
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 12, DECEMBER 2024 4453

PUF-Kyber: Design of a PUF-Based Kyber

Architecture Benchmarked on Diverse

ARM Processors
Saeed Aghapour , Kasra Ahmadi , Mila Anastasova, Graduate Student Member, IEEE,

Mehran Mozaffari Kermani , Senior Member, IEEE, and Reza Azarderakhsh , Member, IEEE

Abstract—It is well-studied that quantum computing breaks
the security of the current worldwide implemented public key
cryptosystems. This forces us toward post quantum cryptography
(PQC) whose security remains solid even against adversaries
having access to quantum computers. For this matter, national
institute of standards and technology (NIST) announced four
winners in 2022. Among them, CRYSTALS-Kyber which is the
only key encapsulation mechanism (KEM)/PKE algorithm, is
the aim of this article. In this article, through using physical
unclonable functions (PUFs) and true random number generators
(TRNGs), we improve the overall security of Kyber and provide
physical security to it. Our implementation results on ARMv7
and ARMv8 architectures, indicate significant speedup, compared
to the reference work. For example, for the CCA.KEM-KeyGen()
algorithm, we achieved roughly 26%, 13%, and 10% speedup
at security levels of 512, 768, and 1024 on ARMv7 implemen-
tation, and 25%, 12%, and 10% for ARMv8 implementation.
Comparing the implementation results of our design with the
reference work indicates that both the security and the system
performance are improved.

Index Terms—CRYSTALS-Kyber, physical unclonable func-
tions (PUFs), post quantum cryptography (PQC).

I. INTRODUCTION

A
LTHOUGH, as of today, the existence of a practi-

cal quantum computer is a matter of debate among

researchers, their advent in near future is unquestionable.

If eventually, a quantum computer emerges, current clas-

sic public key cryptography, will be broken in polynomial

time by the Shor’s algorithm [1]. Therefore, the need for

fully transitioning to new cryptosystems that are secure even

against quantum computing is eminent. In order to facilitate

the process of the transition to post quantum cryptography

(PQC), national institute of standards and technology (NIST)

Manuscript received 23 July 2023; revised 4 November 2023, 16 January
2024, and 19 April 2024; accepted 7 May 2024. Date of publication
10 May 2024; date of current version 22 November 2024. This work was
supported in part by the U.S. National Science Foundation (NSF) under
Grant SaTC-1801488. This article was recommended by Associate Editor
R. S. Chakraborty. (Corresponding author: Mehran Mozaffari Kermani.)

Saeed Aghapour, Kasra Ahmadi, and Mehran Mozaffari Kermani are
with the Department of Computer Science and Engineering, University
of South Florida, Tampa, FL 33620 USA (e-mail: aghapour@usf.edu;
ahmadi1@usf.edu; mehran2@usf.edu).

Mila Anastasova and Reza Azarderakhsh are with the Department of
Computer and Electrical Engineering and Computer Science, Florida Atlantic
University, Boca Raton, FL 33431 USA (e-mail: manastasova2017@fau.edu;
razarderakhsh@fau.edu).

Digital Object Identifier 10.1109/TCAD.2024.3399669

concluded a standardization competition in 2022 by announc-

ing four winner algorithms named CRYSTALS-Kyber [2],

CRYSTALS-Dilithium [3], Falcon [4], and SPHINCS+ [5].

Among these four algorithms, except CRYSTALS-Kyber

which is a key encapsulation mechanism (KEM), the other

three are signature schemes. Now, as the competition con-

cluded, further analysis, such as resistance against physical and

side-channel attacks and performance evaluation on different

platforms, needs to be scrutinized for these algorithms.

A. Related Work

The research is mainly divided into two divisions of side-

channel analysis and optimized implementation. Side-channel

analysis itself divides into two categories. The first is to

perform various side-channel attacks on Kyber and evaluate

its results while the second category is to implement Kyber

in a side-channel secure manner. In [6], a configurable and

side-channel resistant implementation of Kyber is introduced

which reported an increase of around 5% to the overhead of the

original design. In [7], the impact of electromagnetic chosen

ciphertext side-channel attack on Kyber is investigated. In [8],

a side-channel message recovery attack based on deep learning

on the Cortex-M4 implementation of Kyber is provided.

The Kyber resources are primarily dominated by the number

theoretic transform (NTT) and Keccak modules. Keccak oper-

ations are employed for hashing and sampling, whereas NTT

handles polynomial operations. In software implementation,

Keccak operations consume more than half of the total

clock cycles [9]. Additionally, as demonstrated in our prior

work [10], around 32% and 25% of the area is related to

NTT and Keccak modules over ASIC platform. Moreover,

in the FPGA implementation in [11], SHAKE-256 utilizes

15,704 LUTs and 7,592 FFs, while NTT component uses 1,107

LUTs, 1,407 FFs, 28 DSPs, and 3.5 BRAMs. Additionally, in

another FPGA implementation [12], hash and Keccak modules

consume 62% of the total resources. In summary, for software

implementations, Keccak accounts for more than half of the

total clock cycles. Nevertheless, in hardware implementations,

although Keccak operations can be accelerated, they still

occupy 25% of the total area [13].

Xing and Li [14] and Huang et al. [15] provided the

results of their pure hardware implementation of Kyber on the

AMD/Xilinx Artix-7 FPGA in detail. By utilizing hiding and

1937-4151 c© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Florida Atlantic University. Downloaded on May 01,2025 at 03:03:38 UTC from IEEE Xplore. Restrictions apply.

4454 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 12, DECEMBER 2024

masking techniques, the work in [16] presented a hardware

implementation of Kyber that is secure against simple and

differential power analysis side-channel attacks. Ni et al.

[17] presented a highly area-time efficient implementation of

Kyber on AMD/Xilinx Artix-7 and Zynq-UltraScale+ FPGA

families.

On the software implementation side, the work of [18]

implemented Kyber on ARM Cortex-M4. By improving the

NTT computations, they improved the overall speed of the

system by around 18%. In [19], a configurable ASIC processor

is introduced that can handle several lattice-based algorithms,

such as Kyber and Dilithium for a RISC-V architecture.

Furthermore, by aiming at ARMv8 architecture, Nguyen and

Gaj [20] provided an optimized implementation of Kyber,

NTRU, and Saber by using NEON instructions. The work

in [21] presented a new extension to the instruction set for

RISC-V finite field arithmetic which efficiently reduced code

and data size and improved the polynomial arithmetic by up

to 85%.

B. Major Contribution

While various physical unclonable function (PUF)-true

random number generator (TRNG)-based designs have been

introduced for different cryptographic objectives, their appli-

cation to the new standardized NIST schemes remains

unexplored. With Kyber being chosen as the sole KEM

scheme to replace the classical cryptography, a comprehensive

investigation of its various aspects becomes crucial prior to

practical implementation. One of the paramount considerations

for a cryptosystem in network environments, such as IoT,

WSN, and smart grids is its resilience against physical attacks.

Hence, our goal is to leverage PUF technology to enhance the

physical security of Kyber, which, as the only standardized

KEM scheme to date.

To the best of our knowledge, the only work that utilizes

PUF in PQC schemes is [22] which mainly focuses on the

management of public key infrastructure (PKI). To cover a

broad range of applications, we implemented our design on

ARMv7 and ARMv8 architectures and compared them with

the reference work. For ARMv7, we chose ARM Cortex-

M4 processor which is a low-power processor suited for

embedded systems. For ARMv8, which acts as a mediator

between Cortex-M4 and power-hungry platforms, such as

AMD64, we implemented our design on both ARM Cortex-

A72 and Apple M1 processors. Our result shows that not

only did we enhance the overall security of the scheme,

but also the total performance of the system improved

significantly.

Our contributions of this article are summarized as follows.

1) We provide physical security to the original Kyber

scheme, making it suitable for different applications like

IoT or smart grid networks, where the involved devices

are prone to be captured physically.

2) Because of using PUF, there is no need to store the seed

or keys, hence the storage burden is reduced.

3) This work also enhances the entropy of the secret keys

because of the true randomness of PUFs and TRNGs.

Algorithm 1 Kyber.CPA.PKE.KeyGen()

Output: Secret key sk ∈ B12.k.n/8

Output: Public key pk ∈ B12.k.n/8+32

1: d ← B32

2: (ρ, σ) := G(d)

3: N := 0

4: for i = 0 to k − 1 do

5: for j = 0 to k − 1 do

6: Â[i][j] := Parse(XOF(ρ, j, i))

7: end for

8: end for

9: for i = 0 to k − 1 do

10: s[i] := CBDη1
(PRF(σ, N))

11: N := N + 1

12: end for

13: for i = 0 to k − 1 do

14: e[i] := CBDη1
(PRF(σ, N))

15: N := N + 1

16: end for

17: ŝ := NTT(s)

18: ê := NTT(e)

19: t̂ := Â ◦ ŝ + ê

20: pk := (E12(t̂ mod+q) ‖ ρ)

21: sk := E12(ŝ mod+q)

22: return (pk, sk)

4) We implemented our designs on 2 architectures and pro-

vided a detailed comparison with the original designs.

Our results indicate a performance improvement in both

architectures especially at lower security levels.

II. PRELIMINARIES

In this section, we provide a brief description of the Kyber

algorithms and basics of PUFs and TRNGs.

A. CRYSTALS-Kyber

CRYSTALS-Kyber has been introduced in 2018 and been

revised and improved three times since its introduction, on

final version of which we focus [23]. Kyber has a PKE and

a KEM scheme. Algorithms 1 and two depict KeyGen() and

Enc() algorithms of the Kyber CPA.PKE scheme.

By taking advantage of the FO transform [24], Kyber

CCA.KEM scheme results directly from the Kyber CPA.PKE

scheme. A typical KEM scheme consists of three algorithms:

1) KeyGen(); 2) encapsulation(); and 3) decapsulation().

Furthermore, there are two variants of the Kyber scheme

named Kyber and Kyber 90s which are similar in the algo-

rithms and only differ in their functions instantiation. In the

original scheme, PRF is instantiated with SHAKE-256 or

AES-256, while in our case, it is instantiated by PUF and

TRNG. Please refer to [23] for further details, omitted here

for the sake of brevity.

B. True Random Number Generators

While pseudo-random number generators (PRNGs) use

a deterministic algorithm to create sequences of random

Authorized licensed use limited to: Florida Atlantic University. Downloaded on May 01,2025 at 03:03:38 UTC from IEEE Xplore. Restrictions apply.

AGHAPOUR et al.: PUF-KYBER: DESIGN OF A PUF-BASED KYBER ARCHITECTURE BENCHMARKED 4455

numbers, TRNGs use the unpredictable intrinsic features of

their environment (a physical process) to do that. In cryptogra-

phy, TRNGs are usually used in seed creation because of their

high entropy, and then the seed is used in a PRNG to obtain

a sequence of arbitrary length. There are various sources to

implement TRNGs in practice, such as thermal noise, clock

drift, photon arrival times, and the like [25]. Nonetheless,

the most practical and inexpensive methods for cryptography

purposes are based on delay, noise, phase jitter, and memory.

Moreover, TRNGs can be implemented through the FPGA

components.

C. Physical Unclonable Functions

A typical PUF is an object that takes advantage of the

unwanted inherent random variations that are created in its

manufacturing processes, to create unique values [26]. In

general, PUFs are modeled as deterministic one-way mathe-

matical functions that take a challenge as input and output a

random, unpredictable, and yet repeatable response. Similar

to TRNG, PUFs can also be instantiated by FPGA fabric

components without additional hardware. PUFs can be imple-

mented through various methods. However, the most important

families of PUFs in cryptography are delay and memory based

silicon PUFs. Furthermore, for evaluating PUFs’ performance,

several metrics, including reliability, uniqueness, uniformity,

unpredictability, and tamper-evident are considered [27].

Generally, physical attacks encompass a wide range of

threats, including memory attacks and the complete physical

capture of a device. PUFs are primarily effective at mitigating

memory-related physical attacks, as they do not rely on

memory, making it impossible for adversaries to probe for

sensitive information. Furthermore, most PUFs are tamper-

evident, meaning that any attempt to probe or modify the

device can disrupt the PUF’s original functionality, rendering

its responses unreliable. Consequently, adversaries cannot

extract the PUF from the device for separate use.

III. PROPOSED PUF-KYBER ARCHITECTURE

In this section, we target both of the Kyber schemes. In [23],

it is stated that the choice of a random generator is a local

decision and could be platform dependent. In original paper,

PRF is instantiated with SHAKE-256 and AES-256 for Kyber

and Kyber 90s, respectively. For our design, we instantiate

PRF with a PUF and a TRNG in the KeyGen() and Enc()

algorithms. We divide this section into three parts. In parts

A and B, we propose our new designs while in part C, we

discuss our gains and advantages over the original design.

A. New CPA.PKE Scheme

In Kyber CPA.PKE scheme, according to Algorithm 1, d

is chosen randomly (Step 1). Then, this d is hashed and the

result will be used as the seed of the PRF function alongside

a counter (Steps 10 and 11) to create the secret key. As a

result, the security of the secret key is directly dependent on

d. Similarly, in Algorithm 2, the value r is chosen randomly.

With these in mind, although the original paper did not

mention this specifically, to have high entropy and randomness

Algorithm 2 Kyber.CPA.PKE.Enc(pk, m, r)

Input Public key pk ∈ B12.k.n/8+32

Input Message m ∈ B32

Input Random coins r ∈ B32

Output: Ciphertext c ∈ Bdu.k.n/8+dv.n/8

1: N := 0

2: t̂ := D12(pk)

3: ρ := pk + 12.k.n/8

4: for i = 0 to k − 1 do

5: for j = 0 to k − 1 do

6: ÂT [i][j] := Parse(XOF(ρ, i, j))

7: end for

8: end for

9: for i = 0 to k − 1 do

10: r[i] := CBDη1
(PRF(r, N))

11: N := N + 1

12: end for

13: for i = 0 to k − 1 do

14: e1[i] := CBDη2
(PRF(r, N))

15: N := N + 1

16: end for

17: e2 := CBDη2
(PRF(r, N))

18: r̂ := NTT(r)

19: u := NTT−1(ÂT ◦ r̂) + e1

20: v := NTT−1(t̂T ◦ r̂) + e2 + DCq(D1(m), 1)

21: c1 := Edu(Cq(u, du))

22: c2 := Edv(Cq(v, dv))

23: return (c1 ‖ c2)

for d and r, these values should be created through a true

random generator source. Our idea is to extend the application

of the existing true random source to additional functionalities,

to prevent introducing excessive hardware complexity to the

design.

In our CPA.PKE.KeyGen() algorithm, we instantiate PRF

with a PUF to use the reproducibility feature of PUFs

and create the secret keys whenever needed without storing

them. The KeyGen() algorithm of our design is provided

in Algorithm 3. For CPA.PKE.Enc(), (see Algorithm 2), PRF

is used to create noise and error polynomials r, e1, and e2.

Unlike the secret keys, noise polynomials have one-time usage.

Therefore, the reproducibility feature of PUFs is not required

here. For this reason, in this algorithm, we instantiate PRF

with a TRNG whose role is to create one-time true random

noise polynomials with higher entropy in comparison with

PRNG. The new Enc() algorithm is proposed in Algorithm 4.

CPA.PKE.Dec() algorithm of our design remains unchanged.

B. New CCA.KEM Scheme

Similar to Kyber CPA.PKE, we assume that the Kyber

CCA.KEM also requires some sort of true randomness

in its design. The random variables in this scheme are

z, m, and d. For our new CCA.KEM.KeyGen() algorithm,

as it performs CPA.PKE.KeyGen(), by modifying the latter

as we did in Section III-A (Algorithm 3), we modify the

CCA.KEM.KeyGen() algorithm. However, a similar strategy

Authorized licensed use limited to: Florida Atlantic University. Downloaded on May 01,2025 at 03:03:38 UTC from IEEE Xplore. Restrictions apply.

4456 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 12, DECEMBER 2024

Algorithm 3 Our Kyber.CPA.PKE.KeyGen()

Output: Secret key sk ∈ B12.k.n/8

Output: Public key pk ∈ B12.k.n/8+32

1: ρ ← B32

2: for i = 0 to k − 1 do

3: for j = 0 to k − 1 do

4: Â[i][j] := Parse(XOF(ρ, j, i))

5: end for

6: ai := PUF(ρ)

7: ρ = ρ << 1

8: bi := PUF(ρ)

9: ρ = ρ << 1

10: s[i] := CBDη1
(ai)

11: e[i] := CBDη1
(bi)

12: end for

13: ŝ := NTT(s)

14: ê := NTT(e)

15: t̂ := Â ◦ ŝ + ê

16: pk := (E12(t̂ mod+q) ‖ ρ)

17: sk := E12(ŝ mod+q)

18: return (pk, sk)

Algorithm 4 Our Kyber.CPA.PKE.Enc(pk, m)

Input Public key pk ∈ B12.k.n/8+32

Input Message m ∈ B32

Output: Ciphertext c ∈ Bdu.k.n/8+dv.n/8

1: t̂ := D12(pk)

2: ρ := pk + 12.k.n/8

3: (a0 ‖ ... ‖ ak−1 ‖ b0 ‖ ... ‖ bk−1 ‖ c) ← TRNG(.)

4: for i = 0 to k − 1 do

5: for j = 0 to k − 1 do

6: ÂT [i][j] := Parse(XOF(ρ, i, j))

7: end for

8: r[i] := CBDη1
(ai)

9: e1[i] := CBDη2
(bi)

10: end for

11: e2 := CBDη2
(c)

12: r̂ := NTT(r)

13: u := NTT−1(ÂT ◦ r̂) + e1

14: v := NTT−1(t̂T ◦ r̂) + e2 + DCq(D1(m), 1)

15: c1 := Edu(Cq(u, du))

16: c2 := Edv(Cq(v, dv))

17: return (c1 ‖ c2)

is not applicable for encapsulation algorithm. With more

details, as the Kyber KEM scheme is created by applying

FO transform on its PKE version, there is one step in the

decapsulation algorithm to actively check the validity of the

received message. In that step, the receiver encrypts the

message himself and compare it with the received ciphertext

[23, Algorithm 9, Step 6]. This means that the receiver must

be able to successfully perform the CPA.PKE.Enc() algorithm

on the message. This process is straightforward in the original

paper as the PRF is instantiated with either SHAKE-256 or

AES-256 which can be done by knowing the seed. However, as

in our design, Enc() algorithm is not deterministic, the receiver

cannot compute the same result as the sender did. Thus, in our

CCA.KEM scheme, only the KeyGen() algorithm is changed.

C. Security Analysis

It is well established that the entropy of random sequences

that are created by a TRNG source is significantly higher than

those created by a PRNG source. Hence, the secret keys of

our design have higher entropy and security compared to the

original design. Besides that, in the original design, the value

d is hashed to create a secret seed value σ , which is then used

to create the secret key. This means that either the secret key

or the value d must be stored in the memory of the device. In

applications, where storage burden is not an issue while the

computational cost is, it is better to store the whole secret key

to eliminate the extra computation of the secret key from the

seed. On the other hand, in applications with limited storage

space, only the seed value d is stored and the secret key will

be computed from that every time it is needed. In either case,

if an adversary captures the users physically and access their

memories, they can obtain the secret value d and compute

σ, and eventually the secret key s. On the other hand, in our

design, the seed value ρ is not secret and is part of the public

key. Meaning that even by having ρ, the adversary cannot

compute the secret key without having the PUF. This provides

physical security for our design.

Similarly, based on Algorithm 2, the value r is responsible

for the creation of noise polynomials and eventually the

ciphertext. If r gets leaked, the corresponding message of

that communication can be obtained. However, in our design,

the randomness for the noise polynomials comes from a true

random generator source which has much higher entropy in

comparison with the original design. In summary, compared

to the reference work, our design provides the security advan-

tages of: 1) higher entropy for secret keys; 2) physical security;

and 3) more resistance against the side-channel attacks.

IV. IMPLEMENTATION BENCHMARKS AND COMPARISON

In this section, after choosing a suitable PUF and TRNG

for our design, we present the thorough details of our imple-

mentation and compare it with the original design. One of the

performance advantages of our work over the original paper

is omitting one hash function computation in the KeyGen()

algorithm. As seen in Algorithm 1, the seed value σ is created

by applying the hash function G on d, while because of the

intrinsic randomness of PUF, our design does not need this

step, leading to lower computational cost.

As mentioned earlier, in the original design, at least the

seed value d must be stored in each user’s memory as a secret

value. Conversely, in our design, by having the public value ρ,

secret key can be computed but only by the user possessing the

specific PUF. Now, since ρ is public, there is no need for users

to store it in their memories. Thus, our design provides more

flexibility in applications that have limited memory storage

capacity. Overall, our performance gains over the original

designs are summarized as follows.

1) Improving computational cost.

2) Eliminating the need for secure storage.

Authorized licensed use limited to: Florida Atlantic University. Downloaded on May 01,2025 at 03:03:38 UTC from IEEE Xplore. Restrictions apply.

AGHAPOUR et al.: PUF-KYBER: DESIGN OF A PUF-BASED KYBER ARCHITECTURE BENCHMARKED 4457

TABLE I
RANDOM BYTES NEEDED IN DIFFERENT SECURITY LEVELS OF KYBER

A. Choosing PUF and TRNG

In the original designs, the output of each PRF function

is given as an input of the CBDηi function which its role is

to output a polynomial deterministically from 64ηi bytes of

input. This yields that we require 64ηi random bytes for each

CBDηi call. Table I shows the exact number of required bytes

for each Kyber scheme. BPUF and BTRNG refer to the number

of needed bytes to be generated from the PUF and TRNG

modules, respectively.

Since, TRNG is used to create one time random numbers,

reliability is not a concern there, but it is vital to obtain

the same response from PUF in different environmental con-

ditions. Therefore, in order to be used in KeyGen, a PUF

must provide high reliability and robustness to environmental

changes. For these reasons, we chose [28] as our TRNG. This

work, proposes an SRAM-based TRNG, offering 100 MBps

throughput on Virtex-II Pro and utilizes 369 slices, while

passing all NIST statistical randomness tests with high scores.

It is worth noting to mention that, the choice of PUF is not

universal and could be based on the designated application.

However, several criteria must be met before selecting a

PUF. The most crucial one is that the PUF must offer 100%

reliability (error probability of less than 10−9). That being

said, while SRAM PUFs are relatively fast and easy to

implement, they require error correction codes (ECCs) to

achieve 100% reliability. Error correction methods involve

helper data, increasing not only storage overhead but also

introducing potential security issues. Additionally, the length

of the helper data is proportional to the number of reliable

bits required from the PUF. Consequently, ECC is suitable

for applications, where the PUF is employed for creating a

small seed. However, based on Table I, we require up to 1024

reliable bytes, demonstrating the impracticality of ECC in our

work. Therefore, our best choice is self-error correction PUFs

that do not necessitate error correction methods. To that end,

we selected [29], which introduces a PUF providing 100%

reliability without requiring ECCs.

This PUF is an arbiter PUF that removes any unstable bits in

predicted environmental conditions that would probably cause

unreliability issues later. As a result, the responses will be

100% reliable in the predicted environment. Furthermore, this

PUF exhibits almost 100% reliability (error probability of less

than 10−9), 52.43% uniformity, and 48.82% uniqueness in

tests conducted across a temperature range of 0–80 ◦C. The

implementation of this PUF on Spartan 6 FPGA utilizes only

104 LUTs and 38 FFs. From a performance perspective, to

generate 128 bits of a reliable key, it requires 8200 clock cycles

on Spartan 6 FPGA with a clock frequency of 100 MHz.

From security standpoint, when dealing with a PUF, its

security against the machine learning and side-channel attacks

becomes a concern. In machine learning-based attacks, adver-

saries gather numerous challenge-response pairs (CRPs) and

attempt to simulate or clone the PUF. The objective of this

attack is to create a function that replicates the same physical

functionality as those of the PUF without having the physical

access to it. However, as previously mentioned, this attack

necessitates access to a large number of CRPs. In applications

where PUF is utilized for authentication, this attack could

be applicable, as PUF responses are not kept secret. On the

contrary, in applications where PUF responses are confidential

and directly used as keys, collecting a high number of CRPs

is not feasible. Consequently, this attack is not practical in key

generation applications of PUFs [27].

Moreover, when addressing side-channel attacks on PUFs,

it is crucial to recognize that numerous attacks aim to exploit

sensitive information about the PUF response derived from the

helper data employed for error correction [30]. In our case,

the deployed PUF stands out as it eliminates the necessity for

both the helper data and ECC, rendering these specific attacks

and their corresponding countermeasures, inapplicable [31].

However, it is imperative to acknowledge that even though

the chosen PUF configuration does not rely on helper data

and ECC, there remains a potential for the deployed PUF to

inadvertently leak sensitive information if its implementation

is not executed with due diligence. Therefore, comprehensive

and ongoing studies are warranted, focusing on the inherent

security aspects of the deployed PUF itself.

B. Methodology and Implementation Result

To gain insight on the area overhead of our design, we need

to delve into the hardware specifics of the original research.

In our prior study [13], conducted on an Artix 7 FPGA,

we executed the Kyber-1024 algorithm using 16k LUTs, 6k

FFs, 5k slices, 12 DSPs, and 17 BRAMs. Consequently, the

additional area utilization amounts to 0.34% when integrating

PUF and 7.38% when incorporating TRNG. Moreover, in

practical scenarios, the original design already necessitates

a TRNG for seed generation, which has not been con-

sidered in most prior studies. Thus, the new PUF/TRNG

module will replace the existing one further reducing the area

overhead.

Furthermore, as PUF and TRNG run parallel to the software

entities, in theory the overall performance of the system will

be bound by the slowest part. Hence, by choosing a high

performance PUF and TRNG, we can obtain their results

by the time they are required by the software entities of

the algorithm without causing any delay, meaning the overall

performance will be limited by the software entities.

To benchmark the software entities of our design, we

implemented it on two different architectures of ARMv7 and

ARMv8. For ARMv7, we used STM32F407G discovery board

featuring the widely deployed Cortex-M4 processor and the

pqm4 library.1 The pqm4 library provides a framework for

1Available at https://github.com/mupq/pqm4.

Authorized licensed use limited to: Florida Atlantic University. Downloaded on May 01,2025 at 03:03:38 UTC from IEEE Xplore. Restrictions apply.

4458 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 12, DECEMBER 2024

TABLE II
ARM CORTEX-M4 IMPLEMENTATION RESULTS BASED ON NUMBER OF CLOCK CYCLES

performance evaluation of the emerging post quantum crypto-

graphic primitives, targeting the SMT32F407VG - discovery

board. Despite the effort of different cryptographic engineering

in optimizing the design of PQC schemes, a tradeoff between

the latency and stack usage is required. That is the reason for

the two different designs of the Kyber contained in the pqm4

library named stack and speed designs. Speed design ensures

minimal execution time while the stack design relaxes the

stack usage. The main difference between them is the creation

of the matrix, forming part of the public key value, and the

execution flow when operating on it.

Table II represents our benchmark on the ARM Cortex-M4

platform and compares it to the reference work in two different

frequencies and two different implementation designs. Cortex-

M series is well-suited for resource-constrained usage models

like IoT devices. Thanks to their low power consumption and

high efficiency, the Cortex-M4, for example, can effectively

manage even demanding tasks, such as PQC within its limited

and constrained resource environment. Moreover, regardless

of the application or available computational power, the

looming threat of quantum computing on classical cryptog-

raphy necessitates a transition to PQC for every device in

the future. Kyber, as the only standardized KEM scheme

up to this date, and notably the most efficient one in terms

of computational cost among the remaining NIST round

four candidates, is well-positioned to likely replace classi-

cal cryptography, particularly in resource-constrained devices.

Therefore, the results presented in Table II provide valuable

insights into how these devices perform in the real-world IoT

applications.

For performance evaluation on the high-end ARMv8 archi-

tecture devices, we used the widely deployed performance

application programming interface (PAPI) [32], which mea-

sures the elapsed time for an event. The library is used in [20]

and since it offers APIs on different target platforms, such

as the ARM Cortex-A72 and Apple M1 processors, it is

also adapted to our design. Besides the implementation on

Apple-M1, we also implemented our design on Raspberry Pi

4 which utilizes four 1.5 GHz ARM Cortex-A72 cores. To

provide a further comparison, we implemented a pure C code

Authorized licensed use limited to: Florida Atlantic University. Downloaded on May 01,2025 at 03:03:38 UTC from IEEE Xplore. Restrictions apply.

AGHAPOUR et al.: PUF-KYBER: DESIGN OF A PUF-BASED KYBER ARCHITECTURE BENCHMARKED 4459

TABLE III
ARMV8 IMPLEMENTATION RESULTS BASED ON NUMBER OF CLOCK CYCLES

and an optimized NEON instruction set C code from [20].

Table III provides the results of our implementation in ARMv8

architecture.

C. Comparison

In this section, we compare our work with related efforts,

considering hardware and software overhead. Table IV pro-

vides a concise overview, showcasing a fair comparison with

the current state-of-the-art. Specifically, the table highlights

the KeyGen() algorithm’s overhead in CCA-Kyber-1024. Our

design, as depicted in Table IV, brings a slight increase

in area overhead while simultaneously removing the need

for secure storage and enhancing security against memory

attacks.

D. Further Discussion

According to Tables II and III, we achieved the best

improvement at the 512 security level, regardless of the

architecture and platform, since the ratio of our improvement

to the total computational cost, is higher at lower secu-

rity levels. Thus, our design is most suitable in networks

with computational and memory restrictions that are prone

to physical attacks. Although our design offers several

advantages compared to the reference work, it also has its

drawbacks.

One notable disadvantage is the increase in overall com-

plexity of the design. Given this complexity, it becomes crucial

to implement the design with extreme care, as even a small

mistake could lead to the complete exposure of the secret

key, posing a significant security risk. Furthermore, despite the

fast and theoretically parallel operation of PUFs and TRNGs

alongside software components, inadequate synchronization

could lead to potential delays. To address this concern, system-

on-chip (SoC) boards are suggested. These boards facilitate the

hardware/software co-design in which the FPGA is used for

PUF and TRNG functionalities, while the algorithm execution

is handled by the microprocessor.

In addition to the security claims and proofs of a proposed

PUF, it is crucial to conduct more detailed analysis before

employing them in PQC applications. Quantum computing has

Authorized licensed use limited to: Florida Atlantic University. Downloaded on May 01,2025 at 03:03:38 UTC from IEEE Xplore. Restrictions apply.

4460 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 12, DECEMBER 2024

TABLE IV
COMPREHENSIVE COMPARISON WITH RELATED WORKS FOR KYBER-1024

the potential to significantly reduce the search space of PUFs

in machine learning-based attacks, rendering many existing

PUFs unsuitable for PQC. To tackle this issue, dedicated

research has been focused on proposing quantum-secure PUFs

[33], [34], but these designs still lack the performance effi-

ciency required for high-demand applications.

Furthermore, the proposed methodology could be adopted

to other schemes, including CRYSTALS-Dilithium. Dilithium,

being a lattice-based standard signature scheme from the same

team as Kyber, shares many characteristics with it. Particularly,

the KeyGen algorithms exhibit significant similarities between

the two schemes. Initial results from implementing our method

on Dilithium show promising improvements in terms of

performance obtaining up to 30% improvement in number of

clock cycles on the Cortex-M4 platform.

Overall, the primary goal of this article has been to

highlight the advantages of incorporating PUFs and TRNGs

in the PQC schemes. However, further analysis might be

needed to address the remaining pressing issues detailed

above.

V. CONCLUSION

As the NIST competition has been concluded, improving

and implementing a standardized PQC scheme has gained

more interest compared to proposing a new one. Hence, in

this article, we improved the security of CRYSTALS-Kyber,

the only PKE/KEM standardized scheme among the NIST

winners. We replaced the pseudorandomness of the original

scheme with true randomness through using the PUFs and

TRNGs. Our analysis indicates significant improvements in

performance and security over the reference work. From

security aspects, we provided physical security to the original

work. While from performance aspect, not only did we

eliminate the need for secure storage but also we reduced

the total computational cost of the scheme in software while

mildly increasing the area overhead.

To have a broad comparison, we implemented our design

in two architectures of ARMv7 and ARMv8 on three dif-

ferent processors of ARM Cortex-M4, ARM Cortex-A72,

and Apple-M1. Our implementation results conclude that our

best results were achieved at lower security levels mak-

ing our design suitable especially in applications with the

resource-constrained devices, (computational and memory)

with the possibility of physical attacks. However, despite the

security and performance advantages of our design it still

requires further analysis with more focus on side-channel

analysis.

REFERENCES

[1] P. W. Shor, “Algorithms for quantum computation: Discrete logarithms
and factoring,” in Proc. 35th Annu. Symp. Found. Comput. Sci., 1994,
pp. 124–134.

[2] J. Bos et al., “Crystals-Kyber: A CCA-secure module-lattice-based
KEM,” in Proc. IEEE Eur. Symp. Secur. Privacy (EuroS&P), London,
U.K., 2018, pp. 353–367.

[3] L. Ducas et al., “Crystals-Dilithium: A lattice-based digital signa-
ture scheme,” in Proc. IACR Trans. Hardw. Embed. Syst., 2018,
pp. 238–268.

[4] P. A. Fouque et al., “Falcon: Fast-Fourier lattice-based compact sig-
natures over NTRU,” Submiss. NIST, Post-Quantum Cryptogr., vol. 36,
no. 5, pp. 1–75, 2018.

[5] D. J. Bernstein, A. Hlsing, S. Klbl, R. Niederhagen, J. Rijneveld, and
P. Schwabe, “The SPHINCS +signature framework,” in Proc. ACM

SIGSAC Conf. Comput. Commun. Secur., 2019, pp. 2129–2146.

[6] A. Jati, N. Gupta, A. Chattopadhyay, and S. K. Sanadhya, “A config-
urable CRYSTALS-Kyber hardware implementation with side-channel
protection,” ACM Trans. Embed. Comput. Syst., vol. 23, no. 2, pp. 1–25,
2023.

Authorized licensed use limited to: Florida Atlantic University. Downloaded on May 01,2025 at 03:03:38 UTC from IEEE Xplore. Restrictions apply.

AGHAPOUR et al.: PUF-KYBER: DESIGN OF A PUF-BASED KYBER ARCHITECTURE BENCHMARKED 4461

[7] Z. Xu, O. Pemberton, S. Roy, D. Oswald, W. Yao, and Z. Zheng,
“Magnifying side-channel leakage of lattice-based cryptosystems with
chosen ciphertexts: The case study of Kyber,” IEEE Trans. Comp.,
vol. 71, no. 9, pp. 2163–2176, Sep. 2021.

[8] E. Dubrova, K. Ngo, and J. Grtner, “Breaking a fifth-order masked
implementation of CRYSTALS-Kyber by copy-paste,” Cryptol. ePrint
Arch., IACR, Bellevue, WA, USA, Rep. 2022/1713, 2022.

[9] M. J. Kannwischer, J. Rijneveld, P. Schwabe, and K. Stoffelen, “pqm4:
Testing and benchmarking NIST PQC on ARM Cortex-M4,” Cryptol.
ePrint Arch., IACR, Bellevue, WA, USA, Rep. 2019/844, 2019.

[10] M. Bisheh-Niasar, R. Azarderakhsh, and M. Mozaffari-Kermani, “A
monolithic hardware implementation of Kyber: Comparing apples to
apples in PQC candidates,” in Proc. Int. Conf. Cryptol. Inf. Secur., 2021,
pp. 108–126.

[11] S. Ricci, P. Jedlicka, P. Cbik, P. Dzurenda, L. Malina, and J. Hajny,
“Towards CRYSTALS-Kyber VHDL implementation,” in Proc. 18th Int.

Conf. Secur. Cryptogr. (SECRYPT), 2021, pp. 760–765.

[12] W. Guo, S. Li, and L. Kong, “An efficient implementation of KYBER,”
IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 69, no. 3, pp. 1562–1566,
Mar. 2022.

[13] M. Bisheh-Niasar, R. Azarderakhsh, and M. Mozaffari-Kermani,
“Instruction-set accelerated implementation of CRYSTALS-Kyber,”
IEEE Trans. Circuits Syst. I, vol. 68, no. 11, pp. 4648–4659,
Nov. 2021.

[14] Y. Xing and S. Li, “A compact hardware implementation of CCA-Secure
Key Exchange Mechanism CRYSTALS-Kyber on FPGA,” in Proc. IACR

Trans. Cryptogr. Hardw. Embed. Syst., 2021, pp. 328–356.

[15] Y. Huang, M. Huang, Z. Lei, and J. Wu, “A pure hardware implemen-
tation of CRYSTALS-Kyber PQC algorithm through resource reuse,”
IEICE Electron. Exp., vol. 17, no. 17, 2020, Art. no. 20200234.

[16] T. Kamucheka, A. Nelson, D. Andrews, and M. Huang, “A masked pure-
hardware implementation of Kyber cryptographic algorithm,” in Proc.

Int. Conf. Field-Program. Techn. (ICFPT), 2022, pp. 1–1.

[17] Z. Ni, A. Khalid, M. O’ Neill, and W. Liu, “Efficient pipelining
exploration for a high-performance CRYSTALS-Kyber accelerator,”
Cryptol. ePrint Arch., IACR, Bellevue, WA, USA, Rep. 2022/1093,
2022.

[18] L. Botros, M. J. Kannwischer, and P. Schwabe, “Memory-efficient high-
speed implementation of Kyber on Cortex-M4,” in Proc. 11th Int. Conf.

Cryptol., Rabat, Morocco, 2019, pp. 209–228.

[19] U. Banerjee, T. S. Ukyab, and A. P. Chandrakasan, “Sapphire: A
configurable crypto-processor for post-quantum lattice-based protocols,”
in Proc. IACR, 2019, p. 1140.

[20] D. T. Nguyen and K. Gaj, “Optimized software implementations
of CRYSTALS-Kyber, NTRU, and Saber using NEON-based special
instructions of ARMv8,” in Proc. NIST 3rd PQC Conf., 2021, pp. 1–24.

[21] E. Alkim, H. Evkan, N. Lahr, R. Niederhagen, and R. Petri, “ISA
extensions for finite field arithmetic accelerating Kyber and NewHope
on RISC-V,” in Proc. IACR, 2020, pp. 219–242.

[22] B. Cambou et al., “Post Quantum cryptographic keys generated with
physical unclonable functions,” Appl. Sci., vol. 11, no. 6, p. 2801,
2021.

[23] J. Bos et al. (CRYSTALS-Kyber, Gaithersburg, MD, USA). CRYSTALS-

Kyber Algorithm Specifications and Supporting Documentation, Version

3.02. 2021. Accessed: Apr. 10, 2024. [Online]. Available: https://pq-
crystals.org/kyber/data/kyber-specification-round3-20210804.pdf

[24] E. Fujisaki and T. Okamoto, “Secure integration of asymmetric and
symmetric encryption schemes,” inProc. Int. Cryptol. Conf., 1999,
pp. 537–554.

[25] M. Stipčević and C. K. Koc, “True random number generators,” in Open

Problems in Mathematics and Computational Science, C. K. Koc Ed.
Cham, Switzerland: Springer, 2014, pp. 275–315.

[26] Y. Gao, S. F. Al-Sarawi, and D. Abbott, “Physical unclonable functions,”
Nature Electron., vol. 3, pp. 81–91, Feb. 2020.

[27] N. N. Anandakumar, M. S. Hashmi, and M. Tehranipoor, “FPGA-
based physical unclonable functions: A comprehensive overview
of theory and architectures,” Integration, vol. 81, pp. 175–194,
Nov. 2021.

[28] D. Li, Z. Lu, X. Zou, and L. Zhenglin, “PUFKEY: A high-security
and high-throughput hardware true random number generator for sensor
networks,” Sensors, vol. 15, pp. 26251–26266, Oct. 2015.

[29] M. Kaveh, M. R. Mosavi, D. Martin, and S. Aghapour, “An efficient
authentication protocol for smart grid communication based on on-chip-
error-correcting physical unclonable function,” Sustain. Energy Grids

Netw., vol. 36, Dec. 2023, Art. no. 101228.

[30] A. Alipour et al., “Helper data masking for physically unclonable
function-based key generation algorithms,” IEEE Access, vol. 10,
pp. 40150–40164, 2022.

[31] M. Hiller and A. Gurur, “Hiding secrecy leakage in leaky helper data,”
in Proc. Int. Conf. Cryptogr. Hardw. Embed. Syst, 2017, pp. 601–619.

[32] D. Terpstra, H. Jagode, H. You, and J. Dongarra, “Collecting
performance data with PAPI-C,” in Proc. Tools High Perform. Comput.,
2010, pp. 157–173.

[33] Y. Wang, X. Xi, and M. Orshansky, “Lattice PUF: A strong phys-
ical unclonable function provably secure against machine learning
attacks,” in Proc. IEEE Int. Symp. Hardw. Orient. Secur. Trust, 2020,
pp. 273–283.

[34] X. Xi, G. Li, Y. Wang, and M. Orshansky, “A provably secure strong
PUF based on LWE: Construction and implementation,” IEEE Trans.

Comput., vol. 72, no. 2, pp. 346–359, Feb. 2023.
[35] P. Sanal, E. Karagoz, H. Seo, R. Azarderakhsh, and

M. Mozaffari-Kermani, “Kyber on ARM64: Compact implementations
of Kyber on 64-Bit ARM cortex-A processors,” in Proc. Int. Conf.

Secur. Privacy Commun. Syst., 2021, pp. 424–440.
[36] A. Abdulrahman, V. Hwang, M. J. Kannwischer, and A. Sprenkels,

“Faster Kyber and Dilithium on the cortex-m4,” in Proc. 20th Int. Conf.

Appl. Cryptogr. Netw. Secur., 2022, pp. 853–871.

Saeed Aghapour received the B.Sc. degree in elec-
trical engineering from Babol Noshirvani University
of Technology, Babol, Iran, in 2014, and the
M.Sc. degree in communication cryptology from
the Department of Electrical Engineering, Sharif
University of Technology, Tehran, Iran, in 2016.
He is currently pursuing the Ph.D. degree with the
Department of Computer Science and Engineering,
University of South Florida, Tampa, FL, USA.

His current research interests include applied
cryptography, post-quantum cryptography, hardware
security, and fault detection.

Kasra Ahmadi received the B.Sc. degree in
computer engineering from Isfahan University
of Technology, Isfahan, Iran, 2017, and the
M.Sc. degree in information technology from
the AmirKabir University of Technology, Tehran,
Iran, 2020. He is currently pursuing the Ph.D.
degree with the Computer Science and Engineering
Department, University of South Florida, Tampa,
FL, USA.

His current research interests include fault detec-
tion on elliptic curves, post-quantum cryptography,

optimized implementation of cryptographic schemes, side-channel attacks, and
applied cryptography.

Mila Anastasova (Graduate Student Member, IEEE)
received the bachelor’s degree in computer science
and engineering from the University Carlos III of
Madrid, Getafe, Spain, and the M.S. degree in com-
puter engineering from Florida Atlantic University,
Boca Raton, FL, USA, where she is currently pursu-
ing the Ph.D. degree in computer engineering with
the Institute for Sensing and Embedded Network
Systems Engineering.

Her research interests include emerging security
primitives for real-time IoT systems, classical and

post-quantum public key cryptography schemes, as well as their optimum
and SCA resistant implementation on low-end devices and incorporation into
network protocols.

Authorized licensed use limited to: Florida Atlantic University. Downloaded on May 01,2025 at 03:03:38 UTC from IEEE Xplore. Restrictions apply.

4462 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 12, DECEMBER 2024

Mehran Mozaffari Kermani (Senior Member,
IEEE) received the B.Sc. degree from the University
of Tehran, Tehran, Iran, in 2005, and the M.E.Sc.
and Ph.D. degrees from University of Western
Ontario, London, ON, Canada, in 2007 and 2011,
respectively.

He joined with the Advanced Micro Devices
as a Senior ASIC/layout Designer, integrating
sophisticated security/cryptographic capabilities into
accelerated processing. In 2012, he joined with
the Department of Electrical Engineering, Princeton

University, Princeton, NJ, USA, as an NSERC Postdoctoral Research Fellow.
From 2013 to 2017, he was a Faculty with Rochester Institute of Technology,
Rochester, NY, USA. In 2017, he was an Associate Professor with the
Department of Computer Science and Engineering, University of South
Florida, Tampa, FL, USA.

Dr. Kermani is the awardee for the USF 2021 Faculty Outstanding Research
Achievement Award and the USF College of Engineering’s 2018 Outstanding
Junior Research Achievement Award. He was a recipient of the prestigious
Natural Sciences and Engineering Research Council of Canada Post-Doctoral
Research Fellowship in 2011 and the Texas Instruments Faculty Award
(Douglas Harvey) in 2014. He is currently serving as an Associate Editor for
the IEEE TRANSACTIONS ON VLSI SYSTEMS, the ACM Transactions on

Embedded Computing Systems, and the IEEE TRANSACTIONS ON CIRCUITS

AND SYSTEMS. He has been the TPC member for HOST (Publications Chair),
CCS (Publications Chair), DAC, DATE, RFIDSec, LightSec, WAIFI, FDTC,
and DFT.

Reza Azarderakhsh (Member, IEEE) received the
Ph.D. degree in electrical and computer engineering
from Western University, London, ON, Canada. in
2011.

He is currently a Professor with Florida Atlantic
University, Boca Raton, FL, USA. He was a
recipient of the NSERC Postdoctoral Research
Fellowship working with the Center for Applied
Cryptographic Research and the Department of
Combinatorics and Optimization, University of
Waterloo, Waterloo, ON.

Prof. Azarderakhsh was the Guest Editor for IEEE TRANSACTIONS ON

DEPENDABLE AND SECURE COMPUTING for the Special Issue of Emerging
Embedded and Cyber Physical System Security Challenges and Innovations in
2016 and 2017. He was also the Guest Editor of IEEE/ACM Transactions on

Computational Biology and Bioinformatics for the Special Issue on Security.
He is serving as an Associate Editor for IEEE TRANSACTIONS ON CIRCUITS

AND SYSTEMS (TCAS-I).

Authorized licensed use limited to: Florida Atlantic University. Downloaded on May 01,2025 at 03:03:38 UTC from IEEE Xplore. Restrictions apply.

