2024 |EEE 67th International Midwest Symposium on Circuits and Systems (MWSCAS) | 979-8-3503-8717-9/24/$31.00 ©2024 IEEE | DOI: 10.1109/MWSCAS60917.2024.10658798

Visual Analysis of Leaky Integrate-and-Fire Spiking
Neuron Models and Circuits

Sara Sedighi Farhana Afrin
Department of Electrical and Department of Electrical and
Computer Engineering Computer Engineering

Boise State University
Boise, ID 83725, United States
sarasedighi@u.boisestate.edu

Boise State University
Boise, ID 83725, United States
farhanaafrin@u.boisestate.edu

Abstract—Emulating biologically plausible online learning in
spiking neural networks (SNNs) will enable the next generation of
energy-efficient neuromorphic architectures. While software leads
the way in terms of exploring various Machine Learning (ML)
algorithms and applications, bridging the gap between hardware
(devices and circuits) and software is crucial to accurately predict
network properties, especially at large scale. This work compares
behavior of a spiking neuron circuit simulated with Cadence
Spectre to a Python model implemented with a custom spiking
neuron model. The results demonstrate that the two exhibit the
same spiking characteristics over a range of parameter values,
confirming that the more versatile Python model indeed has a
hardware equivalent.

Keywords— Spiking neural network, Threshold dynamics, decay
rate, LIF neuron

I. INTRODUCTION

Spiking Neural Networks (SNN) hold promise for energy-
efficient computing due to their unique properties. Sparse firing,
where neurons only transmit information when activated,
inherently reduces energy consumption, while simultaneously
increasing density of information flow. Additionally, the spiking
nature of SNNs facilitates simpler hardware designs compared
to traditional networks. Finally, SNNs exhibit robustness to
noise, making them well-suited for resource-constrained devices
and edge computing applications where power efficiency is
paramount [1,2]. Evidence of SNN’s capabilities in complex
tasks like image classification, natural language processing, and
reinforcement learning SNNs show promise for bridging the gap
between neuroscience and artificial intelligence, making them a
highly relevant topic for continued exploration [3-5].

In SNNs, two-terminal nonvolatile memory elements called
memristors can be used for energy-efficient emulation of
biological synaptic plasticity [6]. Electronic spiking neural
networks comprised of memristors with Spike-Timing-
Dependent Plasticity (STDP) learning rules have been shown to
excel at processing temporal information, making them suitable
for tasks involving time-series data, sequence learning, and
temporal pattern recognition [7]. Electronic memristive neural
networks with simple dynamic circuit elements like R(t)
elements can be trained to mimic neuro-biological classical and
non-classical STDP learning behaviors [8,9]. These CMOS-
based networks can learn spatio-temporal patterns without

Elonna Onyejegbu
Department of Electrical and
Computer Engineering
Boise State University
Boise, ID 83725, United States
elonnaonyejegbu@u.boisestate.e
du

Kurtis D. Cantley
Department of Electrical and
Computer Engineering
Boise State University
Boise, ID 83725, United States
kurtiscantley@boisestate.edu

supervision [10]. Among various neuron models, Leaky
integrate-and-fire (LIF) neurons have emerged as a compelling
building block for SNNs due to their simplicity, effectiveness,
and biological plausibility [3,4]. However, to develop fully
functioning neuromorphic hardware, it is required to incorporate
the deep learning model into the hardware models.

In this paper, we employ the basic deep-learning model of
SNN, incorporating the LIF neuron model and STDP learning
rule to explore the impact of various SNN parameters on the
training of the neural networks in neuromorphic hardware.
Furthermore, a comparison with the hardware model strengthens
the validity of the ML model. The analytical results reveal that
the ML model is compatible with the hardware LIF model and
thus can be employed for further R(t)-based SNN.

II. PYTHON-BASED SIMULATION OF LIF NEURONS

The leaky integrate-and-fire (LIF) model, an old concept
dating back to 1907, offers a simple yet effective framework for
understanding how most neurons process information. A leaky
capacitor represents the neuron's cell membrane, accumulating
voltage (membrane potential) from incoming ionic currents. The
main equation governing this dynamic can be expressed as [11]

%4
=~V —E)+1 )

Where 1, is the membrane time constant, V is the voltage,
EL is the resting potential, and I is the input current. As current
charges the membrane, the voltage rises. If it reaches a critical
threshold V, the neuron fires, voltage is reset to a lower value
Vieset and held there for a short time t..r mimicking the real
neuron's refractory period [12-14].

In this work, to simplify the analysis of the model's behavior
and focus on the core concepts, we utilize a step input current
with a constant amplitude denoted by w. This injects a constant
current into the model, neglecting the more complex and
realistic time-varying currents present in biological neurons.
Additionally, we introduce the parameter 3 as a representative
of the decay rate of the voltage over time. B is defined as the
reciprocal of the membrane time constant T (B =1 - Tw!) [11].
Tm 1S the time constant of the membrane potential. This means
that a larger tau corresponds to a smaller beta and vice versa
.This simplifies the notation and allows for easier exploration of
the model's dynamics under different decay rates.

T X

979-8-3503-8717-9/24/$31.00 ©2024 IEEE 1437

Authorized licensed use limited to: Boise State University. Downloaded on May 01,2025 at 01:19:39 UTC from IEEE Xplore. Restrictions apply.



Though fairly simple, the leaky integrate-and-fire (LIF)
model captures the essence of how neurons process information.
The leaky capacitor in the model fills with charge over time, i.e.
current, and reaches a critical point called threshold voltage.
This overflow of charges triggers a "spike" (action potential) and
a brief rest period (refractory period), mimicking the behavior of
a common type of neuron in the brain. The LIF model elegantly
captures key features: 1) the summation of incoming currents
over time and space, influencing when the neuron "fires"; 2) the
refractory period, ensuring realistic firing rates; and 3) the
natural leakage of voltage throughout, reflecting passive ion
fluxes. While simplified, the LIF model's computational
efficiency and ability to qualitatively predict diverse neuronal
behaviors make it a powerful tool for exploring the world of
neural information processing.

IIT. RESULTS & DISCUSSIONS

We present a comparative analysis of spiking neuron firing
frequencies obtained from Python simulations and device-level
simulation of the hardware model. This analysis aims to validate
the accuracy of our simulations by focusing on key factors
influencing firing frequency (threshold, input amplitude, and
decay rate). Discrepancies will be investigated to identify
potential areas for model refinement, ultimately bridging the gap
between simulation and real-world spiking neuron behavior.

A computational investigation of LIF neuron dynamics was
conducted using a custom Python model. This model
encompassed biophysically relevant parameters including spike
threshold, reset potential, membrane time constant, refractory
period, and various input signal characteristics. The simulation
framework allowed for systematic manipulation of these
parameters, enabling the exploration of their influence on
neuronal firing frequency. The generated data was subsequently
employed to construct visualizations that elucidate the
relationships between these parameters and the resulting firing
patterns.

For the hardware implementation, we follow the CMOS LIF
circuit based on the neuron design by Carver Mead [15], which
is extensively used with different types of memory devices for
pattern recognition and has been demonstrated in hardware
[10,16-18]. The test circuit of our hardware model is simulated
with TSMC 180nm technology as presented in Fig. 1.

)
A 7

NEURON Vem
Vi Weomp
Voo
l ]

—<—
I' %W
—O—
&< "

b
O

W

)

Fig. 1: The test circuit of the hardware model, with the gray block representing
the decoupled neuron model: Ry.=10k, Vgi=1V. The comparator circuit is
designed in CMOS based on the general-purpose comparator designed by Jacob,
Baker [19].

In this paper, for computational efficiency, the CMOS-based
design can be simplified into a decoupled model in which the
leaky integration and firing take place independently as shown
in Fig. 1. The input current is governed by the scaling parameter
Guir which is comparable to the parameter w in the Python
model, the leakage parameter Crir and Ry are analogous to
decay rate, . The threshold voltage can be tuned in this
decoupled neuron model same as the python model. For the
comparative analysis in this paper, we applied time-dependent
voltage as input to the test circuit analogous to the input for the
python-model and the output spike, Vo is 1V pulse of 1ms pulse
width.

Fig. 2 delves into the relationship between threshold and
input stimulus and its subsequent impact on spiking frequency.
Lowering the firing threshold for any given stimulus magnitude
results in significantly higher spiking frequency. Lowering the
threshold unleashes a surge in frequency, regardless of input
strength. This upward climb continues, with even the same
threshold whispering higher frequencies for stronger input

amplitudes.
1000 g=—8—
\ R —— w=0.1
N N N, wald3
L 800" ‘,5 —=— w=0.3
5 N —— python model
5 600 b * " --=- hardware model
g by -
o ==
L 400
o S S
£ 3 Wy
= 200 e
[ e
0
0 i PO
0.1 02 o5 =

0.3 0.4
Threshold (V)

Fig. 2: Effect of threshold tuning controls on spiking frequency with different
input amplitudes and fixed decay rate: Python vs. Hardware.

In Fig. 3, we observe a direct relationship between
increasing input amplitude and spike frequency, evident across
three distinct threshold values. Notably, for any given input
amplitude, a lower threshold results in a higher spike frequency,
highlighting the threshold's role as a sensitivity control for

neuronal firing.
1000

—— Viy=0.3
—#*—= Vpp=0.5
—a— V=07
— python model ~
hardware model %

800
6001 "
400

200 4%

Spiking Frequency (Hz)

0 o1 0.2 0.3 0.4 0.5
Input Amplitude (mA)

Fig. 3: Effect of input amplitude controls on spiking frequency with different
threshold and fixed decay rate: Python vs. Hardware.

Similar to the effect of input amplitude, Fig. 4 demonstrates
a positive correlation between increasing decay rate and output
spike frequency. This holds true across all three threshold values
presented. For a fixed input amplitude, a lower threshold once
again reveals a higher spike frequency, reiterating its function as
a critical modulator of neuronal responsiveness. This suggests

1438

Authorized licensed use limited to: Boise State University. Downloaded on May 01,2025 at 01:19:39 UTC from IEEE Xplore. Restrictions apply.



that both higher decay rates and lower thresholds promote faster
firing patterns in the model.

350
N 300
z Vin=0.3
=) - >
> 250 —— V=05
g - —a— V=07
g 200je=pmete= ¥ —— python model —
g --- hardware model %~
2 150 - {r;i g
[ -
o " 5
€ 100 e
= i 2
& s0 o
2 . g----B----8-—-0--0

o -
0.75 0.80 0.85 0.90 0.95
Decay Rate (ms)

Fig. 4: Effect of decay rate controls on spiking frequency with different threshold
and fixed input amplitude: Python vs. Hardware.

According to the plots in Fig. 2-4, Python simulations and
hardware measurements of spike frequency across varying
thresholds, input amplitudes, and decay rates exhibit strong
agreement in their overall trends, showcasing an inverse
relationship between threshold and frequency, a positive
correlation between amplitude and frequency, and an increase in
frequency with increasing decay rate. However, discrepancies
exist in exact values, potentially stemming from real-world
hardware imperfections, modeling simplifications, or parameter
mismatches. While confirming the overall validity of the
simulations, these deviations highlight the need for further
refinement of models and consideration of hardware limitations,
and deeper investigation into the specific sources of variation for
improved accuracy and hardware translation based on these
simulations.

Fig. 5 portrays the dynamic interplay between three distinct
input currents and a neuron's spiking behavior within the LIF
model. Each input current, visualized as a distinct trace over
time, exerts its influence on the neuron's internal state,
represented by its membrane potential. The threshold, depicted
as a horizontal line, acts as a critical boundary for generating
spikes. It simulates the behavior of an LIF neuron model with
multiple input currents. It visualizes the input currents,
membrane potential dynamics, and spike occurrences over time,
offering insights into the neuron's response to varying input
stimuli.

Input Currents
Synapses
“I I “ v LIF Neuron
i Thr“e,sh)ald
wy h
” I t b t3 tyis time
| “ ” "2 Output Spikes
X
; L L]

ty tz ty tts
Fig. 5: Leaky Integrate and Fire (LIF) neuron dynamics: Pre-spikes, weighted
by synaptic strength, integrate as current influx. Membrane potential decays
exponentially. Upon crossing the firing threshold, the neuron fires a post-spike
and resets [20].

Fig. 5 shows how LIF neurons work. Incoming spikes,
modulated by synaptic weights, create a current that affects the
post-neuron. The post-neuron's membrane potential integrates

this current, leaking over time. When it surpasses a threshold,
the neuron fires a spike and resets. No bias term is used.

—— Input Currentl
—— Input Current2
~——Input Current3

Input
Current

10 20 30

o

50 60

40
—— Membrane Potential
| —— Output Spikes

Membrane
Potential

0 10 20 30 40 50 60
Time (ms)

Fig. 6: Membrane potential response of a LIF neuron to three different input
currents: top: input currents, bottom: membrane potential and output spikes.

Fig. 6 simulates a leaky integrate-and-fire (LIF) neuron
model, which mimics the behavior of biological neurons. It
incorporates the charging and discharging dynamics of the
neuron's membrane potential in response to input currents.
When the input current is nonzero, the membrane potential
charges, and when it reaches a threshold, the neuron fires a
spike. Upon input current cessation, the membrane potential
gradually discharges. Importantly, when the membrane potential
crosses the threshold, indicating a spike occurrence, it resets to
a resting potential, similar to the refractory period observed in
biological neurons. This behavior  provides a realistic
representation of neuron dynamics and offers insights into its
response patterns under varying input conditions.

Building upon the fundamental LIF model introduced in the
previous section (Fig. 5), this subsection explores how strategic
adjustments to key parameters can influence the model's ability
to capture non-zero input currents with improved fidelity.
Specifically, we investigate the impact of modifying the
threshold potential, input amplitude, and leak time constant
(represented by the decay rate, 1) on the resulting spike patterns
in Fig. 7.

By carefully manipulating these parameters, we can
modulate the neuron's sensitivity to input currents and its
propensity to generate spikes and simultaneously ensure the
membrane potentials between both versions are also congruent..
For instance, lowering the threshold potential makes the neuron
more excitable, requiring less input current to trigger a spike.
Conversely, increasing the threshold potential renders the
neuron less excitable, demanding a stronger input current to
elicit a spike. Similarly, adjusting the input amplitude directly
impacts the level of current injected into the neuron, influencing
the rate and timing of spike generation. Finally, the leak time
constant, t, determines the rate at which the membrane potential
decays back to its resting state after a spike. A shorter t leads to
faster decay and potentially sharper spikes, while a longer t
results in slower decay and potentially broader spikes.

Through controlled manipulation of these parameters, we
can achieve a refined level of control over the neuron's spiking
behavior. This enables us to tailor the LIF model to more
accurately capture the dynamics of biological neurons under
diverse input conditions, ultimately leading to a more

1439

Authorized licensed use limited to: Boise State University. Downloaded on May 01,2025 at 01:19:39 UTC from IEEE Xplore. Restrictions apply.



comprehensive of neuronal information
processing.

A key challenge in training SNNs lies in the non-
differentiable nature of the spiking events themselves. To
overcome this hurdle, some SNN training algorithms leverage
the concept of membrane potential. Membrane potential
represents the voltage buildup within a neuron, acting as a
precursor to the generation of a spike. By treating membrane
potentials as differentiable signals, even with inherent noise
introduced by the discontinuous spikes, these algorithms enable
the application of error backpropagation. This approach closely
resembles the training methods used in conventional deep

networks [21].

understanding

Output Spikes

Input Currents V=85, W=0.8, Beta=0.7
Synapses

“l I ” X Vin=75, W=0.085, Beta=0.8

wy

I l I Vin=60, W=0.09, Beta=1

$ .

| “ | ] wy Vin=45, W=0.095, Beta=12

2 |11 11

Vin=30, W=0.1, Beta=1.4

W [T LI

Fig. 7: Parameter Modulation for Input Signal Replication in LIF Neuron: Left
panel: Input Currents 1, 2, and 3, Middle Panel: Summation of Input Currents 1,
2, and 3, Bottom Panel: Spike Generation with Parameter Variations.

IV. CONCLUSIONS

The impact of altering the threshold, firing rate, and input
amplitude on the behavior of the LIF neuron model has been
analyzed and compared with a hardware simulation. This
analysis can help to tune the network parameters and provide a
close match between hardware simulation and the python model
for utilization in larger R(t)-based memristive SNNs performing
pattern detection and classification. Properly tuned neuron
parameters provide the opportunity to rapidly study various
learning algorithms at a larger scale via simulation and
subsequently deploy those algorithms in hardware. While the
simulation models may not provide an exact match due to
process variations in a physical circuit, it is expected that
synaptic weights will adjust accordingly such that accuracy is
maintained at the network level.

ACKNOWLEDGMENTS

Funding for this work is provided by the National Science
Foundation award 1751230 and the US Department of Energy
award DE-SC0023391.

REFERENCES

[11 M. Pfeiffer and T. Pfeil, “Deep Learning with Spiking Neurons:
Opportunities and Challenges,” Frontiers in Neuroscience, vol. 12, pp.
68-73, October 2018.

[2] C.D. Schuman, S.R. Kulkarni, M. Parsa et al., “Opportunities for
neuromorphic computing algorithms and applications,” Nat Comput Sci,
vol. 2, pp. 10-19, 2022.

[31 W. Gerstner, (2014), “Neuronal dynamics: From single neurons to
networks and brain function,” Cambridge University Press.J. Clerk
Maxwell, A Treatise on Electricity and Magnetism, 3rd ed., vol. 2.
Oxford: Clarendon, 1892, pp.68-73.

[4] E. Izhikevich, (2006), “Dynamical systems in neuroscience,” MIT Press.

[51 A. Pfeiffer and T. Standage, (2018), “How spiking neural networks can
benefit from hardware acceleration. Nature Machine Intelligence,” 1(1),
26-34.

[6] S.G. Dahl, R.C. Ivans and K.D. Cantley, “Effects of memristive synapse
radiation interactions on learning in spiking neural networks,” SN Appl.
Sci., vol. 3, pp. 555, 2021.

[71 PI Sjostrom, GG Turrigiano and SB. Nelson, “Rate timing and
cooperativity jointly determine cortical synaptic plasticity,” Neuron, vol.
32, pp. 1149-1164, Dec 2001.

[8] FE. Afrin and K. D. Cantley, “R(t)-Based Spike-Timing-Dependent
Plasticity in Memristive Neural Networks,” 2023 IEEE Workshop on
Microelectronics and Electron Devices (WMED), Boise, ID, USA, 2023,
pp. 1-4.

[9] FE. Afrin and K. D. Cantley, “Investigating R(t) Functions for Spike-
Timing-Dependent Plasticity in Memristive Neural Networks,” 2023
IEEE 66th International Midwest Symposium on Circuits and Systems
(MWSCAS), Tempe, AZ, USA, 2023, pp. 659-663.

[10] R. C.Ivans, S. G. Dahl, and K. D. Cantley, “A Model for R(t) Elements
and R(t) -Based Spike-Timing-Dependent Plasticity with Basic Circuit
Examples,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 31, no. 10, pp. 4206-4216, Oct. 2020.

[11] J.K. Eshraghian et al., “Training Spiking Neural Networks Using Lessons
From Deep Learning,” in Proceedings of the IEEE, vol. 111, no. 9, pp.
1016-1054, Sept. 2023.

[12] L. Lapicque, “Quantitative investigations of electrical nerve excitation
treated as polarization,” 1907. Biol Cybern. 2007 Dec;97(5-6):341-9. doi:
10.1007/s00422-007-0189-6. PMID: 18046573.

[13] N. Brunel, van MC. Rossum, “Lapicque's 1907 paper: from frogs to
integrate-and-fire,” Biol Cybern. 2007 Dec;97(5-6):337-9.

[14] P. Dayan and L.F. Abbott, (2001), “Theoretical neuroscience:
Computational and mathematical modeling of neural systems,” The MIT
Press.

[15] C. Mead, “Analog VLSI and neural systems,” 1st ed. Addison-Wesley
Longman Publishing Co., Inc., 1989.

[16] K. D. Cantley, A. Subramaniam, H. J. Stiegler, R. A. Chapman, and E.
M. Vogel, “Spike timing-dependent synaptic plasticity using
memristorsand nano-crystalline silicon tft memories,” in Proc. 11th IEEE
Int. Conf. Nanotechnol., Portland, OR, USA, Aug. 2011, pp. 421-425.

[17] Del Valle J, Salev P, Kalcheim Y, Schuller IK. A caloritronics-based Mott
neuristor. Sci. Rep. 2020 Mar 9;10(1):4292.

[18] A. Natarajan and J. Hasler, “Implementation of Synapses with Hodgkin
Huxley Neurons on the FPAA, ” 2019 IEEE International Symposium on
Circuits and Systems (ISCAS), Sapporo, Japan, 2019, pp. 1-5.

[19] Baker, R. J. CMOS: Circuit Design, Layout, and Simulation: Third
Edition, 2010.

[20] C. Lee, SS. Sarwar, P. Panda, G. Srinivasan, K. Roy, “Enabling Spike-
Based Backpropagation for Training Deep Neural Network
Architectures”, Front Neurosci. 2020 Feb 28;14:119.

[21] JH. Lee, T. Delbruck and M. Pfeiffer “Training Deep Spiking Neural
Networks Using Backpropagation”, Front Neurosci. 2016 Nov 8;10:508.

1440

Authorized licensed use limited to: Boise State University. Downloaded on May 01,2025 at 01:19:39 UTC from IEEE Xplore. Restrictions apply.



