testing 

Pytorch (version 2.2.1) was used for data loading, model development, and training. 

All models were trained using LF 100 MHz spectra as input, HF 400 MHz spectra as the 

target, mean squared error (MSE) as a loss function, Adam as an optimizer using the de-

fault learning rate, and ReLU as the activation function. Models were trained for 300 

epochs or until 25 epochs passed without a new best validation loss value achieved. All 

models were evaluated using MSE between the 100 ground truth testing high field spectra 

and predicted high field spectra, testing and four testing output spectra were assessed 

visually against ground truth 100- and 400-MHz spectra. The best model was further val-

idated on 50 spectra of 12 metabolites – all which were not seen by the model in training. 

The DAE was instantiated with an encoder of densely connected layers consisting of 

46000, 2000, and 200 nodes respectively (with 46000 data points being the size of each 

input spectra), and the decoder was the reciprocal (200-2000-46000 nodes). The CAE was 

developed with a four convolutional layer encoder consisting of 16, 32, 64, and 128 kernels 

respectively, and the decoder was the reciprocal (128-64-32-16 kernels). CAE kernels were 

of a size of 3 units with a stride and padding of 1. The U-Net model employed the same 

architecture as the CAE but with a skip connection between the 32 kernel layers. To reduce 

computational requirements, an alternate U-Net approach was tested where each input 

spectrum was separated into 46 bins of 1000 data points each before being fed into the 



 

model and subsequently concatenating after inference. This binned U-Net approach is re-

ferred to as UNet-Chunks for the remainder of this manuscript. The TCN implementation 

used the Pytorch framework described by Bai et al and found on Github 

(https://github.com/locuslab/TCN) [16]. The TCN used a kernel size of two, dropout rate 

of 20%, and three temporal blocks with 25, 50, and 100 channels respectively. ReLU was 

used for all activation functions.  

For the transformer, an encoder-only transformer was followed by a simple linear 

layer – a minor modification of the transformer architecture described by Vaswani et al 

[3]. The 46,000 data point spectra inputs were separated into 46 bins of 1000 data points 

each prior to model input, and model inputs were considered sequences of length 46 with 

1000 features each. Inputs were passed to a linear layer converting features to 512 embed-

dings. No positional encodings were applied to these embeddings before passing them 

into a 6-layer transformer encoder with 8 attention heads, a feedforward dimension of 

2048 nodes, and dropout applied at a rate of 10%. 

MLPs with 46,000 input nodes, a 200-node hidden layer, and 21 (or 87 depending on 

the testing dataset) output nodes were trained for quantification of analytes at 100-MHz 

and 400-MHz using the same datasets used to train for LF-to-HF conversion. These mod-

els were assessed on the three example spectra with all metabolites at 5, 25, or 50 mM 

using mean absolute percent error (MAPE) as an accuracy metric, and these models were 

compared to the method of first converting LF spectra to HF using the transformer and 

then applying the HF-MLP for inference.  

Results 

The DAE, CAE, UNet, UNet-Chunks, TCN, and transformer model were all trained 

for the conversion of 1H-NMR spectra of 21 metabolite mixtures from 100-MHz to 400-

MHz. All models besides the transformer performed poorly in the task of LF-to-HF con-

version with testing MSEs ranging from 2E-4 to 3E-4 (MSE for all models listed in Table 1 

below). The DAE with a testing MSE of 2E-4 performed poorly on testing data by always 

predicting HF spectra with ~20 mM of each metabolite and with some peaks not matching 

up with ground truth signals regardless of the input, as seen for four overlays of ground 

truth (red) and predicted (blue) HF spectra in Figure 1 and in several zooms of one spec-

trum showed in supplementary Figure S1. The CAE, UNet, UNet-Chunks, and TCN mod-

els each achieved a testing MSE of 3.0E-4 and produced unsuccessful conversions result-

ing in noisy spectra that did not resemble ground truth signals. Four spectral overlays for 

the CAE HF predicted spectra and ground truth testing spectra are shown in Figure 2 (also 

one spectrum and two zoomed regions for the CAE model are displayed in supplemen-

tary Figure S2, and four spectra for the UNet, UNet-Chunks, and TCN are shown in sup-

plementary Figure S3, S4, and S5 respectively). The UNet, UNet-Chunks, and TCN models 

all performed similarly to the CAE. 

 

 Table 1. Neural network performance metrics for 100-MHz to 400-MHz conversion of 10 

NMR spectra. MSE between ground truth HF spectra and predicted HF spectra are dis-

played for eight models 

Model DAE CAE UNet UNet-

Chunks 

TCN Transformer- 

21 Metabolites 

Transformer- 

21 Met. Adjust SNR 

Transformer- 

87 Met. Adjust SNR 

MSE 2.0E-4 3.0E-4 3.0E-4 3.0E-4 3.0E-4 6.5E-5 1.0E-4 1.0E-4 

Abbreviations: MSE = mean-squared error; HF = high-field; LF = low-field; DAE = densely 

connected autoencoder; CAE = convolutional autoencoder; TCN = temporal convolutional 

network; Met. = metabolites; SNR = signal-to-noise ratio. 



 

 

Figure 1. DAE performance results for 100-MHz to 400-MHz conversion of four testing spectrum 

from the dataset of 21 metabolites. The ground truth HF spectrum is shown in red overlaid with 

the corresponding LF to HF converted spectra in blue, and the MSE between spectra is displayed 

for each conversion. Abbreviations: LF = low-field; HF = high-field; DAE = densely con-

nected autoencoder; MSE = mean-squared error. 

 

Figure 2. CAE performance results for 100-MHz to 400-MHz conversion of four testing spectra from 

the dataset of 21 metabolites. The ground truth HF spectrum is shown in red overlaid with the cor-

responding LF to HF converted spectrum in blue, and the MSE between spectra is displayed for 

each conversion. Abbreviations: LF = low-field; HF = high-field; CAE = convolutional auto-

encoder; MSE = mean-squared error. 

The transformer was the only successful neural network architecture in the current 

study for LF-to-HF conversion. Figure 3 displays four converted HF spectra in blue over-

laid with the ground truth HF spectra in red – with each estimated HF spectrum closely 

resembling its respective ground truth spectrum. A closer look at the converted reso-

nances and how they compare to each model LF input and corresponding HF ground 

truth spectrum are shown in Figure 4. The transformer achieved a low MSE of 6.5E-5 for 

this conversion on 100 testing spectra. 



 

         

Figure 3. Transformer performance results for 100-MHz to 400-MHz conversion of four testing spec-

tra from the dataset of 21 metabolites. The ground truth HF spectrum is shown in red overlaid with 

the corresponding LF to HF converted spectrum in blue, and the MSE between spectra is displayed 

for each conversion. Abbreviations: LF = low-field; HF = high-field; MSE = mean-squared error. 

                

Figure 4. Transformer performance results for 100-MHz to 400-MHz conversion of one testing spec-

trum from the dataset of 21 metabolites. The top row shows the input LF spectrum, the middle row 

shows the ground truth HF spectrum, and the bottom row shows the predicted HF spectrum. The 

left column shows the full spectra, and the middle and right columns show zoomed in portions of 

the same spectra. Abbreviations: LF = low-field; HF = high-field. 

After successful conversion of simulated 100-MHz to 400-MHz spectra for 21 metab-

olites, the same transformer architecture was trained for converting spectra with the same 

21 metabolites but with four times lower SNR in LF spectra. Results were highly similar 

to model performance before adding noise (testing MSE of 1.0E-4), and four spectra 



 

overlays of estimated HF and ground truth HF spectra are displayed as supplementary 

Figure S6.  

The same transformer architecture was next trained for LF-to-HF conversion in spec-

tra containing up to 87 metabolites and with four times lower SNR for LF spectra, and 

four output spectra overlay with ground truth signals are displayed in supplementary 

Figure S7 along with respective MSE values. A closer look at an individual spectrum prior 

to and after conversion, along with the ground truth spectrum, are shown in Figure 5 

below. The model does well for many metabolites; although, some smaller SNR reso-

nances are not as successfully converted as before in spectra with 21 metabolites (testing 

MSE of 1.0E-4). 

 

Figure 5. Transformer performance results for 100-MHz to 400-MHz conversion of one testing spec-

trum from the dataset of 87 metabolites with adjusted SNR (four times higher noise in 100-MHz 

compared to 400-MHz spectra). The top row shows the input LF spectrum, the middle row shows 

the ground truth HF spectrum, and the bottom row shows the predicted HF spectrum. The left col-

umn shows the full spectra, and the middle and right columns show zoomed in portions of the same 

spectra. Abbreviations: LF = low-field; HF = high-field. 

The transformers trained on 21 and 87 metabolites, respectively, with adjusted SNR 

were further tested on 50 spectra of 12 metabolites – all which had not been seen in train-

ing. The model trained on 21 metabolites achieved an MSE of 2.2E-4, and the model 

trained on 87 metabolites achieved an MSE of 1.2E-4. The lower MSE is corroborated in 

visual comparison of a predicted and ground truth high field spectra shown in figures 6 

and 7, where it is shown that both models do fairly poorly on the lower SNR multiplets in 

the zoom from ~2.8-3.4 ppm but the transformer trained on 87 metabolites performs better 

in the zoom from ~0.5-1.05 ppm. Supplementary figure S8 shows the quantitative compar-

ison for four spectra for the model trained with 21 metabolites, and S9 shows the quanti-

tative comparison for four spectra for the model trained with 87 metabolites.   

 



 

Fig. 6. Transformer (trained with 21 metabolites and four times lower SNR for low-field 

spectra) performance results for 100-MHz to 400-MHz conversion of one test spectrum 

from the dataset of 12 metabolites not seen in training. The top row shows the input LF 

spectrum, the middle row shows the ground truth HF spectrum, and the bottom row 

shows the predicted HF spectrum. The left column shows the full spectra, and the middle 

and right columns show zoomed in portions of the same spectra. Abbreviations: LF = low-

field; HF = high-field; Met. = Metabolites. 

 

 



 

Fig. 7. Transformer (trained with 87 metabolites and four times lower SNR for low-field 

spectra) performance results for 100-MHz to 400-MHz conversion of one test spectrum 

from the dataset of 12 metabolites not seen in training. The top row shows the input LF 

spectrum, the middle row shows the ground truth HF spectrum, and the bottom row 

shows the predicted HF spectrum. The left column shows the full spectra, and the middle 

and right columns show zoomed in portions of the same spectra. Abbreviations: LF = low-

field; HF = high-field; CAE = convolutional autoencoder; Met. = Metabolites. 

 

Representative testing spectra with all metabolites at 5, 25, or 50 mM were prepared 

in the same manner as the three datasets utilized in this study for comparing LF and HF 

metabolite profiling by neural networks in simulated spectra. MAPE values reflecting 

quantitative accuracy for all examples are shown in Figure 8 below (Table S1 lists these 

values in the supplement.. For all three datasets (21 metabolites, 21 metabolites with ad-

justed SNR, and 87 metabolites with adjusted SNR), MLPs trained on LF spectra consist-

ently achieved slightly higher accuracy for all three concentration testing spectra (ranging 

from ~22-104% lower MAPE for LF quantification) compared to the HF-MLP MAPE on 

HF validation spectra. The HF-MLPs were further tested on HF spectra produced by con-

verting spectra from 100-MHz to 400-MHz using the appropriate transformer model (i.e., 

21 or 87 metabolite model). In spectra with 21 metabolites, LF-to-HF conversion prior to 

quantification using the HF-MLP resulted in a ~80-153% drop in accuracy compared to 

direct LF quantification. The decrease in accuracy was greater for spectra with 87 metab-

olites at ~299-673%. 



 

 

Figure 8. Performance for direct LF spectra quantification using the LF-MLP (blue circle), direct HF 

quantification using the HF-MLP (orange ‘x’), and LF-to-HF conversion prior to quantification using 

the HF-MLP (green square). MLPs were trained using either the 21 metabolites (top panel), 21 me-

tabolites with adjusted SNR (middle panel), or 87 metabolites with adjusted SNR (bottom panel) 

datasets and each model was assessed for quantification accuracy using MAPE as a metric on 3 

testing spectra with all trained metabolites (i.e. 21 or 87 metabolites) at 5 mM, 25 mM, and 50 mM. 

Abbreviations: HF = high-field; LF = low-field; SNR = signal-to-noise ratio; MAPE = mean 

absolute percent error. 

Discussion 

The current study investigated the feasibility of converting low field NMR spectra to 

higher magnetic field strength spectra using a neural network approach. This work com-

pared DAE, CAE, UNet, TCN, and transformer neural networks for the sequence trans-

duction task of converting 100-MHz 1H-NMR spectra to 400-MHz spectra. Additionally, 

MLPs were trained for analyte quantification directly at LF and HF for comparing with 

the model performing LF-to-HF conversion prior to quantification. All models were as-

sessed on simulated spectra with up to 21 metabolites, and the most effective model, the 

transformer, was further assessed on two datasets with adjusted SNR for LF spectra and 

up to 21 or 87 metabolites, respectively. Only the transformer produced satisfactory se-

quence conversion, while the DAE, CAE, UNet, UNet-Chunks, and TCN models all over-

fit. This result was evident visually and was confirmed by lower MSE values achieved by 

the transformer model. The transformer reliably converted spectra with up to 21 metabo-

lites for the original and adjusted SNR datasets. Increasing to a highly complex 87 metab-

olites decreased the performance of the LF-to-HF conversion. 

Interestingly, the direct quantification of HF spectra did not reveal higher accuracy 

compared to direct quantification of LF spectra as we expected – with the LF quantifica-

tion producing slightly more accurate estimations in our analysis for all three example 

spectra from each testing dataset. Despite not achieving as high accuracy metrics as the 

direct LF-MLP, the HF-MLP quantification of converted LF-to-HF spectra was reasonably 

accurate and thus further proved the quality of the LF-to-HF conversion, especially for 



 

spectra with 21 metabolites. The surprising result of higher accuracy for quantification 

directly in LF spectra could be because the lower resolution 100-MHz resonances are 

wider and thus each resonance interacts with a greater number of tunable model param-

eters. Our results are similar to research by Burger et al who found little difference be-

tween performance of 43, 60, 500, and 600-MHz spectrometers in the task of molecular 

weight determination [17]. It is possible quantification methods other than an MLP net-

work, such as peak deconvolution followed by concentration computation or using alter-

native neural networks, might affect analyte quantification results seen in this study and 

lead to lower quantitative performance at lower field strengths. While our current study 

proves the feasibility of our proposed low field to high field conversion method, not per-

forming analysis in experimentally acquired spectra is a limitation andfuture work should 

include performing a similar analysis to this study with experimentally collected spectra 
and biological spectra to validate our findings in simulated spectra. 

The results of the transformer models on spectra containing only metabolites not seen 

by the models during training revealed that the model trained on 87 metabolites outper-

formed the model trained on 21 metabolites; although, the model trained on 87 metabo-

lites still struggled to convert some resonances. This result suggests that the more reso-

nances of varied chemical structures the model sees in training, the better it may general-

ize to structures it did not see in training. Thus, the model and data generation workflow 

deployed in the current study might be best suited for a targeted analysis in well-defined 

samples (i.e., the samples being studied have a suite of expected metabolites and a model 

is trained specifically for these metabolites), and practitioners seeking to convert any given 

metabolite in less well-defined samples should generate training spectra covering a much 

larger number of metabolites and thus a much wider chemical space. 

As simulated spectra were used, it is also possible that our comparison does not fully 

reflect what would be encountered in experimentally collected LF and HF spectra in terms 

of SNR. Further validation of this LF-to-HF procedure should take care to ensure realistic 

SNR for all spectra. Our study applied a linear SNR dependency as mentioned in several 

publications [18, 19] (4 times higher for 400-MHz compared to 100-MHz); however, it may 

be more accurate to scale SNR by the power of 3/2 [20, 21] (8 times higher for 400-MHz). 

Additionally, other factors beyond field strength affect SNR (e.g., the probe) [22], which 

could further confound comparisons between instruments. Despite the SNR limitations, 

the transformers effectively converted the spectral resolution of LF spectra to 400-MHz. 

Future work should include conversion between spectra with greater differences in mag-

netic field strengths than the 100 to 400-MHz spectra used in this study. 

The transformer was effective in LF-to-HF conversion, but it is likely that modifica-

tions could improve model performance. The training/validation dataset of 20,000 spectra 

is relatively low for a transformer, and it is very likely that increasing to hundreds of thou-

sands or even more spectra would increase LF-to-HF conversion performance for the 

transformer, and potentially for the other models which did not perform well. As only one 

set architecture and set of parameters were tested per model in this study, it's possible 

that through hyperparameter optimization, performance could be improved for all mod-

els assessed in this study, which warrants future investigation. Performance may improve 

by testing different architectures like an encoder-decoder architecture, convolutional au-

toencoders, or exploring modified attention mechanisms like local attention or customized 

attention (e.g., input data points which correspond to a particular analyte attend data 

points from the same analyte, as well as data points corresponding to common interfer-

ences, plus some noisy and randomly selected data points). It is also possible that dataset 

modifications (e.g., peak alignment, vary training concentration distribution, denoising, 

etc.) could further improve LF-to-HF performance, which is beyond the scope of the cur-

rent study. Results from the current study show that conversion of low field to high field 

spectra is feasible, and future studies should investigate the potential performance en-

hancing modifications outlined above. 

The transformer in this study did not utilize positional encoding yet still achieved 

quality results, but preliminary experiments with positional encodings did not harm or 



 

improve performance. No positional encodings might have been necessary due to the 

highly ordered structure of the NMR data (i.e., 46 bins of 1000 features are transformed 

simultaneously and concatenated, thus each member of the 46-member sequence remains 

in the same chemical shift order), or possibly because the model learned to convert indi-

vidual bins. It is also likely that dataset modifications or hyperparameter optimization 

could alter model performance for improved LF-to-HF conversion. 

The transformer use case in this study may not yet be proven necessary given the 

higher accuracy achieved for metabolites quantified directly in LF spectra; however, the 

overall signal transduction method could be effective in automating and increasing speed 

for a myriad of NMR data processing. Operations such as reference deconvolution, de-

noising/signal enhancement, and general processing (phase and baseline correction) 

could be implemented via transformer. The transformer could also be used for metabo-

lomics use cases like peak alignment or metabolite quantification. It could be used for 

other exploratory methods as well such as increasing realism in simulated NMR spectra. 

In conclusion, this study explored several NN architectures for the conversion of LF 

NMR spectra to HF spectra with the goal of improving LF NMR metabolomics, and results 

found the transformer network to be the optimal model. The methods in this manuscript 

have produced promising results in the area of LF-to-HF conversion, and they represent 

an extensible approach to data processing by transformer which could be applied in many 

other areas of NMR spectroscopy. 
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