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Safety and efficiency are primary goals of air traffic management. With the integration of unmanned aerial vehicles (UAVs) into the
airspace, UAV traffic management (UTM) has attracted significant interest in the research community to maintain the capacity of
three-dimensional (3D) airspace, provide information, and avoid collisions. We propose a new decision-making architecture for UAVs to
avoid collision by formulating the problem into a multi-agent game in a 3D airspace. In the proposed game-theoretic approach, the Ego
UAV plays a repeated two-player normal-form game, and the payoff functions are designed to capture both the safety and efficiency of
feasible actions. An optimal decision in the form of Nash equilibrium (NE) is obtained. Simulation studies are conducted to demonstrate
the performance of the proposed game-theoretic collision avoidance approach in several representative multi-UAV scenarios.
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1. Introduction

Unmanned aerial vehicles (UAVs) are envisioned to be an
important component of future smart cities, providing
flexible on-demand services such as cargo transport, last-
mile delivery, aerial taxi, and infrastructure surveillance.
With the forthcoming demands of commercial UAVs in di-
verse applications, the airspace is anticipated to be crowded
with UAV operations, and requires UAV traffic management
(UTM) solutions to be developed to maintain the safety and
efficiency of the airspace. In UTM, the centralized traffic
control scheme does not work well because the possible
high volume of UAVs in dense airspace can easily overload
traffic controllers. Instead, decentralized approaches, in-
cluding collision avoidance, are anticipated to play a more
significant role.

Existing methods for UAV collision avoidance can be
roughly classified into the following categories, including
geometric guidance, potential field, path planning, model
predictive control (MPC), and conflict resolution [1–3]. In
the geometry guidance method [4, 5], the geometric
attributes of agents are analyzed such that the minimum
distances among agents are guaranteed to be larger than a
predefined threshold. The potential field methods [6, 7]
leverage the concept of repulsive and attractive force fields
originating from physics and allow agents to avoid collision
with the repulsive forces among agents. These two methods
can incur extensive requirements on robust onboard
sensing/communication equipment to obtain geometric in-
formation from other agents and the environment. In the
path planning method [8–10], collision-free paths are
selected by methods such as the rapidly exploring random
tree (RRT) algorithm and its variants, and graph-based
algorithms. The long-term safety of the agents can be
guaranteed by such methods, but usually require global
information to be known in advance and error-free
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maneuver executions by agents. MPC for collision avoidance
[11, 12] has its advantage in considering various con-
straints and costs in optimization. However, the solutions
obtained by MPC can be local optimal [13], and solving
nonlinear MPC (because of nonlinear UAV dynamics) can be
computationally expensive. Conflict resolution methods
[14–17] include deterministic and stochastic optimal con-
trol, rule-based approaches, and protocol-based approa-
ches. The computational load of optimal control can be
inevitably heavy considering multi-agent interactions and
even heavier when uncertainties are involved. In addition,
the rule-based and protocol-based approaches are less ca-
pable of dealing with unexpected events or flexible conflict
cases and can lead to high risks for UAVs.

Of our interest, game-theoretic methods have been at-
tractive in providing a systematic framework to capture
multi-agent interactions and to solve for optimal payoffs in
cooperative and noncooperative environments. Game-the-
oretic methods have been utilized for collision avoidance of
unmanned ground vehicles (UGVs) [18–20]. Unlike the
ground traffic environments with road geometry con-
straints in a two-dimensional (2D) plane, the three-dimen-
sional (3D) airspace is more challenging, considering the
more complicated states of interactive agents as well as the
dynamic environment. In particular, more feasible actions
are possible to avoid aerial collisions, and limited resources
onboard, e.g. computing and power, can add constraints to
the games. The pursuit–evasion game has been used in the
literature for UAV collision avoidance, by assigning roles of
“pursuer” and “evader” to interactive agents [21, 22].
The differential game is often integrated with the pursuit–
evasion game to provide solutions [23, 24]. Reference [25]
also uses the simultaneous game with the minmax strategy in
game-tree search to solve the pursuit–evasion game.
The mean-field game [21, 26], leader–follower Stackelberg
game [27], and satisficing game [28, 29] are implemented for
cooperative collision avoidance of teams of multi-UAVs. We
notice that decisions in most of the above game formulations

are determined by solving complicated constrained optimi-
zation problems, leading to a high computational burden in
safety-critical real-time decision-making. Furthermore, the
pursuit–evasion relationship can limit the feasible maneuvers
of UAVs to achieve collision avoidance. Although simple to
implement, the game-tree approach in [25] applied identical
costs associated with the terminal leafs for both UAVs. How-
ever, the costs (or payoffs) corresponding to the same action
combination for twoUAVs can be different due to, e.g. different
objectives, heterogeneous types, and changing environments.

In this paper, a novel game-theoretic approach is
proposed for the collision avoidance of multiple UAVs in a
3D airspace (see Figs. 1(a) and 1(b) for an illustration). We
formulate the problem into a repeated normal-form game
and integrate rule-based cognitive information to determine
the optimal decisions. High-level control actions, i.e. keeping
the current direction, changing to the right within the
horizontal plane, and descending to a lower altitude are
available maneuvers for game players. A set of rules that
describe general appropriate behaviors in the airspace are
proposed for the payoff design. Compared with the afore-
mentioned game-theoretic methods, the proposed game
formulation is more efficient because the solution can be
readily identified by looking up the payoff matrices (see
Fig. 2). In addition, the comprehensive payoff design rea-
lizes safety and efficiency by considering the different
effects of action combinations for game players.

The rest of this paper is organized as follows. An over-
view of the game theory is presented in Sec. 2. The game-
theoretic collision avoidance of UAVs is then developed in
Sec. 3. Simulation studies are illustrated in Sec. 4, and Sec. 5
concludes this paper.

2. A Brief Overview on Game Theory

Game theory is a strategicalmathematical model definition for
decision-making among cooperative/noncooperative sys-
tems. Depending on the combination of actions executed, a

(a) (b)

Fig. 1. An air traffic scenario with four UAVs in two different reviews. (a) UAVs fly at two different altitudes shown in a cylinder. (b) UAVs
fly within virtual lanes (indicated by blue dash lines) shown in a cuboid.
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payoff is assigned to each player. Formally, a game in normal
form isdefinedas ðN ;A; JÞ, whereN ¼ f1; 2; . . . ;Ng is the set
of N players. A ¼ A1 � � � � � AN denotes the players’ actions
whereAi ¼ fa1

i ; a
2
i ; . . . ; a

jAij
i g, i 2 N is the set of jAij available

actions for player i. J ¼ fJ1; J2; . . . ; JNg, where Ji : A ! R is the
action-dependent payoff function for player i [30].

Each player i 2 N in the game aims to select the action to
maximize its payoff function given the other players’ actions.
Let Ji ¼ Jiðai; a�iÞ represent the payoff received by player i in
the gamewhere a�i denotes the actions of all players except i.
The best response of player i is the action a�

i 2 Ai that satisfies
Jiða �

i ; a�iÞ � Jiðai; a�iÞ for 8ai 2 Ai given a�i. Nash equilibri-
um (NE) is a critical concept for optimal solutions in game
theory. An action profile a� ¼ fa �

i ; a
�
�ig is referred to as anNE

if each player in the game adopts its best response action, i.e.
Jiða �

i ; a
�
�iÞ � Jiðai; a �

�iÞ holds for 8ai 2 Ai and 8i 2 N . NE can
provide a stable gamesolutionbecausenoplayer can achieve a
higher payoff by changing its decision unilaterally [18]. Note
that a game can have more than one NE [31].

3. Game-Theoretic Collision Avoidance for UAVs

In this section, we develop a game-theoretic collision
avoidance approach for UAVs in a 3D airspace. First, the
UAV collision avoidance problem is formulated into a re-
peated two-player normal-form game. Then, to integrate the
rule-based cognitive information, the payoff function is
designed based on output-oriented decision rules using
critical-time-related decision variables.

3.1. Game formulation for UAV collision avoidance

Consider a representative scenario with four UAVs (Ego, A,
C, and D) in Fig. 1(a) to illustrate the game design. UAVs Ego
(E), A, and D fly at the same altitude and UAV C is at a lower
altitude. To better show the relative positions of UAVs, it is

assumed that there are virtual parallel lanes within both
horizontal and vertical planes, as shown by blue dash lines
in Fig. 1(b). Ego and UAV A fly in the same virtual lane in
opposite directions, UAV D flies in the adjacent horizontal
virtual lane and UAV C flies in the parallel virtual lane
underneath.

The state variables are defined as UAV i’s 3D coordinates
ðxi; yi; ziÞ and velocity vi in the local NED coordinate system
for i 2 fE;A; C;Dg. Each UAV aims to achieve a safe and
efficient flight, i.e. to avoid collision with the other UAVs at
less cost of energy consumption while maintaining the de-
sired velocity direction to its destination. To achieve these
goals, Ego must take into account the other UAVs’ possible
actions given the same objective. The game-theoretic for-
mulation of UAV collision avoidance facilitates Ego’s safe
and efficient decision-making in such a way that the other
game players’ optimal actions are also considered.

Figure 1 shows that UAV A poses the most significant
danger for Ego because its trajectories coincide completely
with opposite velocity directions. Therefore, for this par-
ticular scenario, there are two players in the game of col-
lision avoidance, i.e. Ego and UAV A. Ego can take three
actions including keep the velocity direction the same (KVS),
change velocity direction to right (CVR), and descend to a
lower altitude (DLA), i.e. AE ¼ fKVS;CVR;DLAg. These are
common actions used for collision avoidance [32, 33].
We consider that UAV A and all other non-Ego agents have
two available actions, KVS and CVR, i.e. AA ¼ fKVS;CVRg
for simplicity. Future studies will contain more possible
actions with more scenarios as well as more players, and
the reduction of players and action spaces to reduce
computation will be considered.

Note that, because all UAVs aim to maintain a desired
velocity direction considering their destinations, the UAVs
will perform a lane changing to the virtual lane on their right
side for action CVR. Similar execution is for action DLA ex-
cept that Ego will change to the parallel virtual lane right
below, i.e. the virtual lane within which UAV C flies. The
aforementioned game formulation for UAV collision avoid-
ance is summarized in Fig. 2, where aij and bij with i 2
f1; 2; 3g; j 2 f1; 2g are the payoffs received by Ego and UAV
A, respectively, corresponding to the specific action
combination. Detailed designs of aij and bij are given in the
next section.

We notice that playing the game once is not sufficient to
guarantee Ego’s safety, because the states of all UAVs
change with time leading to the change of game settings.
For example, consider the scenario in Fig. 1. UAV D will
become the most dangerous opponent for Ego after Ego
changes to the right virtual lane to avoid collision with UAV
A. Thus, we propose in this paper a repeated two-player
normal-form game with mutative payoffs, i.e. the game is
played every time period �p. A smaller �p allows Ego to

Fig. 2. A two-player normal-form game for UAV collision
avoidance in the air traffic scenario shown in Fig. 1. Ego has three
possible actions and UAV A has two possible actions. aij and bij
with i 2 f1; 2; 3g and j 2 f1; 2g denote the payoffs of Ego and UAV
A for the corresponding action combination.
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quickly re-evaluate the risk of collisions according to the
most recently acquired information and to make timely
decisions for collision avoidance.

3.2. Payoff design

In this section, we illustrate the payoff design for the UAV
collision avoidance game such that the optimal behavior can
be generated for Ego while the rule-based cognitive
information can be integrated. In the following, the critical-
time-related decision variables are first defined, based on
which the output-oriented decision rules are described and
then reflected in aij and bij .

3.2.1. Critical-time-related decision variables

Time-to-collision (TTC) is an important metric to quantify
the risk of a UAV collision occurrence. For the air traffic
scenario in this paper, we define the TTC between two
UAVs using their state information as if they are flying
within the same virtual lane, as shown in Fig. 3. More
specifically, TTCs between Ego and UAVs A, D, and C
denoted by T EA

c , T ED
c , and T EC

c are given as follows:

T EA
c ¼ xA � xE

vE � vA
; ð1Þ

T ED
c ¼ xD � xE

vE � vD
; ð2Þ

T EC
c ¼ xC � xE

vE � vC
; ð3Þ

where the superscript denotes the two involved UAVs. Note
that vi is the velocity vector with the direction component. A
negative TTC is assigned an infinite positive value to indi-
cate no potential collision.

The timeusedbyEgo tofinish its selected action is another
critical factor for Ego’s decision-making. This is to decide
whether there is enough time to complete a specific maneu-
ver. Thus, we define two additional variables T E

r and T E
l to

indicate the time it takes for Ego to finish CVR and DLA,

respectively. Note that these two variables can bedetermined
by the specific dynamics of Ego given geographic information.

Last but not the least, we define the acceptable safety
time T E

s and T A
s for Ego and UAV A, respectively, to indicate

the threshold beyond which it is not necessary for UAVs to
take actions for collision avoidance. Note that the two game
players can have different acceptable safety times. We here
apply an identical Ts for Ego and UAV A in the simulation
studies for simplicity.

3.2.2. Output-oriented decision rules

A set of simple output-oriented rules is defined here to
capture the preferred behavior of two game players given
the decision variables derived from state information.
Specifically, Ego considers the following rules to determine
the action for collision avoidance with UAV A.

(1) If T EA
c > �1T

E
s , keep the current velocity direction

(KVS);
(2) If T EA

c < �1T
E
s , �2T

E
r < T ED

c , and �3T
E
l > T EC

c , change to
the right virtual lane (CVR);

(3) If T EA
c < �1T

E
s , �2T

E
r > T ED

c , and �3T
E
l < T EC

c , descend
to the lower virtual lane (DLA);

(4) If T EA
c < �1T

E
s , �2T

E
r < T ED

c , and �3T
E
l < T EC

c , descend
to the lower virtual lane (DLA),

where �i with i 2 f1; . . . ; 3g denotes the positive constant
parameters to provide appropriate decisions for game
players. These parameters are to be determined under
different scenarios and can be obtained using neural net-
works [18]. In this study, we set all �i to be 1 for simplicity.

Rule (1) indicates that Ego is encouraged to take actions
only when its TTC with UAV A gets smaller than its ac-
ceptable safety time; otherwise, it will maintain its origi-
nally planned routes. �2T

E
r < T ED

c says that, Ego can
complete the CVR maneuver before it collides with UAV D;
otherwise, there is not enough time for Ego to finish CVR.
Similarly, �3T

E
l < T EC

c says that, Ego can complete the DLA
maneuver before it collides with UAV C; otherwise, it can-
not. These two conditions indicate whether CVR and DLA

(a) (b)

Fig. 3. Definition of TTC (a) top view, (b) front view.
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are feasible actions under the safety requirement. There-
fore, Rules (2) and (3) describe the conditions when only
one of two actions CVR and DLA is feasible for Ego. If both
actions are feasible, Ego is encouraged to choose DLA
considering the energy efficiency of DLA compared with
CVR [34, 35], as reflected in Rule (4).

Note that, we have considered a comprehensive
situation where both UAVs surrounding Ego, i.e. UAVs D
and C, have impacts on Ego’s decision. The rules can be
readily applied if only one UAV exists or both are ab-
sent, by assigning infinite TTCs. For instance, when both
UAVs are absent, Ego can always choose DLA for colli-
sion avoidance considering the saving of energy con-
sumption.

Similarly, the rules considered by UAV A are defined as
follows.

(5) If T EA
c > �4T

A
s , keep the current velocity direction

(KVS);
(6) If T EA

c < �4T
A
s , and �2T

E
r < T ED

c or �3T
E
l < T EC

c , keep
the current velocity direction (KVS);

(7) If T EA
c < �4T

A
s , �2T

E
r > T ED

c , and �3T
E
l > T EC

c , change to
the right virtual lane (CVR),

where �4 is also a positive constant parameter for the same
purpose as the other �s.

Rules (5) and (6) indicate the conditions where UAV A
can maintain its current velocity direction when either it is
not necessary as reflected in T EA

c > �4T
A
s , or Ego will yield

to avoid a potential collision. Note that, it’s not favorable
that both game players change their current velocity
directions at the same time to avoid a collision, which is safe
but not efficient. Rule (7) says that UAV A is forced to
change its velocity direction to the right if both CVR and
DLA are not feasible actions for Ego such that the safety of
both UAVs is guaranteed.

From these rules, we can derive the game payoffs aij and
bij for both Ego and UAV A, as illustrated in the following
section.

3.2.3. Payoffs for UAV collision avoidance games

This section presents the payoff designs to avoid collisions
according to the decision rules. The payoffs are defined for
Ego first, followed by UAV A. �i with i 2 f1; . . . ; 12g denotes
weights to account for preference in different scenarios. In
this paper, we assume all �i to be 1 for simplicity.

Ego should keep its current velocity direction if
T EA
c > �1T

E
s . Therefore, we define

a11 ¼ �1ðT EA
c � �1T

E
s Þ: ð4Þ

Ego is encouraged to change to the right virtual lane if
inequalities T EA

c < �1T
E
s , �2T

E
r < T ED

c , and �3T
E
l > T EC

c

hold. Thus, the payoff is given by

a21 ¼ �2ð�1T E
s � T EA

c Þ þ �3ðT ED
c � �2T

E
r Þ

þ�4ð�3T E
l � T EC

c Þ; ð5Þ
which implies a high payoff if Ego chooses the action CVR in
this case.

The third and fourth rules describe two situations where
Ego selects the action DLA to achieve a higher payoff, i.e.
DLA is the only feasible action or both CVR and DLA are
feasible actions. In both cases, when �2T

E
r > T ED

c and
�2T

E
r < T ED

c , Ego decides DLA. Therefore, we do not
consider this condition and define a31 as follows:

a31 ¼ �5ð�1T E
s � T EA

c Þ þ �6ðT EC
c � �3T

E
l Þ: ð6Þ

The payoffs for UAV A are also defined similarly. In the
seventh rule, T EA

c < T A
s , T

E
r > T ED

c , and T E
l > T EC

c lead to
the expression

b12 ¼ �7ð�4T A
s � T EA

c Þ þ �8ð�2T E
r � T ED

c Þ
þ �9ð�3T E

l � T EC
c Þ: ð7Þ

For the fifth and sixth rules which favor the action KVS for
UAV A, the payoffs are defined as

b11 ¼ b21 ¼ b31 ¼ �10ðT EA
c � �4T

A
s Þ þ �11ðT ED

c � �2T
E
r Þ

þ �12ðT EC
c � �3T

E
l Þ: ð8Þ

Note that although the inequalities T EA
c > �4T

A
s in the fifth

rule and T EA
c < �4T

A
s in the sixth rule have conflict, UAV A

can still get a higher payoff for the action KVS when T EA
c <

�4T
A
s strongly holds due to the existence of rest part in the

defined payoffs b11, b21 and b31, as in (8).
As mentioned when defining the decision rules for UAV

A, the action combination where both UAVs change their
velocity directions is not efficient. In this case, we introduce
a positive constant � in the payoffs such that action com-
binations “CVR/CVR” and “DLA/CVR” will never be selected
by both players. For example, we define

b22 ¼ b21 � �; ð9Þ
which makes the inequality b22 � b21 always hold, indi-
cating a lower payoff received by UAV A if it selects action
CVR given Ego’s action as CVR. Similar definitions for the
rest of the payoffs are given as follows:

a22 ¼ a32 ¼ a12 � �; ð10Þ
b32 ¼ b31 � �: ð11Þ

We choose � ¼ 10 in this paper.
The next theorem shows the existence of NE.

Theorem 1. Consider a two-player game in Fig. 2 with three
and two possible actions for two players, respectively. Let the
game payoffs aij and bij with i 2 f2; 3g and j ¼ 2 be as
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in (10) and (11). Then, the game has at least one
pure-strategy NE (PSNE).

Proof. Note that, if (10) and (11) hold, we have
a12 � a22 ¼ a32, b21 � b22 and b31 � b32. Considering all
possible relationships of the rest of the payoffs, there exists
at least one PSNE for each case, as shown in Fig. 4.

4. Simulation Studies

The simulation studies are conducted to demonstrate the
efficiency of the proposed game-theoretic collision avoid-
ance approach for UAVs.

UAVs’ dynamics is captured using the kinematic model
derived from [36–38]. It is given as follows:

x
:
i ¼ vi cosð�i þ �iÞ cosð�iÞ;
y
:
i ¼ vi cosð�i þ �iÞ sinð�iÞ;
z
:
i ¼ vi sinð�i þ �iÞ;

�
:
i ¼

vi
dr

sinð�iÞ;

v
:
i ¼ ai;

�i ¼ tan�1 dr
dr þ df

tanð�iÞ
� �

;

ð12Þ

where i ¼ f1; . . . ;Ng denotes the UAVs treated as mass
points. xi, yi, and zi are the longitudinal, lateral, and vertical
positions of the mass center of UAV i along x-, y-, and z-axes,
respectively. vi and ai are the velocity and acceleration, re-
spectively. �i, �i, and �i are the heading angle, slip angle, and
steering angle, respectively. df and dr are distances from the
mass center of a UAV to its front and rear ends, respectively.

In the simulation, df ¼ dr ¼ 0:5 m is applied for all
UAVs. We consider three scenarios to illustrate the perfor-
mance of the proposed repeated normal-form game for UAV
collision avoidance.

4.1. Case 1

First, consider the air traffic scenario in Fig. 1 that Ego and
UAV A fly toward each other at the same altitude while UAV

D flies toward Ego at the same altitude but in the virtual
right lane of Ego. In addition, UAV C flies in the lower
horizontal virtual lane of Ego. To illustrate the decisions,
Ego, UAV A, UAV D, and UAV C are initially located at the
following ½x; y; z� coordinates: Ego ¼ ½200; 0:15; 2�, UAV A
¼ ½1000; 0:15; 2�, UAV D ¼ ½1300;�0:15; 2�, and UAV C
¼ ½150; 0:15; 1�. For clear demonstration, the values of the
positions are chosen to be modest.

In this case, Ego first keeps the same velocity direction
until it is unsafe. Then, Ego decides to DLA to avoid collision
with UAV A. This action is chosen because its small distance
from UAV D limits its action of changing direction to the
right for collision avoidance and its distance to UAV C
makes the descending action feasible, indicated by a higher
payoff of action DLA for Ego. In the beginning of simulation,
first Ego decides to keep velocity direction the same
according to payoff calculation. Figure 4 shows conditions
which are a11 ¼ 1956, a21 ¼ �451:15, a31 ¼ 294:4,
b11 ¼ 920:044, and b12 ¼ �920:044. As clearly seen that
a11 � a21, a11 � a31, b11 � b21 leads keep velocity direction
the same.

Then, when Ego decides to descend the lower altitude
according to payoffs, a11 ¼ 564, a21 ¼ �590:35,
a31 ¼ 572:800, b11 ¼ 780:84, and b12 ¼ �780:84. As
clearly seen from Fig. 4, a31 � a11, a31 � a21, b11 � b12
leads Ego to DLA.

In addition, the decisions are demonstrated in Fig. 5,
where the UAVs’ trajectories and UAVs’ positions at four
time instants are displayed. Figure 5(a) shows that Ego and
UAV A fly toward each other because the payoff associated
with KVS is higher and this means that there is no potential
collision between Ego and UAV A at this moment. Then,
Fig. 5(b) shows a risk for collision between Ego and UAV A.
Therefore, Ego decides to DLA according to the higher
payoffs of DLA. Figure 5(c) shows Ego reaches the lower
altitude where UAV C is. Lastly, Fig. 5(d) shows that it
completes the descending process and Ego and UAV C fly in
the same lower altitude and same direction.

Finally, the demonstration of case 1 is shown in the
following link [39].

4.2. Case 2

Now revisit the scenario in Fig. 1 with different initial
positions of the four UAVs. In this scenario, Ego and UAV A
fly toward each other at the same altitude and on the same
virtual lane. UAV D is on the virtual right lane of Ego and
flies opposite direction of Ego. In addition, there is UAV C on
the lower virtual lane of Ego and fly the same direction
as Ego. The initial positions of UAVs are given as follows:
Ego ¼ ½200; 0:15; 2�, UAV A ¼ ½1000; 0:15; 2�, UAV D
¼ ½2000;�0:15; 2�, and UAV C ¼ ½210; 0:15; 1�.

Fig. 4. PSNEs for all combinations of payoffs.
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Figure 6 shows the scenario where Ego first decides to
CVR to avoid collision with UAV A, and then decides to DLA
to avoid collision with UAV D. This is made possible with
the repeated game setup. At first, Ego conducts CVR for
collision avoidance with UAV A, considering that DLA may
lead to a collision with UAV C, indicated by a smaller payoff.
After being on the same virtual lane with UAV D, the new
game informs Ego to choose DLA among the two feasible
actions DLA and CVR, considering that a higher payoff can
be achieved for DLA with less energy consumption.

To begin with, Ego keeps velocity direction the same
with values of payoffs a11 ¼ 1560, a21 ¼ 344, a31 ¼ �301,
b11 ¼ 366, and b12 ¼ �366 that support the expressions
from Fig. 4, i.e. a11 � a21, a11 � a31, b11 � b12. Then, when
it is not safe for UAVs, Ego has to decide the actions to
choose next. In this case, Ego decides to change the velocity
direction to the right. In order to support the decisions, the
values of the payoffs at the decision instants are a11 ¼ 208,

a21 ¼ 208:8, a31 ¼ �30:6, b11 ¼ 230:8, and b12 ¼ �230:8.
This maneuver selection of Ego in the simulation has vali-
dated the PSNE, i.e. the action combination CVR/KVS under
the conditions a21 � a11, a21 � a31, b11 � b12, as shown in
Fig. 4. The last decision to DLA according to payoffs
a11 ¼ 305:58, a21 ¼ �887, a31 ¼ 2602, b11 ¼ 4439, and b12
¼ �4439 supports the theoretical result in Fig. 4 with ex-
pression a31 � a11, a31 � a21, b11 � b12.

Furthermore, when Ego chooses different maneuvers
with the energy term, each subfigure of Fig. 6 shows the
UAVs’ positions at different time instants. Figure 6(a)
presents Ego and UAV A flying toward each other at the
same altitude. Figure 6(b) presents Ego to change the ve-
locity direction to the right after playing the game with UAV
A. Figure 6(c) presents the Ego’s decision to DLA after
playing the game with UAV D and considering the energy in
the payoff. In Fig. 6(d), Ego completes the process of des-
cending to the lower altitude.

(a) (b)

(c) (d)

Fig. 5. Case 1 when Ego descends to a lower altitude. Each subfigure shows the UAVs’ positions at different time instants during the
descending process. (a) When Ego and UAV A fly toward each other at the same altitude. (b) When Ego descends to a lower altitude after
some time. (c) When Ego reaches the lower altitude where UAV C is. (d) When Ego and UAV C fly in the same lower altitude and same
direction.
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To conclude with the simulation of case 2, the following
link shows the demo of this case [40].

4.3. Case 3

Nowconsider amore complex air traffic scenariowith anextra
UAV Y flying at the same altitude as UAV C but within the
virtual lane directly below and opposite direction of UAV D.
This situation further verifies the effectiveness of our game
design. Contrary to the scenario in Fig. 6 where there are no
UAVs on the right-hand side of and below Ego, the existence of
UAVY canhave an impact onEgo’s decision. As shown inFig. 7,
Ego determines to change velocity direction to the right to
avoid collisionwith UAVD considering the influence of UAV Y.

To illustrate the decisions, Ego, UAV A, UAV D, UAV C,
and UAV Y are initially located at the following ½x; y; z�

coordinates: Ego ¼ ½200; 0:15; 2�, UAV A ¼ ½1000; 0:15; 2�,
UAV D ¼ ½2000;�0:15; 2�, UAV C ¼ ½210; 0:15; 1�, and UAV
Y ¼ ½40;�0:15; 1�.

To begin with the simulation, Ego first keeps the velocity
direction the same by using the payoff function with
the expression a11 � a21, a11 � a31, b11 � b12 in Fig. 4.
The values a11 ¼ 1560, a21 ¼ 344, a31 ¼ �301, b11 ¼ 366,
and b12 ¼ �366 taken from simulation clarify the theoret-
ical result. Second, Ego plays the game with UAV A and
decides to change the velocity direction to the right while
using the payoff function from Fig. 4 with the values
a11 ¼ 208, a21 ¼ 208:8, a31 ¼ �30:6, b11 ¼ 230:8, and
b12 ¼ �230:8. Lastly, Ego plays the game with UAV D and
decides to change velocity direction to the right again
because UAV Y restricts Ego from descending to a lower
altitude. The payoff values in the simulation are
a11 ¼ 305:5835, a21 ¼ 1303:8, a31 ¼ 45:41, b11 ¼ 1516:9,

(a) (b)

(c) (d)

Fig. 6. Case 2 when Ego plays repeated games with UAV A and UAV D where different maneuvers were selected for Ego due to the
consideration of energy in the game payoff. Each subfigure shows UAVs’ positions at different time instants in the repeated games with
UAV A and UAV D. (a) When Ego and UAV A fly toward each other at the same altitude. (b) When Ego changes its velocity direction to the
right after playing the game with UAV A. (c) When Ego plays the game with UAV D and Ego decides to descend the lower altitude
considering the energy in the payoff. (d) Ego completes the descending to the lower altitude.
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and b12 ¼ �1516:9, which numerically validates the theo-
retical result in Fig. 4 with the expression a21 � a11,
a21 � a31, b11 � b12.

Moreover, Fig. 7 displays UAVs’ positions at four different
time instants. From Fig. 7(a), note that Ego and UAV A fly
toward each other until it is not safe anymore. Then, Fig. 7(b)
demonstrates that Ego decides to change velocity direction to
the right. Figure 7(c) demonstrates that the first Ego keeps the
samevelocitydirection and thendecides to change thevelocity
direction to the right. Lastly, Fig. 7(d) demonstrates complet-
ing the process to change the velocity direction to the right.

To conclude with case 3, the following link shows a vi-
sualization of the UAV’s behavior in the repeated play [41].

5. Conclusions

By formulating the UAV collision avoidance problem into a
multi-agent game in the 3D airspace, we developed in this

paper a novel game-theoretic decision-making architecture
for UAVs. This game-theoretic collision avoidance solution
allows the safe and efficient operations of UAVs by equip-
ping UAVs with the capability to make avoidance decisions
in consideration of those of the neighboring UAVs. A re-
peated two-player normal-form game was proposed, and a
few elements, such as game players, the possible course of
actions, and the design of the payoff function, were
described in detail. More specifically, payoff functions are
designed to quantify the safety and efficiency of a certain set
of practicable activities for both Ego and its adversary. Ego
is allowed to quickly reconsider a taken decision according
to the most updated states by playing a repeated game,
which can guarantee its safety. Also, the decision is efficient
in the sense that the urgency of collision avoidance actions
is considered and that all game players taking collision
avoidance actions simultaneously is avoided. In addition,
energy efficiency takes effect when multiple actions are

(a) (b)

(c) (d)

Fig. 7. Case 3 when Ego plays the repeated games with UAV A and UAV D where Ego chooses the change the velocity direction to right
twice. Each subfigure shows UAVs’ positions at different time instants in the repeated games with UAV A and UAV D. (a) When Ego and
UAV A fly toward each other at the same altitude. (b) When Ego decides to change velocity direction to the right after playing the game
with UAV A. (c) When Ego decides to change velocity direction to the right again after playing the game with UAV D. (d) Ego completes the
changing of the velocity direction to the right.
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available for game players to avoid a potential collision. NE
in Theorem 1 was proved using the payoffs in the game
solution. Compared with existing optimization-based colli-
sion avoidance approaches, looking up the payoff table to
achieve a game solution is more computationally efficient.
The three simulation case studies validate the safety and
efficiency of the game-theoretic collision avoidance method.
Future research can involve extending our results to con-
sider more complicated scenarios with more UAVs as well
as with more possible actions. Having more players in the
game may increase the chances of collision and challenging
computational issues need to be addressed. To reduce
computation, the reduction of players and action spaces will
be considered. In addition, the weights used in the payoff
functions can be tuned using reinforcement learning or
other data-driven approaches, which require further
investigation.
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