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Monocular depth estimation based on deep
learning for intraoperative guidance using
surface-enhanced Raman scattering imaging
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Imaging of surface-enhanced Raman scattering (SERS) nanoparticles (NPs) has been intensively studied for cancer
detection due to its high sensitivity, unconstrained low signal-to-noise ratios, and multiplexing detection capabil-
ity. Furthermore, conjugating SERS NPs with various biomarkers is straightforward, resulting in numerous suc-
cessful studies on cancer detection and diagnosis. However, Raman spectroscopy only provides spectral data from
an imaging area without co-registered anatomic context. This is not practical and suitable for clinical applications.
Here, we propose a custom-made Raman spectrometer with computer-vision-based positional tracking and
monocular depth estimation using deep learning (DL) for the visualization of 2D and 3D SERS NPs imaging,
respectively. In addition, the SERS NPs used in this study (hyaluronic acid-conjugated SERS NPs) showed clear
tumor targeting capabilities (target CD44 typically overexpressed in tumors) by an ex vivo experiment and im-
munohistochemistry. The combination of Raman spectroscopy, image processing, and SERS molecular imaging,
therefore, offers a robust and feasible potential for clinical applications. ~© 2025 Chinese Laser Press

https://doi.org/10.1364/PRJ.536871

1. INTRODUCTION

Surgical resection of a tumor is a standard of care therapy for
most solid tumors. The ultimate goal of surgical resection is to
remove the entire tumor with minimal damage to adjacent tis-
sue, an outcome that strongly correlates with reduced tumor

needed to identify and remove microscopic sites of cancer in-
vasion from the main tumor mass. To achieve precise tumor
delineation and complete resection, a suitable intraoperative
tool should meet the following requirements: high sensitivity
and specificity, short acquisition time for real-time or near-

recurrence and improved survival [1,2]. Tumor margins in nu-
merous aggressive cancers are typically indistinct due to the pri-
mary tumor’s propensity to invade adjacent healthy tissue areas.
As a result, defining appropriate margins for surgical resection
remains challenging [3]. There are several modalities used in
the clinic to visualize tumors and facilitate tumor removal, such
as magnetic resonance imaging (MRI), positron emission
tomography (PET), and computed tomography (CT) [4-7].

However, these imaging modalities lack sufficient resolution
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real-time intraoperative detection, and high spatial resolution.
With regards to imaging modalities, optical imaging
exhibits distinct advantages compared to the previously men-
tioned non-optical imaging modalities in several aspects, such
as lack of ionizing radiation, high sensitivity, and excellent spa-
tiotemporal resolution [8-11]. Recently, surface-enhanced
Raman scattering (SERS) nanoparticles (NPs) imaging has in-
creasingly been recognized as a promising molecular imaging
technique for clear delineation of tumor margins and
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tumor surgical resection due to its exceptional sensitivity, dis-
tinctive Raman signature (fingerprint), multiplexing detection
capability [12-18], and lack of autofluorescence and photo-
bleaching problems associated with fluorescence imaging.
SERS NPs are composed of a gold core, Raman active dye,
and silica shell, which have been developed to function as tu-
mor-targeting beacons showing substantially strong signals due
to the surface plasmon resonance (SPR) effect [19] of the met-
allic core (gold). In addition, they can be effortlessly conjugated
with various tumor-targeting ligands and fabricated with differ-
ent Raman-active dyes. Each Raman dye emits a unique Raman
spectrum, called “flavor”, facilitating multiplexing. Several re-
search groups, as well as our group, have demonstrated encour-
aging results of SERS NPs imaging for ex vivo, in vivo, and
image-guided  surgery experiments [20-24]. However,
Raman spectroscopy predominantly provides spectral data,
lacking the capability to co-register and visually represent ana-
tomic features, limiting applications for image-guided surgery.

To overcome this problem, we propose a custom-made
Raman spectroscopy system with computer-vision-based posi-
tional tracking and DL-based techniques to visualize 2D and
3D SERS NPs imaging, respectively. Specifically, the traditional
template matching algorithm [25] is employed for probe
tracking, and the affine transformation [26] is then used to
co-register a 2D SERS image (reconstructed by using the multi-
plexing algorithm [27,28]) and a sample photograph. For
3D imaging, the image is reconstructed based on a deep-
learning monocular depth estimation (distance relative to the
camera) of each given pixel in the input image. Multiple depth
estimation accuracy with a single network (MiDaS$) is a prom-
ising DL technique that estimates depth from an arbitrary in-
put image. MiDaS utilizes a conventional encoder-decoder
structure to generate the depth map images. The legacy
MiDaS V2.1 model [29] uses a residual network as the
backbone for feature extraction as this network structure is
invulnerable to vanishing gradients and allows MiDaS to ex-
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tract multi-channel feature maps from input tensors. The vision
transformer (ViT) [30] is the state-of-the-art model employed
in computer vision tasks. It can surpass convolutional neural
networks (CNNs)-based models across various domains and
settings. Therefore, the latest MiDaS$ versions (3.0 [31] and
3.1 [32]) replace the CNNs backbone with vision transformer
networks, showing superior results. In this work, we directly
utilized the pre-trained MiDaS 3.1 to reconstruct a 3D mouse
image co-registering with the SERS image, as shown in
Section 3.D.

2. METHODS

A. Raman Spectrometer

A schematic of the proposed Raman system is illustrated in
Fig. 1. A 785 nm laser (iBeam Smart 785, Toptica Photonics,
Munich, Germany) is employed for the excitation source; the
custom-made fiber bundle Raman catheter (Fiber Guide
Industries, Caldwell, ID, USA) is used for the laser illumination
and the Raman spectra collection. A proximal end of the probe
is made up of one single mode fiber (780HP, 4.4 pm core
diameter) for 785 nm laser illumination and 36 multimode fi-
bers (AFS200/220T, 200 pm core) for the Raman spectra col-
lection as shown in Fig. 1(b). The single mode fiber for
illumination is centrally positioned with the probe and encom-
passed by the 36 multimode fibers for Raman spectra acquis-
ition. In addition, a fused silica plano-convex lens (L1, f =
6.83 mm, PLCS-4.0-3.1-UV, CVI Laser Optics, Albuquerque,
NM, USA) is placed in front of the probe to collimate the
785 nm laser illumination with a beam diameter of 1 mm
and power of 30 mW on the sample. For the distal end, it
is arranged in a vertical array or linear array for effectively cou-
pling the light to the spectrometer (Kymera 193i-A, Andor
Technology, Belfast, UK) by using optical relay lenses
(L2, f =100 mm, AC254-100-B and L3, f = 80 mm,
AC254-080-B, Thorlabs Inc., Newton, NJ, USA). In addition,

Fig. 1. Schematic of the custom-made Raman imaging system, together with the visualization system. (a) The optical diagram of the Raman
spectroscopy system. A 785 nm laser is used to illuminate the sample through a single mode fiber and collimated by a plano-convex lens (L1). The
scattered light is then collected by the Raman probe, coupled into the spectrometer using the relay optics (L2 and L3 lenses) with an interchangeable
mirror (IM) and a long-pass filter (LPF) in between. The spectrometer consists of a rotatable grating, three mirrors (M1, reflection mirror; M2,
collimating mirror; and M3, focusing mirror), and a back-illuminated deep-depletion CCD. To perform 2D Raman imaging, the Raman probe is
translated by a two-axis motorized stage. (b) The photographs of the distal and proximal ends of the custom-made fiber bundle. (c) Schematic of the
visualization system for generating the 2D and 3D co-registered SERS images.
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the Rayleigh scattering from the collected light is filtered out by a
long-pass filter (LPF, 4, = 830 nm; BLP01-830R-25, Semrock,
Rochester, NY, USA), placed between the relay lenses. As a re-
sult, the light that traverses the spectrometer is solely subjected to
Stokes-Raman scattering. The Stokes-Raman scattering light
from the spectrometer is then collected by a cooled deep-
depletion spectroscopic charge-coupled device (CCD) array
(1024 x 256 pixels with a pixel size of 26 pm x 26 pm;
DU920P Bx-DD, Andor Technology, Belfast, UK) with a wave-
length range of 835-912 nm (Raman shift of 770-1777 cm™).
To achieve raster scanning, a two-axis translation stage is con-
structed by joining two linear stages in an orthogonal manner
(DDS050, Thorlabs Inc., Newton, NJ, USA). Furthermore,
a color monocular camera (ELP 5-50 mm, with Sony
IMX323 chip, Shenzhen, China) is applied to track the
Raman probe position and capture the sample photographs
to reconstruct the 2D and 3D co-registered SERS images.

B. SERS NPs Synthesis

SERS NPs were synthesized using the tris-based assisted synthe-
sis protocol with Au NPs formation at elevated temperature, as
shown in Fig. 2(a). First, the sodium citrate reduction approach
was employed to prepare 17 nm Au-NP seeds. The seeds were
then mixed with tris at 98°C, followed by adding gold chloride
for seed-mediated growth to obtain 50 nm Au NPs. The Raman
dye was promptly added after the formation of 50 nm Au NPs,
and the solution was stirred for one minute, followed by cooling
in an ice bath. To functionalize SERS NPs with biomolecules,
particularly hyaluronic acid (HA) and polyethylene glycol
(PEG), thiol groups were employed for the attachment of these
biomolecules to Au NPs via gold-thiol interaction [33-37]. S420
SERS NPs were mixed with thiolated-HA and this mixture
solution was then incubated overnight at 4°C. After that, un-
bounded HA was removed by repeated centrifugation.
Likewise, the procedure to conjugate PEG with S481 SERS
NPs is the same as the HA conjugation. The size and shape
of synthesized SERS NPs were characterized by a transmission
electron microscope (TEM; 2200FS, JEOL Litd., Tokyo, Japan)
and a dynamic light scattering particle analyzer (DLS; Zetasizer
Nano ZS, Malvern Panalytical Ltd., Malvern, UK). SERS NPs
are homogenous spheres approximately 50 nm in diameter, as
shown in Fig. 2(b). The DLS result was also applied to validate
the distribution size with a measurement of 56 nm, as shown in
Fig. 2(c). The comprehensive synthesis protocol and characteri-
zation of SERS NPs are demonstrated in our previous work [23].
The normalized Raman spectra (acquired by our custom-made
Raman spectrometer) of $420 and S481 SERS NPs with a con-
centration of 500 pM (1 M =1 mol/L) are demonstrated in
Fig. 2(d).

C. Position Tracking and Image Co-registration
Algorithms

Before processing the data acquired by a low-cost camera, a
camera calibration [38,39] was applied to correct the image dis-
tortion due to the lens quality and optical alignment. The tem-
plate matching algorithm [40] is then used to determine the
precise position of a Raman probe image (the template image)
in a large surgery area image (the input image). The concept of
this algorithm is to slide the template image over the input

image, akin to a 2D convolutional operation, followed by a
comparison of the template and the corresponding patch of
the input image, which can be done by several methods.
In this work, we employed a normalized cosine coefficient
(TM_CCOEF_NORMED) implemented in Python using
the OpenCV Library [41] to calculate the template matching
for the Raman probe detection. With the Raman probe posi-
tion, the scanning position can be easily estimated during data
acquisition. In addition, to accurately overlay the SERS image
(X) and surgery area image (1), an image co-registration algo-
rithm is required by calculating the geometric transformation
matrix (7°), as shown in the equations below:
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where (x,, ;) and (x,,, y,) are the corresponding positions (7 is
the number of corresponding positions) in the input image X
and the reference image (V), respectively, and m;; are the sim-
plified transformation matrix parameters derived from the ro-
tation, scaling, shearing, and translation matrices, as shown in
the equation below:

10 #,405, 0 051 sh, 0
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In the translation matrix, #, and ¢, are the displacement along
the x and y axes, respectively; in the scaling matrix, s, and 5, are
the scale factors along the x and y axes, respectively; in the shear
matrix, sh, and sh,, are the shear factors along the x and y axes,
respectively; in the rotation matrix, 6 is the angle of rotation.

Indeed, the 7" matrix can be estimated by using corresponding

points  together with the minimized least square
error (%) as shown below:
e =|TX-Y|* (6)
de?
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To obtain a more accurate co-registration result (2D co-reg-
istered SERS image), the estimated transformation matrix (7°)
is then applied to the reconstructed SERS image (X) derived
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Fig. 2. Synthesis of the SERS NPs. (a) SERS NPs synthesis and HA/PEG conjugation procedure. First, 17 nm gold seeds (Au NPs) are formed.
Second, the NPs further grow to 50 nm; meanwhile different Raman reporters (S420 and S481) are attached to the gold surface. Lastly, the SERS
NPs are functionalized with HA or PEG. (b) TEM image of the SERS NPs with diameter of approximately 50 nm. (c) DLS result of the
corresponding SERS NPs. The measured size is 56.16 nm in diameter. (d) Normalized Raman spectra of the stock SERS NPs solution of both

flavors (S420 and S481).

from the demultiplexing algorithm. In our case, the raster scan
was applied to reconstruct the SERS image and the fiducial
landmarks (four corners of the scanning area) were marked
on the sample. Thus, the four corners of the SERS image were
used as the corresponding points to the four fiducial points on
the samples for the image co-registration.

D. Depth Estimation Using DL

MiDaS is considered as a promising model for performing
monocular depth estimation, and the original MiDaS V 2.1
[29] is based on a CNN backbone; however the newer versions
(MiDaS V 3.0 [31] and V 3.1 [32]) employ transformer archi-
tectures as their backbones, which can significantly outperform
the original version. The training protocols of the MiDaS V 2.1,
3.0, and 3.1 models are analogous. Briefly, the MiDaS models
were trained by using 12 mixing datasets, multi-objective

optimization [42] with Adam [43], and a scale-and-shift-
invariant loss [44]. The encoder and decoder weights were
updated by applying the learning rates of 10~ and 107, respec-
tively. The models were initially pre-trained on a subset of the
datasets for 60 epochs, followed by training for another 60
epochs on the full dataset. The complete training details are
elucidated in the original MiDaS V 2.1 paper. All DL models
demonstrated in this work were implemented on a personal
computer equipped with an 11th Gen Intel core i7-11700k
CPU, 64 GB, and an NVIDIA RTX 3090 graphic processing
unit (GPU). Indeed, all MiDaS models are built using encoder
and decoder structures. Each MiDaS model differs in the back-
bone of the encoder part (a variant of CNNs and Transformer
architectures), while the rest of the model remains consistent.
Since the latest MiDaS V 3.1 provides the best result compared
to other versions, it is used in this study. Bidirection encoder
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representation from image transformers (BEiT) [45] is used as
the backbone of MiDaS V 3.1, as shown in Figs. 3(a) and 3(b).
BEiT is a state-of-the-art architecture that enables self-
supervised pretraining of vision transformer (ViT) to surpass
supervision pretraining. The pre-training task in BEiT is the
masked image modeling (MIM) head, as shown in Fig. 3(b).
The concept of MIM is to recover the original visual tokens
based on the corrupted image patches. In other words, MIM
uses two views for each image to train the model. First, the
2D image with a size of H x W x C is divided into a sequence
of HW /P? patches for each channel, where (H, W) is the im-
age size, C is the number of channels, and (P, P) is the patch
size. All the patches are then flattened into vectors and linearly
projected. Second, an image tokenizer converts the image into a
sequence of discrete tokens rather than using raw pixels. The
discrete variational autoencoder (dVAE) [46,47] is directly used
to train this image tokenizer. Indeed, the image tokenizer is a
readily trained token generator for the input patches.

The outputs from the tokenizer and MIM are used to de-
termine the loss value to update the learnable parameters,
allowing the network to obtain a deep understanding of
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image classification problem and does not provide depth esti-
mation functionality. To assemble MiDaS V 3.1, BEiT is used
as a feature extractor and must be appropriately connected to
the depth decoder. Regarding the encoder-decoder in MiDasS,
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Fig. 3.

(a) Overview of the MiDaS V 3.1 architecture. The input image is embedded with a positional embedding and a patch-independent

readout token (orange) is included. These patches are fed to four BEiT stages. At each BEIT, the output tensor is passed through the Reassemble and
Fusion blocks to predict the encoder outputs for each stage. (b) BEiT transformer architecture used in the encoder part in (a). (c) Reassemble block
applied to assemble the tokens into feature maps with 1/s the spatial resolution of the input image. (d) Fusion block used to combine the features and

upsample the feature maps by two times.
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proportional to the depth map intensity), which is then pro-
jected into 3D space using the reprojectImageTo3D function
in OpenCV [41]. Lastly, the color of each pixel in the 2D co-
registered SERS image is mapped onto the corresponding
positions (x—y plane) in the 3D space of the depth map image
to obtain the final 3D SERS image.

3. RESULTS AND DISCUSSION

A. Phantom Characterizations
The step-wedge with a height of 9.5 mm of each step, which
was constructed from the standard mounting bases (BA1S,
Thorlabs Inc., Newton, NJ, USA), was used as a phantom
to characterize the depth estimation DL models. The camera
captured this phantom photograph and it was used as the input
for the three different MiDaS models (CNN, ViT, and BEiT)
to estimate the depth and compare the performance of each
model. To quantify the performance of each model, the depth
map intensities from step 4 to step 1 (along with the white-
dashed line) were plotted, as illustrated in Fig. 4(a). The abso-
lute errors were then calculated from the intensity profiles of
each model and the ground truth (the black line). Table 1
shows the average absolute error £ standard deviation results
of each model. It shows that the MiDaS model based on BEiT
architecture can surpass other models with the lowest average
absolute error of 0.0485 =+ 0.1737.

Furthermore, a 3D-printed tumor phantom was utilized for
thorough characterization of the MiDaS models, as depicted in
Fig. 4(b). The distance between the phantom and the camera
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varied from 5 cm to 11 cm with an increment of 2 cm. The
phantom depth map images were then generated by the MiDa$
models. The quality images captured at the out-of-focus distan-
ces (5 cm and 7 cm) are unsatisfactory, leading to deterioration
of depth map quality, as the models cannot correctly recognize
some poor resolution areas to generate the depth map image,
especially the CNN MiDaS model. Nevertheless, the BEiT
model can still generate somewhat decent-quality depth map
images. Table 2 shows four evaluation metrics (average value
from all distances = standard deviation): IoU, F1-score, recall,
and precision, of the depth map images and their correspond-
ing masks. This evaluation shows the overall performance of the
MiDaS models for generating depth map images of the same
object with different image quality (in-focus and out-of-focus
images); particularly, the BEiT MiDaS model can surpass other
models with the promising scores of all evaluation metrics. In
addition, the complexity and average execution time for one
input image were evaluated to assess the feasibility for intrao-
perative guidance applications. Although we implemented
MiDaS on a moderate-budget GPU (an NVIDIA RTX
3090 GPU), the execution time is feasible for intraoperative
guidance applications. Indeed, the execution time can be im-
proved by using more powerful GPUs currently available on the
market.

In addition to the depth map image characterization, the
intensity of Raman spectra of the same sample at various dis-

tances from the Raman catheter was also characterized by using
the step-wedge phantom from Fig. 4(a) and S420 SERS NPs
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Fig. 4. Validation of depth map imaging and Raman spectra at different distances from a camera and a Raman catheter, respectively. (a) Depth
map imaging of a step-wedge phantom generated by MiDa$S models based on three different backbones (CNN, ViT, and BEiT) and the comparison
of the depth map intensity profiles of each model. (b) Depth map imaging of a tumor phantom with different distances from the camera. (c) Raman
spectra of S420 SERS NPs characterization at different distances from the Raman catheter by using the step-wedge phantom. (d) Linearity plot of the
highest intensity of S420 (1614 cm™) versus the distances from the Raman catheter.
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Table 1. Depth Map Intensity Characterization Result
(Average Absolute Error + Standard Deviation) of MiDaS
Models with Three Different Architectures: CNN, ViT,
and BEiT

Step Number CNN ViT BEiT

Step 1 0.074 £0.560 0.318 £0.140  0.051 £ 0.560
Step 2 0.070 £0.046 0.252 £0.010  0.032 +£ 0.040
Step 3 0.135+0.088 0.018 £0.016 0.024 +0.012
Step 4 0.092 +£0.077 0.161 £0.100  0.087 + 0.083
Average 0.0927 £ 0.070 0.1872 % 0.0665 0.0485 + 0.1737

Table 2. Tumor Phantom Characterization Result of the
Three Different MiDaS Models

Model CNN ViT BEiT

IoU 0.139 £ 0.026  0.241 £0.018 0.272 £ 0.033
F1-score 0.244 £+ 0.041  0.389 £ 0.024  0.426 + 0.042
Recall 0.262 £0.024 0.370 £0.027  0.402 + 0.029
Precision 0.234 +0.058 0.421 +£0.074 0.466 & 0.088
Execution 0.861 0.998 1.175
time (s)

Number 1.05 x 10° 3.34 x 10° 3.45 x 10°

of parameters

solution with a concentration of 500 pM, as shown in Fig. 4(c).
The SERS NPs solution was dropped on each step with a vol-
ume of 20 pL, followed by acquiring the Raman spectra using
30 mW laser power and one second exposure time. The linear-
ity plot of the highest peak of $420 (1614 cm™') and the dis-
tance between the Raman catheter and sample is illustrated in
Fig. 4(d). The distance between the catheter and the sample is
inversely proportional to the intensity of the Raman spectra.
Thus, this has to be addressed to enhance the accuracy of clini-
cal applications.

B. Ex vivo Experiment

To validate the targeting capability of the conjugated-HA SERS
NPs, we performed an ex vivo experiment on tumor tissue and
spleen connective tissue (control) harvested from the MUCI
breast tumor mouse model [48]. All procedures used in experi-
ments conducted on animals were approved by the Institutional
Animal Care & Use Committee (IACUC) of Michigan State
University. SERS NPs used in this experiment were also pub-
lished in our previous work [23]. First, we scanned the back-
ground signal from all the tissues. Second, all tissues were
incubated with the mixture solution of S420-HA and S481-
PEG SERS NPs with a concentration of 250 pM for 15 mi-
nutes. The S481-PEG was used as a control SERS NPs solution
(non-targeting). In the next step, all the tissues were rinsed with
phosphate-buffered saline (PBS) four to five times, followed by
acquiring the Raman spectra and reconstructing the image us-
ing the demultiplexing algorithm [27,28]. This algorithm is
based on the direct classical least squares (DCLS) method, us-
ing measured Raman spectra, reference spectra of SERS NPs of
each flavor (spectra of a pure SERS NPs solution at a high con-
centration), and background spectra as inputs to estimate the
weight of a specific flavor.

Ideally, by rinsing tissues after incubation, the non-targeting
NPs (S481-PEG) should be removed from the incubated tis-
sues, and the majority of targeting NPs (§420-HA) should re-
main on the tumor with overexpressed CD44. However, in the
practical experiment, we detected signals from both $S420-HA
and S481-PEG in both the tumor and normal tissues, as shown
in Figs. 5(al), 5(a2), and 5(a3), due to tissue texture and non-
specific binding. Therefore, the Raman ratiometric image of
S$420-HA and S481-PEG was applied to evaluate the targeting
of the NPs, as shown in Fig. 5(a4). According to the ratiometric
result, the ratio of targeting NPs (S420-HA) on the tumor tis-
sue is significantly stronger than the ratio on the control tissue,
which is encouraging and promising. Furthermore, the H&E
and IHC of CD44 of the corresponding tissues were prepared,
and the results are shown in Figs. 5(b1) and 5(b2), respectively.
CD44 is labeled as brown areas, and they are intense (overex-
pressed) in the tumor tissue, as shown in Fig. 5(c). This is also
consistent with the ratiometric result.

C. Image-Guided Surgery Experiment

In this experiment, we would like to validate the capability of
the proposed Raman system and SERS NPs and closely repli-
cate the clinical conditions of human surgery. A 5-month-old
female C57BL6 double transgenic mouse with breast cancer
was used for this experiment. First, the operative surgery area
(tumor area) was defined, followed by acquiring the Raman
signal as the background signal. The mouse was then intratu-
morally injected with the S420-HA solution with a concentra-
tion of 500 pM, a volume of 100 pL, and a depth of injection
of approximately 2-3 mm. 42 hours after the injection, the
mouse was euthanized by using a table-top research anesthesia
machine (V300PS, Parkland Scientific, USA) with 10 L/min of
oxygen flow and 1.5% of anesthetic agent vapor in oxygen dur-
ing the image-guided surgery imaging. The tumor skin was
then cut open, followed by rinsing the tumor area with PBS
four to five times and acquiring Raman spectra. After that,
the Raman image (weight of S420-HA) of the scanned area
was reconstructed and the tumor was also gradually resected
following the white boundaries, as shown in Fig. 6. It is im-
portant to note that the deeper the resection is performed,
the weaker the signal of SERS NPs is. This is due to the effec-
tive working distance of the Raman probe. Therefore, the depth
of information on the operative area is essential for providing
additional insights and guidance for more effective surgery, and
we also demonstrate the concept of the 3D SERS NPs imaging
in the next section.

D. 2D Tracking and 3D SERS Imaging

In addition to the image-guided surgery and ex vivo experi-
ments, we demonstrate our custom-made Raman system
and monocular depth estimation based on DL to visualize the
SERS NPs signal on the sample in 2D and 3D surfaces in the
physical world. To simplify the experiment, the S420-HA sol-
ution with a concentration of 500 pM was directly dropped on
the cut-open tumor of another breast tumor mouse with an
incubation time of 15 minutes, followed by rinsing with
PBS four to five times and acquiring Raman spectra. Before
applying this $420-HA solution, the background Raman signal
was also acquired as it is one of the input variables for the SERS
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Fig. 5. (a) Multiplexed Raman images of tissues topically stained with the mixture of SERS-HA (CD44 targeting) and SERS-PEG (control)
solutions. (al) Photographs of the mouse tumor tissue and spleen connective tissue (control), and (a2)—(a4) Raman images of individual channels
and ratiometric result. (b) H&E and IHC-CD44 images of the corresponding tissues. (c) Representative enlarged IHC images in (b) of the breast
tumor and normal tissues. Scale bars in (a), (b) and (c) are 5 mm and 50 pm, respectively.
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Fig. 6. SERS-image-guided surgery for resection of a mouse with a breast tumor. (a) Photographs of the tumor during the intraoperative SERS-
image-guided surgery from the first removal to the complete removal. (b) Corresponding SERS images (weight of S$420-HA) reconstructed by the
demultiplexing algorithm. The scale bar is 5 mm, and the white boundaries depict the resection regions.

image reconstruction. A color camera was used to record the
video of the scanning area and capture the photograph of the
sample to generate the 2D SERS mapping video and the 3D
SERS image. To generate the 2D SERS mapping video, the

template matching algorithm was applied to track the Raman
catheter position to estimate the scanning positions. After that,
the SERS signals (the weights of S420-HA) were then gener-

ated on these estimated scanning positions, as shown in
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(a) Start scanning
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Fig. 7. (a) 2D SERS image during Raman spectra acquisition (see Visualization 1): (al) before scanning, (a2) during scanning, and (a3) complete
scanning. (b) 3D image of the sample, SERS, and co-registered SERS reconstructed by using affine transformation and MiDaS V 3.1 DL model with
the BEIiT backbone architecture (see Visualization 2). The scale bars of (al) and (b1) are 10 mm and 8 mm, respectively.

Fig. 7(a) and Visualization 1. After completing the scanning,
the image co-registration algorithm was applied to co-register
the 2D SERS image with the sample photograph and the
MiDaS DL based on BEIT was utilized to generate the depth
map image. With these 2D co-registered SERS and depth map
images, the 3D co-registered SERS image was reconstructed
and projected as point clouds in the 3D space, as shown in
Fig. 7(b) and Visualization 2. Since Fig. 7(a) shows the
Raman catheter tracking with real-time 2D SERS image
reconstruction, a large field of view (FOV) was needed to ac-
quire the image for covering the catheter and scanning area
images. Nevertheless, the smaller FOV was employed to illus-
trate greater detail in the 3D SERS image shown in Fig. 7(b).
According to these promising results, the proposed method can
facilitate 2D and 3D SERS imaging through the utiliza-
tion of a Raman catheter system and a simple camera, which
can immeasurably improve the visualization and precision of
SERS NPs distribution, leading to more efficient clinical appli-
cations. Specifically, it is beneficial for image-guided surgery
by assisting surgeons to locate solid tumors and achieve more
precise resections. However, there is an obvious artifact pattern
in 3D SERS imaging. It is caused by the large excitation laser
(approximately 1 mm). This could be resolved by improving
the optic design of the Raman system to reduce the beam size
and adding a scanner to maintain the acquisition speed, which
could be our future work.

4. DISCUSSION AND CONCLUSIONS

Intraoperative imaging systems, in tandem with exogenous
contrast agents, play a crucial role in tumor resection by assist-
ing a surgeon to identify tumor areas with a high degree of

sensitivity and specificity. However, traditional imaging systems
commonly encounter poor tumor margin visualization, par-
ticularly the weak signal of a tumor at deeper layers. Without
depth information, these weak signals might be neglected, lead-
ing to ineffective tumor resection. Therefore, the whole tumor
might not be completely removed, causing tumor recurrence.
In recent years, SERS NPs imaging has been increasingly rec-
ognized as an encouraging molecular imaging technique due to
its remarkable sensitivity, multiplexing detection capability, and
photostability. In addition, it has demonstrated significant po-
tential in cancer detection and enhancing delineation of tumor
margin, as SERS NPs can be easily conjugated with various
biomarkers.

In this work, we propose an approach to visualize 2D and
3D SERS imaging. A step-wedge phantom and a tumor
phantom were used to evaluate the depth map estimation per-
formance of MiDa$S models with three different backbone ar-
chitectures: CNN, ViT, and BEiT. MiDaS based on BEiT can
outperform other models; thus, it was employed for the 3D
visualization of SERS NPs. HA-conjugated SERS NPs were
evaluated by ex vivo and image-guided surgery experiments us-
ing the traditional 2D SERS image reconstruction showing
promising results. Nevertheless, it lacks the depth information
for practical clinical applications, affecting surgery outcomes.
Therefore, the proposed approach combines the use of a
custom-made Raman spectrometer with computer-vision-
based positional tracking for 2D SERS imaging and monocular
depth estimation based on the MiDaS model for 3D SERS im-
aging. This combination can overcome the disadvantage of the
conventional Raman system, which only provides spectral in-
formation and is unsuitable for clinical applications. The 2D


https://doi.org/10.6084/m9.figshare.26380990
https://doi.org/10.6084/m9.figshare.26380993
https://doi.org/10.6084/m9.figshare.26380990
https://doi.org/10.6084/m9.figshare.26380993

Research Article ) ‘ - Vol. 13, No. 2 / February 2025 / Photonics Research 559
— %

and 3D image co-registration between the Raman images and
the sample photographs in the physical world enables better
performance and efficiency of tumor resection, potentially lead-
ing to its implementation in human clinical trials in the near
future. Essentially, the proposed method shows a proof-of-con-
cept study of image-guided surgery using 3D and 2D SERS
imaging. However, there are some limitations that need to
be improved in the future, particularly the resolution of
SERS imaging. The excitation laser beam diameter in the pro-
posed system is somewhat large (roughly 1 mm), causing the
artifact in 3D and 2D image reconstruction, which is unsuit-
able for small tumor resection. Therefore, the optics part should
be re-designed to obtain a smaller beam size for enhanced res-
olution. In addition, the depth map estimation using MiDa$
can be influenced by the resolution of an input image acquired
at an out-of-focus distance. Thus, auto-focus approaches, such
as resolution enhancement deep learning or a hardware-based
approach, should be considered to avoid this problem. The pro-
posed method may be more feasible for future clinical applica-
tions as a result of these improvements.
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