IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 12, DECEMBER 2024

4453

PUF-Kyber: Design of a PUF-Based Kyber
Architecture Benchmarked on Diverse
ARM Processors

Saeed Aghapour™, Kasra Ahmadi
Mehran Mozaffari Kermani

Abstract—It is well-studied that quantum computing breaks
the security of the current worldwide implemented public key
cryptosystems. This forces us toward post quantum cryptography
(PQC) whose security remains solid even against adversaries
having access to quantum computers. For this matter, national
institute of standards and technology (NIST) announced four
winners in 2022. Among them, CRYSTALS-Kyber which is the
only key encapsulation mechanism (KEM)/PKE algorithm, is
the aim of this article. In this article, through using physical
unclonable functions (PUFs) and true random number generators
(TRNGS), we improve the overall security of Kyber and provide
physical security to it. Qur implementation results on ARMv7
and ARMYvS architectures, indicate significant speedup, compared
to the reference work. For example, for the CCA.KEM-KeyGen()
algorithm, we achieved roughly 26%, 13%, and 10% speedup
at security levels of 512, 768, and 1024 on ARMyv7 implemen-
tation, and 25%, 12%, and 10% for ARMvVS8 implementation.
Comparing the implementation results of our design with the
reference work indicates that both the security and the system
performance are improved.

Index Terms—CRYSTALS-Kyber, physical unclonable func-
tions (PUFs), post quantum cryptography (PQC).

I. INTRODUCTION

LTHOUGH, as of today, the existence of a practi-

cal quantum computer is a matter of debate among
researchers, their advent in near future is unquestionable.
If eventually, a quantum computer emerges, current clas-
sic public key cryptography, will be broken in polynomial
time by the Shor’s algorithm [1]. Therefore, the need for
fully transitioning to new cryptosystems that are secure even
against quantum computing is eminent. In order to facilitate
the process of the transition to post quantum cryptography
(PQC), national institute of standards and technology (NIST)

Manuscript received 23 July 2023; revised 4 November 2023, 16 January
2024, and 19 April 2024; accepted 7 May 2024. Date of publication
10 May 2024; date of current version 22 November 2024. This work was
supported in part by the U.S. National Science Foundation (NSF) under
Grant SaTC-1801488. This article was recommended by Associate Editor
R. S. Chakraborty. (Corresponding author: Mehran Mozaffari Kermani.)

Saeed Aghapour, Kasra Ahmadi, and Mehran Mozaffari Kermani are
with the Department of Computer Science and Engineering, University
of South Florida, Tampa, FL 33620 USA (e-mail: aghapour@usf.edu;
ahmadil @usf.edu; mehran2 @usf.edu).

Mila Anastasova and Reza Azarderakhsh are with the Department of
Computer and Electrical Engineering and Computer Science, Florida Atlantic
University, Boca Raton, FL 33431 USA (e-mail: manastasova2017 @fau.edu;
razarderakhsh @fau.edu).

Digital Object Identifier 10.1109/TCAD.2024.3399669

, Mila Anastasova, Graduate Student Member, IEEE,
, Senior Member, IEEE, and Reza Azarderakhsh™', Member, IEEE

concluded a standardization competition in 2022 by announc-
ing four winner algorithms named CRYSTALS-Kyber [2],
CRYSTALS-Dilithium [3], Falcon [4], and SPHINCS+ [5].
Among these four algorithms, except CRYSTALS-Kyber
which is a key encapsulation mechanism (KEM), the other
three are signature schemes. Now, as the competition con-
cluded, further analysis, such as resistance against physical and
side-channel attacks and performance evaluation on different
platforms, needs to be scrutinized for these algorithms.

A. Related Work

The research is mainly divided into two divisions of side-
channel analysis and optimized implementation. Side-channel
analysis itself divides into two categories. The first is to
perform various side-channel attacks on Kyber and evaluate
its results while the second category is to implement Kyber
in a side-channel secure manner. In [6], a configurable and
side-channel resistant implementation of Kyber is introduced
which reported an increase of around 5% to the overhead of the
original design. In [7], the impact of electromagnetic chosen
ciphertext side-channel attack on Kyber is investigated. In [8],
a side-channel message recovery attack based on deep learning
on the Cortex-M4 implementation of Kyber is provided.

The Kyber resources are primarily dominated by the number
theoretic transform (NTT) and Keccak modules. Keccak oper-
ations are employed for hashing and sampling, whereas NTT
handles polynomial operations. In software implementation,
Keccak operations consume more than half of the total
clock cycles [9]. Additionally, as demonstrated in our prior
work [10], around 32% and 25% of the area is related to
NTT and Keccak modules over ASIC platform. Moreover,
in the FPGA implementation in [11], SHAKE-256 utilizes
15,704 LUTs and 7,592 FFs, while NTT component uses 1,107
LUTs, 1,407 FFs, 28 DSPs, and 3.5 BRAMs. Additionally, in
another FPGA implementation [12], hash and Keccak modules
consume 62% of the total resources. In summary, for software
implementations, Keccak accounts for more than half of the
total clock cycles. Nevertheless, in hardware implementations,
although Keccak operations can be accelerated, they still
occupy 25% of the total area [13].

Xing and Li [14] and Huang et al. [15] provided the
results of their pure hardware implementation of Kyber on the
AMD/Xilinx Artix-7 FPGA in detail. By utilizing hiding and

1937-4151 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Florida Atlantic University. Downloaded on May 01,2025 at 03:03:38 UTC from IEEE Xplore. Restrictions apply.

4454

masking techniques, the work in [16] presented a hardware
implementation of Kyber that is secure against simple and
differential power analysis side-channel attacks. Ni et al.
[17] presented a highly area-time efficient implementation of
Kyber on AMD/Xilinx Artix-7 and Zyng-UltraScale+ FPGA
families.

On the software implementation side, the work of [18]
implemented Kyber on ARM Cortex-M4. By improving the
NTT computations, they improved the overall speed of the
system by around 18%. In [19], a configurable ASIC processor
is introduced that can handle several lattice-based algorithms,
such as Kyber and Dilithium for a RISC-V architecture.
Furthermore, by aiming at ARMv8 architecture, Nguyen and
Gaj [20] provided an optimized implementation of Kyber,
NTRU, and Saber by using NEON instructions. The work
in [21] presented a new extension to the instruction set for
RISC-V finite field arithmetic which efficiently reduced code
and data size and improved the polynomial arithmetic by up
to 85%.

B. Major Contribution

While various physical unclonable function (PUF)-true
random number generator (TRNG)-based designs have been
introduced for different cryptographic objectives, their appli-
cation to the new standardized NIST schemes remains
unexplored. With Kyber being chosen as the sole KEM
scheme to replace the classical cryptography, a comprehensive
investigation of its various aspects becomes crucial prior to
practical implementation. One of the paramount considerations
for a cryptosystem in network environments, such as IoT,
WSN, and smart grids is its resilience against physical attacks.
Hence, our goal is to leverage PUF technology to enhance the
physical security of Kyber, which, as the only standardized
KEM scheme to date.

To the best of our knowledge, the only work that utilizes
PUF in PQC schemes is [22] which mainly focuses on the
management of public key infrastructure (PKI). To cover a
broad range of applications, we implemented our design on
ARMv7 and ARMVS architectures and compared them with
the reference work. For ARMv7, we chose ARM Cortex-
M4 processor which is a low-power processor suited for
embedded systems. For ARMv8, which acts as a mediator
between Cortex-M4 and power-hungry platforms, such as
AMDO64, we implemented our design on both ARM Cortex-
A72 and Apple M1 processors. Our result shows that not
only did we enhance the overall security of the scheme,
but also the total performance of the system improved
significantly.

Our contributions of this article are summarized as follows.

1) We provide physical security to the original Kyber

scheme, making it suitable for different applications like
IoT or smart grid networks, where the involved devices
are prone to be captured physically.

2) Because of using PUF, there is no need to store the seed

or keys, hence the storage burden is reduced.

3) This work also enhances the entropy of the secret keys

because of the true randomness of PUFs and TRNGs.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 12, DECEMBER 2024

Algorithm 1 Kyber.CPA.PKE.KeyGen()

Qutput: Secret key sk € Bl12kn/8
Qutput: Public key pk € B12-kn/8+32

1: d < B*

2: (p,0) =G

3: N =0

4: fori=0tok— 1 do

50 forj=0tok—1do

6: A[illj]l = Parse(XOF(p, j, i)
7 end for

8: end for

9: fori=0tok—1do

_.
e

s[i] := CBD,, (PRF (o, N))
N =N+1

: end for
:fori=0tok—1do

eli] = CBD,, (PRF(c,N))
N =N+1

: end for

25 = NTT(s)

:e = NTT(e)

7 =AoS+e

: pk == (E1p(tmod*tq) || p)

: sk = E;p(§modtq)

: return (pk, sk)

B DN DD = = = = = = e e
W — S0 WN —

4) We implemented our designs on 2 architectures and pro-
vided a detailed comparison with the original designs.
Our results indicate a performance improvement in both
architectures especially at lower security levels.

II. PRELIMINARIES

In this section, we provide a brief description of the Kyber
algorithms and basics of PUFs and TRNGs.

A. CRYSTALS-Kyber

CRYSTALS-Kyber has been introduced in 2018 and been
revised and improved three times since its introduction, on
final version of which we focus [23]. Kyber has a PKE and
a KEM scheme. Algorithms 1 and two depict KeyGen() and
Enc() algorithms of the Kyber CPA.PKE scheme.

By taking advantage of the FO transform [24], Kyber
CCA.KEM scheme results directly from the Kyber CPA.PKE
scheme. A typical KEM scheme consists of three algorithms:
1) KeyGen(); 2) encapsulation(); and 3) decapsulation().
Furthermore, there are two variants of the Kyber scheme
named Kyber and Kyber 90s which are similar in the algo-
rithms and only differ in their functions instantiation. In the
original scheme, PRF is instantiated with SHAKE-256 or
AES-256, while in our case, it is instantiated by PUF and
TRNG. Please refer to [23] for further details, omitted here
for the sake of brevity.

B. True Random Number Generators

While pseudo-random number generators (PRNGs) use
a deterministic algorithm to create sequences of random

Authorized licensed use limited to: Florida Atlantic University. Downloaded on May 01,2025 at 03:03:38 UTC from IEEE Xplore. Restrictions apply.

AGHAPOUR et al.: PUF-KYBER: DESIGN OF A PUF-BASED KYBER ARCHITECTURE BENCHMARKED

numbers, TRNGs use the unpredictable intrinsic features of
their environment (a physical process) to do that. In cryptogra-
phy, TRNGs are usually used in seed creation because of their
high entropy, and then the seed is used in a PRNG to obtain
a sequence of arbitrary length. There are various sources to
implement TRNGs in practice, such as thermal noise, clock
drift, photon arrival times, and the like [25]. Nonetheless,
the most practical and inexpensive methods for cryptography
purposes are based on delay, noise, phase jitter, and memory.
Moreover, TRNGs can be implemented through the FPGA
components.

C. Physical Unclonable Functions

A typical PUF is an object that takes advantage of the
unwanted inherent random variations that are created in its
manufacturing processes, to create unique values [26]. In
general, PUFs are modeled as deterministic one-way mathe-
matical functions that take a challenge as input and output a
random, unpredictable, and yet repeatable response. Similar
to TRNG, PUFs can also be instantiated by FPGA fabric
components without additional hardware. PUFs can be imple-
mented through various methods. However, the most important
families of PUFs in cryptography are delay and memory based
silicon PUFs. Furthermore, for evaluating PUFs’ performance,
several metrics, including reliability, uniqueness, uniformity,
unpredictability, and tamper-evident are considered [27].

Generally, physical attacks encompass a wide range of
threats, including memory attacks and the complete physical
capture of a device. PUFs are primarily effective at mitigating
memory-related physical attacks, as they do not rely on
memory, making it impossible for adversaries to probe for
sensitive information. Furthermore, most PUFs are tamper-
evident, meaning that any attempt to probe or modify the
device can disrupt the PUF’s original functionality, rendering
its responses unreliable. Consequently, adversaries cannot
extract the PUF from the device for separate use.

III. PROPOSED PUF-KYBER ARCHITECTURE

In this section, we target both of the Kyber schemes. In [23],
it is stated that the choice of a random generator is a local
decision and could be platform dependent. In original paper,
PREF is instantiated with SHAKE-256 and AES-256 for Kyber
and Kyber 90s, respectively. For our design, we instantiate
PRF with a PUF and a TRNG in the KeyGen() and Enc()
algorithms. We divide this section into three parts. In parts
A and B, we propose our new designs while in part C, we
discuss our gains and advantages over the original design.

A. New CPA.PKE Scheme

In Kyber CPA.PKE scheme, according to Algorithm 1, d
is chosen randomly (Step 1). Then, this d is hashed and the
result will be used as the seed of the PRF function alongside
a counter (Steps 10 and 11) to create the secret key. As a
result, the security of the secret key is directly dependent on
d. Similarly, in Algorithm 2, the value r is chosen randomly.
With these in mind, although the original paper did not
mention this specifically, to have high entropy and randomness

4455

Algorithm 2 Kyber.CPA.PKE.Enc(pk, m, r)
pl12kn/8+32

Input Public key pk €
Input Message m € B>

Input Random coins r € B*?

Output: Ciphertext ¢ € Bhkn/8+dv.n/8

I. N =0

2. 1 = D12 (pk)

3: p =pk+12.k.n/8

4: fori=0tok—1do

5: for j=0tok—1do

6: AT[il[j] := Parse(XOF (p, i,}))
7: end for

8: end for

9: fori=0tok—1do

,_.
e

r[i] := CBDy, (PRF(r, N))
N =N+1

: end for
c:fori=0tok—1do

e1[i] := CBD,,(PRF(r,N))
N =N+1

: end for

. ey = CBD,,(PRF(r, N))

: 7 =NITT(r)

Tu = NTT_I(AT oF) + e

:v = NIT7 (@ o) + ez + DCy(D1(m), 1)
cep = Eg, (Cyu, dy))

sy = Eg (Cy(v, dy))

: return (¢ || ¢2)

[S I NG T NG i NS T S S e e e T e e e T

for d and r, these values should be created through a true
random generator source. Our idea is to extend the application
of the existing true random source to additional functionalities,
to prevent introducing excessive hardware complexity to the
design.

In our CPA.PKE.KeyGen() algorithm, we instantiate PRF
with a PUF to use the reproducibility feature of PUFs
and create the secret keys whenever needed without storing
them. The KeyGen() algorithm of our design is provided
in Algorithm 3. For CPA .PKE.Enc(), (see Algorithm 2), PRF
is used to create noise and error polynomials r, ey, andes.
Unlike the secret keys, noise polynomials have one-time usage.
Therefore, the reproducibility feature of PUFs is not required
here. For this reason, in this algorithm, we instantiate PRF
with a TRNG whose role is to create one-time true random
noise polynomials with higher entropy in comparison with
PRNG. The new Enc() algorithm is proposed in Algorithm 4.
CPA.PKE.Dec() algorithm of our design remains unchanged.

B. New CCA.KEM Scheme

Similar to Kyber CPA.PKE, we assume that the Kyber
CCA.KEM also requires some sort of true randomness
in its design. The random variables in this scheme are
z, m, and d. For our new CCA.KEM.KeyGen() algorithm,
as it performs CPA.PKE.KeyGen(), by modifying the latter
as we did in Section III-A (Algorithm 3), we modify the
CCA.KEM.KeyGen() algorithm. However, a similar strategy

Authorized licensed use limited to: Florida Atlantic University. Downloaded on May 01,2025 at 03:03:38 UTC from IEEE Xplore. Restrictions apply.

4456

Algorithm 3 Our Kyber.CPA.PKE.KeyGen()

Output: Secret key sk € B!2*n/8
Output: Public key pk € B'>kn/8+32
1: p < B*

2: fori=0tok—1do

3: for j=0tok—1do

4 A[illj] := Parse(XOF (p, j, i))
5: end for

6: a; = PUF(p)

7. p=p<<l1

8 b; = PUF(p)

9: p=p<<l
10: s[i] = CBDy,(a;)
11: e[i] = CBD,,(b)

12: end for

13: § = NTT(s)

14: ¢ = NTT(e)

15:7 =Aos+¢

16: pk = (E;p(tmod™q) || p)
17: sk = E;2(Smod™q)
18: return (pk, sk)

Algorithm 4 Our Kyber.CPA.PKE.Enc(pk, m)
pl2kn/8+32

Input Public key pk €
Input Message m € B3
Output: Ciphertext ¢ € Bdwkn/8+dv.n/8
1 = Dia(pk)
p =pk+12.k.n/8
(@ao I ... l ak—1 1 bo Il .. Il k=1 || ¢) <= TRNG(.)
fori=0tok—1do
for j=0tok—1do
AT[il[j] = Parse(XOF(p, i,)
end for
rli] := CBDy, (@)
e1[il := CBDy, (b))
: end for
i ey = CBDy,(c)
: 7 =NIT(r)
cu =NITYAT o) + ¢
v = NTT7 (G 0) + e2 + DCy(D1(m), 1)
Loy = B, (Cqlu,dy))
0 = Edv(cq(v, dy))
: return (¢ || ¢2)

PRNDIN B RN

— e e e e = = = \O
N NN WN = O

is not applicable for encapsulation algorithm. With more
details, as the Kyber KEM scheme is created by applying
FO transform on its PKE version, there is one step in the
decapsulation algorithm to actively check the validity of the
received message. In that step, the receiver encrypts the
message himself and compare it with the received ciphertext
[23, Algorithm 9, Step 6]. This means that the receiver must
be able to successfully perform the CPA.PKE.Enc() algorithm
on the message. This process is straightforward in the original
paper as the PRF is instantiated with either SHAKE-256 or
AES-256 which can be done by knowing the seed. However, as
in our design, Enc() algorithm is not deterministic, the receiver

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 12, DECEMBER 2024

cannot compute the same result as the sender did. Thus, in our
CCA.KEM scheme, only the KeyGen() algorithm is changed.

C. Security Analysis

It is well established that the entropy of random sequences
that are created by a TRNG source is significantly higher than
those created by a PRNG source. Hence, the secret keys of
our design have higher entropy and security compared to the
original design. Besides that, in the original design, the value
d is hashed to create a secret seed value o, which is then used
to create the secret key. This means that either the secret key
or the value d must be stored in the memory of the device. In
applications, where storage burden is not an issue while the
computational cost is, it is better to store the whole secret key
to eliminate the extra computation of the secret key from the
seed. On the other hand, in applications with limited storage
space, only the seed value d is stored and the secret key will
be computed from that every time it is needed. In either case,
if an adversary captures the users physically and access their
memories, they can obtain the secret value d and compute
o, and eventually the secret key s. On the other hand, in our
design, the seed value p is not secret and is part of the public
key. Meaning that even by having p, the adversary cannot
compute the secret key without having the PUF. This provides
physical security for our design.

Similarly, based on Algorithm 2, the value r is responsible
for the creation of noise polynomials and eventually the
ciphertext. If r gets leaked, the corresponding message of
that communication can be obtained. However, in our design,
the randomness for the noise polynomials comes from a true
random generator source which has much higher entropy in
comparison with the original design. In summary, compared
to the reference work, our design provides the security advan-
tages of: 1) higher entropy for secret keys; 2) physical security;
and 3) more resistance against the side-channel attacks.

IV. IMPLEMENTATION BENCHMARKS AND COMPARISON

In this section, after choosing a suitable PUF and TRNG
for our design, we present the thorough details of our imple-
mentation and compare it with the original design. One of the
performance advantages of our work over the original paper
is omitting one hash function computation in the KeyGen()
algorithm. As seen in Algorithm 1, the seed value o is created
by applying the hash function G on d, while because of the
intrinsic randomness of PUF, our design does not need this
step, leading to lower computational cost.

As mentioned earlier, in the original design, at least the
seed value d must be stored in each user’s memory as a secret
value. Conversely, in our design, by having the public value p,
secret key can be computed but only by the user possessing the
specific PUF. Now, since p is public, there is no need for users
to store it in their memories. Thus, our design provides more
flexibility in applications that have limited memory storage
capacity. Overall, our performance gains over the original
designs are summarized as follows.

1) Improving computational cost.

2) Eliminating the need for secure storage.

Authorized licensed use limited to: Florida Atlantic University. Downloaded on May 01,2025 at 03:03:38 UTC from IEEE Xplore. Restrictions apply.

AGHAPOUR et al.: PUF-KYBER: DESIGN OF A PUF-BASED KYBER ARCHITECTURE BENCHMARKED

TABLE I
RANDOM BYTES NEEDED IN DIFFERENT SECURITY LEVELS OF KYBER

k m mn2 Bpur Brrnc
Kyber-512 2 3 2 768 768
Kyber-768 3 2 2 768 896
Kyber-1024 4 2 2 1024 1152

A. Choosing PUF and TRNG

In the original designs, the output of each PRF function
is given as an input of the CBD,,, function which its role is
to output a polynomial deterministically from 64n; bytes of
input. This yields that we require 64n; random bytes for each
CBD,, call. Table I shows the exact number of required bytes
for each Kyber scheme. Bpyr and Btrng refer to the number
of needed bytes to be generated from the PUF and TRNG
modules, respectively.

Since, TRNG is used to create one time random numbers,
reliability is not a concern there, but it is vital to obtain
the same response from PUF in different environmental con-
ditions. Therefore, in order to be used in KeyGen, a PUF
must provide high reliability and robustness to environmental
changes. For these reasons, we chose [28] as our TRNG. This
work, proposes an SRAM-based TRNG, offering 100 MBps
throughput on Virtex-II Pro and utilizes 369 slices, while
passing all NIST statistical randomness tests with high scores.

It is worth noting to mention that, the choice of PUF is not
universal and could be based on the designated application.
However, several criteria must be met before selecting a
PUF. The most crucial one is that the PUF must offer 100%
reliability (error probability of less than 10~°). That being
said, while SRAM PUFs are relatively fast and easy to
implement, they require error correction codes (ECCs) to
achieve 100% reliability. Error correction methods involve
helper data, increasing not only storage overhead but also
introducing potential security issues. Additionally, the length
of the helper data is proportional to the number of reliable
bits required from the PUF. Consequently, ECC is suitable
for applications, where the PUF is employed for creating a
small seed. However, based on Table I, we require up to 1024
reliable bytes, demonstrating the impracticality of ECC in our
work. Therefore, our best choice is self-error correction PUFs
that do not necessitate error correction methods. To that end,
we selected [29], which introduces a PUF providing 100%
reliability without requiring ECCs.

This PUF is an arbiter PUF that removes any unstable bits in
predicted environmental conditions that would probably cause
unreliability issues later. As a result, the responses will be
100% reliable in the predicted environment. Furthermore, this
PUF exhibits almost 100% reliability (error probability of less
than 10_9), 52.43% uniformity, and 48.82% uniqueness in
tests conducted across a temperature range of 0-80 °C. The
implementation of this PUF on Spartan 6 FPGA utilizes only
104 LUTs and 38 FFs. From a performance perspective, to
generate 128 bits of a reliable key, it requires 8200 clock cycles
on Spartan 6 FPGA with a clock frequency of 100 MHz.

4457

From security standpoint, when dealing with a PUF, its
security against the machine learning and side-channel attacks
becomes a concern. In machine learning-based attacks, adver-
saries gather numerous challenge-response pairs (CRPs) and
attempt to simulate or clone the PUF. The objective of this
attack is to create a function that replicates the same physical
functionality as those of the PUF without having the physical
access to it. However, as previously mentioned, this attack
necessitates access to a large number of CRPs. In applications
where PUF is utilized for authentication, this attack could
be applicable, as PUF responses are not kept secret. On the
contrary, in applications where PUF responses are confidential
and directly used as keys, collecting a high number of CRPs
is not feasible. Consequently, this attack is not practical in key
generation applications of PUFs [27].

Moreover, when addressing side-channel attacks on PUFs,
it is crucial to recognize that numerous attacks aim to exploit
sensitive information about the PUF response derived from the
helper data employed for error correction [30]. In our case,
the deployed PUF stands out as it eliminates the necessity for
both the helper data and ECC, rendering these specific attacks
and their corresponding countermeasures, inapplicable [31].
However, it is imperative to acknowledge that even though
the chosen PUF configuration does not rely on helper data
and ECC, there remains a potential for the deployed PUF to
inadvertently leak sensitive information if its implementation
is not executed with due diligence. Therefore, comprehensive
and ongoing studies are warranted, focusing on the inherent
security aspects of the deployed PUF itself.

B. Methodology and Implementation Result

To gain insight on the area overhead of our design, we need
to delve into the hardware specifics of the original research.
In our prior study [13], conducted on an Artix 7 FPGA,
we executed the Kyber-1024 algorithm using 16k LUTSs, 6k
FFs, 5k slices, 12 DSPs, and 17 BRAMs. Consequently, the
additional area utilization amounts to 0.34% when integrating
PUF and 7.38% when incorporating TRNG. Moreover, in
practical scenarios, the original design already necessitates
a TRNG for seed generation, which has not been con-
sidered in most prior studies. Thus, the new PUF/TRNG
module will replace the existing one further reducing the area
overhead.

Furthermore, as PUF and TRNG run parallel to the software
entities, in theory the overall performance of the system will
be bound by the slowest part. Hence, by choosing a high
performance PUF and TRNG, we can obtain their results
by the time they are required by the software entities of
the algorithm without causing any delay, meaning the overall
performance will be limited by the software entities.

To benchmark the software entities of our design, we
implemented it on two different architectures of ARMv7 and
ARMYVS. For ARMv7, we used STM32F407G discovery board
featuring the widely deployed Cortex-M4 processor and the
pqm4 library.! The pgm4 library provides a framework for

! Available at https://github.com/mupq/pqm4.

Authorized licensed use limited to: Florida Atlantic University. Downloaded on May 01,2025 at 03:03:38 UTC from IEEE Xplore. Restrictions apply.

4458

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 12, DECEMBER 2024

TABLE II
ARM CORTEX-M4 IMPLEMENTATION RESULTS BASED ON NUMBER OF CLOCK CYCLES

Speed Implementation

Stack Implementation

Frequency Scheme Security Level CPAPKE CCA KEM CPAPKE CCAKEM
KeyGen() Enc() KeyGen() KeyGen() Enc() KeyGen()

Kyber-512 241,759 247,531 319,813 241,539 249,257 319,560

This work Kyber-768 496,585 501,486 612,436 498,018 519,086 613,810
Kyber-1024 847,964 851,421 1,003,037 852,192 859,755 1,019,193

Kyber-512 356,125 287,307 433,708 355,938 339,770 433,890

Kyber Kyber-768 588,632 594,256 704,423 602,938 611,853 706,866
Kyber-1024 967,366 970,696 1,122,664 971,140 979,023 1,126,112

Kyber-512 (32.1%) (13.8%) (26.2%) (32.1%) (26.6%) (26.3%)

Speedup’ Kyber-768 (15.6%) (15.6%) (13.1%) (17.4%) (15.1%) (13.1%)

24 Mhz Kyber-1024 (12.3%) (12.2%) (10.6%) (12.2%) (12.1%) (9.4%)

Kyber-512 214,004 219,354 248,918 214,644 222,348 249,207

This work (90s) Kyber-768 434,963 439,432 479,740 437,388 445,359 487,728

Kyber-1024 734,833 732,800 798,576 744,282 752,395 809,528

Kyber-512 334,695 280,492 365,220 335,775 339,227 370,112

Kyber (90s) Kyber-768 566,047 582,045 607,037 568,659 587,970 619,049

Kyber-1024 902,444 916,159 976,099 917,466 935,746 982,636

Kyber-512 (36.1%) (21.7%) (31.8%) (36.1%) (34.4%) (32.6%)

Speedup (90s)! Kyber-768 (23.1%) (24.5%) (20.9%) (23.1%) (24.2%) (21.2%)

Kyber-1024 (18.5%) (20.1%) (18.1%) (18.8%) (19.5%) (17.6%)

Kyber-512 264,539 266,833 349,293 264,709 269,589 349,570

This work Kyber-768 540,268 541,679 666,221 543,062 547,629 669,240
Kyber-1024 920,072 932,513 1,089,159 926,792 928,603 1,093,898

Kyber-512 388,422 310,179 473,562 389,104 368,273 473,810

Kyber Kyber-768 641,447 642,896 767,758 643,760 648,820 769,083
Kyber-1024 1,064,821 1,062,554 1,218,593 1,055,863 1,058,650 1,223,259

Kyber-512 (31.8%) (13.9%) (26.2%) (31.9%) (26.7%) (26.2%)

Speedup’ Kyber-768 (15.7%) (15.7%) (13.2%) (15.6%) (15.5%) (12.9%)

168 Mhz Kyber-1024 (13.5%) (12.2%) (10.6%) (12.2%) (12.2%) (10.5%)

Kyber-512 260,555 263,438 300,758 261,649 266,649 300,948

This work (90s) Kyber-768 532,248 533,107 587,093 537,585 542,102 592,124

Kyber-1024 906,978 904,148 980,638 917,580 912,584 988,457

Kyber-512 406,746 337,906 446,144 407,966 408,332 447,014

Kyber (90s) Kyber-768 693,217 706,953 748,234 698,627 715,921 748,067
Kyber-1024 1,117,672 1,127,613 1,191,304 1,121,077 1,136,063 1,199,222

Kyber-512 (35.9%) (22.1%) (32.5%) (35.8%) (34.6%) (32.6%)

Speedup (90s)! Kyber-768 (23.2%) (24.5%) (21.5%) (23.1%) (24.2%) (20.8%)

Kyber-1024 (18.8%) (19.8%) (17.6%) (18.1%) (19.6%) (17.5%)

Kyber —This work

Kyber (90s)— This work (90s) % 100

LSpeedup = X 100 and Speedup (90s) =

Kyber

performance evaluation of the emerging post quantum crypto-
graphic primitives, targeting the SMT32F407VG - discovery
board. Despite the effort of different cryptographic engineering
in optimizing the design of PQC schemes, a tradeoff between
the latency and stack usage is required. That is the reason for
the two different designs of the Kyber contained in the pqm4
library named stack and speed designs. Speed design ensures
minimal execution time while the stack design relaxes the
stack usage. The main difference between them is the creation
of the matrix, forming part of the public key value, and the
execution flow when operating on it.

Table II represents our benchmark on the ARM Cortex-M4
platform and compares it to the reference work in two different
frequencies and two different implementation designs. Cortex-
M series is well-suited for resource-constrained usage models
like IoT devices. Thanks to their low power consumption and
high efficiency, the Cortex-M4, for example, can effectively
manage even demanding tasks, such as PQC within its limited
and constrained resource environment. Moreover, regardless
of the application or available computational power, the

Kyber (90s)

looming threat of quantum computing on classical cryptog-
raphy necessitates a transition to PQC for every device in
the future. Kyber, as the only standardized KEM scheme
up to this date, and notably the most efficient one in terms
of computational cost among the remaining NIST round
four candidates, is well-positioned to likely replace classi-
cal cryptography, particularly in resource-constrained devices.
Therefore, the results presented in Table II provide valuable
insights into how these devices perform in the real-world IoT
applications.

For performance evaluation on the high-end ARMvS archi-
tecture devices, we used the widely deployed performance
application programming interface (PAPI) [32], which mea-
sures the elapsed time for an event. The library is used in [20]
and since it offers APIs on different target platforms, such
as the ARM Cortex-A72 and Apple M1 processors, it is
also adapted to our design. Besides the implementation on
Apple-M1, we also implemented our design on Raspberry Pi
4 which utilizes four 1.5 GHz ARM Cortex-A72 cores. To
provide a further comparison, we implemented a pure C code

Authorized licensed use limited to: Florida Atlantic University. Downloaded on May 01,2025 at 03:03:38 UTC from IEEE Xplore. Restrictions apply.

AGHAPOUR et al.: PUF-KYBER: DESIGN OF A PUF-BASED KYBER ARCHITECTURE BENCHMARKED

4459

TABLE III
ARMVSE IMPLEMENTATION RESULTS BASED ON NUMBER OF CLOCK CYCLES

Pure C NEON Instructions
Platform Scheme Security Level CPAPKE CCA KEM CPAPKE CCA KEM
KeyGen() Enc() KeyGen() KeyGen() Enc() KeyGen()

Kyber-512 109,331 144,699 120,223 42,834 52,851 53,604

This work Kyber-768 207,350 248,890 222,238 84,592 98,475 100,423

Kyber-1024 322,459 367,675 343,044 145,566 157,792 166,250

Kyber-512 126,354 157,348 137,286 60,680 67,245 71,410

Kyber Kyber-768 223,107 263,740 239,033 98,528 112,951 114,415

Kyber-1024 344,183 387,816 364,835 163,623 176,452 184,264

Kyber-512 (13.4%) (8.1%) (12.4%) (29.4%) (21.4%) (24.9%)

Speedup Kyber-768 (7.1%) (5.6%) (7.1%) (14.1%) (12.8%) (12.2%)

Cortex-AT2 Kyber-1024 (6.3%) (5.2%) (5.9%) (11.1%) (10.5%) (9.7%)
Kyber-512 181,494 222,820 195,097
This work (90s) Kyber-768 376,332 424,132 395,461
Kyber-1024 628,563 682,470 654,490
Kyber-512 230,763 265,434 244,423

Kyber (90s) Kyber-768 433,840 480,697 454,377 N/A®

Kyber-1024 706,423 757,977 732,872
Kyber-512 (21.3%) (16.1%) (20.1%)
Speedup (90s) Kyber-768 (13.2%) (11.7%) (12.9%)
Kyber-1024 (11.1%) (9.9%) (10.7%)

Kyber-512 70,246 96,195 71,775 12,122 14,126 17,281

This work Kyber-768 134,746 162,844 145,867 24,569 27,331 31,730

Kyber-1024 216,967 243,097 230,482 40,833 43,633 50,003

Kyber-512 81,559 104,489 89,191 17,709 18,857 22,867

Kyber Kyber-768 145,993 172,730 157,122 29,083 32,083 36,254

Kyber-1024 231,471 256,230 245,031 46,510 49,577 55,682

Kyber-512 (13.8%) (7.9%) (12.8%) (31.5%) (25.0%) (24.4%)

Speedup Kyber-768 (7.7%) (5.7%) (7.1%) (15.5%) (14.8%) (12.4%)

Apple-M1 Kyber-1024 (6.2%) (5.1%) (5.9%) (12.2%) (11.9%) (10.2%)
Kyber-512 86,248 101,251 94,302
This work (90s) Kyber-768 181,638 194,866 193,218
Kyber-1024 307,482 316,423 322,747
Kyber-512 111,431 123,024 119,491

Kyber (90s) Kyber-768 210,607 223,076 222,396 N/A!

Kyber-1024 346,102 353,956 361,065
Kyber-512 (22.6%) (17.6%) (21.0%)
Speedup (90s) Kyber-768 (13.7%) (12.6%) (13.1%)
Kyber-1024 (11.1%) (10.6%) (10.6%)

LThere is no NEON instruction set optimized codes for 90s variant of Kyber in [20].

and an optimized NEON instruction set C code from [20].
Table III provides the results of our implementation in ARMv8
architecture.

C. Comparison

In this section, we compare our work with related efforts,
considering hardware and software overhead. Table IV pro-
vides a concise overview, showcasing a fair comparison with
the current state-of-the-art. Specifically, the table highlights
the KeyGen() algorithm’s overhead in CCA-Kyber-1024. Our
design, as depicted in Table IV, brings a slight increase
in area overhead while simultaneously removing the need
for secure storage and enhancing security against memory
attacks.

D. Further Discussion

According to Tables I and III, we achieved the best
improvement at the 512 security level, regardless of the
architecture and platform, since the ratio of our improvement

to the total computational cost, is higher at lower secu-
rity levels. Thus, our design is most suitable in networks
with computational and memory restrictions that are prone
to physical attacks. Although our design offers several
advantages compared to the reference work, it also has its
drawbacks.

One notable disadvantage is the increase in overall com-
plexity of the design. Given this complexity, it becomes crucial
to implement the design with extreme care, as even a small
mistake could lead to the complete exposure of the secret
key, posing a significant security risk. Furthermore, despite the
fast and theoretically parallel operation of PUFs and TRNGs
alongside software components, inadequate synchronization
could lead to potential delays. To address this concern, system-
on-chip (SoC) boards are suggested. These boards facilitate the
hardware/software co-design in which the FPGA is used for
PUF and TRNG functionalities, while the algorithm execution
is handled by the microprocessor.

In addition to the security claims and proofs of a proposed
PUF, it is crucial to conduct more detailed analysis before
employing them in PQC applications. Quantum computing has

Authorized licensed use limited to: Florida Atlantic University. Downloaded on May 01,2025 at 03:03:38 UTC from IEEE Xplore. Restrictions apply.

4460 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 12, DECEMBER 2024

TABLE IV
COMPREHENSIVE COMPARISON WITH RELATED WORKS FOR KYBER-1024

Overhead
Method Features HW SW

Platform Freq (MHz) Area CC! Secure Storage Platform cct

[12] HW —_— Artix-7 159 7.9K LUTs- 3.9K FFs 7.8 32 MB —_— E—

. Artix-7 250 5.2K LUTs- 2.4K FFs 1148
(61 HW SCAResistance iy 7 258 71K LUTs- 3.7K FEs 438 32 MB

[14] HW —_— Artix-7 161 7.4K LUTs- 4.6K FFs 94 32 MB —_—
[13] HW e Artix-7 112 16K LUTs- 6K FFs 10 32 MB e —_—
[21] HW —_— Artix-7 59 1.8K LUTs- 1.6K FFs 2203 32 MB —_— —_—
Cortex-A72 (NEON) 184.2

(201 SW 32 MB Apple-M1 (NEON) 55.6

[35] SW —_— —_— —_— —_— 32 MB Cortex-A75 228
[36] SW —_— —_— —_— —_— 32 MB Cortex-M4 1138
Cortex-M4 1122.6

[23] SW —_— —_— —_— —_— —_— 32 MB Cortex-A72 364.8

Apple-M1 245

Cortex-M4 1003

Memory Attacks Cortex-A72 343

Ours HW/SW y) Spartan 6 100 + 104 LUTs- 38 FFs + 520 0 Apple-M1 230.4
Resistance Cortex-A72 (NEON) 166.2

Apple-M1 (NEON) 50

I Number of clock cycles for KeyGen algorithm of CCA-Kyber-1024 based on kilo cycles.

the potential to significantly reduce the search space of PUFs
in machine learning-based attacks, rendering many existing
PUFs unsuitable for PQC. To tackle this issue, dedicated
research has been focused on proposing quantum-secure PUFs
[33], [34], but these designs still lack the performance effi-
ciency required for high-demand applications.

Furthermore, the proposed methodology could be adopted
to other schemes, including CRYSTALS-Dilithium. Dilithium,
being a lattice-based standard signature scheme from the same
team as Kyber, shares many characteristics with it. Particularly,
the KeyGen algorithms exhibit significant similarities between
the two schemes. Initial results from implementing our method
on Dilithium show promising improvements in terms of
performance obtaining up to 30% improvement in number of
clock cycles on the Cortex-M4 platform.

Overall, the primary goal of this article has been to
highlight the advantages of incorporating PUFs and TRNGs
in the PQC schemes. However, further analysis might be
needed to address the remaining pressing issues detailed
above.

V. CONCLUSION

As the NIST competition has been concluded, improving
and implementing a standardized PQC scheme has gained
more interest compared to proposing a new one. Hence, in
this article, we improved the security of CRYSTALS-Kyber,
the only PKE/KEM standardized scheme among the NIST
winners. We replaced the pseudorandomness of the original
scheme with true randomness through using the PUFs and
TRNGs. Our analysis indicates significant improvements in
performance and security over the reference work. From
security aspects, we provided physical security to the original

work. While from performance aspect, not only did we
eliminate the need for secure storage but also we reduced
the total computational cost of the scheme in software while
mildly increasing the area overhead.

To have a broad comparison, we implemented our design
in two architectures of ARMv7 and ARMvS8 on three dif-
ferent processors of ARM Cortex-M4, ARM Cortex-A72,
and Apple-M1. Our implementation results conclude that our
best results were achieved at lower security levels mak-
ing our design suitable especially in applications with the
resource-constrained devices, (computational and memory)
with the possibility of physical attacks. However, despite the
security and performance advantages of our design it still
requires further analysis with more focus on side-channel
analysis.

REFERENCES

[1]1 P. W. Shor, “Algorithms for quantum computation: Discrete logarithms
and factoring,” in Proc. 35th Annu. Symp. Found. Comput. Sci., 1994,
pp. 124-134.

[2] J. Bos et al., “Crystals-Kyber: A CCA-secure module-lattice-based
KEM,” in Proc. IEEE Eur. Symp. Secur. Privacy (EuroS&P), London,
U.K., 2018, pp. 353-367.

[3] L. Ducas et al., “Crystals-Dilithium: A lattice-based digital signa-
ture scheme,” in Proc. IACR Trans. Hardw. Embed. Syst., 2018,
pp- 238-268.

[4] P. A. Fouque et al., “Falcon: Fast-Fourier lattice-based compact sig-
natures over NTRU,” Submiss. NIST, Post-Quantum Cryptogr., vol. 36,
no. 5, pp. 1-75, 2018.

[5] D.J. Bernstein, A. Hlsing, S. Klbl, R. Niederhagen, J. Rijneveld, and
P. Schwabe, “The SPHINCS +signature framework,” in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur., 2019, pp. 2129-2146.

[6] A. Jati, N. Gupta, A. Chattopadhyay, and S. K. Sanadhya, “A config-
urable CRYSTALS-Kyber hardware implementation with side-channel
protection,” ACM Trans. Embed. Comput. Syst., vol. 23, no. 2, pp. 1-25,
2023.

Authorized licensed use limited to: Florida Atlantic University. Downloaded on May 01,2025 at 03:03:38 UTC from IEEE Xplore. Restrictions apply.

AGHAPOUR et al.: PUF-KYBER: DESIGN OF A PUF-BASED KYBER ARCHITECTURE BENCHMARKED 4461

[71

[8]

[91

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(171

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

Z. Xu, O. Pemberton, S. Roy, D. Oswald, W. Yao, and Z. Zheng,
“Magnifying side-channel leakage of lattice-based cryptosystems with
chosen ciphertexts: The case study of Kyber,” IEEE Trans. Comp.,
vol. 71, no. 9, pp. 2163-2176, Sep. 2021.

E. Dubrova, K. Ngo, and J. Grtner, “Breaking a fifth-order masked
implementation of CRYSTALS-Kyber by copy-paste,” Cryptol. ePrint
Arch., TACR, Bellevue, WA, USA, Rep. 2022/1713, 2022.

M. J. Kannwischer, J. Rijneveld, P. Schwabe, and K. Stoffelen, “pgm4:
Testing and benchmarking NIST PQC on ARM Cortex-M4,” Cryptol.
ePrint Arch., IACR, Bellevue, WA, USA, Rep. 2019/844, 2019.

M. Bisheh-Niasar, R. Azarderakhsh, and M. Mozaffari-Kermani, “A
monolithic hardware implementation of Kyber: Comparing apples to
apples in PQC candidates,” in Proc. Int. Conf. Cryptol. Inf. Secur., 2021,
pp. 108-126.

S. Ricci, P. Jedlicka, P. Cbik, P. Dzurenda, L. Malina, and J. Hajny,
“Towards CRYSTALS-Kyber VHDL implementation,” in Proc. 18th Int.
Conf. Secur. Cryptogr. (SECRYPT), 2021, pp. 760-765.

W. Guo, S. Li, and L. Kong, “An efficient implementation of KYBER,”
IEEE Trans. Circuits Syst. I, Exp. Briefs, vol. 69, no. 3, pp. 1562-1566,
Mar. 2022.

M. Bisheh-Niasar, R. Azarderakhsh, and M. Mozaffari-Kermani,
“Instruction-set accelerated implementation of CRYSTALS-Kyber,”
IEEE Trans. Circuits Syst. I, vol. 68, no. 11, pp. 4648-4659,
Nov. 2021.

Y. Xing and S. Li, “A compact hardware implementation of CCA-Secure
Key Exchange Mechanism CRYSTALS-Kyber on FPGA,” in Proc. IACR
Trans. Cryptogr. Hardw. Embed. Syst., 2021, pp. 328-356.

Y. Huang, M. Huang, Z. Lei, and J. Wu, “A pure hardware implemen-
tation of CRYSTALS-Kyber PQC algorithm through resource reuse,”
IEICE Electron. Exp., vol. 17, no. 17, 2020, Art. no. 20200234.

T. Kamucheka, A. Nelson, D. Andrews, and M. Huang, “A masked pure-
hardware implementation of Kyber cryptographic algorithm,” in Proc.
Int. Conf. Field-Program. Techn. (ICFPT), 2022, pp. 1-1.

Z. Ni, A. Khalid, M. O’ Neill, and W. Liu, “Efficient pipelining
exploration for a high-performance CRYSTALS-Kyber accelerator,”
Cryptol. ePrint Arch., IACR, Bellevue, WA, USA, Rep. 2022/1093,
2022.

L. Botros, M. J. Kannwischer, and P. Schwabe, “Memory-efficient high-
speed implementation of Kyber on Cortex-M4,” in Proc. 11th Int. Conf.
Cryptol., Rabat, Morocco, 2019, pp. 209-228.

U. Banerjee, T. S. Ukyab, and A. P. Chandrakasan, “Sapphire: A
configurable crypto-processor for post-quantum lattice-based protocols,”
in Proc. IACR, 2019, p. 1140.

D. T. Nguyen and K. Gaj, “Optimized software implementations
of CRYSTALS-Kyber, NTRU, and Saber using NEON-based special
instructions of ARMvS,” in Proc. NIST 3rd PQC Conf., 2021, pp. 1-24.
E. Alkim, H. Evkan, N. Lahr, R. Niederhagen, and R. Petri, “ISA
extensions for finite field arithmetic accelerating Kyber and NewHope
on RISC-V,” in Proc. IACR, 2020, pp. 219-242.

B. Cambou et al., “Post Quantum cryptographic keys generated with
physical unclonable functions,” Appl. Sci., vol. 11, no. 6, p. 2801,
2021.

J. Bos et al. (CRYSTALS-Kyber, Gaithersburg, MD, USA). CRYSTALS-
Kyber Algorithm Specifications and Supporting Documentation, Version
3.02. 2021. Accessed: Apr. 10, 2024. [Online]. Available: https://pg-
crystals.org/kyber/data/kyber-specification-round3-20210804.pdf

E. Fujisaki and T. Okamoto, “Secure integration of asymmetric and
symmetric encryption schemes,” inProc. Int. Cryptol. Conf., 1999,
pp. 537-554.

M. Stipevi¢ and C. K. Koc, “True random number generators,” in Open
Problems in Mathematics and Computational Science, C. K. Koc Ed.
Cham, Switzerland: Springer, 2014, pp. 275-315.

Y. Gao, S. F. Al-Sarawi, and D. Abbott, “Physical unclonable functions,”
Nature Electron., vol. 3, pp. 81-91, Feb. 2020.

N. N. Anandakumar, M. S. Hashmi, and M. Tehranipoor, “FPGA-
based physical unclonable functions: A comprehensive overview
of theory and architectures,” Integration, vol. 81, pp. 175-194,
Nov. 2021.

D. Li, Z. Lu, X. Zou, and L. Zhenglin, “PUFKEY: A high-security
and high-throughput hardware true random number generator for sensor
networks,” Sensors, vol. 15, pp. 26251-26266, Oct. 2015.

M. Kaveh, M. R. Mosavi, D. Martin, and S. Aghapour, “An efficient
authentication protocol for smart grid communication based on on-chip-
error-correcting physical unclonable function,” Sustain. Energy Grids
Netw., vol. 36, Dec. 2023, Art. no. 101228.

[30] A. Alipour et al., “Helper data masking for physically unclonable
function-based key generation algorithms,” IEEE Access, vol. 10,
pp. 40150-40164, 2022.

[31] M. Hiller and A. Gurur, “Hiding secrecy leakage in leaky helper data,”
in Proc. Int. Conf. Cryptogr. Hardw. Embed. Syst, 2017, pp. 601-619.

[32] D. Terpstra, H. Jagode, H. You, and J. Dongarra, “Collecting
performance data with PAPI-C,” in Proc. Tools High Perform. Comput.,
2010, pp. 157-173.

[33] Y. Wang, X. Xi, and M. Orshansky, “Latticc PUF: A strong phys-
ical unclonable function provably secure against machine learning
attacks,” in Proc. IEEE Int. Symp. Hardw. Orient. Secur. Trust, 2020,
pp. 273-283.

[34] X. Xi, G. Li, Y. Wang, and M. Orshansky, “A provably secure strong
PUF based on LWE: Construction and implementation,” IEEE Trans.
Comput., vol. 72, no. 2, pp. 346-359, Feb. 2023.

[35] P. Sanal, E. Karagoz, H. Seo, R. Azarderakhsh, and
M. Mozaffari-Kermani, “Kyber on ARM64: Compact implementations
of Kyber on 64-Bit ARM cortex-A processors,” in Proc. Int. Conf.
Secur. Privacy Commun. Syst., 2021, pp. 424-440.

[36] A. Abdulrahman, V. Hwang, M. J. Kannwischer, and A. Sprenkels,
“Faster Kyber and Dilithium on the cortex-m4,” in Proc. 20th Int. Conf.
Appl. Cryptogr. Netw. Secur., 2022, pp. 853-871.

Saeed Aghapour received the B.Sc. degree in elec-
trical engineering from Babol Noshirvani University
of Technology, Babol, Iran, in 2014, and the
M.Sc. degree in communication cryptology from
the Department of Electrical Engineering, Sharif
University of Technology, Tehran, Iran, in 2016.
He is currently pursuing the Ph.D. degree with the
Department of Computer Science and Engineering,
University of South Florida, Tampa, FL, USA.

His current research interests include applied
cryptography, post-quantum cryptography, hardware
security, and fault detection.

Kasra Ahmadi received the B.Sc. degree in
computer engineering from Isfahan University
of Technology, Isfahan, Iran, 2017, and the
M.Sc. degree in information technology from
the AmirKabir University of Technology, Tehran,
Iran, 2020. He is currently pursuing the Ph.D.
degree with the Computer Science and Engineering
Department, University of South Florida, Tampa,
FL, USA.

His current research interests include fault detec-
tion on elliptic curves, post-quantum cryptography,
optimized implementation of cryptographic schemes, side-channel attacks, and
applied cryptography.

Mila Anastasova (Graduate Student Member, IEEE)
received the bachelor’s degree in computer science
and engineering from the University Carlos III of
Madrid, Getafe, Spain, and the M.S. degree in com-
puter engineering from Florida Atlantic University,
Boca Raton, FL, USA, where she is currently pursu-
ing the Ph.D. degree in computer engineering with
the Institute for Sensing and Embedded Network
Systems Engineering.

Her research interests include emerging security
primitives for real-time IoT systems, classical and
post-quantum public key cryptography schemes, as well as their optimum
and SCA resistant implementation on low-end devices and incorporation into
network protocols.

Authorized licensed use limited to: Florida Atlantic University. Downloaded on May 01,2025 at 03:03:38 UTC from IEEE Xplore. Restrictions apply.

4462

Mehran Mozaffari Kermani (Senior Member,
IEEE) received the B.Sc. degree from the University
of Tehran, Tehran, Iran, in 2005, and the M.E.Sc.
and Ph.D. degrees from University of Western
Ontario, London, ON, Canada, in 2007 and 2011,
respectively.

He joined with the Advanced Micro Devices
as a Senior ASIC/layout Designer, integrating
sophisticated security/cryptographic capabilities into
accelerated processing. In 2012, he joined with
the Department of Electrical Engineering, Princeton
University, Princeton, NJ, USA, as an NSERC Postdoctoral Research Fellow.
From 2013 to 2017, he was a Faculty with Rochester Institute of Technology,
Rochester, NY, USA. In 2017, he was an Associate Professor with the
Department of Computer Science and Engineering, University of South
Florida, Tampa, FL, USA.

Dr. Kermani is the awardee for the USF 2021 Faculty Outstanding Research
Achievement Award and the USF College of Engineering’s 2018 Outstanding
Junior Research Achievement Award. He was a recipient of the prestigious
Natural Sciences and Engineering Research Council of Canada Post-Doctoral
Research Fellowship in 2011 and the Texas Instruments Faculty Award
(Douglas Harvey) in 2014. He is currently serving as an Associate Editor for
the IEEE TRANSACTIONS ON VLSI SYSTEMS, the ACM Transactions on
Embedded Computing Systems, and the IEEE TRANSACTIONS ON CIRCUITS
AND SYSTEMS. He has been the TPC member for HOST (Publications Chair),
CCS (Publications Chair), DAC, DATE, RFIDSec, LightSec, WAIFI, FDTC,
and DFT.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 12, DECEMBER 2024

Reza Azarderakhsh (Member, IEEE) received the
Ph.D. degree in electrical and computer engineering
from Western University, London, ON, Canada. in
2011.

He is currently a Professor with Florida Atlantic
University, Boca Raton, FL, USA. He was a
recipient of the NSERC Postdoctoral Research
Fellowship working with the Center for Applied
Cryptographic Research and the Department of
Combinatorics and Optimization, University of
Waterloo, Waterloo, ON.

Prof. Azarderakhsh was the Guest Editor for IEEE TRANSACTIONS ON
DEPENDABLE AND SECURE COMPUTING for the Special Issue of Emerging
Embedded and Cyber Physical System Security Challenges and Innovations in
2016 and 2017. He was also the Guest Editor of IEEE/ACM Transactions on
Computational Biology and Bioinformatics for the Special Issue on Security.
He is serving as an Associate Editor for IEEE TRANSACTIONS ON CIRCUITS
AND SYSTEMS (TCAS-I).

Authorized licensed use limited to: Florida Atlantic University. Downloaded on May 01,2025 at 03:03:38 UTC from IEEE Xplore. Restrictions apply.

