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Estimating the parameters of compact binaries which coalesce and produce gravitational waves
is a challenging Bayesian inverse problem. Gravitational-wave parameter estimation lies within
the class of multifidelity problems, where a variety of models with differing assumptions, levels of
fidelity, and computational cost are available for use in inference. In an effort to accelerate the
solution of a Bayesian inverse problem, cheaper surrogates for the best models may be used to
reduce the cost of likelihood evaluations when sampling the posterior. Importance sampling can
then be used to reweight these samples to represent the true target posterior, incurring a reduction
in the effective sample size. In cases when the problem is high dimensional, or when the surrogate
model produces a poor approximation of the true posterior, this reduction in effective samples
can be dramatic and render multifidelity importance sampling ineffective. We propose a novel
method of tempered multifidelity importance sampling in order to remedy this issue. With this
method the biasing distribution produced by the low-fidelity model is tempered, changing the chi-
squared divergence between the two distributions and thereby affecting the efficiency of importance
sampling. There is an optimal temperature which maximizes the efficiency in this setting, and we
propose a low-cost strategy for approximating this optimal temperature using samples from the
untempered distribution. In this paper, we motivate this method by applying it to Gaussian target
and biasing distributions. Finally, we apply it to a series of problems in gravitational wave parameter
estimation and demonstrate improved efficiencies when applying the method to real gravitational

wave detections.

I. INTRODUCTION

The direct detection of gravitational waves (GWs) [1-
28] provides an unprecedented viewpoint on the most
compact objects in the Universe. Observations by the
Advanced LIGO [29], Advanced Virgo [30], and KA-
GRA [31] detectors reveal the properties of the black
holes and neutron stars which emit GWs as they inspiral
and coalesce. Following detection of a GW event, the
next step in applying GW data to a host of problems in
fundamental physics and astrophysics is to measure the
properties of the binary system that produced the signal
from the noisy data. The standard method for solving
this inverse problem is through Bayesian inference, see
e.g. [32-35].

In GW data analysis, parameter estimation presents a
number of challenges. The parameters of the binary sys-
tem such as the masses and spins of components and their
location in the sky are highly correlated, and must be
inferred with a high degree of accuracy for precision ap-
plications. Further, the GW models needed for inference
can be computationally expensive [36]. Full numerical
simulations of the binary evolution provide the highest fi-
delity predictions, but are intractably expensive for use in
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most algorithms. Large catalogs of simulations have been
used together with likelihood interpolation and marginal-
ization to infer the properties of GW sources, see e.g. [37].
More commonly, numerical simulations are used together
with analytical approximates to build a wide hierarchy of
surrogate models, with different underlying approxima-
tions, fidelity, and speed. They include phenomenologi-
cal models [38-45], Effective One Body models [46-53],
and surrogate models built directly on numerical simula-
tions [36, 54-58] Cutting-edge models require fractions to
tens of seconds to evaluate, see e.g. [42, 53] despite atten-
tion paid to computational efficiency. See also Ref. [59]
for a recent overview of GW models as well as methods
for accelerating their evaluation. The challenges of GW
parameter estimation are compounded by the need of a
large number of model evaluations due to the relatively
low efficiency of sampling methods [33]. As the rate of
GW detections rapidly increases with increasing detector
sensitivity, it is important to explore methods of acceler-
ating GW inference.

In this work we tackle the problem of accelerating GW
inference from the standpoint of multifidelity methods.
The goal of using a multifidelity framework is to exploit
the computational speed of low-fidelity models while re-
taining the accuracy of a high-fidelity model, in order to
achieve fast, accurate solutions to many-query problems
such as Bayesian inference [60]. GW models provide a
variety of options for multifidelty approaches, since there
are nested models in the sense that one model may be
the limit of another in the case where some physical ef-
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fect is neglected. In this work we focus on the inclu-
sion of higher modes (higher than quadrupolar radiative
multipole moments) giving rise to our multifidelity hier-
archy. Accounting for these higher modes of emission
can break degeneracies and improve the measurement
of several parameters, especially the ratio of the masses
and the inclination of the orbital plane to the line of
sight [10, 11, 61-64]. Meanwhile, the evaluation of the
higher mode contributions increases the computational
cost of the forward model roughly in proportion to the
number of modes used. The expected differences between
inferences with and without higher modes and their dif-
ference in computational expense make them a promising
target for tempered importance sampling.

Specifically, we use the IMRPhenomXPHM [42] family
of waveform models for both the low and high fidelity
signal model. We treat the model as high fidelity when
all of the available higher order modes are turned on,
whereas for low fidelity runs, only the leading order mode
is active.

One strategy to benefit from a multifidelity paradigm is
through multifidelity importance sampling (MFIS) [65],
in which one samples from a low-fidelity posterior and
reweights the samples using high-fidelity evaluations to
obtain representative samples of the high-fidelity poste-
rior, which can be used to compute Monte Carlo inte-
grals. Importance sampling has been explored GW in-
ference [66], and has been applied successfully as one
method to marginalize over detector calibration uncer-
tainties [15, 16, 67], to search for signatures of binary
eccentricity [35], and to improve the quality of samples
from machine-learning based inference [68]. However,
these applications are often limited in practice by the
efficiency of importance sampling. If the two posteriors
are too different from each other, the low efficiency of im-
portance sampling means you need a huge number of low-
fidelity samples to obtain desired accuracies [69]. More
precisely, the effective sample size Nog scales inversely
with x2(p||g), the chi-squared divergence between the
target and biasing probability distributions p and ¢ [70].

In this work we propose a method, tempered multi-
fidelity importance sampling, to improve the efficiency
of importance sampling and broaden its domain of ap-
plication. A typical problem faced when deploying im-
portance sampling is that the chi-squared divergence is
very sensitive to the support of the two distributions in
the tails. If the support of the biasing distribution does
not cover the target well enough in the tails, x2(p||q)
will be large and the effective sample size will thus be
small. By tempering the biasing distribution, i.e. raising
the density function to some power smaller than one, the
coverage expands and thus the overlap in the tails might
improve as a result. The change in overall coverage may
be modest, but even a small change in the tails can lead
to dramatic improvements in the efficiency.

We note that an arbitrary temperature is not expected
to improve the efficiency, since over-broadening the bias-
ing distribution can have a negative effect. Further, the

relationship between coverage and improved efficiency is
complicated. We emphasize that while the notion of im-
proving the coverage of the target distribution is a mo-
tivation for our exploration of tempering in the MFIS
setting, ultimately our metric of success is the improve-
ment of the efficiency. In the end, applying tempering
adds an additional degree of freedom, the temperature
T, which can be tuned to increase Neg. In this work we
develop a principled procedure for selecting a good tem-
perature, and we find that in several of our experiments
this temperature results in appreciable improvements to
the efficiency.

Although we motivate the idea of tempered multifi-
delity importance sampling with the challenge of GW
parameter estimation, our results have broad applicabil-
ity. MFIS can be useful in any problem for which many
model evaluations are required and a hierarchy of vary-
ing fidelities exists. These are referred to as outer-loop
applications and include optimization, uncertainty prop-
agation, data assimilation, control, and sensitivity anal-
ysis [60].

In the following sections, we present theoretical results
demonstrating the impact of tempering on importance
sampling efficiency and by extension on the Monte Carlo
error in estimators using tempered samples. We argue
that for arbitrary Gaussian probability densities p and
q, there exists a unique temperature which minimizes
x2(pl|q), and we provide a closed form expression for this
optimal temperature. We derive a practical approxima-
tion for the optimal temperature for arbitrary distribu-
tions p and ¢, under modest assumptions, and we validate
this approximation in the Gaussian setting where it can
be compared to the true solution. Finally, we apply our
tempered multifidelity importance sampling algorithm to
the Bayesian inference of both simulated GW observa-
tions and real GW observations. We discuss the unique
challenges of this problem and propose some directions
for future work.

II. METHODOLOGY
A. Bayesian Inference

In the context of an inverse problem, we start by con-
sidering the problem of finding some parameters of inter-
est 0, given some noisy measurements of an observable
quantity related to those parameters through a forward
model h(6). Here h is a vector of model predictions, i.e. a
time series of observed strain values for the GW case. We
assume that our observed data vector d is related to 6
through

d=h(0) +n (1)

where n is a noise term which we assume to be additive
in this manner.

In many settings, including standard GW analysis, it
is reasonable to assume the noise is stationary and Gaus-



sian, with zero mean and a known covariance X,. In
this case, n ~ N (0,%,) and has a probability density p,
given by

pol) = —L—exp (—ga"Ehn) . @

VI2rE,|
Substituting n = d — h(#) yields the likelihood function
L(d|0) = pn(d — h(0)), representing the probability of
observing the data y given the parameter . We further
assume a prior probability density w(6) on the parame-
ters.

Bayes’ rule allows us to relate the likelihood and prior
probability densities to the posterior density, which rep-
resents our knowledge of the parameter conditioned on a

particular observation y. The posterior density is given
by

£(d|0)r(0)
7z ®)

The normalization constant Z is called the evidence,
given by

p(0ld) =

Z = / L£(d|0)m(0)d6 . (4)

With the zero-mean Gaussian noise assumption and
our expression for the likelihood, we have

p(0]d) o £(d|6)(0)
x exp H(d (O)TS; d - h(6)| 7(0). (5)

In GW data analysis the evaluation of the likelihood is
typically carried out in the frequency domain, where the
covariance matrix of stationary Gaussian noise is diag-
onal. In terms of the one-sided power spectral density
(PSD) S,(f), the Fourier transform of the model h(6),
and the frequency-domain data (Ni, the standard GW like-
lihood for data taken by a single detector is (e.g. [32, 33])

(9'fk)|2Af

L£(d)9)  exp 2Rez di S (6)

where the sum is carried out at the discrete positive fre-
quencies fr and Af is the frequency spacing. In the
case of multiple detectors observing the same GW event,
the noise in each detector is assumed to be independent
and so the individual detector likelihoods multiply, using
the same model parameters 6 for each detector while ac-
counting for the light-travel time between the detectors,
as well as the different signal response functions and noise
spectra.

It is important to recognize that the posterior den-
sity depends both on the observed data and the model
h(6), precisely through the dependence of the likelihood
on h(f). If one were to use a different model, the solu-
tion of the Bayesian inverse problem would be a different
posterior probability density.

Thus, with data and model in hand, the task of
Bayesian inference is to characterize the posterior given
by Eq. (5). In many settings, the most useful thing
to seek is a set of independent, identically distributed
(ii.d.) samples distributed according to the posterior.
Once obtained, these samples can be used to compute
Monte Carlo estimations of quantities that depend on
the uncertain parameters, i.e.

o= [ 1Ol ~ > 50, ()

(03, "5 p(6)d) . 8)

The principal computational challenge of Bayesian infer-
ence is the need to evaluate the potentially expensive
model h(A) a large number of times in the process of
generating samples.

B. Multifidelity Importance Sampling

Sampling from a high-dimensional posterior distribu-
tion is, in general, a challenging task. The challenge of
sampling from a posterior p(6|d) is made worse when the
model h is computationally expensive to evaluate. Im-
portance sampling is one approach to exploit the speedup
afforded by approximate models without sacrificing the
accuracy of more sophisticated and expensive models. At
its core, importance sampling involves estimating statis-
tics of one distribution using samples drawn from an-
other. To simplify notation, we let p and ¢ refer to the
high and low fidelity posterior distributions, respectively,
as well as their corresponding probability density func-
tions. Consider the mean of a function f() with respect
to the high fidelity posterior,

w=E,1(0)] = [ 76)p(6) 0. 9)

We can introduce the low fidelity posterior by multiplying
the integrand of Eq. (9) by unity to obtain

/f q(6)d9 = E

w(f) = —. (11)

g [fO)w(®)],  (10)

In general, we call g the biasing distribution. Note that
we have rewritten the mean p as an expectation with re-
spect to the biasing probability density ¢. This allows us
to define the importance sampling Monte Carlo estima-
tor

)

N
i 1 iid.

where now the IV i.i.d. samples 6; are drawn from the
biasing distribution as opposed to the original posterior
distribution.



In practice, the evidence Z that appears in Eq. (3) is
often ignored, and we only have evaluations of the poste-
rior densities up to a constant. Thus, we cannot compute
w(f) explicitly. Instead we use self-normalized impor-
tance sampling [71], where we define our estimate of u
as

SN F0) w(6))
S USRS (13)

Here, since the normalizing constants implicit in the
weights cancel out, we can safely ignore them when com-
puting w(6).

Following the analysis in [69, 70], we see that the ex-
pected error of this self-normalized estimator is bounded
by the chi-squared divergence between p and ¢, x%(p||q),
given by

2
fmm—/ﬁ%wr (14)

Specifically, for a bounded measurable function f, the
mean-squared error of the estimate in Eq. (13) is bounded
by

X2 (pllg) +1

W= )

El(7—Ep[f(0))] < 4lIfll1~
where ||f||Lo is the L* norm of f. This motivates us
to search for biasing distributions that are as similar as
possible to the target distribution, in the y? sense.

To assess the efficiency of importance sampling, it is
not usually practical to compute or approximate the y?2
divergence directly. Instead we can compute the effective
sample size Neg,

[ o]
Zf\; w(0;)? '

In the limit of a large number of samples 6; drawn from
the biasing distribution g, we can see that

Neg = (16)

Neg 1
A . S— 17
N NCER (17)

so that minimizing x? has the effect of maximizing Neg.
Here we have defined the idealized efficiency e given 2.

In practice we have access to only a limited number
of choices for a reasonably accurate biasing distribution
q. For example, in GW data analysis ¢ may be defined
by a signal model which is computationally cheaper to
evaluate than the model implicit in the desired posterior
p. The development of accurate and computationally ef-
ficient signal models is itself a major challenge requiring
significant effort. To improve the efficiency of impor-
tance sampling without the flexibility to tune the biasing
distribution through modeling, we turn to the idea of
tempering q.

C. Tempering

In the setting of multifidelity importance sampling as
outlined above, we propose introducing the tempered bi-
asing distribution, such that its density is

- q(9)1/T
ar(6) = T, —. (1)

Tempering is commonly used in Markov Chain Monte
Carlo approaches to sample distributions through paral-
lel tempering, e.g. [32, 72-75]. Here our aim is to apply
the concept of tempering to improve importance sam-
pling.

By raising the density to the power 1/T, T acts as a
“temperature” controlling the width of the distribution.
This additional free parameter allows us to improve the
efficiency of importance sampling without changing the
underlying density q. A new constant Zp is needed to
ensure the tempered density is normalized and is there-
fore

Zp = /q(e)l/T de . (19)

To gain an intuition into how tempering improves the
efficiency of importance sampling, we turn to a simple toy
model. Let p and g be one-dimensional Gaussians, and
without loss of generality let p be zero mean. With p =
N(0,0,) and ¢ = N (p, 04), the chi-squared divergence is

To? 2
x> (pllar) = & eXp( ; 2) -
opy/2T02 — 02 2Tog — 0y
(20)
In this case, we can maximize the efficiency ¢ by mini-
mizing x? analytically. The temperature that minimizes
this expression, which we call T, is

2 2
302420+ Jof + 12022 4 dp!

T,
402

(21)

We note that for this example x2? diverges when
o,VT /o, < 1/V/2, and we expect in these cases that
gt is too narrow to ever captures the tails of p; one ben-
efit of tempering is that this can be evaded by increasing
T. Numerical experiments show that in practice when
q is too narrow, Neg/N decreases towards zero with in-
creasing N, although this appears to be a slow and highly
stochastic process.

We illustrate this simple example by plotting the ide-
alized efficiency € in Fig. 1 for the one-dimensional Gaus-
sians, where by (17) and (20),

B 2T(02/02) — 1 12/
AT m<vmw@ﬂ-mm

The efficiency depends only on two parameters, the nor-
malized bias u/0, between the distributions and the ratio
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FIG. 1. Example case of the idealized efficiency in terms of
the x2-divergence between target p and tempered gr in the
one-dimensional Gaussian case. Top: The efficiency plotted
against the ratio of widths rescaled by temperature, for var-
ious fixed relative biases. There is a unique maximum effi-
ciency, given by using the optimal temperature of Eq. (21).
Bottom: The efficiency plotted against the relative bias be-
tween the Gaussians, for various fixed relative widths and
temperatures. The results are proportional to a Gaussian in
u/op in each case.

of the width of p to the tempered width of g7, specifi-
cally 0,v/T/o,. The dependence on the normalized bias
is straightforward to understand: ¢ is a Gaussian in p/o,
with variance T'(07/07) — 1/2. Meanwhile, we see that
for T =1 and p = 1, the efficiency becomes very poor
for o4/0, < 1, and also becomes poor as g,4/0;, becomes
large. As the normalized bias increases, a wider biasing
distribution gives better efficiency, as expected since oth-
erwise the tails of ¢ cannot cover the bulk of the target
distribution p. We see that for each value of the bias,
tempering allows us to tune the width of g7 to attain an
optimal efficiency.

To map this example onto inference for GW data anal-
ysis, consider the case where p and ¢ result from two dif-
ferent GW signal models. In the limit of high signal-to-
noise (SNR), the widths of the posteriors scale inversely
with SNR. Thus while the bias p and the ratio of the
widths o,/0, to be fixed by the differences in the signal
models approximately independently of SNR, as the SNR
increases the normaized bias p/o, grows large. This sit-
uation is one where the efficiency is expected to be to the

left of the peak of each curve in the top panel of Fig. 1,
and as SNR increases we traverse these curves towards
larger /o, moving vertically down, with a severe loss
of efficiency. We illustrate this in the bottom panel of
Fig. 1, where we plot the efficiency for fixed o,v/T /0,
versus p/o,. If we imagine fixing T = 1, then the effi-
ciency decays monotonically with increasing p1/c,. Using
tempering we can tune the value of o, VT / op to improve
the efficiency, moving onto a different curve.

From this example we can take away another lesson,
namely that some amount of tempering is expected to
improve the efficiency in many situations, even if the op-
timal temperature is not known. The danger is in moving
to the right of the optimal efficiency, where in any case
the decay in efficiency is less severe with increasing tem-
perature.

This toy model can be readily extended to multi-
dimensional Gaussians, p = N (0,%,) and ¢ = N (i, X,).
The efficiency of importance sampling and effect of tem-
pering depends on the details of the shapes of the co-
variance matrices and the direction of the bias u, but for
isotropic Gaussians and a p which is of order unity in all
dimensions, the effect of increasing the dimension is that
the efficiency is roughly that of the one-dimensional effi-
ciency raised to the number of dimensions n, € ~ (e1p)™.
Thus we expect that the efficiency of importance sam-
pling can be quite poor in a high number of dimensions.
Meanwhile, the analytic form of the optimal tempera-
ture is nearly the same as in the one-dimensional case.
Further details are given in Appendix A.

D. Approximate optimal temperature

In order to maximize the efficiency of importance sam-
pling for a given p and ¢, we would seek a temperature
which minimizes x2(p||gr). In practice we cannot access
the ideal optimal temperature 7. Performing a numeri-
cal search for T, is expected to be impractical, since each
evaluation of a candidate temperature requires sampling
from gr. Another challenge is that the efficiency must
be estimated from samples, and so is inherently stochas-
tic, as discussed in Sec. I11 B, making numerical searches
for T, unreliable. However, we can work out an approx-
imation to the optimal temperature under the condition
that ¢ is sufficiently close to p and assuming that T is
sufficiently close to 1. In this case we find an estimate
for the optimal temperature T5 =~ T, which can be com-
puted in practice using samples from ¢, provided that ¢
is normalized (and hence its evidence is known). We find
that

Eql(p/q—1)logq]

Ts=1—
s Var,[log ¢]

(23)

The density p does not to be normalized for this cal-
culation, since the p/q term can be estimated using
self-normalized weights. See Appendix B for a detailed
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FIG. 2. Comparisons between the optimal temperature 7T
from and the approximated temperature Ts from for the one-
dimensional Gaussian example, using Eqgs. (21) and (24).
Top: Ratio of the temperatures Ts/T%, which is a function
of u/op only. Bottom: Ratio of the idealized efficiencies 5 /e
achieved for the optimal temperature 7. and the approxi-
mated temperature T, which is a function of p/op, only.

derivation and more specific treatment of the assump-
tions.

Equation (23) provides a practical path to estimating
a good temperature for tempering. The idea would be
to first sample from ¢ to attain i.i.d. samples, use these
to estimate Ty, and perform a second round of sampling
from the tempered gr. As long as the computational
expense of sampling twice using the model implicit in ¢
is less than that of sampling from p, tempering can lead
to accurate inferences with less cost.

We can examine the accuracy of the approxima-
tion (23) in the Gaussian case and compare it to the
exact solution in Eq. (21). Note that we do this analy-
sis in the Gaussian case purely for building intuition and
gaining some analytical insight into the this temperature
estimate. In the general case, no assumptions about the
Gaussianity of the distributions is necessary. As before,
when p = N(0,0,) and ¢ = N (u, o4) we obtain

o2 + 12
=220 (24)

9
It is perhaps remarkable that the integrals involved give

such a simple expression for T in this case, and we give

the full derivation in Appendix C. We see that in the
limit g = 0, our estimate Ty agrees with the optimal
temperature T,. Their ratio depends only on the nor-
malized bias p/o,, and is given in the top panel Fig. 2.
Of greater interest is the effect of the approximation on
the efficiency . The lower panel of Fig. 2 gives the ratio
of the efficiencies €5 /e, for the optimal and approximated
temperatures. This ratio also only depends on the nor-
malized bias, and we see that is is very close to unity for
all values.

The fact that the idealized efficiencies depend only on
the rescaled bias p1/o, for both temperature choices may
initially be surprising, but this can be understood as fol-
lows. The efficiency before tempering only depends on
the normalized bias and the ratio of widths, and tem-
pering only allows us to adjust the ratio of the widths
without impacting the bias. Our choice of temperature
fixes the ratio of the widths, in a manner that depends on
the value of the normalized bias. The result is a tempered
efficiency that depends only on the bias.

III. NUMERICAL RESULTS

With the notion of tempered importance sampling de-
fined, we turn to applications of this method to multi-
fidelity inference. We carry out a sequence of computa-
tional experiments to test the effectiveness of tempered
importance sampling in GW parameter estimation. We
use pairs of high- and low-fidelity GW models to recover
the parameters of both simulated and real GW data. Fol-
lowing the approach of [66], our high-fidelity models in-
corporate higher radiative multipole moments, while our
low fidelity models include only the dominant quadrupo-
lar emission. After reviewing our analysis setup, we pro-
vide examples of lower-dimensional GW inference that
demonstrate the effects of tempering on importance sam-
pling in controlled cases. We then present results from
simulated GW signals from aligned-spin systems (injec-
tions), as well as results from two real events from the
third observing campaign of the LIGO, Virgo, KAGRA
Collaborations.

A. Analysis details

We carry out two kinds of numerical experiments: in-
jections of high-fidelity models into simulated data fol-
lowed by Bayesian parameter estimation, and inference
of real GW data. In the injection-recovery experiments
we used IMRPhenomXHM [41], a model which assumes
that the spin components are aligned with the orbital
angular momentum of the binary, and hence neglects the
effects of orbital precession. For these the waveforms
were injected into zero noise using the high fidelity model
and the posteriors sampled using the low fidelity model.
We carry out a number of such experiments, in both re-
stricted lower-dimensional cases as well as over the full 11



parameters. The parameter choices for these injections
are shown in Table I. We also examine two events from
the third gravitational wave transient catalog (GWTC-
3) [16], using open data from the Gravitational Wave
Open Science Center [76, 77]. For these runs, we used IM-
RPhenomXPHM [42], which allows for generic spins and
models orbital precession, resulting in a total of 15 pa-
rameters. Tempering is carried out by scaling the power
spectral density values by the appropriate temperature
before sampling.

We use the following software tools for our computa-
tional experiments. The bilby [34, 35] Python pack-
age was employed to set up the inference problems in
all the GW experiments we conducted. We use the dy-
namic nested sampling algorithm [78] as implemented in
the dynesty package [79] as it is used in bilby to sam-
ple the posterior distributions. The use of nested sam-
pling [80, 81] is important for our chosen approach, since
we need the evidence to normalize our biasing density ¢
in order to compute our temperature estimates Tys. For
processing the samples and visualizing the posteriors, we
use pesummary [82].

For our injections, our priors are standard agnostic
choices: uniform in detector-frame component masses,
localization uniform in Euclidean volume (neglecting cos-
mological effects at the relatively low distances used in
this study), inclination angle uniform in cos¢, polariza-
tion angle and coalescence phase uniform within their
allowed ranges, and time of coalescence uniform in a win-
dow of 0.2 s centered on the injection time. We denote
the dimensionless aligned-spin components of the spins
as S1, and S5, in this work. Our priors in these com-
ponents are the projection onto the orbital angular mo-
mentum of dimensionless spin vectors isotropic in orien-
tation and with a magnitude uniform in [0,0.99]. The
result is a prior peaked around S;z = 0 for each com-
ponent, see e.g. [83]. For our GW likelihood we as-
sume a two detector network composed of LIGO Hanford
and LIGO Livingston. We use the design noise curve
aLIGO_ZERO_DET high P_psd [84] as our baseline PSD in
both detectors. We integrate the noise-weighted inner
product from fiow = 20 Hz to fuigh = 1024 Hz except
where noted.

For our analysis of real GW events, our priors and anal-
ysis settings mirror those used in GWTC-3 [16, 85], with
the following exceptions: we did not marginalize over cal-
ibration uncertainty [86, 87], and we use the Euclidean
distance prior p(dr) oc d2 rather than accounting for
cosmological expansion. We also did not marginalize our
likelihood over coalescence time or luminosity distance
during sampling,.

B. Error estimation

An important point to keep in mind when carrying out
parameter estimation in practice is that we cannot access
idealized quantities like the efficiency ¢, the optimal T to

M[Mo]| q |S1z|S2z| | & || Y | e tels]
30 0.5/0.4/0.3(1.3|-1.21{1|2.6(2.3[{1126259642.413

TABLE I. Parameter values used in our injection studies. The
component masses are mi and ms, here expressed in terms
of the chirp mass M = (mim2)*°/(m1 + m2)"/® and mass
ratio ¢ = ma/m1. Also listed are the components of the di-
mensionless spins aligned with the orbital angular momentum
S1. and Sa., the right ascension «, the declination 4, the in-
clination of the orbital angular momentum to the line of sight
L, the polarization angle v, the phase of coalescence ¢., and
the time of coalescence t.. All angles are expressed in radians.
We vary dr, between 200 Mpc and 1200 Mpc in order to scan
over SNR values between 108 and 18, respectively.

minimize x2, or approximate temperatures defined using
the distributions p and ¢. In all cases we instead must
estimate these quantities through the samples we gather
when carrying out parameter estimation. This means
that reported results, including our computed efficiency
of importance sampling Neg/N and our temperature es-
timate T5 are Monte Carlo estimates and carry some un-
certainty.

Usually parameter estimation routines generate a suffi-
cient number of samples NV that these Monte Carlo uncer-
tainties are small, and if this is not the case more samples
can be gathered. However we find that in practice im-
portance sampling for high dimensional distributions can
have poor efficiencies, resulting in a small number of ef-
fective samples. The Monte Carlo error associated with
these samples can be large, much larger than expected
for a given IV, and in some cases this prevents us from
usefully estimating Ty, as discussed below in Sec. III D.

It is thus important to have a method for quantifying
the uncertainties of out estimators. Resampling methods
provide simple and practical approaches for assessing the
uncertainties and even biases associated with a set of
samples. In this study we use a bootstrap analysis [88,
89|, drawing a set of N samples with replacement from
the N samples representing our distribution to get a new
bootstrapped estimator. We repeat this 1000 times and
compute the variance of our estimators. This allows us to
estimate the uncertainties in Neg/N, and display them
as 1-o error bars on our plots. Wherever practical we
ensured that we had enough samples from ¢ and gr to
reliably estimate the efficiency of our MFIS and tempered
MFIS approaches.

C. 2D and 4D CBC parameter estimation

We begin by studying lower dimensional GW inference
problems in order to understand the effects of tempering.
For these 2D and 4D parameter estimation experiments,
we fix all but a few of the parameters at their injec-
tion values. Figures 3-7 show a comparison between the
importance sampling efficiency for an untempered low-
fidelity posterior and the efficiency for a posterior tem-



2D - intrinsic

< —+ T=1

T =Ty

0.81 T

0.61

Negt/N

0.21

0.0+

—— T

1.0

2224 27 31 36 43 54 72 108
SNR

FIG. 3. Result of tempering for the 2D intrinsic problem,
where the inferred parameters are the mass ratio and chirp
mass.

pered at our approximate temperature Ts. This compar-
ison is plotted as a function of SNR, and the correspond-
ing values of T are also provided.

Figure 3 shows the impact of tempering for a 2-
dimensional inference problem in which only the chirp
mass M and the mass ratio ¢ are sampled over. The
posteriors for this simple problem are in the Gaussian
regime for the range of SNRs we explore, SNR > 20. As
such the results are well-modeled by our Gaussian ex-
pectations. In fact the efficiency Neg/N of importance
sampling the low-fidelity posteriors with the high-fidelity
model is fit well by a Gaussian as a function of SNR. This
is the expected behavior when ¢ and p are both Gaussian,
and a fit to Eq. (22) reveals (o7 — 03/2)1/2/u ~ 38/SNR
in this case. We also see from the top panel of Fig. 3
that there is a range of SNRs for which tempering at T;
produces marked improvement in the efficiency.

Figure 4 shows the analogous result for a case in which
we sample over the extrinsic parameters luminosity dis-
tance dy, and the inclination ¢. In this case the expec-
tations from our Gaussian model do not hold at these
SNR values. The approximate temperatures recovered
from our method are below 1, and the resulting tem-
pered distributions mostly hurt the efficiency until the
highest SNR case.

We turn next to analogous experiments for 4D. Fig-
ure 5 shows corner plots for the recovery on an SNR 72
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FIG. 4. Result of tempering for the 2D extrinsic problem,
where the inferred parameters are the luminosity distance and
inclination angle.

signal for two cases. These corner plots compare the
high- and low-fidelity posteriors to the tempered low-
fidelity posteriors. In the first (left panel) we sample over
the four intrinsic parameters of the aligned-spin mod-
els, the chirp mass M, the mass ratio ¢, and the di-
mensionless aligned-spin components Sy, and Sy,. The
posteriors appear to be fairly Gaussian, indicating that
we expect improvement in Neg/N with tempering. In
the second (right panel) we sample over four extrinsic
parameters, specifically the luminosity distance dy,, the
inclination ¢, and the sky position given by right ascen-
sion a and declination §. The posteriors in this case
are more complicated than for the intrinsic parameters,
with non-Gaussian features and correlations that vary
across parameter space. In this case our intuition from
the Gaussian examples may not apply directly. For some
further context on how these posteriors visually change
for different SNRs, see Appendix D.

Figure 6 illustrates the effect of tempering the 4D
inference over the intrinsic parameters. As in the 2D
case, the efficiency is fit well by a Gaussian, with (02 -

02/2)1/2//1 ~ 34/SNR. The 4D intrinsic case shows sys-
tematic improvement in the efficiency, but it is more
modest than the improvement seen in 2D. Fig. 7 illus-
trates the effect when sampling over the intrinsic param-
eters. This case does not show consistent improvement
with tempering when using our estimate Ts for the op-
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FIG. 8. Result of tempering for the 11-dimensional aligned-
spin injection. For this experiment, we tempered all the runs
at T'= 1.1 instead of using the approximation T5.

timal temperature, though some improvement is seen at
higher SNRs. Similar to the 2D case, the initial temper-
ature estimates Ts are below 1, but generally climb with
SNR.

These low-dimensional experiments are useful for guid-
ing our expectations and intuition for higher-dimensional
problems of practical interest. We see that for well-
behaved cases, such as in the intrinsic parameter infer-
ences, our approximation for the optimal temperature
leads to improvements in efficiencies, and the behavior of
both the efficiency and the impact of tempering follows
our expectations from the Gaussian models. However,
our intuition from the simplest models does not appear
to apply to the extrinsic parameters, and these show a
case where tempering can hurt the efficiency of MFIS.

D. Full aligned-spin CBC parameter estimation

Having seen mixed results for tempering in our lower-
dimensional tests, we turn to a more realistic case of the
11D recovery of an injected GW signal from an aligned-
spin binary black hole coalescence. As with our 2D and
4D tests, our injected signal has no added noise (we
assume a zero-noise realization of the random detector
noise). We find a very poor efficiency for our lower-
fidelity recover of the high-fidelity injection. This is seen
in Fig. 8 across a range of SNR values, where the T' =1
recovery commonly has efficiencies of ~ 1%. The effi-
ciencies are roughly flat across the SNRs tested. Our low
efficiencies are consistent with the poor efficiency of the
zero-noise injection and recovery presented in [66] using
similar analysis choices.!

1 See Table 1 of [66], and note that the differences in their wave-
form models are expected to be even larger than ours, likely
accounting for another factor of ~ 10 decrease in the efficiency.
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Initially, we were concerned that these low efficiencies
would mean that our estimates for T5 would be unreli-
able, given the small Nog for the samples we drew from
q. Therefore, inspired by the observation that in many
cases any amount of tempering improves the efficiency of
importance sampling in our Gaussian examples, for this
experiment we opted for a different prescription and sim-
ply tempered each case by the same temperature T' = 1.1,
drawing a similar number N ~ 2 x 10* samples. The
resulting efficiencies are seen in Fig. 8. While these ef-
ficiencies are still poor overall, we see a several times
improvement at moderate SNRs with no particular loss
of efficiency at higher SNRs as compared to the T' =1
case.

The success of uniform tempering in 11D points to-
wards another potential way to benefit from tempered
MFIS. Rather our proposed two-step process, first per-
forming standard inference with 7' = 1 to get samples
from ¢ and then estimating Ts with these, prior experi-
ence or theoretical analysis can provide a proposed tem-
perature for a single step of tempered MFIS.

E. Parameter Estimation for GWTC-3 Events

In order to test our method in a fully realistic situ-
ation, we apply it to two events from GWTC-3. Our
goal is to probe the regime in which the two posteri-
ors are very similar as well as the regime in which they
substantially differ. For the former scenario, we choose
GW191222.033537 (hereafter GW191222), a fairly typi-
cal binary black hole signal which favors equal masses,
small effective spin parameter Yeg, and no strong signs
of orbital precession. This is an example of an event for
which the higher mode content of the gravitational wave
is expected to be small, meaning our low and high fi-
delity models produce similar results. This means that
the overall efficiency of multifidelity importance sampling
is higher, since ¢ is very similar to p, but also that the
margin of improvement is smaller since there is little ex-
tra information coming from the high fidelity model.

GW200129_065458 (hereafter GW200129) was selected
for the opposite reason; it is a high SNR event where stan-
dard analysis with IMPhenomXPHM infers large com-
ponent spins, clear orbital precession [16, 90] and some
posterior weight towards unequal masses mq/m; ~ 1/2
where higher modes make greater contributions to the
signal. Parameter estimation for this event is systemati-
cally different across signal models, e.g. [16, 90-92], and
it is also complicated by non-Gaussian noise in the raw
data, which must be mitigated [16, 93].

For these reasons we expect the choice of signal model
to have greater impact for GW200129, and therefore the
distributions p and ¢ inferred with and without higher
modes to be more different. We see evidence for this
in the corner plots of Fig. 9, which shows marginalized
2D and 1D posteriors for GW200129 for selected intrinsic
and extrinsic parameters. We show both the samples pre-
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FIG. 9. Corner plots for GW200129, illustrating recovery with the high-fidelity model, which includes precession and higher
mulitipolar emission, and the low-fidelity model which includes only precession and the dominant quadrupolar emission. Also
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the full 15D inference, and the effect of tempering on the marginals of this high-dimensional posterior is nontrivial. However, in
Fig. 10 we see the improvement in efficiency as a result of tempering quite clearly, despite it being harder to visually interpret

the corner plots.

sented in GWTC-3 using the IMRPhenomXPHM model
with a complete set of modes (high-fidelity), and our own
low-fidelity recovery of this event. The primary difference
in the instrinsic parameters appears to be the absence in
the low-fidelity recovery of a second mode at larger ¢ val-
ues, which impacts both the effective spin y.g and chirp
mass M inferences. While it is natural to attribute this
to the difference in the models (and the presence or ab-
sence of multiple posterior modes is model-dependent for
GW200129, see e.g. [16, 90, 92]), we cannot rule out that
our four independent low-fidelity runs failed to recover
this distinct region of probability. The extrinsic parame-
ters also show differences in recovery, notably poorer cov-
erage of the tails of the high-fidelity posteriors by the low-
fidelity in several regions. The clear difference between
these posteriors should result in lower overall efficiency,
but greater potential for improvement with tempering.

Figure 10 shows the observed improvement in efficiency
for both events, in this case using violin plots to visualize
the uncertainty on the efficiency as estimated from boot-
strap resampling. Notably importance sampling with
real events provides generally better efficiencies than our
11D, zero-noise case even though the dimensionality is
higher here. This was observed also in the analysis of [66].
These higher efficiencies, together with analysis settings
that draw a larger number of samples for the T =1 in-
ference for GW200129, allow us to reliably estimate T
for these real events and temper using it.

As expected, GW191222 has a much higher efficiency

than GW200129. For GW191222 the estimated optimal
temperature T} is close to unity, and tempering improves
the efficiency of MFIS, with the median of the tempered
efficiency estimate well into the tail of the uncertainty of
the standard analysis. For GW200129, tempering pro-
vides a clear improvement, more than doubling the effi-
ciency of importance sampling.

IV. DISCUSSION

MFIS is a promising framework for GW inference be-
cause in this domain, there exists a rich hierarchy of
waveform models, with a range of computational costs
and including a variety of physical effects. The high com-
putational cost of some of the best models means that
exploiting samples from cheaper models via importance
sampling has the potential to greatly reduce computa-
tional costs and accelerate inference. In practice, direct
application of importance sampling can lead to very low
efficiencies, as seen in the existing literature, e.g. [66, 68].

Our goal in this work is to present a method to improve
the efficiency of importance sampling generally, and ex-
plore its application to GW inference. We introduce the
idea of tempered MFIS, where the biasing distribution is
tempered in order to reduce the chi-squared divergence
and increase the efficiency. Further, we derive a practi-
cal estimate for the temperature needed to achieve this
improvement, at the cost of generating an initial set of
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uncertainty estimated through bootstrap resampling.

samples from the untempered biasing distribution.

By carefully investigating this idea of tempering in con-
trolled settings (such as our Gaussian experiments), we
arrive at a principled methodology for improving impor-
tance sampling efficiency via the relatively cheap calcu-
lation of our approximately optimal temperature. In do-
ing so, we extract several other general insights: low ef-
ficiency is often caused by samples drawn from poorly
overlapped tails, importance sampling is highly sensitive
to the shapes of the distributions, and the overall effi-
ciency scales poorly with dimension.

Furthermore, the mixed success of applying our tem-
pering method in the GW experiments suggests that this
is not a one-size-fits-all solution, and that care must
be taken in understanding and modifying these distri-
butions. However, the cases in which the efficiency did
improve in our experiments motivates the future pursuit
of other ways to modify biasing distributions, the goal
being a more robust and reliable method for battling low
efficiency. Two of our results are especially promising:
first that our estimate for the optimal temperature im-
proves the efficiency of importance sampling for real GW
data, and secondly that an principled guess for a tem-
perature uniformly improves the efficiency for simulated
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signals injected into zero noise across a range of signal
strengths, in one case by more than an order of magni-
tude.

Finally, we use bootstrap resampling techniques to es-
timate uncertainties in quantities estimated from sam-
ples such as the efficiency and temperature. The applica-
tion of resampling methods to generate frequentist-based
uncertainties on quantities like the effective number of
samples is of independent interest in GW data analy-
sis. There are a variety of such resampling methods, and
some such as jackknife resampling allow one to not only
estimate these uncertainties but also correct for biases
present in the estimators [88]. Future work may pur-
sue these methods to better capture and account for the
uncertainties inherent in our sample-based efficiency and
temperature estimates.

Our method may be useful in various applications of
importance sampling to GWs. It would be especially in-
teresting to understand if tempering can be applied to
methods such as those used in [68], where importance
sampling is applied to correct samples drawn using a
learned normalizing flow. The success of tempering may
lead to simple ideas to improve the construction of these
machine-learning based methods.
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Appendix A: Multi-dimensional Gaussian example

In this appendix we collect results on the efficiency of
importance sampling in the context of multi-dimensional
Gaussians. Without loss of generality, place the mean of
p at the origin, letting p = N(0,%,) and ¢ = N (p, ).
We could further rotate and rescale our coordinates to
make p a unit Gaussian, but for clarity we retain X,
explicitly. Provided that

M=25"1-%5". (A1)
is positive definite, these densities can be inserted into
Eq. (14) and the Gaussian integral resolved. Let ¥ :=
I'!, then

1S exp [op (27 + 2128yl

2
1 =
_|Bg] exp [p (28 — %)My (A2)
RARE 25, — X[/

In the second line we have used a variant of the Wood-
bury identity [100], specifically

(A+B)y'=A1t-A'Bl+A'B) AT (A3)

Tempering then makes the replacement ¥, — T3, in
Eq. (A2).

In the case of isotropic n-dimensional Gaussians, the
expressions simplify further. With ¥, = (712)1, Yy = 031
we also have ¥ = 012103 (203 — 0127)1 and so

n

Tog plp
Xl +1=| ———=| e [21122}
Opy /2TU§ — ag 9 — %
(A4)

This result agrees with the n = 1 result from Eq. (20).
Further, if the bias p as O(1) entries in all n dimensions,
then p"p ~ O(n) and hence the result Eq. (A4) is just
Eq. (20) raised to the power n. If on the other hand there

13

are some unbiased directions, the efficiency is penalized
by an effective dimension that is less than n.

Continuing consideration of the isotropic Gaussian
case, we can solve for the optimal temperature

3nog + 20+ n2op 4 12n02p " p+4(p " p)?

T,
4n03

(A5)

Again under the assumption that u'p ~ O(n), we see
that the factors of n cancel out of every term, resulting
in essentially the same optimal temperature as for the
n =1 case.

From this we conclude that as the dimension of the
densities under consideration increases, we expect the ef-
ficiency of importance sampling to decrease rapidly, scal-
ing as €]p for n relevant dimensions. Meanwhile, the
best temperatures for tempering will remain similar to
the estimates for n = 1.

Appendix B: Approximate optimal temperature
derivation

Let p and ¢ be probability densities over a space X,
such that the measure corresponding to p is absolutely
continuous with respect to the analogous measure for q.
The x2-divergence between p and ¢ is

fmm=/%M—L (B1)

Recall that p and ¢ are densities and therefore functions
of x € X. We write these functions without this explicit
argument for visual clarity.

It is more convenient for our derivation to work with
the inverse temperature § = 1/T in this Appendix,
rather than T'. The tempered density qg is therefore de-

fined as
B
q
4= . Zg = /qﬂdx. (B2)
B
Our goal is to find B, such that
. = arg min X2 (pllas) (B3)

The value of 3 that minimizes the y2-divergence maxi-
mizes the efficiency of using gg as a biasing density for
importance sampling.

Since we cannot find §, in general, we derive an ap-
proximate expression (s by assuming that p and ¢ are
approximately the same and that 8, =~ (s is close to
unity, in the following sense. We define a bookkeeping
parameter € that tracks small quantities, and write

(B4)
(B5)

p:q(1+€T),
B=1+¢€d0.



We track quantities at leading order in € to solve for the
d/3 that minimizes x? at this order. This bookkeeping
parameter falls out of the final solution, which is linear
in the small r deviation between p and q.

We start by taking the derivative of x?(p||qs) with re-
spect to 5. We have

2 P2 P2
= | —de—-1=7 —dr—1 B6
Clllan) = [ 5[5 (B6)
so that
d d p _dZs
20l =2 [T [Tt

—/qﬁda:/—ﬁloqux+/73da:/qﬁloqua:.
q q
(B8)

Using the substitution § = 1+¢€ 65 and Taylor expanding
¢? and p?/q” around €8 = 0, we find
¢’ = ¢ = q(1+ e6Blog g + O(€%)) (B9)

J

d
T X (pllgs) =

+ /q(l — edBlogq + 26r)dx/q(1 + edflog q) log g dx

= —(1 + €0 BE y[log q]) (E 4[log q] — €0 BE 4[(log q)*] + 2¢E 4[rlog q]) +
— €0 E 4[(log q)Q} + 2¢E 4[rlogq] + €45 (E

~ —(E4[logq]

= 2¢5BE ,[(log q)?] — 2€6B(E 4[log q])* — 2¢E ,[rlogq] .

The result is

X2 (pllgs) =~ 2€(68 Varg[logq] — E 4[rlogq]). (B17)

d
ap
Next, since our goal is to find the value of 5 that mini-

mizes x2(p||gs), we set this expression equal to zero and
solve for §5. We find

E,[rlogq]

Bs = Var,[logq]’

(B18)

where we denote the inverse temperature (35 to distin-
guish this approximation from the true minimizer f,.
Finally, we recall our goal is to compute an approxi-
mation Ty for the optimal temperature T,. At the or-
der we have worked, there are two natural choices for
representing Ty in terms of §3. We can re-expand in
small ¢, Ts ~ 1 — €63, or use a resummed version
~ 1/(1 + €dpB). These agree to leading order in e
but can differ appreciably for moderate temperatures.

ollog a))*) + E 4[log q] + €dBE 4[(log q)°] — edB(E
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and additionally, using p = ¢(1 + er),

»? »?
¢ q(1+ edplogq + O(e?) (B10)
P2
?(l—eéﬁlogq—l—(?( %) (B11)
= 2((1—&-67“)(1 —edflog g+ O(?)) (B12)
= q(1 — edBlog q + 2er + O(€%)) . (B13)

Thus, keeping terms only to first order in €, we have

¢" ~ q(1+e5Blogq), (B14)
573 q(1 — edBlogq + 2er) . (B15)

Plugging these approximations back into Eq. (B8), we
find that up to first order in e,

(1+65ﬁ/10quag) /q(l — edflog q + 2¢er)log g dx

(1 — €dBE g[log q]) (E 4[log q] + €0 BE 4[(log q)%])
q[log Q])2

(B16)

(

By applying both to our one-dimensional Gaussian ex-
ample from Sec. IIC, we find that the former choice
(re-expanding in small quantities) dramatically outper-
forms the latter resummed estimate, which suffers from
divergences at moderate biases. Remembering then that
r = (1/€)(p/q — 1), we obtain our result Eq. (23).

This approach to estimating T, boils down to seeking
the minimum of x2(p||q) using a single Newton-Raphson
step starting from g = 1. If B, is sufficiently close to
B = 1 the method is guaranteed to give a temperature
Bs closer to By, but as is standard for applications of New-
ton’s method, if 8 = 1 is too far from S, this method can
fail catastrophically. Note that while further iterations
would improve the temperature estimate in the conver-
gent case, each iterate requires sampling from gr and so
may be prohibitively expensive.



Appendix C: Approximate optimal temperature in
the Gaussian case

In the case that p and ¢ are both Gaussian, we can
find the optimal temperature T, explicitly, as given in
Eq. (21). We now aim to use our approximation as given
in Eq. (24) to obtain T in terms of u, 0,, and oy.

In this case,

1 lx
= —= C1
p(x) Viro eXp( 20;) ; (C1)
1 1(z— u)2>
() = ——— exp ( (2)
V2o, 2 o2
Next,
1(z—p)?
log qdx = —_——
/q 84 \/27r0q/( 02
=———— [(z—p)ex <
2\/27703 /( )" exp
_ 1 (\/2— 3 _ log v27ao,
2V2mo3 ? V2rmo,
1
=-5" log v2mo, .
Furthermore,

/q(logq)Qda: = \/%aq / <($L;Jg)4 L@ ;2“)2 log V270 + (log \/%aqf) exp (—

q
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We start by noting that

Eq[<p/q—1>1ogq]=/ploqux—/qloqux, (C3)

Var,[log q] = / ¢(log )2 dz — ( / qloquw>2 e
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Putting it all together, several cancellations yield the simplified results

02 + 12 1 1 02 + 2
Eq[(p/qfl)logq]:f%—logv2waq+7+logv2ﬂaq:f 17% , (C5)
20 2 2 (o
3 1 1
Var,[log ¢q] = 1 + log V2mo, + (log V27m0,)* — (1 +log V2mo, + (log V270,)?) = 7 (C6)

Thus,

012,+,LL2

2
g

S ~1— (C7)

By re-expanding in the expected smallness of §3, we have
finally

a%—i—;ﬂ

Ts = ———

5 D) )
94

(C8)

which is used in Sec. II D.

These steps can be generalized with some effort for
generic multi-dimensional Gaussians, giving at the same
level of approximation

1 _ _
T = (Tr[S' S+ 1S, ) (C9)

which demonstrates that this temperature estimate tends
to remain O(1) even as n grows, as required for our ap-
proximation.

Appendix D: Additional corner plots for 4D
experiments

In this appendix, we provide additional corner plots for
the 4D injection-recovery experiments outlined in section
ITIT C. Figure 5 in that section shows the corner plots for
intrinsic and extrinsic parameter recoveries for an SNR
of 72. Here we provide the analogous plots for two addi-
tional SNRs, 108 and 54.

These two cases bookend the case shown in Fig. 5, ex-
hibiting higher and lower SNRs. We focus first on the
case where we sample over the intrinsic parameters (left
hand panels of Fig. 11). In the higher SNR case, it is
visually clear that the coverage of the high-fidelity in-
trinsic posteriors are improved when tempering the low-
fidelity posteriors. The lower SNR case shows a smaller
and more subtle change, but both cases exhibit improved

(

efficiency, with better relative improvement for the higher
SNR case.

The high SNR case helps to illustrate that when tem-
pering improves the coverage of the target distribution,
the efficiency of importance sampling is improved and the
reason is visually clear. Indeed one can see from the ex-
pression for Neg, Eq. (16), why the coverage of the tails
can have outsized impact. When the biasing distribution
does not cover the tail of the target, a rare sample drawn
from the edge of the biasing distribution ends up with
a large weight, which can then overwhelm the weights
of the other samples and strongly reduce Neg. Mean-
while, it is less clear visually for the lower SNR case that
the coverage is significantly improved, but we see that
tempering still improves the efficiency of important sam-
ple, illustrating that tempering can help even when the
changes to the tempered distribution are subtle.

The extrinsic parameter inferences (right panels of
Fig. 11) are harder to interpret. In these case the pos-
teriors show that the low-fidelity model already mostly
covers the tails of the high-fidelity distribution, even be-
fore tempering, with the exception seeming to be the
right ascension parameter. Our estimates for the opti-
mal temperature also prove to be less reliable in these
cases, since in several cases tempering with T5 does not
yield improved efficiency. This is the case for the highest
SNR example.

The SNR 72 case shown in Fig. 5 falls between these,
in terms of the visual impact of tempering. This is much
clearer in the intrinsic case, where the estimate Ts ap-
pears to be a decent approximation of the optimal tem-
perature, and the amount of tempering increases pre-
dictably with increased bias. Again, the extrinsic infer-
ences resist such a simple interpretation, especially since
the untempered low-fidelity posteriors are not as dramat-
ically biased relative to their high-fidelity counterparts.

We further note that these corner plots only show prob-
ability isocontours of marginal distributions, comparing
only one or two parameters at a time. They therefore do
not display the full information content of the posteri-
ors. This further justifies these corner plots as qualitative
guides for our intuition, rather than as precise measures
of the effect of tempering in higher dimensions.
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