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Abstract— Designing compact and energy-efficient resistive
RAM (RRAM) macros is challenging due to: 1) large read/write
circuits that decrease storage density; 2) low-conductance cells
that increase read latency; and 3) the pronounced effects of
routing parasitics on high-conductance cell read energy. Multiple-
bits-per-cell RRAM can boost storage density but has further
challenges resulting from reliability problems due to conductance
relaxation and slow write due to narrow conductance levels.
This work presents a multiple-bits-per-cell RRAM macro called
Efficient Multiple-Bits-per-Cell Embedded RRAM (EMBER),
which: 1) demonstrates read/write circuit compaction through
constrained optimization of driver and pass gate transistor
sizes; 2) introduces a common-mode bleed conductance at the
sense amplifier inputs, reducing read settling time by 11.35x
for low-conductance cells, and 3) cuts read path capacitance
to further reduce read access time and energy. To address
reliability and write speed, EMBER contains a configurable
on-chip read/write controller. We present a level allocation
scheme that uses array-level characterization data to find suf-
ficiently reliable allocations, while simultaneously maximizing
write bandwidth. EMBER is the first embedded RRAM storage
macro to achieve fully integrated multiple-bits-per-cell readout
and write-verification without any off-chip reference generation
or sensing. The macro operates at 100 MHz with 64k x 48 =
3 M cells in TSMC 40-nm CMOS, achieving 1 b/cell read
operation with 1.0 pJ/bit energy at 2.4 Gbps, and 2 b/cell read
with 1.1 pJ/bit at 1.6 Gbps. 1 b/cell write-verify operates with
0.40 nJ/bit energy at 12.4 Mbps (BER < 6e-4), and 2 b/cell
write-verify operates with 1.2 nJ/bit at 3.8 Mbps (BER < 3e-3).
The array-level endurance is found to be 10 K for 1-2 b/cell.
Normalizing for process scaling, the macro demonstrates the
highest effective RRAM cell density to date of 5.6e-3 b/F? for
1 b/cell and 1.3e-2 b/F? for 2 b/cell, an improvement of 31% and
204 %, respectively, over the best prior work.
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I. INTRODUCTION

ESISTIVE random access memory (RRAM) is a suitable

on-chip memory technology for edge computing because
of its back-end-of-line compatibility with CMOS, high unit
cell density, multiple-bits-per-cell storage, nonvolatility, and
low-energy operation versus embedded flash [1]. Multiple-
bits-per-cell RRAM ideally increases storage density by a
factor of n [where n = log, (# of levels per cell)] over single-
bit-per-cell [2] but faces several challenges, illustrated in
Fig. 1: (1) large read/write peripheral circuits attenuate storage
density improvements, (2) for multiple-bits-per-cell operation,
the decreased low-conductance state slows down the read
operation, (3) the increased high-conductance state increases
read energy, (4) conductance relaxation [3] can lead to high
bit error rates (BERs) as narrow conductance distributions
broaden with time, and (5) narrow conductance levels require
more write pulses to target and hence cost more write energy.
Finally, (6) to our knowledge, no prior RRAM storage macro
fully integrates the circuitry needed for both multiple-bits-per-
cell readout and write-verify operation.'

In this article, we present the Efficient Multiple-Bits-per-
Cell Embedded RRAM macro [5] (EMBER; Fig. 2) that
addresses the above-mentioned limitations by: 1) decreas-
ing total bitline/source line (BL/SL) driver and pass gate
area by 6.07x compared to [6] by using thinner oxide
high-voltage transistors and trading off BL/SL write pass gate
area with BL/SL driver area; 2) reducing sense amplifier
settling time for low-conductance RRAM cells by 11.35x
with a common-mode bleed conductance; 3) reducing read
energy by 37% through read access switch partitioning; 4)
using a bandwidth-aware level allocation scheme to enable
reliable read/write operation while; 5) maximizing write band-
width; and 6) fully integrating multiple-bits-per-cell readout
and write-verification on chip, without any off-chip reference
generation or sensing. Contributions 4) and 5) were performed
after our original conference publication [5].

'Fully integrated multiple-bits-per-cell operation with an RRAM array is
demonstrated in [4], but the read/write circuits in that design are neither
compact nor adjacent to the RRAM unit cells as is typical in a storage macro.
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Summary of EMBER macro. (a) Die photograph of the EMBER

Fig. 2.
chip and (b) overview of the macro specifications.

EMBER demonstrates reliable 1-2 bits per cell on-chip
write-verify and readout. It achieves an average read energy
of 1.0 pJ/bit at 2.4 Gbps (on par with the state-of-the-art)
for 1 b/cell and 1.1 pl/bit at 1.6 Gbps for 2 b/cell. For
1 b/cell write-verify, EMBER achieves 0.40 nl/bit energy
at 12.4 Mbps (BER < 6e-4), and for 2 b/cell write-verify,
it achieves 1.2 nJ/bit at 3.8 Mbps (BER < 3e-3). The
array-level endurance is 10 K for 1-2 b/cell. The RRAM
array occupies 36.9% of the macro area with the remainder
used for read and write circuits. EMBER’s normalized array
density is 5.6e-3 b/F? for 1 b/cell and 1.3e-2 b/F? for 2 b/cell,
an improvement of 31% and 204 %, respectively, over the state
of the art [6]. EMBER’s density, speed, and energy efficiency
enable it to serve as an on-chip nonvolatile memory in edge
devices.

II. BACKGROUND AND PRIOR WORK

An RRAM cell has a metal-insulator-metal (MIM) struc-
ture, enabling the creation or dissolution of conductive
filaments within the cell’s insulating oxide layer in response
to applied voltage pulses. This switching mechanism can
be unipolar, where the same electric field direction serves
for both increasing and decreasing conductance, or bipolar,
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which involves distinct electric field directions for conductance
increase and decrease. Bipolar switching is generally favored
for its enhanced reproducibility and write endurance [1], [7],
[8]. In the context of the bipolar HfO, RRAM employed in
this study, each RRAM unit cell is equipped with an access
transistor to mitigate off-state current leakage, along with a
MIM structure situated on the drain side of the access transis-
tor, which stores information in the form of cell conductance.
This 1-transistor 1-resistor (1TIR) unit cell configuration is
commonly adopted for data storage. In the 1T1R configuration,
the access line linked to the source of the access transistor
is designated as the SL, the access line connected to the
top of the MIM junction is referred to as the BL, and the
access transistor gate is controlled by the word line (WL). The
SET process is accomplished by applying a BL-to-SL voltage
pulse, which increases the cell’s conductance. Conversely, the
RESET process involves an SL-to-BL voltage pulse, which
reduces the cell’s conductance. Reading the conductance of
the cell involves applying a small voltage from BL to SL and
measuring the resulting current response.

RRAM cell storage density can be improved through the
use of intermediate conductance states. 2-3 bits/cell storage
has been demonstrated in RRAM arrays with the assistance of
off-chip source-measure units and pulse generation [9], [10],
[11]. A prior RRAM-based compute-in-memory macro exhibit
three-level write-verification using on-chip readout and write
circuitry [4], but to our knowledge, a fully integrated macro
has not been demonstrated with >2 bits/cell storage capability.

III. ARRAY AND READ/WRITE CIRCUIT ARCHITECTURE

The EMBER macro architecture (Fig. 3) consists of four
0.75 Mcell RRAM unit cell array quadrants, divided by
shared peripherals used for read/write. Each quadrant has
24 subarrays, each with 512 WLs and 64 BLs (64 x 512 x
24 = 0.75 M cells). The RRAM arrays in EMBER employ
a 1TIR architecture with a common SL for improved cell
density [6]. Each half of the array contains 24 sense amplifiers
and write drivers, so a word of up to 48 cells can be read or
programed in parallel.

The array peripherals consist of WL and BL/SL compo-
nents. The input address is used to select a WL and drive
a DAC-generated voltage on that WL. Each WL spans two
quadrants of the array. On the BL/SL, DACs adjust the applied
write voltage and sense amplifiers enable read operations on
the BL. Sense amplifiers compare a selected cell’s conductance
against a 6-bit user-controlled reference, at a BL voltage
specified by the read DAC. The read/write analog interfaces
in EMBER are operated by a digital controller, which receives
commands over a serial peripheral interface (SPI).

A. Technique 1: Write Circuit Compaction Through
Constrained Optimization of Driver and Pass Gate Sizes

The total peripheral area (dominated by BL/SL pass gates
and write drivers) is comparable to the area of the RRAM
cells [e.g., Fig. 4(a)], which significantly lowers the effective
bit density. The write path transistors must be wide enough
to minimize IR drop when resetting high-conductance RRAM
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Fig. 3. EMBER top-level architecture and array design.

cells to a low conductance, but making these peripheral transis-
tors too large lowers macro density and slows reading because
of extra RC delay. We thus aim to minimize total peripheral
area under the constraint that requisite cell SET/RESET volt-
ages are produced. We perform a write transistor size sweep
with relative sizing parameters [Fig. 4(b)]

r = Von,SL _ WDriver,BL _ WPassgate,BL (1)
Von,BL WDﬁver,SL WPassgale,SL
A\ = Von,Drivers _ WPassgate,BL _ WPassgate,SL (2)

Von,Passgates WDriver,BL WDriver,SL

Von,su and Vi, pr are the total SL-side and BL-side on-
voltages in the write path and Vo privers and Vo passgates are
the total driver and pass gate on-voltages. Wpyiver BL/s. and
Whassgate,BL/sL correspond to the widths of pull-up/pull-down
transistors in the BL/SL side of the write path. Note that only
the width of pull-up (down) transistors should be compared
to the width of other pull-up (down) transistors. All transistors
in the pass gates and drivers use the process-defined minimum
length, so parameters A and I' simplify total write path
transistor width minimization to a two-parameter search.

We sweep (I', \) with a minimum required Ve at a desired
maximum G to find D Areaggr + > Areargser [Fig. 4(c)].
The appendix contains the equations and assumptions used to
calculate the SET/RESET path area. The global minimum sum
of SET and RESET path area appears at A = 0.22, I" = 0.65.
Using (2), (8) and Nygary = 16, D AreasgT/RESET X ADriver +
16(Apriver/4), meaning that the pass gate area is roughly 4x
larger than the driver area, which can be verified in Fig. 4(a).
Using this minimization technique and choosing thinner oxide
write path transistors resulted in a 6.07x reduction in write
circuit area compared to [6].
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Fig. 4. (a) Read/write interface layout. (b) RRAM write path schematic.

BL/SL write DAC current passes through (1) the BL/SL driver (SET/RESET),
(2) a pass gate to (3) induce voltage drop across a unit cell, and (4) an SL/BL
(SET/RESET) pass gate and (5) driver to ground. (c) I' sweep for fixed A.
The blue line represents the minimum SET and RESET paths required to
meet the needed write strength (left). (¢) Two-parameter search to find the
smallest write path design (right). Minimum area is achieved when A = 0.22,
I' = 0.65.

B. Technique 2: Faster Read Times With Bleed Conductance

EMBER uses an offset-canceling current-mode sense
amplifier design inspired by [12], with the addition of
common-mode bleed conductances to limit sense amplifier
settling time [shown in red in Fig. 5(a)]. The sense amplifier
operates in three phases [Fig. 5(b)] dictated by the sense
amplifier controller and remains in a precharge state when not
actively reading. In Phase 1, the amplifier samples the current
offset between both halves using diode-connected PMOS
devices. In Phase 2, the amplifier samples Grram — Grefs
and the offset current cancels itself out. In Phase 3, a cross-
coupled inverter latch determines if Grram > Grer (“17) or
GrraM < Grer (“07). The SA_RDY signal marks the end of
Phase 3, and the sense amplifier automatically reenters the
precharge state.

The conductance reference G is a 6b linear conductance
DAC constructed with poly resistors and replica transistors that
mimic the I/O transistors in the Grram read path (Fig. 6). The
two least significant bits of G use a thermometer decoding
scheme for conductance steps while the four most significant
bits use a binary design. This segmented design saves layout
area compared to a purely binary design.
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for each sense amplifier. (b) Sense amplifier operating phases. AVsan and
Vpullup are dc operating voltages utilized in noise analysis.

The amplifier input settling time is described by [13]

. o C BLN V, (3)
reting Vread (GRRAM + Gbleed)
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Here, Cg, is the input-referred capacitance on the BL side
of the amplifier, n = 1.5 (ratio of MOSFET subthreshold
slope to 60 mV/decade), V; = (kpT/q), Vieaa is the cell
read voltage, Grram is the cell conductance, Ipg is the sub-
threshold current constant for the transistors with Vg = Vi,
VBL settling 15 the BL voltage needed to achieve transistor current
settling within the margin A of the steady-state read current,
and Gypeeq 18 the common-mode bleed device conductance
(Fig. 5(a), red). When using this design with low Ggrram
and no Ghpjeeq, the 99% (A = 0.01) input current settling
time needed for comparisons increases due to the 1/Ggrram
dependence from (3). Gpjeeq forces 99% read current settling
to occur by Tinax ~ 4Tewing, and the sense amplifier clock
frequency becomes (1/27max). Guieed detaches the choice of
RRAM conductance operating range from the read frequency
specification, allowing for low Ggrram in a multiple-bits-per-
cell scheme (Fig. 7).

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on May 01,2025 at 03:00:15 UTC from IEEE Xplore. Restrictions apply.



LEVY et al.: EMBER MACRO FOR HIGH-DENSITY DIGITAL STORAGE

%1026 Energy-Noise Optimization

-k>‘ (/)
%3 —1 b/cell
G20 R T
- 6
33
¥ o4
=z | ———  —~__
=72 ‘ ‘

0 0.5 1 1.5

t::‘.Iew/tsettle

Fig. 8. Noise—energy efficiency plot for Cofger sizing, where Coy = 12.5 fF.
The objective of the fgew/setle SWeep is to minimize the product of per-bit
read energy and input-referred noise, or maximize (energy x Noise)™! (shown
in this plot).

We designed the sense amplifier such that: (1) Gpjeed
enforces a maximum settling time criterion; (2) the input
SNR > 10 dB; and (3) the noise-energy product of sensing was
minimized. Such conditions guarantee stable operation while
maximizing sensing efficiency with a provided read energy.
The input-referred conductance noise of the sense amplifier
architecture can be described using the following equation:

2 — kgT (GrraM + Goleed)? gm.p
e (Coffset + CBL) 2Vpullup 1y
Coffset + CBL 8m,p
X + —=V
( Cou[ Id pullup

(6)

where the capacitor is used for offset cancellation [Fig. 5(a)]
can be sized with

Islew ,BCBLn vt

AVsaN

Coffset =
Lsettle

VBL,settling— VL
(Grram + Goleed) exp( [;;V, )

Ino/ Viead

x In| 1—

)

Above, (gm,p/Ip) = 20 S/A for the PMOS devices in Phase 2,
AVsan [Fig. 5(b)] is the expected voltage across Cofrser at
the end of Phase 1 of amplifier operation, and Vpyjup is the
expected voltage across the offset current sourcing transistors
during Phase 2, B = 0.75 is the fraction of average current
through Gief + Gpieea Versus the final steady-state current in
Phase 1, and fgew/tsertte 1S the ratio of Coggee Slew time to
RRAM read current settling time during Phase 1 of amplifier
operation.

After assuming a range of reasonable C,, values, we sweep
fslew/ tsettle, find the corresponding Cofgset, fit Gpleed to meet 99%
settling or slew under 5 ns across the input conductance range,
use GrrAM.max + Gbleed t0 determine G.,s and enforce the
10-dB SNR cap, and then use the read current settling infor-
mation given by (5) to estimate the read energy for 1 and
2 b/cell (Appendix). Fig. 8 shows that the energy-noise product
(Gims * Z?Ephase) is minimized around fgew/fseie = 1 for this
amplifier architecture. Thus, our design balances Cofer and
CpL current settling times.

In our sense amplifier noise and offset models, the RRAM
cell behaves as an ideal resistor with a noise current density of
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within 1 LSB of a G,r value at fixed Vr, and the conductance on the Grram
input of the sense amplifier is referred to the Gy side using the reference
side read voltage. In all test configurations possible in EMBER, the slight
nonlinearity does not cause a read result to flip or significantly reduce sense
amplifier SNR.
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Fig. 10. Schematic of pass gate stacking from Fig. 4(a). Duplicating the
read access switch allows cell reading without driving excess capacitance,
decreasing read energy, and settling time.

4k TGrram- The cell relaxation and random telegraph noise
also impact the sense amplifier input conductance offset.

To save energy in the read biasing circuits, the internally
generated sense amplifier clamping voltage Vo [Fig. 5(a),
blue] is shared between 24 sense amplifiers present in each half
of the BL/SL interface. This reduces sense amplifier area by
60% and reads energy by 30% compared to incorporating local
feedback amplifiers [14]. Sharing V¢ has minimal impact
on the readout result, even accounting for the nonuniformity
in read voltage between an RRAM cell and a conductance
reference (Fig. 9).

C. Technique 3: Reducing Sense Amplifier Load Capacitance
via Smart Placement of Read Access Switches

Due to pass gate physical stacking at the array edge
(Fig. 10), the read/write access routes to the pass gates branch
from a shared sense amplifier. Rather than a single large read
access switch, each branch has a dedicated smaller read access
switch, limiting the wire and pass gate capacitance at the sense
amplifier input. This change reduces settling time by 20% and
read energy by 37% compared to increasing Gpjeeq t0 meet
Tmax = S5 ns with all branches loading the sense amplifier
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input. Replicating the read access transistor leads to a 10%
increase in the BL driver area and a 0.5% increase in the
overall BL/SL interface area compared to using a common
access transistor.

IV. RELIABLE MULTIPLE-BITS-PER-CELL STORAGE

To reliably store multiple bits per cell with RRAM, a cell’s
measured conductance level must remain sufficiently close
to its programed level. This proves to be challenging to
enforce because RRAM suffers from conductance relaxation
[31, [3], [15], where a cell’s conductance evolves stochas-
tically after the write process is complete. We show that
when EMBER is used with an appropriate level allocation
scheme, it achieves efficient and reliable multiple-bits-per-cell
programming despite relaxation.

A. On-Chip Read/Write Controller Architecture

When storing information with cell conductance, boundaries
between levels must be defined in such a way that a cell
programed to one conductance level does not relax into a
different level over time. To this end, distinct thresholds for
read and write are used, with write windows being narrower
than read windows. EMBER contains a configurable on-chip
write-verify controller to generate the necessary waveforms
to push RRAM cells into the desired conductance windows
and read out their state. The controller operates at 100 MHz
and contains a user-programmable register file with settings
defining the read/write thresholds and pulsing strategy for
each conductance level (up to 16 levels/cell), discussed further
in Section IV-B. Commands (such as SET, RESET, SENSE,
and CYCLE) execute pulsing/sensing operations. READ and
WRITE commands enable multiple-bits-per-cell read and
write-verify operations.’

During read, the sense amplifier’s reference conductance is
set to each level’s upper readout threshold. As the level index
is increased, it can be inferred which level a cell is in when the
sense amplifier output changes from 1 (greater than reference)
to O (less than reference). Once a cell’s level is determined,
that cell is “masked” to disable further sensing operations on
it. During this “ramp read” process, our controller applies two
more optimizations: 1) the sensing operation for the final level
can be skipped since we know that any unmasked cells must
belong in that final level; and 2) if all cells become masked
before reaching the (N — 1)th level, reading terminates early.

During write, we find all cells in a word that need to be
programed to a particular level, then apply SET pulses to each
one whose conductance is below the lower write threshold.
After each SET pulse is applied, we verify which cells have
achieved a conductance greater than this lower threshold.
These cells are masked, and for the remaining cells, we apply
another SET pulse with greater pulse strength (using either
an increased WL voltage, BL voltage, or pulsewidth). This
“SET-verify” sequence is repeated until all target cells are
successfully pushed above the lower write threshold. Next,
a “RESET-verify” pulse train is applied similarly to push the

2pseudo-code for the READ and WRITE commands can be found in [16].
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target cells below the upper write threshold. The SET-verify
and RESET-verify operations are alternated until all cells are
found to be stable within the write programming window (or
the maximum pulse count is exceeded, causing the process to
abort). This write-verify technique is performed for each target
level to achieve multiple-bits-per-cell storage.

B. Conductance Level Allocation

To prevent reliability problems due to conductance relax-
ation, it is important to intelligently allocate conductance
levels. A commonly used prior method to determine read/write
windows is sigma-based allocation (SBA) [10], in which
the width of each conductance window is set to be pro-
portional to the measured standard deviation of conductance
after programming. However, it was shown in [17] that SBA
produces suboptimal allocations because it assumes that con-
ductance values are normally distributed after write. In place
of SBA, percentile-based allocation (PBA) [17] was proposed,
in which measured conductance distributions are used for
level allocation rather than normal distributions.® In both SBA
and PBA, conductance levels are allocated greedily based
on a user-specified cell error rate (CER) tolerance . PBA
guarantees that the CER between neighboring levels will
be bounded by +. SBA does not provide such a guarantee
unless the conductance distributions are normal. However,
PBA does not necessarily produce allocations with the best
write speed. We propose BandWidth-Aware Percentile-Based
Allocation (BWA-PBA), which searches for allocations having
Pareto-optimal write bandwidth and BER (under the same
constraint as PBA).

C. Bandwidth-Aware PBA (BWA-PBA)

Like PBA, BWA-PBA requires a sufficiently large charac-
terization dataset to be effective, which is collected as follows.

1) Program all cells in an array to a uniformly random dis-
tribution of conductance values between the minimum
and maximum measurable conductance (0-256 wS).

2) Enumerate a comprehensive set of write conductance
windows, (a, b) where a < b and {a, b} € G, where G
is the set of all possible conductance values resolvable
by the read circuitry (e.g., 0-256 ©S, in steps of 4 uS).

3) For each word in the array, program the cells in that
word such that each cell’s conductance g isa < g <b.
Record the elapsed time to estimate the write bandwidth
of that window.

4) Measure each cell’s conductance immediately after pro-
gramming and once more ~10* s later (to account for
conductance relaxation).

After characterization, BWA-PBA is executed as follows.

1) Pick a v value as the desired upper bound for the error
rate between neighboring levels.

2) Compute the cumulative distribution function (cdf) of
cell conductance after 10* s for each write window

3These measured distributions are typically collected on a small set of
samples, processed with off-chip software, and the resulting level allocations
are applied to all chips. This is the same approach described in [17].
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(a,b) based on the characterization data. Using data
after 10* s enables the resulting conductance allocation
to be resilient to short-term relaxation.

For each window (a, b), calculate the conductance val-
ues gmin(a, b) and gmaix(a, b), where the cdf of (a, b)
intersects /2 and 1 — ~/2, respectively.

Construct a directed acyclic graph, where each write
window (a,b) is a node and a directed edge exists
between (ay,b;) and (ap, by) iff gmax(ai, by) <
&min(a2, b2).

Traverse all possible paths between nodes (0,n) and
(m, Gmax), Wwhere n < m and G, i1s the maximum
reference conductance. Each such path represents a
possible level allocation to consider.

For each level allocation, compute the optimal read
boundary between each neighboring pair of levels by
minimizing the expected error rate between them, using
the CDFs computed earlier.

Compute the expected write bandwidth and expected
BER. The write bandwidth can be estimated by averag-
ing the characterized bandwidth for each write window
in the allocation. The expected BER can be calculated
by finding the rates of confusion between levels and
computing the expected rate of bit flips under a Gray
coding scheme.

Compute the Pareto-optimal set of allocations for write
bandwidth and BER. Write bandwidth should be max-
imized and BER should be minimized. Choose one or
more “allocations of interest” along the Pareto front.
Validate the chosen allocations by performing test writes
across a large number of cells, in a checkerboard (CB)
pattern or pseudorandom pattern generated from a linear
feedback shift register (LFSR).

Fig. 11 shows the tradeoff between write bandwidth and
BER. We choose v = 1.2 x 1072 and enumerate allocations
where the BER < 3 x 1073, which is sufficient for BCH
error correction [10]. PBA allocations for v swept between
[0,1.2 x 1072] in steps of 4 x 10~* are shown for com-
parison. BWA-PBA produces a set of allocations that is a
strict superset of PBA. It can be seen that PBA’s greedy
approach produces allocations with low BER but slow write
speeds, while BWA-PBA discovers several ways to trade off
bandwidth and BER.

In Fig. 11, we circle a few 1 and 2 b/cell “allocations of
interest” in purple. The distributions for these allocations are
plotted in Fig. 12. The points were picked to illustrate low
BER (allocations 1.1, 1.3, and 2.1), high bandwidth (alloca-
tions 1.2 and 2.3), and mid-BER mid-bandwidth (allocation
2.2). Since the BWA-PBA Pareto front is relatively flat for
1 b/cell with increasing BER, we choose two Pareto-optimal
allocation points that lie at the low-BER end of the spectrum.
For 2 b/cell, the lowest BER point happens to be a PBA
allocation as well. Evaluations of these allocations across
10000 words on EMBER are given in Table I. BWA-PBA
correctly predicts which allocations will yield the lowest
BER and which will yield the highest bandwidth. High-
bandwidth allocations tend to require wider write windows,
while low-BER allocations tend to require narrower write
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Fig. 11. Write bandwidth vs. BER for 1 b/cell (top) and 2 b/cell level (bottom)
allocations. For both 1-2 b/cell, BWA-PBA produces a Pareto curve tradeoff
between BER and write bandwidth, while PBA’s best allocation minimizes
BER at the cost of low write bandwidth. Circled allocations are evaluated on
EMBER.

TABLE I

CONDUCTANCE ALLOCATIONS TESTED ON EMBER. THE BEST RESULTS
FOR EACH BITS-PER-CELL/WRITE DATA COMBINATION ARE BOLDED.
ESTIMATES OF THE RESULTS FROM THE CHARACTERIZATION DATA
ARE PROVIDED IN PARENTHESES. SLIGHT DIFFERENCES IN
BANDWIDTH/BER BETWEEN CB/LFSR DATA PATTERNS
ARE MOST LIKELY DUE TO NOISE FROM SAMPLING
DIFFERENT SETS OF RRAM CELLS. BW = WRITE
BANDWIDTH, BER = BIT ERROR RATE, AND
CER = CELL ERROR RATE

Type | WData | BW (Mbps) nJ/b | CER BER

1.1 | BWA | CB 10.94 (12.08) | 0.49 | 1.42E-4 (0) 1.42E-4 (0)

1.1 | BWA | LFSR 9.79 (12.08) 0.51 | 4.61E-4 (0) 4.61E-4 (0)

12 | BWA | CB 11.53 (13.35) | 0.46 | 5.43E-4 (3.5E-5) 5.43E-4 (3.5E-5)

1.2 | BWA | LFSR 12.37 (13.35) | 0.40 | 3.08E-4 (3.5E-5) 3.08E-4 (3.5E-5)

1.3 | PBA | CB 1.26 (0.13) 3.77 | 2.05E-3 (0) 2.05E-3 (0)

1.3 | PBA | LFSR 1.28 (0.13) 3.64 | 2.64E-3 (0) 2.64E-3 (0)

2.1 | PBA | CB 1.50 (0.45) 3.12 | 1.17E-3 (3.52E-4) | 5.85E-4 (1.76E-4)
2.1 | PBA | LFSR 1.51 (0.45) 3.07 | 1.37E-3 (3.52E-4) | 6.88E-4 (1.76E-4)
22 | BWA | CB 241 (1.05) 1.94 | 2.54E-3 (1.23E-3) | 1.27E-3 (6.17E-4)
2.2 | BWA | LFSR 2.21 (1.05) 2.08 | 2.75E-3 (1.23E-3) | 1.37E-3 (6.17E-4)
2.3 | BWA | CB 4.57 (5.14) 1.04 | 521E-3 (4.93E-3) | 2.60E-3 (2.47E-3)
2.3 [ BWA | LFSR 3.83 (5.14) 1.20 | 4.71E-3 (4.93E-3) | 2.36E-3 (2.47E-3)

windows. PBA allocations ignore the size of the write win-
dows, which usually ends up yielding low BER with smaller
write windows and low bandwidth.

D. Array-Level Endurance Characterization

We test the endurance of a level allocation at room tempera-

ture by repeatedly writing synthetic data (e.g., CB and LFSR)
across many words while monitoring the write bandwidth and
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Fig. 12. Example conductance level allocations showing write windows and read thresholds chosen by BWA-PBA and PBA based on the measured conductance
distributions 10* s after programming. The id value links these figures to Fig. 11.
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Fig. 13. Endurance characterization for 1-2 b/cell (low-BER allocations),
showing write bandwidth degradation and write failure rate increase as cells
wear.

write error rate. The results of array endurance measurements
for low-BER 1 and 2 b/cell allocations are shown in Fig. 13.
The write bandwidth fluctuates with time due to the inherent
stochasticity of the SET and RESET processes. The results
indicate that 10 K write cycles can be achieved for both
1-2 b/cell with a relatively low write failure rate.

V. MEASURED RESULTS AND DISCUSSION

EMBER was fabricated in TSMC 40-nm CMOS technology.
Fig. 2(a) shows the die photo, and Fig. 2(b) lists the macro
specifications. All measured results were collected on a single
macro.

A. Read Energy and Bandwidth

EMBER’s read bandwidth is 2.4 Gbps for 1 b/cell (48 bits
per word, 2 cycles per word, 10 ns per cycle) and 1.6 Gbps for
2 b/cell (96 bits per word, 6 cycles per word, 10 ns per cycle).

B VSA W VvDDLS VDD @ VDD+VSA M VDDLS+VDAC
1b 1.00 1b 0.40
2b 1.10 2b 1.20
0.00 0.50 1.00 0.00 0.50 1.00
Read Energy per Bit (pJ/bit) Write Energy per Bit (nJ/bit)
Fig. 14.  Left: Measured average read energy breakdown at 100 MHz

operation with Vieag = 100 mV. Read was repeatedly performed on CB
patterns with word address scrolling. VDD: core digital supply (0.9 V),
VDDLS: level shifter supply (2.5 V), VSA: sense amplifier supply (0.9 V).
Right: Measured average write energy breakdown at 100 MHz. Write was
repeatedly performed with LFSR data patterns and word address scrolling.
VDAC: write DAC supply, VDD + VSA both at 0.9 V, VDAC+VDDLS both
at 3.3 V.

The average read energy using the full reference conductance
range (4-256 wS) varies from 1.0 pJ/bit for 1 bit/cell to
1.1 pl/bit for 2 bit/cell (Fig. 14). The sense amplifier supply
(VSA) consumes 50% of the total per-bit read energy at the
100 MHz operating frequency. The average read energy per
bit scales non-linearly with unit cell storage resolution since
on average (2"!'/n) sense amplifier reads are performed per
bit of information in an n-bit scheme. The macro quiescent
power is 5 uW, excluding the digital controller and using off-
chip power gating for the write DAC supply.

B. Area, Write Energy, Bandwidth, and BER

The total macro area is 0.86 mm? and the breakdown
is presented in Fig. 15(a). Write energy, bandwidth, and
BER are strongly dependent on the choice of conductance
level allocation (Section IV). When evaluating the nominal
performance, we consider the LFSR data pattern, which is
representative of random bits being continuously programed.
For 1 b/cell, we achieve 12.4 Mbps write speed at 0.40 nJ/bit,
with BER of < 6e-4 for cells before any cycling. For 2 b/cell,
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TABLE II
COMPARISON WITH STATE-OF-THE-ART RRAM MACROS
This Work 91 [12] 119] (6]
Integrated Yes N Yes Yes Yes
Read/Write (1-2 b/cell) ° (1 b/cell) | (1 b/cell) | (1 b/cell)
Process Node 40 nm 130 nm 22 nm 22 nm 40 nm
Capacity (Mcells) 3 0.016 3.6 13.5 11
Multi-Bits/Cell 1-4 b/cell 1-2.3 blcell None None None
Read Energy 1.0 (1 b/cell) 1.8 1.0* 1.5 22
(pJ/bit) 1.1 (2 b/cell) (1 b/cell) (1 b/cell) | (1 b/eell) | (1 b/cell)
l{(eladb/;f;;;;e 12 ns 23 ns 10 ns 10 ns 9 ns
Write Energy 0.4 (1 b/cell) N/A
(nJ/bit) 12 @ bheel) | (off-chipy | VR NR NR
Write Speed 12.4 (1 b/cell) N/A 1.8
(Mbps) 38 (2 bleell) | (off-chip) | (1 bleell) | VR NR
Density 5.6e-3 6.8e-51
(bit/F?) (1 bfeelly (T bleel) ) 5o at | 25e3t | 4273t
(with peripherals) 1.3¢-2 1.4e-41
With peripherals (2 bleell) (2.3 bleell)

*Pre-silicon simulation, TLayout-estimated, N/R: not reported

Macro Area Breakdown (%)
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Fig. 15. (a) Macro area breakdown by percentage. (b) Read energy versus
unit cell area for EMBER and prior RRAM macros.

we achieve 3.8 Mbps write speed at 1.2 nJ/bit, with BER of <
3e-3 for cells before any cycling. The write energy breakdown
is given in Fig. 14. Other level allocations exist that trade off
bandwidth for BER, shown in Table I.

C. Comparison With Other Macro Designs

A comparison between EMBER and the prior state-of-the-
art is in Table II. EMBER achieves the highest effective
density (normalized for process scaling), with an improvement
of 31% over the state-of-the-art for 1 b/cell and 204% for
2 b/cell. At the same time, the macro matches the state-of-
the-art in read energy per bit [Fig. 15(b)]. Compared with the
foundry-provided RRAM macro in [18] in the same technol-
ogy and with the same array size (64k x 48) that achieves a
write bandwidth of 6.5 Mbps for 1 b/cell, EMBER shows a
90% improvement for 1 b/cell, and a 41% penalty for 2 b/cell.
Compared with foundry-provided macro’s 5.0 nJ/bit write
energy for 1 b/cell, EMBER shows a ~12x improvement for
1 b/cell and ~4x improvement for 2 b/cell. EMBER achieves
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BERs that are sufficient for BCH error correction (<3e-3) for
both 1-2 b/cell (the same error correction scheme supported
by the foundry-provided macros). The write bandwidth and
energy improvements in EMBER are mainly a result of the
improved peripheral circuitry and optimized conductance level
allocation.

VI. CONCLUSION

The EMBER macro showcases several circuit techniques
to reduce RRAM energy and latency while increasing the
read/write bandwidth and effective array density. On top of
these analog design techniques, the macro’s digital controller
provides on-chip waveform generation to enable efficient
multiple-bits-per-cell level allocation using BWA-PBA. Future
work could focus on improving read/write speed and reliability
further by 1) targeting higher clock speeds; 2) adjust-
ing write-verify programming settings; and 3) increasing
endurance by tuning conductance level allocations further.

APPENDIX
A. Write Path Area Optimization
The total driver and pass gate transistor area for the SET
operation is expressed as
Z Areasgr =(Anmos,DrvsL + APMOS.DrvBL)

3 Aghi
+ szhlfter + Npg/drv

A shifter
X (ANMOS,Pgate,SL ~+ ApMOS,Pgate,BL T+ — )
)]

Substituting in the optimization parameters from (1) and (2)
results in the following:

1+T Xn 3 Ashifter
ZAreaSET )(\/(1 +)/\) ( + X,,) + %

(l + F) X’l Ashifler
+ Npgrary +X, )+

pelde (“/(H‘/\) TNpust  © 2
9)
Xn/p _ n/p Vcelchell (10)

Vout,oac Mn/pCox(Vbpgo — | Vn/pl)
a=1— Z Ryjire . Veell (11)
Z Rpath,write Voul,DAC .

The expression for the transistor area of the RESET operation
is the same, except X, and X, are swapped (different pull-
up/down transistors in BL/SL drivers and pass gates are
toggled for SET/RESET). Npgqr describes the BL muxing
ratio for each BL driver, Npys1. describes the ratio of BLs to
SLs in a given unit cell array (2 for this design), and Agpifer
is the area of level shifters used in the write drivers and pass
gates. The minimum design rule spacing between driver and
pass gate transistors is not accounted for in the SET/RESET
path area estimates. Equation (10) relates parameters X,
and X, to I/O FET minimum channel length L,,,, the cell
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voltage drop necessary for SET/RESET (V) at maximum
conductance G, simulated conductivity parameters (i, Cox,
and switch overdrive voltage assuming triode operation with
small Vpg. The parameter o accounts for the portion of BL/SL
DAC voltage allotted to the pass gate and driver switches in
the write path, with (3 Ryire/ 2 Rpah,write) assigned to 15%
for this work [see (11)]. The post-layout wire resistance aligns
with the 15% assumption.

B. Sense Amplifier Energy

The BL voltage transient is approximated to a form similar
to [13] by treating the current through Grram and Gypjeeq like
a fixed current source

VBL(t) =~ VL
Ino

—t
o vm( (1—ex ( )))
"\ Viead(Grram + Goleed) P Tsettling

12)

The energy spent in phase 1 and phase 2 of sense amplifier
operation can be found by summing the energy spent during

current settling and steady-state for each phase
tscllling VCL — VBL (t)
Ephase(Tmax) %VSA/ IDO exp(—)dt

0 nV

—+ maX(Tmax - tsenlingv O)

X VSA Vread(Gcell + Gbleed)

+ Tmax VSA Vread(Gref + Gbleed)~ (13)
The latching energy in Phase 3 can be simplified to
Elatch = CoutVSZA' (14)
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