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1. Introduction

Magnetic particle imaging (MPI) is a highly
sensitive imaging modality initially
introduced in 2005.[1–3] Unlike traditional
imaging techniques such as magnetic res-
onance imaging (MRI), sonography, com-
puted tomography (CT), and X-ray, MPI
is not employed for structural imaging pur-
poses. Nevertheless, it is a tracer imaging
modality akin to positron emission tomog-
raphy (PET) and single-photon emission
computed tomography (SPECT). The con-
cept of MPI is to detect the 3D distribution
of superparamagnetic iron-oxide nanopar-
ticles (SPIONs) with extraordinary contrast
and sensitivity, allowing us to track and
quantify the tracer materials effectively.
Biocompatibility is one of the essential fea-
tures for using biomaterials, particularly
MPI tracers (iron oxide particles), for in
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Magnetic particle imaging (MPI) is an emerging noninvasive molecular imaging
modality with high sensitivity and specificity, exceptional linear quantitative
ability, and potential for successful applications in clinical settings. Computed
tomography (CT) is typically combined with the MPI image to obtain more
anatomical information. Herein, a deep learning-based approach for MPI-CT
image segmentation is presented. The dataset utilized in training the proposed
deep learning model is obtained from a transgenic mouse model of breast cancer
following administration of indocyanine green (ICG)-conjugated superpara-
magnetic iron oxide nanoworms (NWs-ICG) as the tracer. The NWs-ICG particles
progressively accumulate in tumors due to the enhanced permeability and
retention (EPR) effect. The proposed deep learning model exploits the advantages
of the multihead attention mechanism and the U-Net model to perform seg-
mentation on the MPI-CT images, showing superb results. In addition, the model
is characterized with a different number of attention heads to explore the optimal
number for our custom MPI-CT dataset.
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vivo applications and clinical trials. Nanoworms (NWs) are
biocompatible iron oxide particles widely used for biomedical
applications. NWs include a considerably lower inflammatory
response than spherical iron oxide nanoparticles (NPs),[4] and
they are a nanostructure with an elongated assembly of iron oxide
(IO).[5] This structure can potentially augment the NPs’ capability
for circulation and tumor targeting. Due to their nanoscale
dimensions, NWs can remain in tumors longer than pure
fluorescence contrast agents, also recognized as the enhanced
permeability and retention (EPR) effect.[6,7] In addition, MPI sig-
nal can only be detected from the administered tracer providing
an image without background as well as improving signal-to-
noise ratios. Indeed, the development of MPI involved strength-
ening the existing imaging modalities (MRI, PET, SPECT, etc.).
For instance, PET and SPECT tracers typically have half-lives in a
range of minutes to hours, whereas the MPI tracer can last for
several days to weeks.[8] Therefore, MPI is more eminently suit-
able for dynamic imaging applications than traditional tracer
imaging methods. Numerous prototypes and commercial MPI
scanners have demonstrated impressive results in in vivo studies
for vascular imaging,[9–11] oncology,[12–14] and cell tracking.[15,16]

The MPI system for humans is under development and may
become available in the near future.[17] Like PET, an MPI image
is frequently combined with a CT image for registering the par-
ticle signal (the MPI image) and the anatomical information (the
CT image). This will enhance the diagnostic potential by identi-
fying the precise location of functional events in the body.[18]

UsingMPI-CT images for data analysis, rather than solely relying
on MPI, is worthwhile, particularly for in vivo data analysis.
Initially, users may accurately and expeditiously determine the
location of the MPI signal. Occasionally, the MPI signal of a
tumor located close to organs showing a substantially strong sig-
nal (such as the liver, kidney, and spleen) could be significantly
attenuated. As a result, the users may need to pay more attention
to this valuable information. Utilizing CT information together
with MPI could enhance the accuracy andmeticulousness of data
analysis.

As the MPI system is costly and a newly emerging system, the
availability of MPI data is limited. Nevertheless, some research
groups have employed artificial intelligence or deep learning
techniques for MPI applications. Image reconstruction and
enhancement datasets do not require ground truth labeling
(unsupervised learning), which can directly transform one
domain (input) to another domain (ground truth). In addition,
the MPI data simulation is undemanding; therefore, the
simulated large datasets were utilized in the MPI image recon-
struction and resolution enhancement.[19–21] By contrast, the
supervised learning problem of MPI image segmentation is chal-
lenging to prepare the datasets due to the need for ground truth
labeling. Consequently, the MPI image segmentation dataset is
restricted, and applying deep learning (typically requires a large
dataset) is demanding for this problem. Thus far, only a machine
learning technique has been utilized for the MPI image segmen-
tation[22] with limited performance.

Recently, image processing based on deep learning has
become a promising approach for medical applications due to
the rapid development of computation technologies for
image classification,[23–25] regression,[26–28] reconstruction,[29–31]

and segmentation.[32–36] Deep learning models contain a large

number of function approximators. As a result, the models
without further modifications tend to neglect essential parts of
the input and focus on others. The use of the attention
mechanism[37] is one of the practical approaches to remedy this
problem. The attention mechanism is an ingenious and powerful
technique, allowing neural networks to focus on meaningful
parts of an input tensor. This mechanism is the key innovation
behind numerous successful deep learning architectures,
such as TransUnet,[38] BRET,[39] and Swin transformer.[40]

Multiplicative attention (Luong attention)[41] and additive atten-
tion (Bahanau attention)[42] are two initial instances of attention
sparking the revolution. Since multiplicative attention imple-
ments matrix multiplication for calculating the output, it is more
memory efficient in practice and faster than additive attention.
However, additive attention can be superior to multiplicative
attention for large dimensional input features.[43] The U-Net
architecture[44] is a widely recognized convolutional neural net-
work (CNN) that has achieved prominence in the field of medical
image segmentation due to its simplicity and remarkable
performance. The original U-Net architecture contains two main
components: an encoder and a decoder. The skip-connection
(SC) mechanism is added to the same dimensional encoder
and decoder. Essentially, it combines spatial information from
the downsampling path (encoder) with the upsampling path
(decoder) to retain marvelous spatial information. In addition,
the SC mechanism allows the gradient to readily propagate back
to update the weights (learnable parameters). However, the SC
mechanism brings along the poor feature representation from
the encoder path. The attention U-Net architecture[45,46] can
tackle this problem by implementing the attention mechanism
at the SC, allowing the model to actively suppress actions at irrel-
evant features. This reduces the computational resources wasted
on irrelevant activations and provides superior network generali-
zation. The attention mechanism applied in the attention U-Net
is called the attention gates (AGs)[45,46] based on additive atten-
tion. The CNN model with AGs can be easily trained from
scratch and boost the model’s performance by automatically
learning to focus on some crucial features without additional
supervision. Available MPI data are remarkably limited for a
computational study of robust MPI image quantification.
Herein, we propose a multihead attention U-Net model for
MPI-CT image segmentation. The MPI-CT images acquired
from mice with breast tumors were manually labeled as the
ground truths for training the model. The attention U-Net
model[45,46] inspires the proposed model. Still, we apply the
attention mechanism in parallel (multihead attention) to step
up the model capability for focusing on noteworthy features.

2. Experimental Section

An extensive overview of the workflow involved in training the
proposed multihead attention U-Net model is shown in
Figure 1. First, NWs were synthesized by the coprecipitation
method of Fe2þ and Fe3þ salts with the polysaccharide dextran
coating, as depicted in Figure 1a1, the particles were then con-
jugated with indocyanine green (ICG), resulting in the formation
of conjugated superparamagnetic iron oxide nanoworms
referred to as NWs-ICG.[47]
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In addition, we also acquired a transmission electron micros-
copy transmission (TEM) image of NWs-ICG particles as shown
in Figure 1a2. With this structure, the detection of NWs-ICG can
be achieved by fluorescence imaging and optoacoustic imaging,
in addition to the use of MPI as shown in Figure 1a3. Thus, this
offers captivating prospects for a multimodal imaging study.

It is essential to clarify that the greater the concentration of
nanoparticles (NPs), the higher the intensity of MPI will be.
This isdifferent from fluorescence imaging, particularly the
ICG fluorescence dye. Fluorescence intensity is not related to
an ICG concentration in a linear manner. It could increase in
a low concentration range of the ICG.[48] In addition, for an in
vivo experiment, fluorescence imaging is prone to photobleach-
ing, which is challenging for prolonged imaging. Therefore, in
this work, we only focus on MPI as the main modality, which can
easily be further quantitatively analyzed by the concentration of
NWs-ICG. Apart from the potential capability to accumulate in
the tumor of NWs-ICG, the main benefit of conjugating NWs
with ICG is to confirm that the signal we obtain from the
MPI is genuinely from NWs-ICG as multimodality can be used
to acquire the data of the same sample.

In this work, a mouse with breast tumors was injected with
NWs-ICG through the intravenous administration injection

method, followed by MPI-CT image acquisition. Figure 1b1
shows the MPI and micro-CT systems used in this work. The
fundamental concept of MPI is illustrated in Figure 1b2. In
short, an intense magnetic field is generated by two permanent
magnets, and the inside of this magnetic field contains a small
area with low magnetic field intensity known as the field-free
region (FFR). By rapidly moving the FFR across the imaging vol-
ume, the magnetization of SPIONs passing through the FFR
induces a signal (oscillating changes in magnetization) in the
imager’s receive coil. In other words, SPIONs not passing
through the FFR donot generate a signal in the receiver coil
due to a strong magnetic field outside the FFR inhibiting
SPIONs from rotating. Lastly, the MPI-CT images were manually
labeled as the ground truths for training the deep learning model
as shown in Figure 1c.

2.1. Dataset Preparation

To acquire a customMPI-CT image dataset, MMTV-PyMT trans-
genic mice with breast cancer were intravenously injected with
NWs-ICG at the concentration and volume of 2mgmL�1 and
400 μL, respectively. All procedures performed on animals were

Figure 1. Overview of MPI-CT image segmentation using the custom dataset. a) An injected NWs-ICG breast tumor mouse: a1) the chemical structure of
NWs-ICG; a2) TEM image of NWs-ICG particles with a scale bar of 40 nm; a3) the multimodality imaging (fluorescence, optoacoustic, and MPI) of the
tumor dissected from the NWs-ICG-injected mouse. b) MPI-CT image acquisition: b1) the MPI scanner and the micro-CT imaging system; b2) illustration
of the MPI principle. c) Ground truth labeling in MPI-CT image segmentation.
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approved by the Institutional Animal Care & Use Committee
(IACUC) of Michigan State University (Protocol #:
2021000095). The Momentum MPI scanner (Magnetic
Insight, Inc., Alameda, CA, USA) was employed to acquire
the 3D MPI images of the NWs-ICG-injected mice. The scanner
was configured with the following parameters: 3D scan mode, Z
FOV 10.0 cm, number of projections 21, and selection field
gradient 5.7 Tm�1. The micro-CT system (PerkinElmer, Inc.,
Hopkinton, MA, USA) with a speed scan mode and voltage of
90 kV was then used to acquire the corresponding CT images.
Finally, 3D MPI-CT images were reconstructed using
VivoQuant software (Magnetic Insight, Inc., Alameda, CA,
USA). The imaging was performed at four different time points:
1, 24, 48, and 72 h after injection. Therefore, with one mouse, we
can obtain 3D datasets at these four different time points.
However, we only focus on 2D images in this work. To obtain
the 2D image dataset, the 3D images were rotated with random
angles for capturing the 2D images, and we had to ensure that
the perspectives or rotation angles were not the same (0 or
180 degrees from the existing images) for the data cleaning pur-
pose. Figure 2a shows the MPI-CT images of the NWs-ICG-
injected mouse 1–72 h postinjection. MPI signal areas from
MPI-CT images were manually labeled as the ground truths
for training the segmentation deep learning model. There were
104 2D MPI-CT images and their corresponding ground truths
from four different mice used for this study (91 images for a
training dataset, 4 images for a validation dataset, and 9 images
for a testing dataset). To affirm that there were NWs-ICG par-
ticles in the tumor tissues, after acquiring MPI-CT images,
the tissues were dissected from the mice and preserved in a solu-
tion of 10% neutral buffered formalin (NBF). These NBF-fixed
tissues were embedded in paraffin, followed by sectioning with

a thickness of 5 μm and staining with Prussian blue to detect fer-
ric from iron and hematoxylin and eosin (H&E). All histological
procedures were carried out by the Michigan State University
investigative histopathology laboratory. Figure 2c,d shows the
Prussian blue stained histology image of one of the dissected
tumors from the NWs-ICG-injected mouse acquired by a com-
mercially available microscope (Nikon Eclipse Ci, Nikon Inc,
Tokyo, Japan).

2.2. Multihead Attention U-Net

The U-Net architecture was originally designed for semantic
segmentation tasks with a “U-shaped” encoder–decoder network
associated with the use of a concatenating feature map from
encoder to decoder. Attention is a mechanism that helps a neural
network to highlight meaningful and relevant features. In other
words, it helps the neural network to enhance a generalization
capability by weighting different areas of the input image.
Using the attention mechanism, high-relevant areas will be mul-
tiplied with large weights, whereas low-relevant areas will be
multiplied with small weights. These weights are learnable
parameters that are updated during the training process.
U-Net employs SC to avoid imprecisely generating spatial infor-
mation during upsampling. However, this includes numerous
redundant low-level features (poor feature representation).
This problem can be remedied by adding the attention mecha-
nism, so-called AGs, at the SCs, as shown in Figure 3a to sup-
press activation in irrelevant areas; thus, it can reduce the
number of redundant features brought across. The proposed
model replaced a single AG in the original attention U-Net with
parallel AGs in each SC. This modification allows the model to
collect and incorporate more salient information effectively. In
addition, employing parallel AGs enables the model to simulta-
neously process input from distinct representation subspaces at
numerous locations.[49]

The first part of the proposed model is the encoder (the left
side of Figure 3a). The input image is progressively filtered
and downsampled by applying a convolution block, then a recti-
fied linear unit (ReLU), and max-pooling 2� 2 filters with a
stride of 2. Furthermore, the number of feature channels is dou-
bled at each downsampling step. The second part is multihead
attention gates (MH-AGs). The features propagated through the
SCs are filtered by exploiting these MH-AGs, which can help the
model localize and focus on relevant features without cropping
regions of interest. The third part is the decoder (the right side of
Figure 3a). It consists of a concatenation of the attention weights
from the MH-AG layer, a convolution block with the ReLU acti-
vation function, and a feature map upsampling followed by a
2� 2 upconvolution resulting in a reduction of the number of
feature channels by half. Figure 3b shows the MH-AG architec-
ture employed between the encoder and decoder of the U-Net in
Figure 3a. MH-AG is a parallel mechanism block that minimized
the need for training a significant number of weights (learnable
parameters) to enhance the performance of the U-Net model.
Moreover, the MH-AG adopts the same transformation in all
branches to minimize the need to adjust hyperparameters in
each branch manually. The output of each branch in MH-AG
is obtained by performing elementwise multiplication between

Figure 2. a) MPI-CT images of the NWs-ICG-injected mouse acquired
from 1 to 72 h postinjection. The yellow-dashed circles (MPI-CT image
at 72 h) show the MPI signal of NWs-ICG from the tumors.
b) Photograph of the NWs-ICG-injected mouse. c,d) Prussian blue-stained
histological image of the breast tumor dissected from the NWs-ICG-
injected mouse acquired by 10� and 40� magnifications, respectively.
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the input feature maps and attention coefficients (x̂ln ¼ xli⋅α
l
i),

allowing the model to identify salient information. A gating vec-
tor gi vector is taken from the next lowest layer of the network
(better feature presentation) that encompasses contextual
information, which can be used to suppress lower-level feature
response electively.

To identify focus areas, gi is assigned to each pixel by perform-
ing summed elementwise with xli. As a result, aligned weights
become larger, whereas unaligned weights become smaller.

The gating coefficient is derived through the utilization of
additive attention mathematically represented as follows

qlatt ¼ ψT σ1 WT
xxli þWT

ggi þ bg
� �þ bψ

� �
(1)

σli ¼ σ2 qlatt xli, gi;Θatt
� �� �

(2)

where σ2 xið Þ = 1
1þexp �xið Þ represents the sigmoid activation func-

tion and Θatt represents a group of parameters that

Figure 3. Schematic of the multihead attention U-Net (the proposed model) for MPI-CT image segmentation. a) The left side of the schematic represents
the encoder blocks; the tensor is progressively downsampled by a factor of 2 (e.g.,H1=H5/16); the right side represents the decoder blocks; the tensor is
gradually upsampled by a factor of 2. The MH-AGs are applied between the encoder and decoder to assign weights (learnable parameters) to noteworthy
features. b) MH-AG architecture (n is the number of attention heads). Input features ðx lnÞ are scaled with attention coefficients (αln) computed in each
branch of MH-AG. The gating signal (g) collected from a coarser scale provides activations and contextual information, which is applied to determine
spatial regions. The output of each branch is then concatenated before feeding to the convolutional layer, batch normalization, and sigmoid function to
compute the final result of MH-AG.
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comprises linear transformation wx ∈ RFl�Fint , g ∈ RFg�Fint ,
ψ ∈ RFl�Fint , and bias terms bψ ∈ R, and bg ∈ RFg�Fint . Channel-
wise 1� 1� 1 convolution for the input tensor is employed for
computing the linear transformations.

2.3. Loss Function

Dice loss is widely used for medical image segmentation by com-
paring the similarity of two binary images (ground truth segmen-
tation and predicted segmentation). Since our custom MPI-CT
image dataset was limited and we wanted to prove the concept
that multihead attention can potentially enhance the model
performance for MPI-CT image segmentation, the dice loss
was simply used to train all models for a performance compari-
son purpose. Equation (3) shows the dice loss function

Dice loss y, yð Þ ¼ 1� 2yy þ 1ð Þ
y þ y þ 1ð Þ (3)

where y represents the ground truth and y represents the
predicted segmentation generated by a deep learning model.
After assembling all the parts for building the models, the
MPI-CT images and their corresponding segmentation masks
were then utilized to train the models as inputs and ground
truths, respectively with the following hyperparameters: an
Adam optimizer[50] with a learningrate of 5� 10�4, a batch size
of 8, and 60 epochs. All the models in this study were trained on a
personal computer equipped with an 11th Gen Intel core
i7-11700k CPU, 64 GB of RAM, and an NVIDIA RTX 3090
graphic card.

3. Experimental Results

3.1. Gradient-Weighted Class Activation Maps

Gradient-weighted class activation mapping (Grad-CAM)[51] is a
class-discriminative localization technique. It can generate a
visual representation of a CNN-based model without altering
the model itself. Grad-CAM leverages the gradient information
flowing through a specific convolutional layer to assign crucial
weights to each neuron to determine a particular decision of
interest. This gradient information is then used to calculate
the localization map visualized as a heat map image. In short,
the intuitive interpretation of Grad-CAM is based on the concept
that the model must observe some pixels and decide what object
is present in the image, which can be interpreted as a gradient in
mathematical terms. To compute Grad-CAM, the equations
below are applied. Equation (4) is used to calculate the neuron’s
important weight (αck) by calculating the global average pooling of
the gradient from backpropagation. αck is then employed to cal-
culate the localization map Grad-CAM as shown in Equation (5)

αck ¼ 1
Z

X
i

X
j

∂yc

∂Ak
ij

 !
(4)

LcGrad�CAM ¼ ReLU
X
k

αckA
k

 !
(5)

where ∂yc

∂Ak
ij
is the gradient from backpropagation, Ak is the feature

map activation of a convolutional layer, i and j represent the
width and height dimensions of the input tensor, Z is the total
number of elements (i� j), αck is the neuron import weight, and
LcGrad�CAM is the localization map Grad-CAM (coarse heat map).

Grad-CAM is applied to each multihead attention layer (MH-
AG layer 1–4) output in order to characterize and understand the
multihead attention U-Net model behavior. The attention
weights of different MH-AG layers (the SC outputs) are visual-
ized as shown in Figure 4. Figure 4a shows the input image,
ground truth, and the segmentation results of 6-head, 4-head,
and 2-head attention U-Net models, as well as the result of
the original U-Net model (without an attention head).
Figure 4b shows the Grad-CAM results of the corresponding
attention U-Net models and the original U-Net model.

According to these Grad-CAM results and final segmentation
outputs, the 4-head attention U-Net model can exceptionally
perform MPI-CT image segmentation and surpass 6-head and
2-head attention U-Net models since it can focus on more
meaningful features and predict a more accurate result. It is
interesting to note that each SC layer output of the 4-head

Figure 4. A comparison of Grad-CAMs results of the 2-head attention,
4-head attention, 6-head attention, and original U-Net models. a) Input
MPI-CT image, segmentation ground truth, and outputs of each architec-
ture. b) The Grad-CAM results of the SC outputs at different layers; SC
outputs of multihead attention architectures are obtained by using
MH-AG, whereas SC outputs of traditional U-Net are directly from the
encoder blocks without applying MH-AG.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2024, 6, 2400007 2400007 (6 of 10) © 2024 The Author(s). Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 2024, 10, D
ow

nloaded from
 https://advanced.onlinelibrary.w

iley.com
/doi/10.1002/aisy.202400007, W

iley O
nline Library on [30/04/2025]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

http://www.advancedsciencenews.com
http://www.advintellsyst.com


attention U-Net model pays attention to different meaningful fea-
tures, the SC layer 4 pays attention to the overall boundary of the
MPI signal, the SC layer 3 focuses on the increasingly precise
boundary of the MPI signal, the SC layer 2 changes the focus
from the boundary of the MPI signal to the skeleton (bone struc-
ture, i.e., CT image), and the SC layer 1 entirely focuses on the
real target MPI signal. With these different meaningful features,
the learnable parameters of the model can be assigned to pay
attention to the relevant features and circumvent irrelevant fea-
tures for the final prediction. However, the 2-head and 6-head
attention U-Net models behave in different ways. The SC layers
4 and 3 of the 2-head attention U-Net focus on somewhat the
same features (the boundary of MPI signal areas) and the SC
layers 2 and 1 poorly focus on essential features. Although the
SC layers 1, 2, and 3 of the 6-head attention U-Net can perform
better than the 2-head attention model, the SC layer 4 pays atten-
tion to partially relevant features. Indeed, the optimal number of
attention heads depends on the tasks we desire to train the deep
learning model and the data features. If there are a larger num-
ber of important features, the higher number of attention heads
could potentially help the model perform better by capturing
more essential information. Nevertheless, the excessive number
of attention heads could lead to less impressive performance,
according to the Grad-CAM results illustrated in Figure 4 and
our quantitative experiment discussed in the next section.
Furthermore, we also compare Grad-CAM of the original
U-Net (without MH-AGs) to the proposed models. At deeper
layers (SC 3-4), the U-Net model cannot focus on relevant fea-
tures. This clearly demonstrates that integrating MH-AGs with
U-Net provides more generalization and assists the model to cap-
ture the important features to enhance the model’s performance.

3.2. Implementation and Evaluation Metrics

Intersection over Union (IoU) is commonly used to evaluate the
similarity between a predicted segmentation area and its ground
truth.[33] The concept of IoU is to quantify the common area of
the ground truth and prediction mask (intersection) divided by
the entire number of pixels present across both the prediction
mask and ground truth (union) as shown in the following
equation

IoU ¼ ground truth ∩ prediction
ground truth∪ prediction

(6)

The IoU ranges from 0 to 1 (0 to 100%), with 0 indicating no
overlapping area, whereas 1 indicates impeccably overlapping
area.

The dice similarity coefficient (DSC) is another well-known
parameter used to evaluate the similarity between the predicted
area (our output) and ground truth.[32] The DSC can be calculated
following the equation

DSC¼ 2jground truth ∩ predictionj
jground truthj þ jpredictionj (7)

Precision is defined as the ratio of true-positive results to the
total number of positive results, which is the summation of true
positive and false positive as shown in Equation (8)

Precision ¼ TP
TPþ FP

(8)

Sensitivity, also known as recall, is the number of true-positive
results over the summation of true-positive and false-negative
results as shown in Equation (9)

Recall ¼ TP
TPþ FN

(9)

Accuracy, also known as the Rand index, is the number of
correct predictions divided by the total number of predictions
as shown in Equation (10)

Accuracy ¼ TPþ TN
TPþ TNþ FNþ FP

(10)

where TP is true positive, TN is true negative, FP is false positive,
and FN is false negative.

As previously stated, if the number of attention heads is exces-
sive, the performance of a deep learning model based on the
attention heads could deteriorate. Thus, we characterized
the number of attention heads and employed Dice and IoU as
the representative benchmarks. Figure 5 illustrates the character-
ization results of the U-Net based on the different number of
attention heads. With regard to the plot of Dice/IoU scores vs
the number of attention heads, it begins at 0.889/0.804 with
the 1-head attention architecture, and it gradually increases
and then reaches the highest score at 0.909/0.835 with the 4-head
attention architecture before declining progressively to 0.906/
0.829 and 0.901/0.822 with 5 and 6 attention heads, respectively.
Therefore, the multihead attention U-Net with 4 heads is the
optimal model providing the best result for the MPI-CT image
segmentation.

Table 1 shows the comprehensive characterization results of
MPI-CT image segmentation of deep learning models with dif-
ferent architectures. Apart from using Dice and IoU scores as
model evaluation metrics, we also characterized the performance
of each model using accuracy, precision, and recall. Overall, the
4-head attention U-Net model can outperform other multihead
attention U-Net models including the original U-Net model as

Figure 5. The performance of the multihead attention U-Net models with
the different number of attention heads (Dice/IoU scores vs the number of
attention heads plot).
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well as other state-of-the-art models: Transformer U-Net,
Recurrent U-Net, and Double U-Net. The representative visuali-
zation MPI-CT image segmentation results, together with the
corresponding input images and ground truths, are illustrated
in Figure 6. All the evaluation results were obtained by using
the testing dataset, which is not used for training the models.

4. Discussion

CNNs and vision transformer (ViT) are two different architec-
tures commonly used for computer vision tasks. ViT can perform
better than CNNs when global dependencies and contextual
information are crucial. Furthermore, it is important to note that
ViT-based models rely upon the information from the inputs and
the previous hidden stage to generate the current hidden stage
allowing the network to capture dependencies in long sequential
data (embedded image patches). To effectively learn these long
sequential data, ViT needs to be trained on a large dataset to out-
perform CNN-based models. Nevertheless, CNNs can surpass
ViT in tasks involving spatial hierarchies, local pattern extraction,
and limited training datasets. In this study, we compare the

proposed method with five other state-of-the-art models: original
U-Net, Transformer U-Net, original attention U-Net (1 attention
head), Recurrent U-Net, and Double U-Net. The Transformer
U-Net model leverages both ViT and CNNs to enhance the mod-
el’s capability in terms of local and global pattern extraction.
Although it is an exceptional hybrid neural network for image
segmentation problems, it is fairly complicated and requires a
somewhat large dataset. In general, the majority of CNN-based
models are comparable with Transformer U-Net. Overall, the
proposed model outperforms both CNN- and transformer-based
models. Indeed, the proposed method extends the number of
attention heads, which can be easily integrated with a wide range
of existing models to boost the models’ performance. This aspect
could be potentially investigated in future work. With the multi-
head attention mechanism, the model has a better ability to
gather diverse representations of features, resulting in a more
comprehensive recognition of the features. The optimal number
of attention heads for each task is different. In fact, it depends on
the context of the image. For instance, segmentation or classifi-
cation problems for a small object are favorable for applying the
small number of attention heads, whereas if the object is large,
the larger number of attention heads is eminently suitable. When

Table 1. Quantitative evaluation (average � standard deviation of each metric) of the different deep learning architectures for MPI-CT image
segmentation.

Methods Accuracy Precision Recall Dice IoU

U-Net[44] 0.983� 0.004 0.891� 0.074 0.879� 0.076 0.883� 0.059 0.794� 0.089

Attention U-Net[46] 0.984� 0.005 0.892� 0.068 0.891� 0.069 0.889� 0.052 0.804� 0.083

Transformer U-Net[52] 0.985� 0.005 0.909� 0.057 0.878� 0.069 0.892� 0.053 0.809� 0.083

Recurrent U-Net[53] 0.986� 0.005 0.918� 0.063 0.904� 0.062 0.909� 0.069 0.835� 0.054

Double U-Net[54] 0.985� 0.005 0.892� 0.053 0.9103� 0.057 0.898� 0.036 0.818� 0.060

2-head attention U-Net 0.985� 0.004 0.888� 0.063 0.911� 0.057 0.897� 0.041 0.816� 0.052

3-head attention U-Net 0.987� 0.005 0.926� 0.038 0.890� 0.065 0.906� 0.039 0.830� 0.063

4-head attention U-Net 0.987� 0.005 0.920� 0.040 0.902� 0.058 0.909� 0.036 0.835� 0.060

5-head attention U-Net 0.986� 0.004 0.913� 0.049 0.903� 0.060 0.906� 0.030 0.830� 0.050

6-head attention U-Net 0.985� 0.005 0.894� 0.074 0.912� 0.053 0.901� 0.043 0.822� 0.070

Figure 6. Visualization semantic segmentation results of the proposed model compared to other state-of-the-art U-Net models. From left to right, input
MPI-CT images, the ground truth images, the segmentation results generated by U-Net, Trans-U-Net, Recurrent U-Net, Double U-Net, original attention
U-Net, and our proposed model (4-head attention, which is the optimal number of attention heads for our MPI-CT dataset), respectively.
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the number of heads is either excessively large or small, it will
impede the model’s capability to generalize the data, resulting in
a decrease in model performance. In other words, the number of
attention heads can be considered as the hyperparameter.
Therefore, obtaining the desirable number of attention heads
requires trial and error for each task; the MPI-CT image segmen-
tation has to do likewise. The restricted dataset due to imple-
menting a novel and costly MPI system posed challenges in
fine tuning all the hyperparameters to achieve an immensely
robust model and the overfitting problem. To alleviate these
problems, the early stop schedule (stop training if there is no
improvement in the validation loss) was applied in training
the models. In the future, we anticipate generating a larger data-
set by collecting all data from various experiments, as well as
applying deep learning techniques to generate data for data
augmentation. By utilizing the extensive dataset, the model will
exhibit substantially greater robustness and achieve superior
performance.

5. Conclusion

This work demonstrates the multihead attention U-Net model,
an efficient end-to-end deep learning based on U-Net architec-
ture andmultihead attention mechanism, for MPI-CT image seg-
mentation. The proposed model was trained using a custom
MPI-CT image dataset collected from transgenic mice with
breast tumors injected with a promising MPI tracer for tumor
imaging, namely NWs-ICG. To examine the concept of multi-
head attention, a simple convolution block is employed as the
backbone structure of the U-Net architecture to minimize
the influence of other factors. Genuinely, the performance of
the U-Net architecture can also be improved by using more effi-
cient convolution blocks as the backbone. The optimal number of
attention heads was experimentally observed in this study.
Although an increase in the number of attention heads can
potentially boost the model’s capability, the excessive number
of attention heads results in a decline in capability. Our study
shows that the attention U-Net with 4 heads is the most favorable
architecture for MPI-CT image segmentation.
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