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Abstract— Brain-inspired neuromorphic computation can be
extremely efficient at very large scales due to inherent
parallelism, scalability, and fault and failure tolerance. One
widely used, biologically plausible synaptic learning mechanism
is spike-timing-dependent plasticity (STDP). The proposed
generic model of time-varying resistance, or R(t) elements in
this work, can produce classical and beyond classical STDP in
electronic spiking neural networks with memristive synapses.
Hebbian and Anti-Hebbian STDP is verified with the proposed
generic R(t) model by tuning the R(t) function. By
appropriately placing R(t) functions with selective resistance
values, symmetric or non-classical STDP learning behavior is
achieved.

Keywords—Spike-Timing-Dependent Plasticity, R(?) element,
memristor, Spiking Neural Network, Hebbian, Anti-Hebbian.

I. INTRODUCTION

Memristive Spiking Neural Networks (SNNs) that mimic
the Spike-Timing-Dependent Plasticity (STDP) learning rule
are potential candidates for energy-efficient brain-inspired
computation [1-4]. Different forms of the STDP rule depend
on dendritic position, the nonlinear integration of synaptic
modulation induced by complex spike trains, and the
alteration by inhibitory and neuromodulator inputs [5-12].
Moreover, multiple studies reveal that calcium-based
plasticity in hippocampal culture and the visual cortex
regions in the brain depend on both spike rate and timing [13-
17]. In classical pair-based STDP, the weight change caused
by a positive temporal difference (pre-synaptic neuron firing
before post-synaptic neuron) is positive. Similarly, the weight
change caused by a negative temporal difference (post-
synaptic neuron firing before pre-synaptic neuron) is negative
and different from the positive weight change, i.e.,
asymmetric [18]. In parts of the hippocampus and neocortex,
learning rules other than classical STDP are observed, which
can play crucial roles in the formation of new memories,
processing of sensory information, and cognitive functions
such as perception and decision-making [13,19-21].

Previously, some non-classical STDPs have been
demonstrated using passively-integrated 1TIR (One
Transistor-One  Resistor) synaptic elements [14,16].

However, these approaches require additional pulse-shaping
circuits. It is also challenging to create a single synaptic
device with appropriate first and second-order responses for
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use in memristive neural networks [22, 23]. Adding relatively
simple circuits to each neuron that can be altered to deliver
the appropriate learning response depending on the specific
characteristics of the memristive device is a considerably
better solution. A time-dynamic resistance element is one
example of such a circuit, which modulates the voltage across
the synaptic memristor in a complex manner. R(t) elements
could be devices such as short-term charge-trapping
memories [17] or CMOS circuits [24]. In the CMOS-based
R(t) element [21], the conductance of the element changes
from a low to a high value within the charging periods of the
capacitor and decays to a lower value within the slow
discharging periods. R. Ivans et al. demonstrated the utility of
CMOS-based R(t) circuits in conjunction with memristors to
vary the resistance change with respect to time for
implementing classical rate-dependent STDP [21]. In this
approach, two identical R(t) elements were connected with
the pre-and post-synaptic neurons to get a Hebbian
asymmetric STDP. A significant reduction in complexity
compared to pulse-shaping circuits is the benefit of including
this component. Going further, a generic model explaining
the time-dependent change in effective resistance of R(t)
elements is required as a reference for establishing different
synaptic learning behavior in SNNs.

This work explores a generic R(t) element model and its
ability to generate different types of STDP functions. At this
moment, it cannot be guaranteed that the model can
consistently be implemented with standard CMOS circuitry.
However, the model serves as a behavioral guideline for
physical implementations [24]. Both classical and non-
classical STDP learning behaviors from R(t)-based neural
networks have been explored using TSMC 180 nm
technology in this work. Furthermore, the network is tested
with input spikes that are randomly generated using a Poisson
process. The analysis in this paper can assist designers in
understanding the dependency of the learning behavior of
SNNs on different neuronal variables and parameters and
thereby help design more accurate and efficient brain-
emulating electronic circuits.

II. NEURAL NETWORK DESIGN

The SNN used in this work consists of a pre- and post-
synaptic neuron connected together through a memristive
synapse. This work analyzes a single memristive synapse
connecting pre- and post-synaptic neurons via two R(t)
elements on both sides of the synapse. Fig. 1. shows a
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pseudo-schematic diagram of the SNN network building

block used.
Ve NMA—ETE—A,.,

Fig. 1: Pseudo-schematic of a neural circuit with time-
dependent resistance, or R(t) elements to control
modification and learning in a memristive synapse [24].

The memristor and the R(t) elements are modeled in
Verilog-A. Memory storage and processing happen inside
the memristor, whose conductance defines the synaptic
weight. The normalized conductance & is calculated as the
ratio of instantaneous conductance to the maximum
conductance of the memristor and swings between 0 and 1.
In this work, a non-linear drift model of a TiO,-based
memristor is used [2,25]. The memristor current is
determined by an auxiliary circuit with a dependent current
source and a 1 F capacitor. The voltage across the auxiliary
capacitor modulates the memristor voltage and thus the
conductance (&) of the device. The I-V characteristics,
Verilog-A model of this memristor, and a more detailed
description of parameters are provided in ref. [2].

III. RESULTS & DISCUSSION

Previous work has demonstrated learning in SNNs in
which the R(t) element was either short-term charge-
trapping memory or a circuit consisting of MOSFETs and
resistors in which the effective resistance changes from a
maximum to a minimum value [17,26]. To explore the
ability of R(t) elements to generate different kinds of STDP
learning rules, a generic model explaining the time-
dependent change in effective resistance of R(t) elements is
designed. This model serves as a reference for understanding
the circuit parameters that regulate different synaptic
learning behaviors in SNNs. The generic model of the R(t)
element shown in Fig. 2 is designed in a way that the
effective resistance is dependent on the input voltage and
swings between a high resistance Rmax=1/0min and minimum
resistance Rmin=1/0max [24].

R(O=f(Vin(t))=f(Vcap(t))
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®G=Vin RL% CL==
=

Fig. 2: Schematic of the generic model of R(t) element.

In this generic model, as the input to the circuit changes,
the voltage across the capacitor changes due to charge
injection by the dependent current source, and the
conductance of the R(t) element changes based on equation
(1). The effective resistance of the element can be equated
as,

R{t] = = =

Fltd

flr(t)) (1

Here, v is a time-dependent parameter that can be expressed

as,
Vea p (it

)

Vieap (max)
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where Vgp(max) is the maximum capacitor voltage gained
after charging for a duration of tcharge. This can be expressed

as
(GxVdd =t rhyrge )
X - harg (3)
To physically implement an R(t) element following the
generic model, a nanoscale transistor having low threshold
and a linear current-gate voltage relationship in compatible
technology is required. Further consideration is required to
implement all the resistances with transistors.

Both classical and non-classical STDP are simulated
using the SNN building block shown in Fig. 1. The details
results are presented in the following subsections. Section
II.A describes the R(t) function that can produce classical
Hebbian STDP, while section III.B shows another R(t)
function capable of producing Anti-Hebbian STDP. Finally,
section III.C explains how the symmetric STDPs can be
achieved using the R(t) function described in sections III.A
and B.

A. Classical Hebbian STDP

To establish a classical Hebbian STDP learning
behavior in the SNN, we need to formulate the conductance
of the R(t) elements suitably. We denote the R(t) function
that will be used for producing Hebbian STDP as Ru(t). The
conductance of Ry(t) is equated as,

olt) = ':’H':t:l = Oming T Y * Omay “4)
Effective conductance of the circuit was initially tested
with a single pulse in TSMC 180 nm technology, as shown in
Fig. 3. As the input to the circuit changes, the voltage across
the capacitor changes exponentially. The conductance of the
R(t) element exponentially changes from a maximum to a
minimum value based on equation (4). For simulation,
equations (1) to (4) were modeled in Verilog-A.

vl:ﬁ.‘p (max) =

o
Se0

Fig. 3: Effective conductancemof the Ry(t) function with a
single pulse input.
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Fig. 4: Top to bottom: Pre-Post spike input pair voltages,
instantaneous conductance of the pre-and post-synaptic R(t)
circuits, memristor voltage, and memristor conductance
change.
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In order to establish a classical STDP learning behavior
that follows the Hebbian rule, both the pre- and post-synaptic
R(t) elements (Fig. 1) have identical Ru(t). The network is
analyzed with a single pair-based pre- and post-synaptic
inputs which is presented in Fig. 4. For an initial normalized
weight of 0.44, the voltage across the memristor changes
during a 5 ms timing difference between pre-and post-
synaptic signals. The normalized conductance & changes
accordingly within this time interval. The values used for
constant parameters are given in Table I.

As shown in the middle traces of Fig. 4, the effective
conductance for both pre-and post-synaptic neural circuits is
plotted following the capacitor voltage. As the capacitor
voltage decays exponentially with time after a pre-post pair,
the conductance exponentially changes from a maximum to a
minimum value. To verify the classical STDP, the weight
change (A&) across the memristor is plotted with respect to
various timing differences (At) in Fig. 5. From this result, it is
clear that STDP using the Ry(t) function resembles biological
classical (asymmetric) STDP behavior in Hebbian pattern.
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Fig. 5: Pair-based STDP with Ru(t) function with Ryin=200
kQ and Rimax=500 kQ.
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In a network, where neurons fire spikes randomly, the
synaptic plasticity rule may go beyond the classical STDP.
To verify the learning rule in a randomly spiked network, the
R(t)-based network is fed by Poisson-distributed random
pulse-train at both pre- and post-synaptic neuron and timing
variations between spike pairs and the resulting weight
changes are observed in Fig. 6(a)-(c).
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Fig. 6: (a) and (b) Timing of pre- and post-synaptic voltage
spikes. (c) Weight change across the memristor due to
random spiking inputs. (d) Scatter plot of a pair-based STDP
curve calculated from the random spiking inputs.

The resulting STDP rule in Fig. 6(d) is calculated using the
weight change due to a nearest-neighbor pre-post or post-pre
pairs and the corresponding time difference between them.
Since the data in Fig. 6(d) is very scattered, it demonstrates
only moderate similarity to the classical Hebbian pair-based
STDP measurements under the learning window (blue line).
Scatter is primarily due to the fact that the calculation
considers non-nearest-neighbor spike interactions regardless
of the impact of the homogenous spikes [27]. These results

re

also show that weight change does not follow classical
Hebbian STDP purely.

TABLE 1. LIST OF PARAMETERS OF THE R(T) CIRCUIT

Parameters Value
G(uQh 1

A t(ms) 5
Cu(pF) 1
Rinax(kQ2) 100
Ruin(k€2) 1

Vieak (MV) 40

Vi (mV) 700
Vdd(V) 2
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For further verification of the Ryu(t) function in memristive
SNNs, the network was tested with multi-spike inputs,
keeping the rate of pre- and post-synaptic signals identical.
This experiment tests the effect of frequency of applied
action potentials on the change in synaptic weight.
Conductance change (A&) of the memristor is plotted with
respect to the inverse frequency (f '), i.e. the period of pre-
or post-synaptic signals for three At values in Fig. 7. The
other resistance values are kept same as Fig. 6. It is visible
that this system demonstrates asymmetric temporal
integration because the weight change is not constant for a
given At.
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Fig. 7: Frequency dependence of synaptic weight change.
Four action potentials are applied consecutively with an
initial condition of &=0.5. The total weight change is
measured as AF.

B. Classical Anti-Hebbian STDP

The R(t) function that can be used to establish a classical
Anti-Hebbian STDP learning behavior is termed R,u(t). The
conductance of Rau(t) is equated as,

U{t] = ':rr.'i'-."{t] = Omin T {Y - 1) X Omax (5)
Following the same process followed with Ru(t) function, we
tested the effective conductance of the Rau(t) with a single
pulse in TSMC 180 nm technology, as shown in Fig. 8. As
the input to the circuit changes, the voltage across the
capacitor changes exponentially. The conductance of the R(t)
element exponentially changes from a maximum to a
minimum value based on equation (5). Both the pre-and post-
synaptic R(t) elements use the R,u(t) function in the neural
network shown in Fig. 1. Conductrance change (AZ) across
the memristor s plotted with respect to the timing difference
(At) in Fig. 9 that resembles biological classical (asymmetric)
STDP behavior in Anti-Hebbian pattern.

Authorized licensed use limited to: Boise State University. Downloaded on February 26,2024 at 19:51:29 UTC from IEEE Xplore. Restrictions apply.



Fig. 8: Effective conductance of the Ran(t) function with a

single pulse input.
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Fig. 9: Pair-based STDP with Rau(t) function with Ryix=200
kQ and Rimax=500 kQ.
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C. Non-Classical STDP

Place figures and tables at the top and bottom of columns.
Avoid placing them in the middle of columns. Large figures
and tables may span across both columns. Figure captions
should be below the figures; table heads should appear
above the tables. Insert figures and tables after they are cited
in the text. Use the abbreviation “Fig. 17, even at the
beginning of a sentence. To generate non-classical i.e.
symmetric STDP, non-identical R(t) functions are used with
the pre- and post-synaptic neurons. The symmetric Hebbian
STDP can be achieved by using RH(t) in the pre-synaptic
neuron and RaH(T) in the post-synaptic neuron, as shown in
Fig. 10(a) for different initial memristor conductance values.
On the other hand, symmetric Anti-Hebbian STDP is
generated by altering the R(t) functions from Hebbian STDP
setup i.e. RaH(t) function in the pre-synaptic neuron and
RH(t) function in the post-synaptic neuron, as presented in
Fig. 10(b).

From Fig. 10(a) and (b), it is evident that the synaptic
weight change for both positive and negative At has the
same polarity; thus, they are symmetrical, which we call
non-classical STDP. The magnitude depends on the tuning
of the conductance of the R(t) elements. In Fig. 11, the
symmetric Hebbian and Anti-Hebbian STDP are plotted as a
function of Rmax and Rmin. The weight change across the
memristor is calculated for three different minimum
resistance values of the post-synaptic R(t) element. The
other resistance values are kept the same as in Fig. 10. Fig.
11 shows that the STDP window can be shifted upwards or
downwards along the vertical axis (Ac"), i.e. the potentiation
and depression can be tuned by selecting the appropriate
resistance values of the R(t) elements while the left-to-right
symmetry remains intact.

IV. CONCLUSION

A generic model of R(t) elements was developed to tune
the R(t) functions for establishing various STDP learning
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behavior in memristive SNNs. Both Hebbian and Anti-
Hebbian STDP with corresponding R(t) functions were
investigated, demonstrating clear asymmetric temporal
integration and learning dependent on the timing and rate of
the input spikes. Further investigation was done to
appropriately apply the R(t) functions for obtaining
symmetric or non-classical STDP. These analyses play the
role of a guideline for implementing STDP-based supervised
or unsupervised training of the SNNs with appropriate
learning windows. The results of this work will be utilized to
investigate more complex learning rules in the future.
Furthermore, training and analysis of larger SNNs
incorporating R(t) elements for the purposes of spatio-
temporal pattern (STP) detection and classification.
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Fig. 10: (a) Symmetric Hebbian STDP, (b) Symmetric
Anti-Hebbian STDP with Rmix=200 kQ and Rmax=500 kQ.
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Fig. 11: (a) Symmetric Hebbian STDP, (b) Symmetric
Anti-Hebbian STDP with different resistance conditions of
R(t) elements.
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