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RSSI-Based Distributed Control to Align
Directional Antenna Pairs for

UAV Communication
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Abstract—In a scenario where two unmanned aerial
vehicles (UAVs) are equipped with directional anten-
nas for point-to-point communication, maintaining high-
performance communication requires continuous adjust-
ment of antenna orientations. This article presents a novel
received signal strength indicator-based nonlinear static
state feedback control law to achieve this under the un-
known motions of the UAVs and the absence of global po-
sitioning system data. Our proposed method ensures con-
vergence to the best orientation for almost all initial states
of the closed-loop system when the UAVs are stationary.
Furthermore, the closed-loop system achieves tracking of
the best orientation with an error during motion. We exper-
imentally demonstrate the effectiveness of the proposed
method in solving the directional antenna pair alignment
problem.

Index Terms—Decentralized control, directional anten-
nas, nonlinear control systems, received signal strength
indicator, uav networks.

I. INTRODUCTION

A. Literature Review

UNMANNED aerial vehicles (UAVs) enable rapid and
secure access to remote areas. Therefore, they offer an

effective solution for applications ranging from environmental
monitoring to emergency response [1]. The inherent remoteness
of these operations necessitates a robust communication network
between UAVs. This network is crucial for real-time informa-
tion exchange, including piloting commands, UAV locations,
and possibly video streams. While cellular networks present a
promising solution, they do not generally cover the airspace and
are expensive to build to support UAV operations. In addition,
they may become inaccessible (e.g., in wilderness search and
rescue missions) or destroyed (e.g., in monitoring areas impacted
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by a natural disaster). As a result, UAVs employed in such
missions need to be equipped with wireless devices to establish
on-demand communication among the UAVs without ground
infrastructure support [2]. Considering the long distances be-
tween the UAVs, the directional antennas have gained attention
for wireless communication due to their lower interference with
neighbors and extended transmission range compared to their
omnidirectional counterparts [3], [4], [5]. As the UAVs serve
as the network nodes, the fast alterations in their relative posi-
tions make the UAV network distinct from many other wireless
networks on the ground [6].

A directional antenna pair provides long-range communica-
tion when the antennas are aligned [7]. In a scenario where
two moving UAVs are equipped with directional antennas for
point-to-point communication, maintaining high-performance
communication requires continuous adjustment of antenna ori-
entations. While real-time global positioning system (GPS) data
can be utilized to calculate the best orientation (e.g., see [8]),
there are two associated problems. First, achieving high pre-
cision requires expensive GPS equipment, posing economic
challenges for widespread deployment [9]. Second, the GPS
signal may be lost due to wireless disturbances, blockages, and
denied environments. Furthermore, in general, it is not available
in indoor settings [10].

The observations above highlight the opportunities for utiliz-
ing a received signal strength indicator (RSSI)-based approach
to the directional antenna pair alignment problem. In [11], a
pattern-based search algorithm finds the best orientation that
maximizes the RSSI signal. In [12] and [13], an algorithm based
on an unscented Kalman filter and fuzzy logic utilizes the com-
bined GPS and RSSI data to estimate the best orientation. In [14],
RSSI measurement is utilized for an initial scan; however, the
tracking of the best orientation is performed using GPS data.
In [15] and [16], reinforcement learning-based algorithms learn
the communication channel model parameters to estimate the
best orientation. However, to the best of the authors’ knowledge,
literature lacks a pure control-theoretic approach to the problem.

B. Contribution

This article considers the alignment of the directional an-
tenna pairs in UAV communication. In particular, two UAVs are
equipped with directional antennas for point-to-point communi-
cation. We assume that each directional antenna has a 1-degree

1083-4435 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on May 01,2025 at 03:37:43 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-8191-2324
https://orcid.org/0009-0002-6593-0041
https://orcid.org/0000-0002-7508-5833
mailto:ahmet.koru@uta.edu
mailto:ahmet.koru@uta.edu
mailto:jxc5658@mavs.uta.edu
mailto:yan.wan@uta.edu
https://doi.org/10.1109/TMECH.2024.3403911


2878 IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. 29, NO. 4, AUGUST 2024

Fig. 1. Directional antenna with its 1-DOF rotating platform installed
on a quadrotor UAV. The propeller blades are folded in the photo.

of freedom (DOF) rotating platform component to adjust its
orientation (see Fig. 1). The control problem addressed herein
is achieving convergence to the best orientation when the UAVs
are stationary, as well as tracking the best orientation with an
error during motion. From a control theory point of view, this
problem is similar to the leader-following consensus problems
of second-order multiagent systems where two directional an-
tennas are the agents and the best orientation is the leader.
From this perspective, we propose a nonlinear distributed static
state feedback control law to solve the directional antenna pair
alignment problem. The contributions of this article are outlined
as follows.

No GPS Data are Required. RSSI Data are Utilized for
Tracking Error Measurement: Distributed static state feedback
control laws (e.g., see [17]) to solve leader-following consensus
problems require a subset of the agents to access the relative
tracking error (i.e., the distance to their neighboring agents) and a
subset of the agents to access the tracking error (i.e., the distance
to the leader). In the directional antenna pair alignment problem,
directional antennas can exchange their orientation information
via the communication channel to compute the relative tracking
error (i.e., the angle between the directional antennas). However,
without the GPS data, existing literature lacks a method to
measure the tracking error (i.e., the angle between the best
orientation and the directional antenna). Given the cosine beam
model in [18], the partial derivative of the RSSI data with respect
to the directional antenna orientation is a trigonometric function
of the tracking error. This article proposes a distributed control
law that relies on this property of the RSSI model, enabling
directional antennas to access the tracking error.

Analysis of Problem Solvability: The closed-loop system in-
corporates nonlinear terms, resulting in infinitely many equilib-
rium points. We propose four conditions for selecting control
gains that eliminate the existence of all equilibrium points ex-
cept for the best and worst orientations. Moreover, under these
proposed conditions, we show that the best orientation is asymp-
totically stable, whereas the worst orientation is unstable. The
main theorem of this article shows that the overall closed-loop
system converges to the best orientation for almost all initial
states.

Practical Implementation Guidance: Approximating the par-
tial derivative of RSSI with respect to the directional antenna

orientation requires RSSI measurements for various directional
antenna orientations. However, it may become impossible if
the directional antenna orientation does not change much for
a time interval. To overcome this, we propose a swinging
algorithm for one of the directional antennas. This algorithm
induces a small perturbation around the current orientation of
the directional antenna, while the nonlinear distributed static
state feedback control law solves the alignment problem. This
small perturbation creates a stereo effect (similar to having two
directional antennas on the same UAV with an orientation offset).
Consequently, one of the directional antennas can approximate
the partial derivative term and gain access to the tracking error.

Experimental Validation: To demonstrate the effectiveness,
we implement the proposed control law in a setup consisting of
two UAVs equipped with directional antennas. The experiment
focuses on a scenario where one UAV hovers above the ground
station while the second UAV flies in a remote area.

C. Notation

We write “≡” to denote congruence modulo and atan2(y, x) to
denote 2-argument arctangent. The function N : R → (−π, π]
computes the principal value of an angle and is defined as
N(x) = atan2(sin(x), cos(x)). For any θ1, θ2 ∈ R to be nor-
malized, the principal value function has the properties: 1)
N(−θ1) = −N(θ1), 2)N(θ1) = N(θ1 + 2kπ) for all k ∈ Z, and
3) N(N(θ1) + N(θ2)) = N(θ1 + θ2).

II. PROBLEM FORMULATION

Consider a pair of UAVs: Let their location in 3-D space be
(xi(t), yi(t), zi(t)) and the roll, pitch, and yaw angles describing
their orientation be (φi(t), θi(t), ψi(t)) (ZYX Euler angles).
Each UAV carries a directional antenna to communicate with the
other one. Each antenna has a 1-DOF rotating platform compo-
nent to adjust its yaw angle. This capability allows directional
antennas to orient themselves toward each other for a robust
and reliable connection. Therefore, the location and orientation
of the directional antennas are the ones of their corresponding
UAVs, except the yaw angle. In other words, the location of the
ith antenna is (xi(t), yi(t), zi(t)) and the roll, pitch, and yaw
angles describing its orientation are (φi(t), θi(t), αi(t)) (ZYX
Euler angles). The mechanical dynamics of the 1-DOF rotating
platform components of the directional antennas are

α̇i(t) =
cos(φi(t))

cos(θi(t))
wi(t) + ψ̇i(t) (1a)

ẇi(t) = −awi(t) + bui(t) (1b)

wherewi(t) ∈ R is the angular velocity, ui(t) ∈ R is the control
input, a ≥ 0 is the ratio of viscous friction to moment of inertia,
and b > 0 is the ratio of torque to input voltage times moment
of inertia for the ith directional antenna for i ∈ {1, 2}. Note that
wi(t) is the angular velocity of the rotating platform component
of the directional antenna with respect to the UAV; thus, it
can be measured with an encoder on the motor of the rotating
platform component or with inertial measurement units (IMUs)
by computing the difference between the angular velocity of
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Fig. 2. Proposed nonlinear distributed static state feedback control law
drives α1(t) toward ᾱ1(t) and α2(t) toward ᾱ2(t) for a better alignment.

the directional antenna and the angular velocity of the UAV in
z−axis. Equation (1a) is the relationship between the angular
velocities and Euler angle rates, where the UAV’s yaw angle
rate ψ̇i(t) can be considered as a disturbance.

Considering their locations, the distance between the direc-
tional antennas and the best orientations are given by

d(t) =

√
(x1 − x2)

2 + (y1 − y2)
2 + (z1 − z2)

2 (2a)

θ̄i(t) = −atan2

(
zj − zi,

√
(xj − xi)2 + (yj − yi)2

)
(2b)

ᾱi(t) = atan2(yj(t)− yi(t), xj(t)− xi(t)) (2c)

for i, j ∈ {1, 2} and i �= j, where θ̄i(t) and ᾱi(t) are the best
pitch and yaw angles that make the ith directional antenna to
point toward the other one. Note that

ᾱ1(t) ≡ ᾱ2(t) + π (mod 2π) (3)

by the definition of atan2 function. The amplitude of the best
pitch angle |θ̄i(t)| is a small value when the UAVs fly at a
distance with a bounded altitude offset, as can be seen in (2b).
A proper altitude control can keep |z1(t)− z2(t)| within the
range of the radiation beam width of the directional antenna.1

The control objective of the rotating platform components of
the directional antennas is to drive the current yaw angles αi(t)
of the directional antennas to their best orientations ᾱi(t) (see
Fig. 2).

Each directional antenna functions both as a receiver and
transmitter of data. The power Pri in the received signal at the
ith antenna is affected by the distance between the directional
antennas and their orientations, as modeled in the Friis transmis-
sion equation. In particular, the RSSI level at the ith directional
antenna is given by

Pri(t, αi, αj , θi, θj) = Ptj − 20 log10

(
4πd(t)

λ

)
+

Gmin
tj +

(
Gmax

tj −Gmin
tj

)
G(αj(t)− ᾱj(t), θj(t)− θ̄j(t))+

Gmin
ri +

(
Gmax

ri −Gmin
ri

)
G(αi(t)− ᾱi(t), θi(t)− θ̄i(t)) (4)

for i, j ∈ {1, 2} and i �= j, where Ptj is the transmitting output
power of the jth antenna in decibels (dB), Gmin

tj and Gmax
tj are

1The beam pattern of the directional antenna of our setup can be found in
https://dl.ubnt.com/datasheets/nanostationm/nsm_ds_web.pdf.

transmitting gains of the jth antenna,Gmin
ri andGmax

ri receiving
gains of the ith antenna, and λ is the wavelength.2 Consider-
ing the simple 2-D cosine beam model for the antenna gains
(see [18]), the function G(α, θ) = cosnα(α/2) cosnθ (θ) is the
amplitude pattern for which we consider nα = 2 and nθ > 0.
Let Pri(t, αi, αj) = Pri(t, αi, αj , 0, 0).

Next, we define the RSSI-based directional antenna pair align-
ment problem.

Problem 1: Let the best orientations in (2) be unknown. For
i ∈ {1, 2} and t ≥ 0, let the UAVs be stationary, i.e., φi(t) = 0,
θi(t) = 0, and ψ̇i(t) = 0, and let them be at the same altitude,
i.e., z1(t) = z2(t). Given the system in (1) together with the
RSSI levels in (4), find a control law ui for i ∈ {1, 2} such that
limt→∞ αi(t) ≡ ᾱi (mod 2π) for almost all initial states of the
closed-loop system.

Note that the distance and the best orientations in (2) are
also stationary when the UAVs are stationary as in Prob-
lem 1. A follow-up problem here is the case where |φi(t)| ≤
β1, |θi(t)| ≤ β1, |φ̇i(t)| ≤ β2, |θ̇i(t)| ≤ β2, and |ψ̇i(t)| ≤ β2,
|z1(t)− z2(t)| ≤ β3, and |ż1(t)| ≤ β4 and |ż2(t)| ≤ β4, for t ≥
0 and i ∈ {1, 2}, where β1 > 0, β2 > 0, β3 > 0, and β4 > 0.
For this case, the objective is to track the best orientation with
a tracking error, i.e., limt→∞ |N(αi(t)− ᾱi(t))| ≤ ε for some
ε > 0.

III. DISTRIBUTED CONTROL LAW

Unless explicitly stated otherwise, we will assume that the
UAVs are stationary and at the same altitude throughout the
section.

A. Design

In Problem 1, ᾱi(t) information is not available to the direc-
tional antennas. However, Pri(t, αi, αj) and αi(t) are available
to the ith directional antenna. Furthermore, the directional an-
tennas can exchange any information, including αj(t). Based
on the available information, we propose the control law

ui(t) = − kdwi(t)− kijN(αi(t)− αj(t) + π)+

gi
∂Pri(t, αi, αj)

∂αi(t)
(5)

for i, j ∈ {1, 2}, i �= j, where kij ≥ 0, gi ≥ 0, and kd ∈ R are
control gains. Note that the partial derivative term satisfies

∂Pri(t, αi, αj)

∂αi(t)
= − (Gmax

ri −Gmin
ri )

2
sin (αi(t)− ᾱi) (6)

due to (4). Therefore, the control law in (5) is a nonlinear function
of the states αi(t) and wi(t), making it a nonlinear distributed
static state feedback control law.

2The wavelength λ = v/f , where v is the phase speed of the wave and f is the
frequency of the wave. In free space, the phase speed is equivalent to the speed
of light, i.e., v ≈ 3 × 108. Consequently, for Wi-Fi signals with a frequency
of f = 2.4 GHz, the wavelength is λ ≈ 0.125 m, and for Wi-Fi signals with a
frequency of f = 5 GHz, the wavelength is λ ≈ 0.06 m.

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on May 01,2025 at 03:37:43 UTC from IEEE Xplore.  Restrictions apply. 

https://dl.ubnt.com/datasheets/nanostationm/nsm_ds_web.pdf


2880 IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. 29, NO. 4, AUGUST 2024

Fig. 3. Closed-loop system have an infinite number of isolated equilib-
rium points, with half representing the best orientation and the remaining
half representing the worst orientation under Conditions 1 and 2. These
conditions eliminate the existence of the equilibrium points with a differ-
ent configuration.

For stationary UAVs as in Problem 1, the closed-loop system
dynamics are given by

α̇1(t) = w1(t) (7a)

α̇2(t) = w2(t) (7b)

ẇ1(t) = −(a+ bkd)w1(t)− bk12N(α1(t)− α2(t) + π)−
bg1G

med
r1 sin(α1(t)− ᾱ1) (7c)

ẇ2(t) = −(a+ bkd)w2(t)− bk21N(α2(t)− α1(t) + π)

bg2G
med
r2 sin(α2(t)− ᾱ2) (7d)

from (1), (4), (5), and (6), where Gmed
ri = (Gmax

ri −Gmin
ri )/2 >

0. The following conditions provide guidance on the control
gains selection.

Condition 1: At least one of the following holds:
1) g1 > 0 and k21 > 0;
2) g2 > 0 and k12 > 0.

Condition 2: The following holds:

k12g2G
med
r2 + k21g1G

med
r1 > g1g2G

med
r1 Gmed

r2 .

Condition 3: The following holds: ac = a+ bkd > 0.
Condition 4: The following holds: k12 > 0 and k21 > 0.
Remark 1: We listed Conditions 1, 2, and 4 separately because

different theorems rely on different conditions. It is possible to
combine and express them collectively. This combination yields
that exactly one of the following three holds: 1) g1 > 0, g2 = 0,
k21 > 0,k12 > 0; 2)g1 = 0,g2 > 0,k21 > 0,k12 > 0; 3)g1 > 0,
g2 > 0, k21 > 0, k12 > 0 such that k12g2G

med
r2 + k21g1G

med
r1 >

g1g2G
med
r1 Gmed

r2 .
Remark 2: We can consider the best orientations ᾱ1 and ᾱ2 as

the outputs of an exosystem. Considering the two directional an-
tennas as agents and the exosystem as a leader node, we can form
a graph Ḡ with three nodes linked by edges kij and pinning gains
gi. A standard assumption in the leader-following consensus
problems of the multiagent systems is that Ḡ contains a directed
spanning tree (see [17]). Condition 1 guarantees the existence of
a directed spanning tree. Condition 2 is nonstandard. The reason
behind this condition is the nonlinear nature of the closed-loop
system in (7). The closed-loop system in (7) has infinitely many
isolated equilibrium points that may lead to convergence to a
configuration other than the best orientation. Lemma 1 shows
that Conditions 1 and 2 ensure the absence of equilibrium points
except for the best and worst orientations, as illustrated in Fig.
3. Condition 3 is necessary for the asymptotic stability of the
best orientation in Lemma 2 as a result of Lemma 1 in [17].
Finally, Theorem 1 relies on Condition 4 to construct a Lyapunov
function to prove the solvability of Problem 1. It is an open

problem if the Lyapunov function in Theorem 1 can be replaced
to avoid this condition.

B. Solvability Analysis of Problem 1

The following lemma shows that there is no equilibrium
point except the two configurations illustrated in Fig. 3 under
Conditions 1 and 2.

Lemma 1: Let Conditions 1 and 2 hold. An equilibrium
point (α∗

1, α
∗
2, w

∗
1, w

∗
2) of the closed-loop system in (7) either

represents the best orientation

α∗
1 ≡ ᾱ1 (mod 2π), α∗

2 ≡ ᾱ1 + π (mod 2π) (8)

or the worst orientation

α∗
1 ≡ ᾱ1 + π (mod 2π), α∗

2 ≡ ᾱ1 (mod 2π) (9)

where w∗
1 = w∗

2 = 0.
Proof: After applying the two properties mentioned in Sec-

tion I-C, we find N(α∗
2 − α∗

1 + π) = −N(α∗
1 − α∗

2 + π). Triv-
ially, w∗

1 = w∗
2 = 0 from (7a) and (7b). Since the proof for the

item (2) follows the same derivation, we only present the proof
for the item (1) of Condition 1 by separating it into the following
subitems.

1a) g1 > 0 and k21 > 0 and g2 = 0 and k12 ≥ 0
1b) g1 > 0 and k21 > 0 and g2 > 0 and k12 = 0
1c) g1 > 0 and k21 > 0 and g2 > 0 and k12 > 0

1a) We have N(α∗
2 − α∗

1 + π) = −N(α∗
1 − α∗

2 + π) = 0
from (7d). Therefore, sin(α∗

1 − ᾱ1) = 0 from (7c), resulting
in two sets of solutions α∗

1 ≡ ᾱ1 (mod 2π) and α∗
1 ≡ ᾱ1 +

π (mod 2π). Combining this with N(α∗
2 − α∗

1 + π) = 0 yield
(8) and (9).

1b) We have sin(α∗
1 − ᾱ1) = 0 from (7c), resulting in two sets

of solutionsα∗
1 ≡ ᾱ1 (mod 2π) andα∗

1 ≡ ᾱ1 + π (mod 2π). For
α∗

1 ≡ ᾱ1 (mod 2π), we have

−k21N(α
∗
2 − ᾱ1 + π)− g2G

med
r2 sin(α∗

2 − ᾱ1 + π) = 0

from (7d). The only solution is the trivial one α∗
2 ≡ ᾱ1 +

π (mod 2π) from Lemma 3 since c = −k21/g2G
med
r2 < 0. This

yields the best orientation in (8). Forα∗
1 ≡ ᾱ1 + π (mod 2π), we

have

k21N(α
∗
2 − ᾱ1)− g2G

med
r2 sin(α∗

2 − ᾱ1) = 0

from (7d) and the fact that sin(α∗
2 − ᾱ1 + π) = − sin(α∗

2 − ᾱ1).
The only solution is the trivial one α∗

2 ≡ ᾱ1 (mod 2π) from
Lemma 3 since c = k21/g2G

med
r2 ≥ 1 from Condition 2. This

yields the worst orientation in (9).
1c) Equations (7c) and (7d) yields

− k12

g1Gmed
r1

N(α∗
1 − α∗

2 + π)− sin(α∗
1 − ᾱ1) = 0 (10a)

− k21

g2Gmed
r2

N(α∗
2 − α∗

1 + π)− sin(α∗
2 − ᾱ1 + π) = 0. (10b)

There exists no solution to (10) except the ones in (8) and
(9) from Lemma 4 with c1 = −k12/g1G

med
r1 , c2 = k21/g2G

med
r2 ,

θ1 = α∗
1 − ᾱ1, and θ2 = α∗

2 − ᾱ1 + π, since |c1 − c2| ≥ 1 from
Condition 2. �
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The following lemma determines the types of the equilibrium
points in (8) and (9).

Lemma 2: Let Conditions 1–3 hold. The equilibrium points
specified in (8) are asymptotically stable, whereas those in (9)
are unstable.

Proof: To represent the closed-loop system in a compact
form, we define the following matrices:

L =

[
k12 −k12

−k21 k21

]
, G =

[
Gmed

r1 g1 0
0 Gmed

r2 g2

]
.

The linearization of the closed-loop system in (5) at the best
orientation in (8) and the worst orientation in (9), respectively,
yields the system matrices

Agb =

[
0 I2

−b(L+ G) −acI2

]
(11a)

Agw =

[
0 I2

−b(L − G) −acI2

]
. (11b)

“Best orientation is asymptotically stable” Part: Let λ1 and
λ2 ∈ C be the eigenvalues of L+ G. Its characteristic equation
given by

det(sI2 − (L+ G)) = s2 + pb1s+ pb0 = (s− λ1)(s− λ2)

is a quadratic equation with the coefficients given by

pb1 = −k12 − k21 − g1G
med
r1 − g2G

med
r2

pb0 = g1G
med
r1 g2G

med
r2 + k21g1G

med
r1 + k12g2G

med
r2 .

We deduce that λ1 and λ2 are real numbers since the discriminant
of the quadratic equation satisfies

p2
b1 − 4pb0

=
(
k12 − k21 + g1G

med
r1 − g2G

med
r2

)2
+ 4k12k21 ≥ 0.

The coefficientpb0 > 0 under Condition 1. Since the eigenvalues
satisfy λ1λ2 = pb0 > 0 and λ1 + λ2 = −pb1 > 0, we conclude
that λ1 > 0 and λ2 > 0. Now, the characteristic equation ofAgb

is given by

det(sI4 −Agb) = s2I2 + sacI2 + b(L+ G)
= (s2 + sac + bλ1)(s

2 + sac + bλ2)

the roots of which have negative real parts since ac > 0 from
Condition 3, bλ1 > 0, and bλ2 > 0.

“Worst orientation is unstable” Part: Let μ1 and μ2 ∈ C be
the eigenvalues of L − G. Its characteristic equation

det(sI2 − (L − G)) = s2 + pw1s+ pw0 = (s− μ1)(s− μ2)

is a quadratic one with the coefficients given by

pw1 = −k12 − k21 + g1G
med
r1 + g2G

med
r2

pw0 = g1G
med
r1 g2G

med
r2 − k21g1G

med
r1 − k12g2G

med
r2 .

We deduce thatμ1 andμ2 are real numbers since the discriminant
of the quadratic equation satisfies

p2
w1−4pw0=

(
k12−k21−g1G

med
r1 + g2G

med
r2

)2
+ 4k12k21 ≥ 0.

The coefficient pw0 < 0 from Condition 2. Therefore, μ1μ2 =
pw0 < 0. Without loss of generality, we conclude that μ1 < 0.
Now, the characteristic equation of Agw is given by

det(sI4 −Agw) = s2I2 + sacI2 + b(L − G)
=

(
s2 + sac + bμ1

) (
s2 + sac + bμ2

)
.

There exists a positive root of s2 + sac + bμ1 since ac > 0 and
μ1 < 0. �

The next theorem investigates the solvability of Problem 1.
Theorem 1: Let Conditions 1–4 hold. The nonlinear dis-

tributed static state feedback control law in (5) solves the RSSI-
based directional antenna pair alignment problem defined in
Problem 1.

Proof: Let α̃1(t) = N(α1(t)− ᾱ1) and α̃2(t) = N(α2(t)−
ᾱ1 + π) for which ˙̃α1(t) = w1(t) and ˙̃α2(t) = w2(t) almost
everywhere. Consider the following Lyapunov function:

V (t) = k21w
2
1 + k12w

2
2 + bk12k21N

2(α̃1(t)− α̃2(t))

+ 2bg1G
med
r1 k21(1 − cos(α̃1(t)))

+ 2bg2G
med
r2 k12(1 − cos(α̃2(t))).

Note that N2(·) and V (t) are continuous functions. Under Con-
ditions 1–4, the derivative of the Lyapunov function is negative
semidefinite, i.e., V̇ (t) = −2ace21w

2
1(t)− 2ace12w

2
2(t) ≤ 0 for

all w1(t), w2(t), α̃1(t), α̃2(t) ∈ R. Let

V̄ = k21w
2
1(0) + k12w

2
1(0) + 2bk12k21π

2

+ 4bg1G
med
r1 k21 + 4bg2G

med
r2 k12

for which V (t) ≤ V̄ for all t ≥ 0.
We prove the theorem by the invariance principle. We have

|α̃i(t)| ≤ π for all t ≥ 0 due to N(·) function. We also have
|wi| ≤ V̄ /kij for all t ≥ 0 since V (t) ≤ V̄ . Therefore, the com-
pact set

Ω =
{
(α̃1, α̃2, w1, w2) | |α̃i| ≤ π, |wi| ≤ V̄ /kij , i ∈ {1, 2}}

is positively invariant with respect to (7). Let

E =
{
α̃1, α̃2, w1, w2 | V̇ = 0

}

= {w1, w2, α̃1, α̃2 | (w1, w2) = (0, 0)}
be all the points in Ω, where V̇ = 0. Finally, the set M =
{(0, 0, 0, 0), (π, π, 0, 0)} is the largest invariant set in E from
(7c) and (7d). Then, every solution starts in Ω approaches M
as t→ ∞ from LaSalle’s theorem (e.g., see [19, Th. 4.4]).
Since Ω is compact and positively invariant for any initial state
w1(0), w2(0), α̃1(0), α̃2(0), every solution converges to either
the best orientation in (8) or the worst orientation in (9) for all
initial states. From the central manifold theorem (see [20, Th.
3.2.1]), there exists a nontrivial unstable manifold of the equilib-
rium point in (9); therefore, its stable manifold has a dimension
lower than R4. We conclude that the solution converges to the
best orientation for almost all initial states. �

For UAVs in motion, (7) corresponds to the linearization of the
dynamics in (1), (4), and (5) at the hover state at the same altitude.
By linearization and an input-to-state stability argument, it can
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Fig. 4. Hardware overview. 1© directional antenna. 2© WiFi router. 3©
DC motor. 4© Motor driver. 5© IMU. 6© Computation module.

be shown that the directional antennas track their best orientation
for the follow-up problem below Problem 1 for sufficiently small
β1, β2, β3, and β4.

IV. EXPERIMENTAL RESULTS

To demonstrate the efficacy of the nonlinear distributed con-
trol law in (5) for solving Problem 1, we conducted an ex-
periment involving two UAVs equipped with two directional
antennas. The experiment specifically focused on a scenario
where one UAV hovers above the ground station and the other
one flies in a remote area. We refer to the directional antenna
of the stationary UAV as the local system and the directional
antenna of the mobile UAV as the remote system.

A. System Hardware Design

An overview of our hardware design is shown in Fig. 4.
As seen in the figure, each directional antenna has a rotating
platform component to adjust its orientation.

The communication module has a Ubiquiti Nanostation Loco
M5 directional antenna and a TP-Link TL-WR902AC WiFi
router. The directional antenna ( 1© in Fig. 4) is installed on
a lazy Susan connected to a 140-tooth gear, which allows 1-
DOF rotation. Ubiquiti Nanostation Loco M5 is chosen due to
its overall performance and Linux-based Air operating system
(OS). The Air OS provides the common network interface to
access the RSSI data, which avoids kernel-level and hardware
modification. The WiFi router ( 2© in Fig 4) establishes the
data transfer between the directional antenna, the computation
module, and the ground station. The TP-Link TL-WR902AC is
utilized for its compact size (74 × 67 × 22 mm) and low power
consumption (2 watts).

Actuation is provided by a Nidec MG16B-030-AA-00
brushed dc geared motor ( 3© in Fig. 4). A planetary gearhead
with a ratio of 30:1 is attached to generate the torque required
to rotate the directional antennas. This motor can be powered
by a rated voltage of 6 V with an angular velocity of 380 r/min
and a max torque of 30 mN · m. A 32-tooth gear is installed on
top of the gearhead to rotate the antenna. The half-bridge Texas
Instruments DRV8837 is used to drive the motor ( 4© in Fig. 4).

To implement the proposed control law, three types of sensor
data are required, which are the yaw angle and the angular
velocity of the directional antenna, and the RSSI. The RSSI
can be accessed by simply using the network interface in Air
OS. For the yaw angle and angular velocity, we choose the
nine-axis IMU Xsens MTi-3 ( 5© in Fig. 4) with attitude and
heading reference system (AHRS) feature. The AHRS feature
can provide a true-north-referenced heading angle, which makes
both subsystems utilize the same reference frame for the heading
angle.

We select the Nvidia Xavier NX development kit (Xaiver) as
the computation module ( 6© in Fig. 4). Xavier has a GPU, a
6-core CPU, and 40-pin general-purpose input/output (GPIO)
including inter-integrated circuit (I2C), universal asynchronous
receiver-transmitter (UART), pulse-width modulation (PWM)
channel, etc. Xavier is sufficient not only for the control law
computation but also for the emergency site video processing
illustrated in [15]. Moreover, Xavier offers the potential to
enhance UAV automation as a companion computer. The 40-pin
GPIO enables the Xavier to utilize two PWM channels to the
motor control speed and direction, the I2C port to achieve IMU
data, and the UART port to read the RSSI data.

B. System Identification

To determine the parameters a and b in (1b), we perform
open-loop experiments by applying a pseudo-random binary
signal (PRBS) as inputs to the rotating platform components.
For additional information on PRBS signals and system iden-
tification methods, please see [21]. The Matlab System Identi-
fication Toolbox analyzed the inputs and resulting states of the
experiments and it estimated the parameters as a = 6.00 and
b = 19.69.

C. Controller Implementation

The proposed control law in (5) relies on ∂Pri/∂αi which is
mathematically defined as

∂Pri(t, αi, αj)

∂αi(t)
= lim

h→0

Pri(t, αi + h, αj)− Pri(t, αi − h, αj)

2h
.

If there are two directional antennas on the same UAV with a
small orientation offset (e.g., h = 5◦), this partial derivative can
be approximated by comparing the current RSSI levels at two
different orientations. This does not apply to our setup since
each UAV has one directional antenna.

First, we set g2 = 0 to not use ∂Pr2/∂α2. Still, we need to
approximate ∂Pr1/∂α1 due to Condition 1. We propose the
following approximation:

∂Pri(t, αi, αj)

∂αi(t)
≈ Pri(t, αi, αj)− Pri(t− T1, αi, αj)

αi(t)− αi(t− T1)
(12)

for some sampling interval T1 > 0. However, this approxi-
mation can lead to division by zero issues due to the term
αi(t)− αi(t− T1), especially if the orientation αi(t) has not
changed significantly recently. To prevent division by zero, we
perturb α1(t) with a square wave r(t). This perturbation creates
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a stereo effect, similar to having two directional antennas on the
local system.

However, exchanging a perturbed orientation α1(t) with the
remote system would induce a perturbation on α2(t) as well.
Therefore, we introduce a virtual system with the dynamics
given by

α̇v1(t) = wv1(t), (13a)

ẇv1(t) = −awv1(t) + buv1(t) (13b)

whereαv1(t) ∈ R is the virtual orientation andwv1(t) ∈ R is the
virtual angular velocity. The local one simulates the dynamics
in (13) to perform the directional antenna pair alignment goal
by utilizing the virtual control law given by

uv1(t) = − kdwv1(t)− k12N(αv1(t)− α2(t) + π)

+ g1
∂Pri(t, αi, αj)

∂αi(t)
(14)

where the partial derivative term is approximated using (12).
Consequently, the exchange of any perturbed state information
is prevented. Now, a PD controller given by

u1(t) = − kd1(w1(t)− wv1(t))

− kp1N(α1(t)− αv1(t)− r(t)) (15)

makes α1(t) track αv1(t) + r(t) to perturb around the virtual
orientation, where kp1 > 0 and kd1 ∈ R are the control gains.
The remote system incorporates the virtual orientation of the
local system into its control law, given by

u2(t) = −kdw2(t)− k21N(α2(t)− αv1(t) + π) (16)

to avoid the perturbations caused by r(t).
To implement the control law and information exchange

between the two subsystems, a system architecture with Robot
Operating System 2 (ROS2) is designed; see Fig. 5 for the
software overview of the system. ROS2 is employed as a mid-
dleware to orchestrate the real-time communication between the
local and the remote system. The control laws in (14)–(16) are
implemented with a control frequency of 50 Hz. The control
gains are set to kd = 0.01, k12 = 1, k21 = 1, g1 = 2, g2 = 0,
kp1 = 1, and kd1 = 0.01. For these control parameters, Con-
ditions 1–4 hold. The period of the square wave r(t) is set to
T1 = 0.5 s, matching the sampling period of the approximator
in (12). In other words, the update rate of the approximator
is 2 Hz. The amplitude of the square wave r(t) should be
adjusted considering the distance between the local and the
remote systems. Close distances require higher perturbations
since Pr1 does not vary much with a small perturbation at a
close distance. As the distance between the systems increases, a
small perturbation is sufficient. We set an amplitude of 20◦ for
the experiment that we conducted at a distance range between
30–50 m.

D. Test Result

We experimented with an outdoor setting. The local UAV
is hovering while the remote one flies around at a distance
of about 40 m from the local UAV, as shown in Fig. 6. Each

Fig. 5. Software overview.

Fig. 6. Outdoor setting where the experiment is conducted.

system is equipped with a UBLOX NEO M8N GPS module
to estimate the best orientation to compare the performance
of the proposed method. The experimental results in Fig. 7
show that both directional antennas track the best orientation
with a small error. The swinging algorithm induces a small
perturbation on the orientation α1 around the virtual orientation
αv1 to approximate ∂Pr1/∂α1.

V. CONCLUSION

The experimental case study shows that the RSSI-based non-
linear static state feedback control law in (5) offers an efficient
solution to the directional antenna pair alignment problem for
scenarios where a GPS signal is unavailable. Conducting ad-
ditional experiments to explore potential real-world applica-
tion challenges is a future work. Another future work is the
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Fig. 7. Experimental results show that the virtual orientation αv1 and
orientation α2 track the best orientation with an error.

development of intelligent swinging algorithms. For example,
the amplitude of the square wave r(t) could be time-varying,
allowing it to be set to zero when the system is already in motion,
i.e., |w1(t)| > ε for a threshold value ε > 0. Another future work
is the 2-DOF adjustment of the directional antennas, where they
can also adjust their pitch angles independently.

APPENDIX

This appendix investigates the existence of solutions for a set
of nonlinear equations. The proofs presented in this section rely
on a property of the sinc function given by

|sin(θ)/θ| < 1, θ �= 0 (17)

which is well known in mathematical literature.
Lemma 3: Let c /∈ [0, 1). The nonlinear equation cN(θ)−

sin(θ) = 0 has no real solution except trivial solutions θ ≡
0 (mod 2π).

Proof: Assume there exists a nontrivial solution θ∗ (i.e.,
N(θ∗) �= 0). Without loss of generality, let θ∗ ∈ (−π, π] \ {0}.
This restriction does not lead to a loss of generality because
both N(θ) and sin(θ) are periodic with period 2π. Within this
range, sin(θ∗) and θ∗ has the same sign; therefore, we deduce
that 0 ≤ sin(θ∗)/θ∗ < 1 from (17). However, it contradicts with
the fact that sin(θ∗)/N(θ∗) = c since c /∈ [0, 1). �

Lemma 4: Let |c1 − c2| ≥ 1. The set of nonlinear equations

c1N(θ1 − θ2)− sin(θ1) = 0 (18a)

c2N(θ1 − θ2)− sin(θ2) = 0 (18b)

has no real solution except trivial solutions

(θ1, θ2) ≡ (0 (mod 2π), 0 (mod 2π))

(θ1, θ2) ≡ (π (mod 2π), π (mod 2π)).

We first provide two preliminary facts and their proofs before
presenting the proof of this lemma.

Fact 1: Let θ1 − θ2 �= 0. The inequality

−1 <
sin(θ1)− sin(θ2)

θ1 − θ2
< 1 (19)

holds.
Proof of Fact 1: Let ψ = (θ1 + θ2)/2 and h = (θ1 −

θ2)/2, where h �= 0. We can rewrite the function in (19)
as (sin(ψ + h)− sin(ψ − h))/2 h, that is inequivalent to
cos(ψ) sin(h)/h after applying trigonometric sum identities.
Note that | cos(ψ) sin(h)/h| ≤ | sin(h)/h| < 1 for all h ∈ R \
{0} from (17). �

Fact 2: Let N(θ1 − θ2) �= 0. The inequality

−1 <
sin(θ1)− sin(θ2)

N(θ1 − θ2)
< 1 (20)

holds.
Proof of Fact 2: Without loss of generality, let θ1, θ2 ∈

(−π, π]. This restriction does not lead to a loss of generality
because sin(θ1), sin(θ2), and N(θ1 − θ2) are periodic functions
with period 2π. Consider θ1 − θ2 > π. Thus, N(θ1 − θ2) =
θ1 − θ2 − 2π. Since sin(·) function is periodic with period 2π,
we can rewrite (20) as

sin(θ1)− sin(θ2 + 2π)
θ1 − (θ2 + 2π)

.

Therefore, (20) holds from Fact 1. The proof of the cases −π <
θ1 − θ2 ≤ π and θ1 − θ2 ≤ −π are similar. �

Proof of Lemma 4: On the contrary, assume that θ∗1 and
θ∗2 be a solution different than the trivial solutions. Consider
the case N(θ∗1 − θ∗2) = 0. Equation (18) yields that sin(θ∗1) = 0
and sin(θ∗2) = 0. Simultaneously satisfying these three equa-
tions contradicts with θ∗1 and θ∗2 are different than the trivial
solutions. Consider the case N(θ∗1 − θ∗2) �= 0. Equation (18)
yields that sin(θ∗1)/N(θ

∗
1 − θ∗2) = c1 and sin(θ∗2)/N(θ

∗
1 − θ∗2) =

c2. The subtraction of them gives (sin(θ∗1)− sin(θ∗2))/N(θ
∗
1 −

θ∗2) = c1 − c2. From Fact 2, −1 < c1 − c2 < 1. It contradicts
with |c1 − c2| ≥ 1. �
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