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Abstract—Inspired by the human brain, neuromorphic
computation should be extremely efficient at very large scales due
to inherent parallelism, scalability, and fault and failure
tolerance. Spike-Timing-Dependent Plasticity (STDP) is one of
the most biologically plausible synaptic learning behaviors. The
proposed generic model of time-varying resistance, or R(t)
elements in this work can produce STDP in electronic spiking
neural networks with memristive synapses that is very similar to
that observed in biology. Both pair-based and triplet-based STDP
is verified with the proposed generic R(t) model.

Keywords—Spike-Timing-Dependent Plasticity, R(?) element,
memvristor, Spiking Neural Network, spike triplet learning.

[. INTRODUCTION

Memristive Spiking Neural Networks (SNNs) capable of
emulating the Spike-Timing-Dependent Plasticity (STDP)
learning rule are promising candidates for brain-inspired low-
power energy-efficient neuromorphic architectures [1,2].
However, multiple studies reveal that calcium-based plasticity
in hippocampal culture and the visual cortex regions in the brain
depend on both spike rate and timing [3,4,5,6]. Pair-based
STDP takes into account only the timing of a pre-post pair to
explain synaptic weight change, thus failing to produce third-
order correlations of input spike trains [7]. Therefore, rate-
dependent STDP is required to fully process Spatio-Temporal
Patterns (STPs). Triplet-based STDP, which introduces the
third spike in either the pre-or post-synaptic neuron is useful to
validate rate-dependent STDP [8,9,10]. Moreover, triplet-
STDP increases the training stability of neurons in learning
STPs for highly fired input spikes [11]. In order to develop a
highly realistic neuromorphic system with unsupervised and
continuous learning capability, it is important to investigate and
modify the learning behavior beyond pair-based STDP. R.
Yang et. al physically implemented triplet-STDP with a second-
order memristor which requires a complicated digital circuit
[12]. Tt is difficult to design a single device that has the proper
first and second-order responses. Other research has
demonstrated a floating-gate synaptic implementation along
with a mathematical procedure to control gate voltage to
generate triplet-STDP [13]. This requires additional logic gate
components and a guideline for plausible neuromorphic
architecture is missing. Overall, it is much more difficult to
design a single memristive device with drift/diffusion than it is
to build an external circuit that captures those behaviors and that
can be tuned to provide the right response based on whatever
memristive device is attached. Therefore, further investigation
for alternative approaches to establishing triplet-STDP with
minimum circuit elements and commercially available
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memristor model incorporative SNNs is required. An R(t)
element is any time-varying resistance that can be used in
conjunction with memristors to vary the resistance change with
respect to time for implementing frequency-dependent STDP
[14]. The advantage of including this element is a dramatic
reduction in complexity compared to pulse-shaping circuits. A
generic model explaining the time-dependent change in
effective resistance of R(t) elements is required as a reference
for understanding the controlling circuit parameter and
establishing different synaptic learning behavior in SNNs.
Although at this moment, it cannot be guaranteed that the model
can always be implemented with standard CMOS circuitry, the
model serves as a behavioral guideline for physical
implementations. There’s room for analyzing the downsides of
inclusion R(t) elements in neuromorphic architecture in future.

In this work, both pair- and triplet-based STDP learning
behavior from R(t)-based neural networks have been explored
in TSMC 180 nm technology. Furthermore, a generic model of
R(t) elements is presented and pair-based STDP is generated
using the same technology. Results reveal that an ideal R(t)
element attached to pre-and post-synaptic learning circuits,
along with a memristor device can produce perfect symmetric
STDP in neural circuits. The analysis presented in this work can
be an aid to realize the dependency of the learning behavior of
SNNs on different neuronal variables and thereby help design
faster and more efficient brain-emulating electronic circuits.

II. METHODOLOGY

A. Neural network design

All SNNs consist of neurons connected together through
synapses. This work analyzes a single memristive synapse
connecting pre- and post-synaptic neurons via two R(t)
elements on both sides of the synapse. Fig. 1. Shows a pseudo-
schematic diagram of the SNN network building block used for
this work. The memristor and the R(t) elements are modeled in
Verilog-A. Memory storage and processing happen inside the
memristor without the necessity of a pulse-shaping network.
The conductance of the memristor defines the state of the
device. The state (W/D) is defined as the normalized
conductance swing between 0 to 1.

Vpre Vpost
Fig. 1: Pseudo-schematic of a neural circuit with time-
dependent resistance, or R(t) elements to control modification
and learning in a memristive synapse.
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B. Memristor model

In this work, a non-linear drift model of a TiO;-based
memristor is used [2-3]. The memristor current is determined
by an auxiliary circuit with a dependent current source and a 1
F capacitor. The voltage across the auxiliary capacitor controls
the memristor voltage and state variables of the device. The I-
V characteristics of this memristor model and a more detailed
description of parameters are provided in ref. [3].

C. R(t) element

Previous work has demonstrated learning in SNN's in which
the R(t) element was either a short-term charge-trapping
memory or a circuit consisting of MOSFETs and resistors in
which the effective resistance changes from a maximum to a
minimum value [11,12]. To establish a standard asymmetric-
Hebbian STDP learning behavior in the SNN, we need to
modify the R(t) circuit. The process starts with a simplified
model of the circuit replacing the MOSFET-based current

mirror circuit with a voltage-controlled current source (Fig. 2).
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Fig. 2: (a) Simplified model 0% R(t) element with a voltage-
controlled current source.

The current of the source is dependent on the input voltage

by scaling of G. Resistors R1 and R2 from the original circuit
are regarded as Rmax and Rumin in the simplified model.
In the simplified model, the voltage across the capacitor Cp
(Veap) controls changes in the resistance of the element over
time. V¢, is dependent on scaling parameter G and the leakage
voltage Vieak.

Before further simplification, we analyzed how the charging
of the capacitor is affected by the variation of these parameters.
The leakage time constant of the capacitor is referred as Ticak.
The value of the parameters used for this analysis are presented
in Table L.

TABLE 1. LIST OF PARAMETERS OF THE R(T) CIRCUIT

Parameters Value
G(uQh 1
A t(ms) 5
Cu(pF) 1
Rinax(k€2) 100
Runin(kQ2) 1
Vieak (mV) 40
Vi (mV) 700
Vdd(V) 2

In Fig. 3(a), Tiak is plotted against Vi keeping the
voltage in mV range as Vi is described as a very small
voltage in the original circuit. The decrease of Tiax With the
increasing Vieax verifies the assumption. Again, the voltage Vap
is plotted with respect to the scaling parameter, G (Fig. 3(b)).
These results are helpful to determine the ideal values of the
parameters while designing the R(t) circuits.
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Fig. 3: (a) Effect of changing leakage time constant on
synaptic weight, (b) Effect of changing current injection of
synaptic weight.

The generic model of the R(t) element shown in Fig. 4 is
designed in a way that the effective resistance is dependent on
the input voltage and swings between a high resistance Ruax(1/
Omin) and minimum resistance Rmin(1/ omax). The effective
resistance of the element can be equated as,

1
R® =5 )]
0(t) = Omin + Y X Onax (2)
Here, vy is a time-dependent parameter that can be expressed as,
Veap ()
= 3
Vcap (max) ( )

Vep(max) is the maximum capacitor voltage gained after

charging for a duration of teharge. This can be expressed as,
(GxVddXtcharge)

Veap (max) = o

“4)

R(t)=t(Vin(t))=f(Vcap(t))
o A —0

Vin TVcap Vo
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Fig. 4: Schematic of the generic model of R(t) element.

From the final generic model of the R(t) (Fig. 4), as the
input to the circuit changes, the voltage across the capacitor
changes, and the conductance of the R(t) element changes
based on equation (4). To physically implement an R(t)
element following the generic model, a nanoscale transistor
having low threshold and a linear current-gate voltage
relationship in compatible technology is required in place of
MOSFET M1 in Fig. 2. Further consideration is required to
implement all the resistances with transistors.

III. RESULTS & DISCUSSIONS

Both pair-based and triplet-based STDP are simulated using
the SNN building block shown in Fig. 1. The details results are
presented in the following subsections.

A. Pair-based STDP

Initially, we tested the network with the compound R(t)
element [14] in TSMC 180nm technology. The effective
resistance of the circuit with a single pulse is generated in
TSMC 180 nm technology as shown in Fig. 5. The values used
for constant parameters are given in TABLE L

The neural network is analyzed with a generic R(t) element
and the results are shown in Fig. 5. A single pulse is applied as
both the pre-and post-synaptic neural signals. For an initial
normalized weight of 0.44, the voltage across the memristor
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changes during a 5 ms timing difference between pre-and post-
synaptic signals. The state variable W/D changes accordingly
within this time interval.

<2
@ L] |
> 0
~ 140 160 180 200 220 240
) r r . :
N |
>0
7 140 160 180 200 220 240
Z 0If | ' i ; |
£-0.
et N . ]
> 40 160 180 200 220 240
0.446 .
0.442 : . . :
140 160 180 200 220 240
t(ms)
9 2
(b) 21 I\ 4
& ;
o
> 140 160 180 200 220 240
<, x10°
:e % I\ q
&>T140 160 180 200 220 240
< . ‘ . .
205 N
£0 . : T
2 140 160 180 200 220 240
S x10°
=6 ; . : -
< 4F [\J
z3 . " T
o140 160 180 200 220 240
t(ms)

Fig. 5: (a) Pre-Post spike input pair, memristor voltage,
memristor weight change, (b) Capacitor voltages, and the
conductance of pre-and post-synaptic R(t) circuits.

In Fig. 5(b), The effective conductance for both the pre-and
post-synaptic neural circuits is plotted following the capacitor
voltage. As the capacitor voltage changes exponentially with
time after a pre-post pair, the conductance exponentially
changes from a maximum to a minimum value. To verify
STDP, the weight change (AW/D) across the memristor is
plotted with respect to the timing difference (At) in Fig. 6 for
both the compound and generic R(t) elements.
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Fig. 6: Pair-based STDP (a) With MOSFET-based
compound R(t), (b) With generic R(t) model with
Rimin=200kQ and Rumax=500kQ.
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From Fig. 6, it is clear that STDP using the generic R(t)
element better resembles biological STDP behavior. It is
possible to get different types of symmetric and asymmetric
STDP behavior from this R(t) model by tuning the maximum
and minimum resistances as well as the conductance function.

B. Triplet-based STDP

To generate triplet-based STDP, researchers from different
groups modeled the timing differences differently, using either
one timing or two timings [8,9,10,11,16]. In this work, two
timing differences between pre- and post-synaptic neurons are
considered and based on the position of the third spike, the
triplet signals are categorized into six patterns to test our
network. For all the patterns, the first timing difference, At; is
the timing difference between the arrival time of the first and
second spikes, and the second timing difference, At, is the
timing difference of the arrival time of the second and third
spikes. In Fig. 7, the weight change across the memristor due to
a triplet input; in this case a Pre-Post-Pre triplet is plotted.
Similar to Pre-post input, the effective conductance for both the
pre-and post-synaptic neural circuits is plotted following the
capacitor voltage (Fig. 7(b)).
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Fig. 7: (a) Pre-Post-Pre triplet input spikes, memristor voltage,
memristor weight change, (b) Capacitor voltages, and the
conductance of pre-and post-synaptic R(t) circuits.

The weight change across the memristor is now dependent
on the arrival of all three spikes. To demonstrate the triplet-
based STDP learning behavior, the weight change across the
memristor was plotted with respect to both the timing
differences (At;, Aty) in Fig. 8. The colormap shows the change
of weight across the memristor.
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Fig. 8: Triplet-based STDP (a) Pre-Post-Pre, (b) Post-Pre-Post,
(¢) Pre-Pre-Post, (d) Post-Pre-Pre, (¢) Pre-Post-Post, (f) Post-
Post-Pre.

From Fig. 8(a-b), it is evident that the synaptic weight
change can alter polarity due to considering the third spike,
therefore resulting in a different AW/D window than pair based
STDP which matches the pattern shown in refs. [11,16]. With
the change in timing difference between consecutive pre- or
post- pulses, AW/D changes for a single time difference
between pre-post pair (Fig. 8(c-f)). Therefore, the frequency of
pre- and post-synaptic spikes is impacting the synaptic weight,
which does not happen in pair-based STDP.

IV. CONCLUSIONS

The STDP learning behavior from R(t)-based SNNs was
analyzed. A generic model of R(t) elements was developed that
paves the way for further modification in the actual architecture.
Pair and triplet-based STDP with a generic R(t) model were
investigated, demonstrating clear asymmetric temporal
integration and learning that is dependent on the third spike in
the set. Future work will investigate the effect of spike
frequency on STDP in R(t)-based SNNs, the dependence of the
shape of the R(t) function and will use other more realistic
memristor models.
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