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Many fluid dynamic systems exhibit undesirable oscillatory instabilities due to pos-

itive feedback between fluctuations in their different subsystems. Thermoacoustic

instability, aeroacoustic instability, and aeroelastic instability are some examples.

When the fluid flow in the system is turbulent, the approach to such oscillatory

instabilities occurs through a universal route characterized by a dynamical regime

known as intermittency. In this manuscript, we extract the peculiar pattern of phase

space attractors during the regime of intermittency by constructing recurrence net-

works corresponding to the phase space topology. We further train a convolutional

neural network to classify the periodic and aperiodic structures in the recurrence

networks and define a measure that indicates the proximity of the dynamical state

to the onset of oscillatory instability. We show that this measure can predict the

onset of oscillatory instability in three different fluid dynamic systems governed by

different physical phenomena.
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Practical dynamical systems often exhibit very complex phase space dynam-

ics, and their phase space topology is constituted by interwoven salient features

(patterns). The relative strength of these salient features that determine the dy-

namical state of the system, when quantified, can be used to track the evolution

of the state of the system, anticipate critical transitions in the system, and even

introduce effective control of the system. In the current study, a methodology

to analyze and quantify complex patterns in the phase space of a dynamical

system using convolutional neural networks (CNN) has been developed. The

methodology classifies salient features in the phase space of a system by analyz-

ing patterns (feature detection) in the corresponding recurrence network using

CNN. We then use this methodology to predict the onset of oscillatory insta-

bility in fluid dynamic systems, namely, thermoacoustic instability, aeroacoustic

instability, and aeroelastic instability. A priory prediction of such oscillatory

instability is beneficial since they are often highly disastrous.

I. INTRODUCTION

Oscillatory instabilities resulting from the feedback between the flow and other subsys-

tems are common in many fluid dynamical systems. For example, when combustion occurs

inside a confinement, as is the case for many practical systems, the unsteadiness in the heat

release rate often gets mutually coupled with the acoustic field of the confinement. When

there is a positive feedback between them, a growth of amplitude of pressure fluctuations is

observed. As pressure fluctuations grow, the nonlinearities cause the saturation of the ampli-

tude, eventually leading to sustained large amplitude periodic oscillations - a phenomenon

known as thermoacoustic instability. Combustors in rocket engines and gas turbines are

susceptible to such instability which, in turn, cause catastrophic hardware damages1,2.

Aeroacoustic instability is another such oscillatory instability. A fluid flow past obstruc-

tions, over a cavity, or separating from a boundary, produces pressure perturbations due

to unsteady phenomena such as vorticity fluctuations, shear layer oscillations, and turbu-

lence3,4. When these perturbations get coupled with the acoustic field of the system estab-

lishing a positive feedback, the acoustic oscillations in the system can grow and saturate
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into strong periodic oscillations. While such aeroacoustic instabilities could be pleasant and

harmless as in the case of sounds produced by wind instruments or bird songs, they also

cause unwanted phenomena such as screech in jets with shocks5 and howling of ejectors6.

There are several reviews that detail various studies on aeroacoustic instability7–9.

Oscillatory instabilities are also common in structural elements suspended in fluid flows.

Commonly known as aeroelastic instabilities, these instabilities are the result of a positive

coupling among the elastic, inertial, and aerodynamic forces. These undesired and po-

tentially catastrophic sustained oscillations of the structure are also known as aeroelastic

flutter. Such instabilities affect elastic bodies such as airplanes, wind turbines, skyscrapers,

and suspension bridges. A famous example of destruction caused by aeroelastic instability

is the collapse of the Tacoma Narrow bridge10. Although these instabilities and associated

dynamics have been studied over a long time, prognosis and mitigation of these oscillations

remain a serious challenge1,2,7,11.

Nonlinearities associated with the fluid dynamic system, in many scenarios, make it dif-

ficult to predict the onset of such oscillatory instabilities. Nevertheless, there have been

substantial number of studies focused on developing precursors to such instabilities in dif-

ferent systems. Traditional methodologies rely on tracking the temporal variations in root

mean square of time series of one or more state variables of the system (e.g., pressure

or strain fluctuations), studying the evolution of peaks in Fourier transformation/ wavelet

transformation of time-series of state variables, etc12,13. While these measures could indicate

an onset of oscillatory instability, in most cases the warning time they provide is inadequate

for any meaningful control action, making them unreliable precursors.

Recent studies indicate that when the underlying flow is turbulent, the transition regime

from safe operation to oscillatory instability is characterized by a dynamical state of inter-

mittency during which the system exhibits bursts of large amplitude periodic oscillations

amidst low amplitude aperiodic fluctuations14–19. As fluid dynamic systems approach oscil-

latory instability, the duration for which the large amplitude periodic bursts persist during

the intermittent oscillations progressively increase. This discovery of gradual morphing of

intermittency to periodicity during the emergence oscillatory instability set-off a new wave

of investigations into precursory signals focused on quantifying the intermittency statistics20.

The presence of the dynamical state of intermittency in the transition regime to oscil-

latory instability was first identified in aeroelastic systems by Korbahti et al.14. Parallelly,
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Nair et al. identified intermittency prior to the inception of thermoacoustic instability21 and

aeroacoustic instability16. Recent works have been focused on quantifying various intermit-

tency statistics using nonlinear statistical methods such as multifractal analysis22, symbolic

time series analysis23, recurrence quantification21,24 and topological characterization of com-

plex networks25,26, in order to use such statistics as early warning measures for impending

oscillatory instability. Very recently, Pavithran et al.18 showed that in turbulent systems

there exists a universal pattern indicated by a universal scaling behavior between the frac-

tal dimension of the time series of the unsteady state variable, and the amplitude for the

dominant frequency in its amplitude spectrum. Pavithran et al.19 later also showed that the

spectral condensation associated with the onset of oscillatory instability exhibits a universal

behavior.

In this paper, we aim to detect and quantify this universal pattern during the emergence

of oscillatory instability in fluid dynamic systems, and use them for prognosis. Towards

this, we propose a method to estimate relative dominance of salient features, constitut-

ing the phase space of a practical system, by characterizing the patterns in the recurrence

networks (RN) corresponding to state variables of the system. Furthermore, we will use

Convolutional Neural Networks (CNN), a popular machine learning tool to achieve such

goal. Recurrence analysis is a dynamical systems approach to study how the trajectory of

state points corresponding to a system revisits the same part of the phase space in time. It

helps us represent the complex topology of a multidimensional phase space attractor in a

two dimensional space. The inherently nonlinear time series analysis method of recurrence

quantification was previously used by Nair et al.21,27, and Gotoda et al. 24 to develop precur-

sors for the onset thermoacoustic instability. Godavarthi et al. 28 used recurrence network

analysis to study the synchronization and causal relationship between pressure and heat

release fluctuations in a turbulent combustor.

While the above studies used statistical measures that quantify the patterns in the recur-

rence plots, the present study will use the power of deep learning to detect hidden patterns

in recurrence plots elusive to traditional statistical measures. Such marriage of nonlinear

time series analysis methods with machine learning algorithms could prove useful in devel-

oping a robust precursor technology that is capable of self learning. Recently, there have

been many such advancements where data driven methods were used to unravel the physics

behind nonlinear systems29–31.

4



A specific advantage in utilizing deep-learning algorithms is their ability to analyze new

data not limited to that from specific systems for which it was designed for. Some of the

recent studies have focused on such methodologies to develop precursors for oscillatory in-

stabilities in fluid dynamic systems32–36. In this study, we combine both tools from nonlinear

dynamics (recurrence, complex networks) and deep learning (CNN) to devise precursor to

the onset of oscillatory instability.

Convolutional neural network is a widely used deep-learning algorithm for classifying

and recognizing patterns present in multidimensional data and thus has the ability to au-

tonomously extract essential patterns from an RN. In this study, we will utilize CNN to first

classify recurrence networks corresponding to short time series segments of system variables

to aperiodic and periodic segments. This classification is then used to quantify the state of

intermittency by ascertaining the relative dominance of periodic and aperiodic dynamics of

the system. Based on this information, we define a measure that indicates the proximity

of the system to full-blown oscillatory instability. This measure can thus serve as a pre-

cursor for onset of oscillatory instability. We validate our prediction scheme by detecting

the onset of oscillatory instability in a thermoacoustic system, aeroacoustic system and an

aeroelastic system. The rest of the paper is organized in the following manner. First, in

Sec. II, we describe the experimental system whose dynamics will be analyzed. In Sec. III,

we discuss recurrence networks analysis and subsequently, in Sec. IV, we present the design

of the convolutional neural networks and its implimentation to the problem in hand. In

Sec. V, we share the results and assess the performance of the designed CNN in identifying

the precursors to the instability. Finally, we end the exposition by discussing the future

prospects in Sec. VI.

II. EXPERIMENTS

In this paper we will use experimental data from aeroacoustic, thermoacoustic and aeroe-

lastic systems. By varying the respective control parameters in each of these systems, we

observe the transition to the state of oscillatory instabilities. Schematics of the experimental

setups are shown in Fig. 1. We provide a brief description of the experiments here.

The thermoacoustic system (Fig. 1a) consists of a settling chamber, a burner, combustion

chamber, a bluff body as a flame stabilizing device, and a decoupler. Air enters through
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FIG. 1. a) Thermoacoustic system: A turbulent combustor with a bluff body stabilized flame b)

Aeroacoustic system: Flow through orifice creating a tonal sound. c) Aeroelastic system: Flow

over a finned cantilever. Reproduced with permission from EPL (Euro-physics Letters) 129, 24004

(2020)18. Copyright 2020, Institute of Physics

the inlet and it is partially premixed with the fuel (Liquid petroleum gas composed of

propane-butane, mixed in 2:3 volume ratio). The combustion was initiated with spark

generated in the combustor using a spark plug. In experiments, we vary the mass flow

rate of air, keeping the mass flow rate of fuel constant thereby increasing the Re. Using

a piezoelectric transducer (model: PCB103B02), we acquire unsteady pressure fluctuations

for different values of Re as we increase it. The combustion dynamics transitions from a

state of stable operation to thermoacoustic instability as Re is increased. Re is varied from

10,398 to 20,378. Further details including the uncertainties in the measurements for the

corresponding experimental setup can be found in Raghunathan et al. 37 .

An aeroacoustic system (shown in Fig. 1b) comprises a decoupler (the cylindrical cham-

ber) and two orifices of diameter 20 mm located in a long duct (525 mm) with a spacing of

18 mm. An air flow is established through inlet and vortices are shed as it passes through

the orifices. The feedback established between the vortex shedding and the acoustic field in

the confinement results in the transition to aeroacoustic instability. We vary Re from 5615

± 185 to 9270 ± 212 to observe this transition. Pressure fluctuations inside the duct are
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measured using a pressure field pre-polarized microphone (model: 378C10) near 100 mm

from the orifice. Details of this setup can be found in18.

The third system where we study the transition is an aeroelastic system (Fig. 1c), which

consists of a cantilever beam having length 45 mm (width = 25 mm & thickness = 0.5 mm).

One side of the beam is fixed, and the other side is free. A small vertical fin (length =

12 mm) is attached to the free end of the cantilever. Air flow passes along the the length

of the cantilever from left to right. The cantilever starts to oscillate due to the unsteady

aerodynamic load created when there is vortex shedding from the fins. The resultant strain

(S) is measured using a strain gauge, for different Re. We vary Re from 2384 ± 159 to 4768

± 111 to capture the transition to aeroelastic instability. More details of this setup can be

found in18.

III. CONSTRUCTION OF RECURRENCE NETWORKS

Recurrence is a fundamental property of a dynamical system due to which the system

revisits the same part of the phase space repeatedly. The first step in performing recurrence

analysis of a system is the reconstruction of the corresponding phase space trajectory, ~X.

We use Takens’ embedding theorem to reconstruct the phase space, which allows one to

reconstruct the phase space of a system using the time series of a state variable x(ti), where

ti represents the ith time instant38. By identifying an appropriate embedding dimension, d,

and an optimal time lag, τ , we construct the dynamics along the d dimensions of the phase

space as d time-delayed vectors derived from x(ti). If the length of x(ti) is N , the ith element

of ~X, ~Xi, is represented as:

~Xi =[x(ti), x(ti + τ), ... , x(ti + (d− 1)τ)],

where i = 1, ..., N − τ(d− 1)
(1)

Theoretically, any τ can be selected to reconstruct the phase space. Selecting a very small

τ , will result in a phase space where it is not possible to distinguish the dynamics along

two different neighboring dimensions. Whereas, by selecting a large τ , the dynamics along

different dimensions become independent. We can identify an optimal τ to reconstruct

the phase space such that the average mutual information between x(ti) and x(ti + τ) is

minimum39. Additionally, an appropriate number of dimensions d, is chosen such that the
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reconstructed phase space attractor appropriately unravels the phase space of the system,

ensuring that the state points have a minimum number of false neighbors. Two neighboring

points in a d-dimensional phase space are considered false neighbors if they do not remain

neighbors in a reconstructed phase space with higher dimensions39. A powerful method for

finding optimal d, is an optimized version of Abarbanel’s False Nearest Neighbors method,

adapted by Cao40. Here, we note that the focus of this work, is not on optimal reconstruction

of the phase space. We rather aim to study how well CNN can classify recurrence networks,

even when they are derived from a non-optimal reconstruction of the phase space. Hence, we

select τ to be roughly equal to quarter of the time period of the periodic oscillations during

oscillatory instability. d is chosen to be 6 since previous studies28 show that for the low

amplitude aperiodic oscillations, an embedding dimension of 6 is sufficient and for all other

states, the embedding dimension is less than that. We define an unthresholded recurrence

matrix R whose elements Ri,j is given as:

Ri,j = ‖ ~Xi − ~Xj‖, where i, j = 1, ..., N − τ(d− 1). (2)

We, then, proceed to derive a recurrence network from this recurrence matrix. A recurrence

network is represented using an adjacency matrix A, whose elements are defined as:

Ai,j =
1

1 +Ri,j

− δi,j (3)

This definition ensures that, two nodes of the network, indicating state points at two instants

of time, have a stronger bond (i.e. more weight) if they are closer in the phase space. The

farther the nodes are in the phase space, the smaller the weight associated with the edge

connecting them. Subtraction of Kronecker delta, δi,j in Eq. 3, ensures that the nodes of

the network are not self connected.

The network thus constructed from time series of a state variable can be visualized using

the tool Gephi41 as shown in Fig. 2. Figure 2 represents recurrence networks corresponding

to three dynamical states of a turbulent combustor i) low amplitude aperiodic oscillations

known as combustion noise, ii) intermittency consisting of bursts of high amplitude periodic

oscillations amidst low amplitude aperiodic oscillations and iii) thermoacoustic instability
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FIG. 2. Recurrence networks corresponding to three dynamical states in a thermoacoustic system

a) aperiodic oscillations known as combustion noise with Re of 10398, b) intermittency with Re of

13230, c) oscillatory instability known as thermoacoustic instability with Re of 20,378. The node

strength, NS , is the sum of weights of all edges connected to a particular node.

characterized by high amplitude periodic oscillations. As mentioned before, such transitions

occur as the Re of the flow is increased. These networks are constructed from the time series

of unsteady pressure fluctuations. Recurrence networks preserve the geometry of the phase

space attractor. Hence the recurrence network for aperiodic oscillations in a thermoacoustic

system has a disorganized pattern with a widely varying node strength (NS). For periodic

thermoacoustic oscillations, the corresponding network has a closed curve topology with

a uniformly distributed NS with a relatively higher value. During intermittency, we can

observe a mixed nature for the network, where we see an increased NS for some of the nodes

and there are emerging closed curves in the network topology.

Once the recurrence networks are constructed as mentioned before, we use convolutional

neural networks to extract salient features in the topology of those networks. This process

is detailed in the following section.
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IV. CONVOLUTIONAL NEURAL NETWORK

Inspired from the workings principle of a feline visual cortex, Convolutional Neural Net-

works (CNN) have become a popular type of Artificial Neural Network (ANN). An ANN

consist of layers of interconnected artificial neurons resembling biological neural networks

in a brain. This is achieved through a network of nodes across multiple layers, which are

interconnected with links of non-uniform weights. These ANNs, then, form the foundation

for deep learning. Given an input, the ANN has the ability to learn patterns from the input

by accordingly adjusting the weights of the links that form the ANN. A CNN is a type of

ANN in which some of the layers of the neural network also performs convolution on the

input data42. First introduced for classification of handwritten characters43, CNN possess

many striking advantages. These networks have the ability to achieve shift invariance, i.e.,

the ability to identify the features in the input data regardless of their location. Further-

more, feature learning allows the network to extract only the important features from an

input in order to make more accurate predictions. Lastly, weight sharing allows weights to

be applied across an entire input, making this type of networks memory efficient44,45.

The unique advantage of a CNN is centered on the convolutional layer, which is composed

of multiple multidimensional weight matrices, referred to as filters. These filters perform

convolution and thus, extract features in the input data (which, in our case is the adjacency

matrix representing the complex network). For example, a diagonal filter F shown in Fig. 3,

when applied to the input adjacency matrix A, outputs the feature map B corresponding

to the filter F , following the rule:

Bi,j =
h∑

m=1

w∑
n=1

Am−i,n−jFm,n (4)

Here, h and w are the height and width of the filter. For the particular case represented in

Fig. 3, both h and w are equal to 3.

Once the feature maps are extracted the subsequent layers of the CNN processes the

information in the feature maps for classification of the input data. Figure 4 represents

a connection diagram for the entire CNN. First, the extracted feature maps are flattened

into a one-dimensional array. The flattened array, is interconnected by weights, to a fully

connected layer (FC), which is an array of nodes. FC identifies global patterns extracted

by the convolutional layers and brings the information from all feature maps together to
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FIG. 3. Feature extraction using convolution layer. The Diagonal filter F is convolved across the

input adjacency matrix, A. The result of the convolution is the feature map, B, where the diagonal

features from the input image are extracted.

Fully Connected
Layer

Output 
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Output Activation 
FunctionInput

Convolutional Layers
Flattened 

Feature maps

Feature maps

FIG. 4. The architecture of CNN designed to classify the structure of input recurrence network

perform classification.

We use a nonlinear activation function after each of these layers to equip CNN to extract

complex features from the input data. An activation function, in essence, determines the

response of an artificial neuron to stimuli. One of the most used activation function is

Rectified Linear Unit (ReLU), which allows a relatively faster training process46, and hence

it is particularly advantageous over other nonlinear functions. Equation 5 shows that ReLU
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function simply maps the negative inputs to zero and preserves the positive and zero inputs.

ReLU(Bm,n) =

Bm,n if Bm,n > 0

0 otherwise
(5)

Further, in order to increase the efficiency, the number operation needed by CNN is

reduced by reducing the size of different layers through downsampling. Here, we utilize an

effective form of commonly used downsampling method known as max pooling, where a

window is slid over an input layer, and while the highest value in the window is selected to

construct the next layer47.

Typically the window will not overlap itself as it slides, it will only visit a set of data

once. The result of this process is a compact version of the input layer.

Once the input data goes through the convolution layers and fully connected layers, the

final step for classification is assigning a measure for each class that we are interested in

identifying. In general, for the methodology we are describing, the different classes would

be the different salient patterns in the phase space. In this study, we separate the input

network into two class of salient patterns, i.e. periodic or aperiodic. Thus, we will utilize a

sigmoid function as the classifier, which enables the intended binary classification. For more

complex systems where higher number of classification is desired, a softmax function can be

utilized48. The sigmoid function outputs a value between zero and one, each corresponding

to one of the two classes intended to be identified. During this process, the output of the

FC layer is interconnected by weights to one node which makes up the output layer. The

output of this node is, subsequently, fed into the sigmoid function as illustrated in Fig. 4.

A. Training the CNN

Inside the CNN, the process of learning simply entails adjusting the weight parameters

of the network. By using already known information about the input, i.e., using a labelled

data set, we can train the CNN. This mode of training using labelled data set is known

as supervised learning. The objective of our CNN is to classify the input data (i.e., the

Adjacency Matrix, A) into either periodic or aperiodic. The training data set thus contains

labeled adjacency matrices. The label y of a binary classifier is either zero or one. In our

case, one indicates that the input data is periodic and zero implies that the input data is

aperiodic.

12



During the training process for classification using CNN, an input will pass through

different layers of the CNN and provide some output (i.e., a number) indicative of different

classes. In the initial phases of training, the untrained network is initialized with random

weights and thus the output of classification will presumably be incorrect. Upon outputting

an incorrect classification, the CNN computes a cost function which is a measure of the

error between the value of y that CNN predicts (ŷ) and the value of y actually is (obtained

from the known label). The cost function utilized in our CNN is a version of binary cross

entropy49, a typical cost function used for a binary classifier problem. Binary Cross entropy

is expressed in Eq. 6, where ŷ is the output of the CNN for an input A with label y.

J = −y ln ŷ + (1− y) ln (1− ŷ) (6)

In the case when the prediction of the CNN, ŷ, is equal to the known classifier label y.

The value of the cost function, J is approximately zero. On the other hand, if the prediction

value deviates from the known classifier value, then the cost function will tend to infinity.

After identifying the cost for a set of predictions for the training data. An average cost is

estimated. Given this average cost, we perform a process known as error back propagation.

That is, by going back through the different layers of the networks, we adjust the weights of

CNN to minimize the average cost. This is done utilizing Adam optimization50, a variation of

gradient descent method. Multiple iterations of cost minimization through back propagation

will make the output of CNN a more accurate representation of the known classification

y. It is also noted that, through the process of supervised training, the weights in the

filters also are adjusted to optimize the cost. Much like the example with the diagonal

filter in Figure 3, the filters in the CNN will extract certain features. However, instead of

hand-engineered filters, through back propagation in the CNN training process, the system

identifies most essential filters for classifying the input. A more detailed introduction on the

layers, functions, and back-propagation of a CNN is given in the monograph by Wu51. The

complete structure of the CNN used in the present study is detailed in Table I.
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TABLE I. Structure of the CNN

Name Dimensions Operations

Input Adjacency Matrix 122×122 None

Conv-1 120×120×32 3×3×32 Convolution

Activation-1 120×120×32 ReLU Activation

MaxPool-1 60×60×32 2x2 Max Pooling

Conv-2 58×58×32 3×3×32 Convolution

Activation-2 58×58×32 ReLU Activation

MaxPool-2 29×29×32 2x2 Max Pooling

Flatten 26912 Converting to one column vector

FC-1 64 64 Fully-Connected

Activation-3 64 ReLU Activation

FC-2 1 1 Fully-Connected

Activation-4 1 Sigmoid Activation

V. PRECURSOR MEASURE AND ITS IMPLEMENTATION AS AN

EARLY WARNING FOR ONSET OF OSCILLATORY INSTABILITY

The CNN described in the previous sections is trained to distinguish aperiodic structures

in the recurrence network from periodic patterns. The input time series segment for each

classification has a length δL. We scan the input time series of length L in overlapping

segments of length δL with an overlap of ∆L. Using Eq. 3, the corresponding adjacency

matrix, A, for each time series segment is identified which then is passed through the trained

CNN. We, subsequently, label each time series segment with the output classification of

CNN, ŷ as its periodic probability value, µ0. The CNN is trained such that µ0 is 1 if the

dynamics is purely periodic and sinusoidal. As the dynamics moves closer to aperiodic, the

probability value moves closer to 0. It is to be noted that depending on the system, the

aperiodic fluctuations of the system variable could resemble white/colored noise or that of

chaotic turbulent fluctuations exhibiting high short-time correlations. Since we train the

CNN with all possible types of noise signals, the advantage of the present method is that it

is able to identify and assign a value of µ0 close to zero for all such types of ‘noise’ signals.
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Figure 5 shows such labeling of local dynamics using CNN for a time series segment of a state

variable measured from a thermoacoustic system (corresponding images for aeroacoustic and

aeroelastic systems are given in the Appendix). The color of the background of the time

series represent the local periodic probability value (μ0).

We also define a precursor measure (μ) for the dynamic state represented by the time

series of state variable to be the average of the probability measure, μ0 calculated for all

overlapping segments of length dL that constitute the time series segments of length L. In

all cases considered in this manuscript, we consider L = 3 s, δL = 0.03 s and ΔL = 0.02 s.

A good rule of thumb to follow is that L should be of the order of 100T (ensuring that

intermittency statistics converge) and δL should be of the order of 3T (ensuring we at least

cover 3 cycles of oscillation in each time series segments), where T is the time period of

oscillations.
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FIG. 5. Probability of periodicity (μ0) measured for different parts of an intermittent pressure

fluctuation taken from thermoacoustic experiments (Re = 1.3 × 104). The background color rep-

resent μ0. μ0 = 1 if the oscillations are periodic and μ0 = 0 if oscillations are aperiodic. Here,

parameters δL = 0.03 s (window size) and ΔL = 0.02 s (overlap).

In Fig. 6, we show the variation of μ with the control parameter (Re) for all three

systems. Here, the experiments were conducted in a quasi-steady manner, in that the

control parameter was changed in steps and the data was obtained for each step ensuring

that the control parameter remained steady for the duration of data acquisition. The time

series of state variables for all systems illustrated in top rows of Fig. 6 are 3 s long, each for

different control parameter values, and subsequently joined together one after the other for

the purpose of illustration. The alternating white and gray backgrounds in the time series
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FIG. 6. Precursor for onset of oscillatory instability in fluid dynamic systems. a) Thermoacous-

tic system b) Aeroacoustic system c) Aeroelastic System. In all cases, the top panel show the

fluctuations of system variable, measured for quasistatic variation of control parameter, Re.
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indicate each 3 s long segment corresponding to a particular control parameter value.

In the bottom rows of Fig. 6 for three systems, we plot the RMS of the time segments and

probability of periodicity µ, as identified by the CNN. We see that µ is able to detect the

transition in all systems. Once µ is estimated, the operator can set appropriate thresholds

for controlling the fluid systems. For the combustor, the onset of instability is detected much

before PRMS saturates to a high value. In the case of the aeroacoustic system, even though

the PRMS varies gradually as we approach acoustic instability, the variation in µ indicates

that the transition to oscillatory instability is rather abrupt. In the case of aeroelastic

system, the amplitude of strain oscillations abruptly increase upon the onset of oscillatory

instability. However, we see that µ is able to detect an impending transition in the dynamics

far away from the onset of oscillatory instability.

Note that as this warning system is repeatedly implemented on new data, it can also be

retrained with the new data enabling self learning. In the present study, we discussed only

the onset of single mode oscillatory instabilities. The methodology to analyze dynamical

systems introduced here focusing on the combined use of dynamical systems theory and deep

learning, can also be extended for classification of different dynamical states of a general

dynamical system and bifurcation analysis.

VI. SUMMARY AND FUTURE PROSPECTS

We introduced a methodology to quantify the relative dominance of different salient

topological features of a complex phase space attractor by analyzing patterns in the cor-

responding recurrence networks using convolutional neural networks. This methodology is

particularly useful in classifying various dynamical states of practical systems. The relative

dominance of salient features of phase space topology can be used as an identifier for the

dynamical state of the system and a measure derived based on this information can be used

both to analyze and identify the state of a practical system, and thus aid its control. This

methodology can also provide early warning impending dynamical transitions in the system.

We implemented this methodology to devise a framework for early detection of the onset

of oscillatory instability in fluid dynamic systems encompassing turbulent flows. The CNN

was able to ascertain the relative dominance of periodic and aperiodic dynamics during

the dynamical state of intermittency and thus estimate the proximity of the fluid dynamic
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system to full-blown oscillatory instability. We successfully implemented the early warning

system for three fluid systems with significantly different characteristics, a thermoacoustic

system, an aeroacoustic system and an aeroelastic system.

An advantage that network approaches provide in analyzing a dynamical system is their

ability to incorporate either physical or abstract connections across layers of networks of

information about the system, based on some chosen rules. Here, the different layers of

networks could represent different subsystems of the system, different spatial locations of the

system, different temporal regimes and so on. During the temporal evolution of dynamics,

these interconnections get rewired. Studying this new representation of data in terms of

networks can be very fruitful.

Traditional network measures mostly provide the averaged topological statistics of the

network. However, tools from machine learning would be able to capture variations in

complex patterns in networks. Thus the combination of network analysis and machine

learning could enable us to investigate variation in inter subsystem dependencies, spatial

flow of information, temporal correlations and causal relations in a dynamic system with

much more flexibility and detail.
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APPENDIX

The variation of µ0 measured for time series segments obtained for aeroacoustic and

aeroelastic experiments are given in Fig. 7 and Fig. 8, respectively.
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fluctuation taken from aeroacoustic experiments (Re = 7.8×103). The background color represent
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fluctuation taken from aeroelastic experiments (Re = 3.8× 103). The background color represent

μ0. μ0 = 1 if the oscillations are periodic and μ0 = 0 if oscillations are aperiodic.
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