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Many fluid dynamic systems exhibit undesirable oscillatory instabilities due to pos-
itive feedback between fluctuations in their different subsystems. Thermoacoustic
instability, aeroacoustic instability, and aeroelastic instability are some examples.
When the fluid flow in the system is turbulent, the approach to such oscillatory
instabilities occurs through a universal route characterized by a dynamical regime
known as intermittency. In this manuscript, we extract the peculiar pattern of phase
space attractors during the regime of intermittency by constructing recurrence net-
works corresponding to the phase space topology. We further train a convolutional
neural network to classify the periodic and aperiodic structures in the recurrence
networks and define a measure that indicates the proximity of the dynamical state
to the onset of oscillatory instability. We show that this measure can predict the
onset of oscillatory instability in three different fluid dynamic systems governed by

different physical phenomena.
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Practical dynamical systems often exhibit very complex phase space dynam-
ics, and their phase space topology is constituted by interwoven salient features
(patterns). The relative strength of these salient features that determine the dy-
namical state of the system, when quantified, can be used to track the evolution
of the state of the system, anticipate critical transitions in the system, and even
introduce effective control of the system. In the current study, a methodology
to analyze and quantify complex patterns in the phase space of a dynamical
system using convolutional neural networks (CNN) has been developed. The
methodology classifies salient features in the phase space of a system by analyz-
ing patterns (feature detection) in the corresponding recurrence network using
CNN. We then use this methodology to predict the onset of oscillatory insta-
bility in fluid dynamic systems, namely, thermoacoustic instability, aeroacoustic
instability, and aeroelastic instability. A priory prediction of such oscillatory

instability is beneficial since they are often highly disastrous.

I. INTRODUCTION

Oscillatory instabilities resulting from the feedback between the flow and other subsys-
tems are common in many fluid dynamical systems. For example, when combustion occurs
inside a confinement, as is the case for many practical systems, the unsteadiness in the heat
release rate often gets mutually coupled with the acoustic field of the confinement. When
there is a positive feedback between them, a growth of amplitude of pressure fluctuations is
observed. As pressure fluctuations grow, the nonlinearities cause the saturation of the ampli-
tude, eventually leading to sustained large amplitude periodic oscillations - a phenomenon
known as thermoacoustic instability. Combustors in rocket engines and gas turbines are
susceptible to such instability which, in turn, cause catastrophic hardware damages'2.

Aeroacoustic instability is another such oscillatory instability. A fluid flow past obstruc-
tions, over a cavity, or separating from a boundary, produces pressure perturbations due
to unsteady phenomena such as vorticity fluctuations, shear layer oscillations, and turbu-

lence®*. When these perturbations get coupled with the acoustic field of the system estab-

lishing a positive feedback, the acoustic oscillations in the system can grow and saturate



into strong periodic oscillations. While such aeroacoustic instabilities could be pleasant and
harmless as in the case of sounds produced by wind instruments or bird songs, they also
cause unwanted phenomena such as screech in jets with shocks® and howling of ejectors®.
There are several reviews that detail various studies on aeroacoustic instability” .

Oscillatory instabilities are also common in structural elements suspended in fluid flows.
Commonly known as aeroelastic instabilities, these instabilities are the result of a positive
coupling among the elastic, inertial, and aerodynamic forces. These undesired and po-
tentially catastrophic sustained oscillations of the structure are also known as aeroelastic
flutter. Such instabilities affect elastic bodies such as airplanes, wind turbines, skyscrapers,
and suspension bridges. A famous example of destruction caused by aeroelastic instability
is the collapse of the Tacoma Narrow bridge!®. Although these instabilities and associated
dynamics have been studied over a long time, prognosis and mitigation of these oscillations
remain a serious challenge!*711,

Nonlinearities associated with the fluid dynamic system, in many scenarios, make it dif-
ficult to predict the onset of such oscillatory instabilities. Nevertheless, there have been
substantial number of studies focused on developing precursors to such instabilities in dif-
ferent systems. Traditional methodologies rely on tracking the temporal variations in root
mean square of time series of one or more state variables of the system (e.g., pressure
or strain fluctuations), studying the evolution of peaks in Fourier transformation/ wavelet
transformation of time-series of state variables, etc!®!3. While these measures could indicate
an onset of oscillatory instability, in most cases the warning time they provide is inadequate
for any meaningful control action, making them unreliable precursors.

Recent studies indicate that when the underlying flow is turbulent, the transition regime
from safe operation to oscillatory instability is characterized by a dynamical state of inter-
mittency during which the system exhibits bursts of large amplitude periodic oscillations
amidst low amplitude aperiodic fluctuations!* %, As fluid dynamic systems approach oscil-
latory instability, the duration for which the large amplitude periodic bursts persist during
the intermittent oscillations progressively increase. This discovery of gradual morphing of
intermittency to periodicity during the emergence oscillatory instability set-off a new wave
of investigations into precursory signals focused on quantifying the intermittency statistics®.

The presence of the dynamical state of intermittency in the transition regime to oscil-

latory instability was first identified in aeroelastic systems by Korbahti et al.!4. Parallelly,



Nair et al. identified intermittency prior to the inception of thermoacoustic instability?' and
aeroacoustic instability'®. Recent works have been focused on quantifying various intermit-

tency statistics using nonlinear statistical methods such as multifractal analysis??, symbolic

3 21,24

time series analysis??, recurrence quantification and topological characterization of com-

25,26 in order to use such statistics as early warning measures for impending

plex networks
oscillatory instability. Very recently, Pavithran et al.!® showed that in turbulent systems
there exists a universal pattern indicated by a universal scaling behavior between the frac-
tal dimension of the time series of the unsteady state variable, and the amplitude for the
dominant frequency in its amplitude spectrum. Pavithran et al.'? later also showed that the

spectral condensation associated with the onset of oscillatory instability exhibits a universal

behavior.

In this paper, we aim to detect and quantify this universal pattern during the emergence
of oscillatory instability in fluid dynamic systems, and use them for prognosis. Towards
this, we propose a method to estimate relative dominance of salient features, constitut-
ing the phase space of a practical system, by characterizing the patterns in the recurrence
networks (RN) corresponding to state variables of the system. Furthermore, we will use
Convolutional Neural Networks (CNN), a popular machine learning tool to achieve such
goal. Recurrence analysis is a dynamical systems approach to study how the trajectory of
state points corresponding to a system revisits the same part of the phase space in time. It
helps us represent the complex topology of a multidimensional phase space attractor in a
two dimensional space. The inherently nonlinear time series analysis method of recurrence
quantification was previously used by Nair et al.2*7, and Gotoda et al.?* to develop precur-
sors for the onset thermoacoustic instability. Godavarthi et al.?® used recurrence network
analysis to study the synchronization and causal relationship between pressure and heat

release fluctuations in a turbulent combustor.

While the above studies used statistical measures that quantify the patterns in the recur-
rence plots, the present study will use the power of deep learning to detect hidden patterns
in recurrence plots elusive to traditional statistical measures. Such marriage of nonlinear
time series analysis methods with machine learning algorithms could prove useful in devel-
oping a robust precursor technology that is capable of self learning. Recently, there have
been many such advancements where data driven methods were used to unravel the physics

behind nonlinear systems??3!.



A specific advantage in utilizing deep-learning algorithms is their ability to analyze new
data not limited to that from specific systems for which it was designed for. Some of the
recent studies have focused on such methodologies to develop precursors for oscillatory in-
stabilities in fluid dynamic systems®273¢. In this study, we combine both tools from nonlinear
dynamics (recurrence, complex networks) and deep learning (CNN) to devise precursor to
the onset of oscillatory instability.

Convolutional neural network is a widely used deep-learning algorithm for classifying
and recognizing patterns present in multidimensional data and thus has the ability to au-
tonomously extract essential patterns from an RN. In this study, we will utilize CNN to first
classify recurrence networks corresponding to short time series segments of system variables
to aperiodic and periodic segments. This classification is then used to quantify the state of
intermittency by ascertaining the relative dominance of periodic and aperiodic dynamics of
the system. Based on this information, we define a measure that indicates the proximity
of the system to full-blown oscillatory instability. This measure can thus serve as a pre-
cursor for onset of oscillatory instability. We validate our prediction scheme by detecting
the onset of oscillatory instability in a thermoacoustic system, aeroacoustic system and an
aeroelastic system. The rest of the paper is organized in the following manner. First, in
Sec. II, we describe the experimental system whose dynamics will be analyzed. In Sec. III,
we discuss recurrence networks analysis and subsequently, in Sec. IV, we present the design
of the convolutional neural networks and its implimentation to the problem in hand. In
Sec. V, we share the results and assess the performance of the designed CNN in identifying
the precursors to the instability. Finally, we end the exposition by discussing the future

prospects in Sec. VL.

II. EXPERIMENTS

In this paper we will use experimental data from aeroacoustic, thermoacoustic and aeroe-
lastic systems. By varying the respective control parameters in each of these systems, we
observe the transition to the state of oscillatory instabilities. Schematics of the experimental
setups are shown in Fig. 1. We provide a brief description of the experiments here.

The thermoacoustic system (Fig. 1a) consists of a settling chamber, a burner, combustion

chamber, a bluff body as a flame stabilizing device, and a decoupler. Air enters through
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FIG. 1. a) Thermoacoustic system: A turbulent combustor with a bluff body stabilized flame b)
Aeroacoustic system: Flow through orifice creating a tonal sound. c¢) Aeroelastic system: Flow
over a finned cantilever. Reproduced with permission from EPL (Euro-physics Letters) 129, 24004
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the inlet and it is partially premixed with the fuel (Liquid petroleum gas composed of
propane-butane, mixed in 2:3 volume ratio). The combustion was initiated with spark
generated in the combustor using a spark plug. In experiments, we vary the mass flow
rate of air, keeping the mass flow rate of fuel constant thereby increasing the Re. Using
a piezoelectric transducer (model: PCB103B02), we acquire unsteady pressure fluctuations
for different values of Re as we increase it. The combustion dynamics transitions from a
state of stable operation to thermoacoustic instability as Re is increased. Re is varied from
10,398 to 20,378. Further details including the uncertainties in the measurements for the
corresponding experimental setup can be found in Raghunathan et al.37.

An aeroacoustic system (shown in Fig. 1b) comprises a decoupler (the cylindrical cham-
ber) and two orifices of diameter 20 mm located in a long duct (525 mm) with a spacing of
18 mm. An air flow is established through inlet and vortices are shed as it passes through
the orifices. The feedback established between the vortex shedding and the acoustic field in

the confinement results in the transition to aeroacoustic instability. We vary Re from 5615

4+ 185 to 9270 4 212 to observe this transition. Pressure fluctuations inside the duct are



measured using a pressure field pre-polarized microphone (model: 378C10) near 100 mm
from the orifice. Details of this setup can be found in'®.

The third system where we study the transition is an aeroelastic system (Fig. 1c), which
consists of a cantilever beam having length 45 mm (width = 25 mm & thickness = 0.5 mm).
One side of the beam is fixed, and the other side is free. A small vertical fin (length =
12 mm) is attached to the free end of the cantilever. Air flow passes along the the length
of the cantilever from left to right. The cantilever starts to oscillate due to the unsteady
aerodynamic load created when there is vortex shedding from the fins. The resultant strain
(5) is measured using a strain gauge, for different Re. We vary Re from 2384 + 159 to 4768
+ 111 to capture the transition to aeroelastic instability. More details of this setup can be

found in'®.

IIT. CONSTRUCTION OF RECURRENCE NETWORKS

Recurrence is a fundamental property of a dynamical system due to which the system
revisits the same part of the phase space repeatedly. The first step in performing recurrence
analysis of a system is the reconstruction of the corresponding phase space trajectory, X.
We use Takens’ embedding theorem to reconstruct the phase space, which allows one to
reconstruct the phase space of a system using the time series of a state variable x(¢;), where
t; represents the 7" time instant®. By identifying an appropriate embedding dimension, d,
and an optimal time lag, 7, we construct the dynamics along the d dimensions of the phase
space as d time-delayed vectors derived from x(t;). If the length of x(t;) is N, the i*" element

of X, Xj, is represented as:

Xi :[x(ti)7 x<ti + 7_)7 R $(ti + (d - 1>T)]>
wherei=1,... N —7(d—1)

(1)

Theoretically, any 7 can be selected to reconstruct the phase space. Selecting a very small
7, will result in a phase space where it is not possible to distinguish the dynamics along
two different neighboring dimensions. Whereas, by selecting a large 7, the dynamics along
different dimensions become independent. We can identify an optimal 7 to reconstruct
the phase space such that the average mutual information between z(t;) and z(t; + 7) is

minimum?®’. Additionally, an appropriate number of dimensions d, is chosen such that the
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reconstructed phase space attractor appropriately unravels the phase space of the system,
ensuring that the state points have a minimum number of false neighbors. Two neighboring
points in a d-dimensional phase space are considered false neighbors if they do not remain
neighbors in a reconstructed phase space with higher dimensions®®. A powerful method for
finding optimal d, is an optimized version of Abarbanel’s False Nearest Neighbors method,
adapted by Cao*’. Here, we note that the focus of this work, is not on optimal reconstruction
of the phase space. We rather aim to study how well CNN can classify recurrence networks,
even when they are derived from a non-optimal reconstruction of the phase space. Hence, we
select 7 to be roughly equal to quarter of the time period of the periodic oscillations during
oscillatory instability. d is chosen to be 6 since previous studies?® show that for the low
amplitude aperiodic oscillations, an embedding dimension of 6 is sufficient and for all other
states, the embedding dimension is less than that. We define an unthresholded recurrence

matrix R whose elements R; ; is given as:

Ri; =|X;— Xj|, wherei,j=1,...N—7(d—1). (2)

We, then, proceed to derive a recurrence network from this recurrence matrix. A recurrence

network is represented using an adjacency matrix A, whose elements are defined as:

— 04 (3)

This definition ensures that, two nodes of the network, indicating state points at two instants
of time, have a stronger bond (i.e. more weight) if they are closer in the phase space. The
farther the nodes are in the phase space, the smaller the weight associated with the edge
connecting them. Subtraction of Kronecker delta, J;; in Eq. 3, ensures that the nodes of
the network are not self connected.

The network thus constructed from time series of a state variable can be visualized using
the tool Gephi*! as shown in Fig. 2. Figure 2 represents recurrence networks corresponding
to three dynamical states of a turbulent combustor i) low amplitude aperiodic oscillations
known as combustion noise, ii) intermittency consisting of bursts of high amplitude periodic

oscillations amidst low amplitude aperiodic oscillations and iii) thermoacoustic instability
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FIG. 2. Recurrence networks corresponding to three dynamical states in a thermoacoustic system
a) aperiodic oscillations known as combustion noise with Re of 10398, b) intermittency with Re of
13230, ¢) oscillatory instability known as thermoacoustic instability with Re of 20,378. The node

strength, Ng, is the sum of weights of all edges connected to a particular node.

characterized by high amplitude periodic oscillations. As mentioned before, such transitions
occur as the Re of the flow is increased. These networks are constructed from the time series
of unsteady pressure fluctuations. Recurrence networks preserve the geometry of the phase
space attractor. Hence the recurrence network for aperiodic oscillations in a thermoacoustic
system has a disorganized pattern with a widely varying node strength (Ng). For periodic
thermoacoustic oscillations, the corresponding network has a closed curve topology with
a uniformly distributed Ng with a relatively higher value. During intermittency, we can
observe a mixed nature for the network, where we see an increased Ng for some of the nodes

and there are emerging closed curves in the network topology.

Once the recurrence networks are constructed as mentioned before, we use convolutional
neural networks to extract salient features in the topology of those networks. This process

is detailed in the following section.



IV. CONVOLUTIONAL NEURAL NETWORK

Inspired from the workings principle of a feline visual cortex, Convolutional Neural Net-
works (CNN) have become a popular type of Artificial Neural Network (ANN). An ANN
consist of layers of interconnected artificial neurons resembling biological neural networks
in a brain. This is achieved through a network of nodes across multiple layers, which are
interconnected with links of non-uniform weights. These ANNs, then, form the foundation
for deep learning. Given an input, the ANN has the ability to learn patterns from the input
by accordingly adjusting the weights of the links that form the ANN. A CNN is a type of
ANN in which some of the layers of the neural network also performs convolution on the

42 First introduced for classification of handwritten characters*®, CNN possess

input data
many striking advantages. These networks have the ability to achieve shift invariance, i.e.,
the ability to identify the features in the input data regardless of their location. Further-
more, feature learning allows the network to extract only the important features from an
input in order to make more accurate predictions. Lastly, weight sharing allows weights to
be applied across an entire input, making this type of networks memory efficient?445.

The unique advantage of a CNN is centered on the convolutional layer, which is composed
of multiple multidimensional weight matrices, referred to as filters. These filters perform
convolution and thus, extract features in the input data (which, in our case is the adjacency
matrix representing the complex network). For example, a diagonal filter F shown in Fig. 3,

when applied to the input adjacency matrix A, outputs the feature map B corresponding

to the filter F, following the rule:

h w
Bi,j = Z Z Am—i,n—jfm,n (4>

m=1 n=1
Here, h and w are the height and width of the filter. For the particular case represented in
Fig. 3, both h and w are equal to 3.

Once the feature maps are extracted the subsequent layers of the CNN processes the
information in the feature maps for classification of the input data. Figure 4 represents
a connection diagram for the entire CNN. First, the extracted feature maps are flattened
into a one-dimensional array. The flattened array, is interconnected by weights, to a fully
connected layer (FC), which is an array of nodes. FC identifies global patterns extracted

by the convolutional layers and brings the information from all feature maps together to
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FIG. 3. Feature extraction using convolution layer. The Diagonal filter F is convolved across the
input adjacency matrix, A. The result of the convolution is the feature map, B, where the diagonal

features from the input image are extracted.
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FIG. 4. The architecture of CNN designed to classify the structure of input recurrence network

perform classification.

We use a nonlinear activation function after each of these layers to equip CNN to extract
complex features from the input data. An activation function, in essence, determines the
response of an artificial neuron to stimuli. One of the most used activation function is
Rectified Linear Unit (ReLU), which allows a relatively faster training process®®, and hence

it is particularly advantageous over other nonlinear functions. Equation 5 shows that ReLLU
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function simply maps the negative inputs to zero and preserves the positive and zero inputs.

B, if By, >0
ReLU(Bpp) = (5)

0 otherwise

Further, in order to increase the efficiency, the number operation needed by CNN is
reduced by reducing the size of different layers through downsampling. Here, we utilize an
effective form of commonly used downsampling method known as max pooling, where a
window is slid over an input layer, and while the highest value in the window is selected to
construct the next layer®”.

Typically the window will not overlap itself as it slides, it will only visit a set of data
once. The result of this process is a compact version of the input layer.

Once the input data goes through the convolution layers and fully connected layers, the
final step for classification is assigning a measure for each class that we are interested in
identifying. In general, for the methodology we are describing, the different classes would
be the different salient patterns in the phase space. In this study, we separate the input
network into two class of salient patterns, i.e. periodic or aperiodic. Thus, we will utilize a
sigmoid function as the classifier, which enables the intended binary classification. For more
complex systems where higher number of classification is desired, a softmax function can be
utilized*®. The sigmoid function outputs a value between zero and one, each corresponding
to one of the two classes intended to be identified. During this process, the output of the
FC layer is interconnected by weights to one node which makes up the output layer. The

output of this node is, subsequently, fed into the sigmoid function as illustrated in Fig. 4.

A. Training the CNN

Inside the CNN, the process of learning simply entails adjusting the weight parameters
of the network. By using already known information about the input, i.e., using a labelled
data set, we can train the CNN. This mode of training using labelled data set is known
as supervised learning. The objective of our CNN is to classify the input data (i.e., the
Adjacency Matrix, A) into either periodic or aperiodic. The training data set thus contains
labeled adjacency matrices. The label y of a binary classifier is either zero or one. In our
case, one indicates that the input data is periodic and zero implies that the input data is

aperiodic.
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During the training process for classification using CNN, an input will pass through
different layers of the CNN and provide some output (i.e., a number) indicative of different
classes. In the initial phases of training, the untrained network is initialized with random
weights and thus the output of classification will presumably be incorrect. Upon outputting
an incorrect classification, the CNN computes a cost function which is a measure of the
error between the value of y that CNN predicts (7) and the value of y actually is (obtained
from the known label). The cost function utilized in our CNN is a version of binary cross
entropy?’, a typical cost function used for a binary classifier problem. Binary Cross entropy

is expressed in Eq. 6, where g is the output of the CNN for an input A with label y.

J=—ylng+(1-y)n( -7 (6)

In the case when the prediction of the CNN, g, is equal to the known classifier label y.
The value of the cost function, J is approximately zero. On the other hand, if the prediction

value deviates from the known classifier value, then the cost function will tend to infinity.

After identifying the cost for a set of predictions for the training data. An average cost is
estimated. Given this average cost, we perform a process known as error back propagation.
That is, by going back through the different layers of the networks, we adjust the weights of
CNN to minimize the average cost. This is done utilizing Adam optimization®®, a variation of
gradient descent method. Multiple iterations of cost minimization through back propagation
will make the output of CNN a more accurate representation of the known classification
y. It is also noted that, through the process of supervised training, the weights in the
filters also are adjusted to optimize the cost. Much like the example with the diagonal
filter in Figure 3, the filters in the CNN will extract certain features. However, instead of
hand-engineered filters, through back propagation in the CNN training process, the system
identifies most essential filters for classifying the input. A more detailed introduction on the
layers, functions, and back-propagation of a CNN is given in the monograph by Wu®!. The
complete structure of the CNN used in the present study is detailed in Table I.
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TABLE I. Structure of the CNN

Name Dimensions Operations
Input Adjacency Matrix 122x122 None
Conv-1 120x120x 32 3x3x32 Convolution
Activation-1 120%x120x 32 ReLLU Activation
MaxPool-1 60x60x32 2x2 Max Pooling
Conv-2 58xH8% 32 3x3x32 Convolution
Activation-2 58x 58 % 32 ReLU Activation
MaxPool-2 29%x29x 32 2x2 Max Pooling
Flatten 26912 Converting to one column vector
FC-1 64 64 Fully-Connected
Activation-3 64 ReLU Activation
FC-2 1 1 Fully-Connected
Activation-4 1 Sigmoid Activation

V. PRECURSOR MEASURE AND ITS IMPLEMENTATION AS AN
EARLY WARNING FOR ONSET OF OSCILLATORY INSTABILITY

The CNN described in the previous sections is trained to distinguish aperiodic structures
in the recurrence network from periodic patterns. The input time series segment for each
classification has a length dL. We scan the input time series of length L in overlapping
segments of length 6L with an overlap of AL. Using Eq. 3, the corresponding adjacency
matrix, A, for each time series segment is identified which then is passed through the trained
CNN. We, subsequently, label each time series segment with the output classification of
CNN, g as its periodic probability value, py. The CNN is trained such that pg is 1 if the
dynamics is purely periodic and sinusoidal. As the dynamics moves closer to aperiodic, the
probability value moves closer to 0. It is to be noted that depending on the system, the
aperiodic fluctuations of the system variable could resemble white/colored noise or that of
chaotic turbulent fluctuations exhibiting high short-time correlations. Since we train the
CNN with all possible types of noise signals, the advantage of the present method is that it

is able to identify and assign a value of ug close to zero for all such types of ‘noise’ signals.
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Figure 5 shows such labeling of local dynamics using CNN for a time series segment of a state
variable measured from a thermoacoustic system (corresponding images for aeroacoustic and
aeroelastic systems are given in the Appendix). The color of the background of the time
series represent the local periodic probability value (pg).

We also define a precursor measure (1) for the dynamic state represented by the time
series of state variable to be the average of the probability measure, uy calculated for all
overlapping segments of length d that constitute the time series segments of length L. In
all cases considered in this manuscript, we consider L =3 s, 0L = 0.03 s and AL = 0.02 s.
A good rule of thumb to follow is that L should be of the order of 1007 (ensuring that
intermittency statistics converge) and JL should be of the order of 37" (ensuring we at least
cover 3 cycles of oscillation in each time series segments), where 7 is the time period of

oscillations.

0.0 0.07 0.14 0.21 0.35
= time (5)

FIG. 5. Probability of periodicity (1) measured for different parts of an intermittent pressure
fluctuation taken from thermoacoustic experiments (Re = 1.3 x 10%). The background color rep-
resent po. po = 1 if the oscillations are periodic and pg = 0 if oscillations are aperiodic. Here,

parameters 6L = 0.03 s (window size) and AL = 0.02 s (overlap).

In Fig. 6, we show the variation of p with the control parameter (Re) for all three
systems. Here, the experiments were conducted in a quasi-steady manner, in that the
control parameter was changed in steps and the data was obtained for each step ensuring
that the control parameter remained steady for the duration of data acquisition. The time
series of state variables for all systems illustrated in top rows of Fig. 6 are 3 s long, each for
different control parameter values, and subsequently joined together one after the other for

the purpose of illustration. The alternating white and gray backgrounds in the time series
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fluctuations of system variable, measured for quasistatic variation of control parameter, Re.
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indicate each 3 s long segment corresponding to a particular control parameter value.

In the bottom rows of Fig. 6 for three systems, we plot the RMS of the time segments and
probability of periodicity u, as identified by the CNN. We see that p is able to detect the
transition in all systems. Once p is estimated, the operator can set appropriate thresholds
for controlling the fluid systems. For the combustor, the onset of instability is detected much
before Pgrys saturates to a high value. In the case of the aeroacoustic system, even though
the Pgrass varies gradually as we approach acoustic instability, the variation in p indicates
that the transition to oscillatory instability is rather abrupt. In the case of aeroelastic
system, the amplitude of strain oscillations abruptly increase upon the onset of oscillatory
instability. However, we see that p is able to detect an impending transition in the dynamics
far away from the onset of oscillatory instability.

Note that as this warning system is repeatedly implemented on new data, it can also be
retrained with the new data enabling self learning. In the present study, we discussed only
the onset of single mode oscillatory instabilities. The methodology to analyze dynamical
systems introduced here focusing on the combined use of dynamical systems theory and deep
learning, can also be extended for classification of different dynamical states of a general

dynamical system and bifurcation analysis.

VI. SUMMARY AND FUTURE PROSPECTS

We introduced a methodology to quantify the relative dominance of different salient
topological features of a complex phase space attractor by analyzing patterns in the cor-
responding recurrence networks using convolutional neural networks. This methodology is
particularly useful in classifying various dynamical states of practical systems. The relative
dominance of salient features of phase space topology can be used as an identifier for the
dynamical state of the system and a measure derived based on this information can be used
both to analyze and identify the state of a practical system, and thus aid its control. This
methodology can also provide early warning impending dynamical transitions in the system.

We implemented this methodology to devise a framework for early detection of the onset
of oscillatory instability in fluid dynamic systems encompassing turbulent flows. The CNN
was able to ascertain the relative dominance of periodic and aperiodic dynamics during

the dynamical state of intermittency and thus estimate the proximity of the fluid dynamic
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system to full-blown oscillatory instability. We successfully implemented the early warning
system for three fluid systems with significantly different characteristics, a thermoacoustic
system, an aeroacoustic system and an aeroelastic system.

An advantage that network approaches provide in analyzing a dynamical system is their
ability to incorporate either physical or abstract connections across layers of networks of
information about the system, based on some chosen rules. Here, the different layers of
networks could represent different subsystems of the system, different spatial locations of the
system, different temporal regimes and so on. During the temporal evolution of dynamics,
these interconnections get rewired. Studying this new representation of data in terms of

networks can be very fruitful.

Traditional network measures mostly provide the averaged topological statistics of the
network. However, tools from machine learning would be able to capture variations in
complex patterns in networks. Thus the combination of network analysis and machine
learning could enable us to investigate variation in inter subsystem dependencies, spatial
flow of information, temporal correlations and causal relations in a dynamic system with

much more flexibility and detail.
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APPENDIX

The variation of py measured for time series segments obtained for aeroacoustic and

aeroelastic experiments are given in Fig. 7 and Fig. 8, respectively.

18



0.4

. 0.24

oy

= 0.01

& —0.2 1

—0.4 T T :

0.0 0.23 0.45 0.68 0.90
— time (s
i m ! (s)

FIG. 7. Probability of periodicity (up) measured for different parts of an intermittent pressure
fluctuation taken from aeroacoustic experiments (Re = 7.8 x 103). The background color represent

wo- o = 1 if the oscillations are periodic and pg = 0 if oscillations are aperiodic.
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FIG. 8. Probability of periodicity (ug) measured for different parts of an intermittent strain
fluctuation taken from aeroelastic experiments (Re = 3.8 x 10%). The background color represent

wo- o = 1 if the oscillations are periodic and pg = 0 if oscillations are aperiodic.
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