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Abstract Demolition projects involve various types of heavy equipment (e.g., exca-
vators, dump trucks, loaders, etc.). As such, the success of demolition projects is
significantly dependent on heavy equipment operations. Prior studies have investi-
gated heavy equipment productivity within the context of construction operations
(i.e., earthwork) by tracking machine productivity through traditional approaches
(e.g., manually tracking the duration of heavy equipment activities, etc.), which is a
time-consuming, labor-intensive, and error-prone job. To facilitate research on heavy
equipment productivity, recent studies employ artificial intelligence-based methods
to automatically identify heavy equipment activities and measure productivity in
construction operations. However, unlike earthwork activities where most of the
tasks are relatively simple and repetitive, demolition activities are more complex
and dynamic (i.e., related to structural demolition and material separation). Due
to the varied nature of demolition activities, applying existing approaches to iden-
tify demolition activities is questionable. This study presents an automatic vision-
based activity identification model based on three-dimensional Convolutional Neural
Networks (CNNs), which can extract spatial and temporal features simultaneously.
The proposed approach can recognize three excavator activities related to material
separation (i.e., grabbing, swinging, and dumping) used in demolition operations.
To develop the model, small-scale excavators were used to simulate a real-world
demolition operation (i.e., separating materials), while two cameras were used to
record videos of such experiments. Recorded video datasets were manually labeled
and used to train the proposed model. Compared to construction projects, demolition
projects are not relatively common. Therefore, it would have taken a while to collect
the data from real-world demolition sites for training and validating the activity
identification model. Through small-scale demolition simulations, the feasibility of
the vision-based activity identification model was validated, which will support its
application for full-scale demolition productivity improvement (i.e., by reducing the
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time and labor required for manual tracking of heavy equipment activities, moni-
toring the productivity of demolition operations, and enabling the development of
timely and effective demolition strategies and productivity improvement measures
accordingly).

Keywords Demolition projects + Computer vision * Activity identification

1 Introduction

Demolition projects are usually followed by construction projects, which imposes a
time constraint on the demolition project [1]. The transfer of demolished material to
staging areas must be completed within a specified time frame to ensure the following
construction project does not fall behind schedule. Given the importance of meeting
this constraint, it is crucial to monitor the productivity of demolition projects to
ensure that they are completed within the allotted time frame.

Demolition projects rely heavily on the use of heavy equipment, such as exca-
vators. In order to effectively monitor and evaluate the productivity of demolition
projects, it is important to identify and investigate the activities performed by heavy
equipment. Traditionally, heavy equipment activity identification was performed
through labor-intensive means, but these methods are costly, time-consuming, and
prone to error. Automated activity identification models have been developed to
address such challenges [2].

Previous studies have developed activity identification models for construction
projects (e.g., earthwork) but have not yet developed such models for demolition
projects. Unlike construction projects, Demolition projects involve a range of more
complicated activities, focusing on building demolition and material separation and
removal. These activities generate a large amount of waste, which requires proper
management to avoid environmental pollution. Furthermore, demolition activities
require careful planning and execution to ensure the safety of workers and the public,
as well as the removal of existing structures, which can be challenging due to the
presence of hazardous materials such as asbestos. The set of activities performed
by excavators during demolition projects requires the operators to possess unique
skills and expertise, as they involve tearing down and removing structures rather than
building them up. In addition, demolition activities require specialized equipment and
skilled labor, which can increase the cost of the project. Lastly, demolition activities
can have a significant impact on the surrounding environment and community, which
requires proper communication and consultation with stakeholders. Due to the varied
and complex nature of demolition activities, the application of existing construction-
focused activity identification models is inadequate. To effectively monitor and
evaluate the productivity of demolition projects, it is important to develop specific
automated activity identification models for demolition activities.

The focus of this study is to develop an automated vision-based activity iden-
tification model for recognizing excavator activities during small-scale demolition
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simulations. The proposed model uses video footage to identify three demolition
activities (grabbing, swinging, and dumping) through computer vision and deep
learning algorithms. In this study, small-scale experiments were designed and imple-
mented, enabling the investigation of demolition activities under various settings.
Since demolition projects do not occur as frequently as construction projects, this
approach saved substantial time and effort that would have otherwise been required
in real-world demolition projects. Such experiments were recorded, labeled, and
further used to train the vision-based activity identification model. This model paves
the way for the productivity of excavators in demolition projects to be monitored
in an automated manner, which facilitates research for improving the efficiency of
equipment operations for demolition. The study represents an important step forward
in the field and has the potential to impact future demolition projects.

This paper is structured in the following manner: First, a review of the literature on
sensor-based and vision-based activity identification models is presented. Afterward,
the methodology section elaborates on data collection, data processing, and model
development. The results of data collection and model accuracy are reported in the
results section, followed by a brief discussion on influencing factors on the model
performance. The conclusion presents the limitations of the study and identifies areas
for future research.

2 Background

Productivity monitoring and management of heavy equipment are crucial for the
success of massive demolition projects. Demolition contractors often prioritize recy-
cling materials as it can provide an additional source of revenue. However, the process
of material separation for recovery is time-consuming and can impede sustainable
practices [3]. Therefore, it is essential to develop specialized activity identifica-
tion models to monitor and improve the efficiency of heavy equipment operations
in demolition projects. By accurately tracking the activities of heavy equipment
during demolition operations, project managers can evaluate productivity, optimize
processes, and reduce waste.

In recent years, researchers have focused on developing sensor-based automated
activity identification models for construction equipment. Ahn et al. evaluated the
feasibility of measuring the operational efficiency of construction equipment using
low-cost accelerometers by collecting acceleration data from the real-world opera-
tion of excavators and calculating features to classify the operation into engine-off,
idling, and working modes [4]. Akhavian et al. investigated the potential of using
built-in smartphone sensors (i.e., accelerometer and gyroscope) as multi-modal data
collection nodes to detect detailed construction equipment activities [5]. Kim et al.
examined the use of inertial measurement units (IMUs) embedded in a smartphone
to identify the activities of construction equipment, demonstrating the potential for
using smartphone IMUs for continuous and cost-effective activity identification [6].



102 M. J. Shooshtari and J. Choi

Vision-based automated activity identification models have recently become the
focus of attention to recognize construction activities. For example, Cheng et al.
proposed a vision-based excavator activity identification and productivity measure-
ment method using deep learning, which accurately recognized excavator actions and
calculated activity times and average cycle times [7]. Another scholarly work devel-
oped a low-cost, vision-based method for analyzing excavator productivity in earth-
moving tasks using zero-shot learning for activity recognition without pre-training
or fine-tuning and has been tested on real construction site videos with high accu-
racy [8]. Chen et al. proposed a framework for automatically analyzing the activity
and productivity of multiple excavators in construction sites using 3D Convolutional
Neural Networks (3D CNNs) to detect, track, and recognize activities, which was
tested on videos from real construction sites [9].

Sensor-based and vision-based models are both popular in construction activity
identification, but each has its own advantages and disadvantages. Sensor-based
models offer real-time data on equipment activities using sensors attached to the
equipment body, but they can be costly and have limitations in data collection and
accuracy, placement and calibration of sensors, and capturing certain activities [2].
Vision-based models use video footage for a comprehensive view of construction
sites, but can be affected by lighting and occlusions, and have lower accuracy in
dynamic environments. Despite these limitations, vision-based models are generally
preferred because they are less intrusive, more flexible, cost-effective, and versatile
for identifying a wider range of activities [10, 11].

3 Data Collection and Methodology

This section provides details about the data collection and model development
processes (Fig. 1). As shown in Fig. 1, there are three primary phases in the devel-
oped framework: data collection and labeling, data processing, and model develop-
ment. The first phase includes designing and performing small-scale experiments
simulating demolition operations, which are recorded, labeled, and divided into
video clips, each showing a single activity. Several data processing approaches were
then applied to video clips to improve data quality and reduce noise. A 3D-CNN-
based model was developed, trained, and evaluated using the processed video clips.
Following sub-sections discuss the details of each step.

3.1 Data Collection and Labeling

In this study, small-scale experiments were designed and conducted to simulate
real-world demolition operations. In these experiments, undergraduate students were
asked to operate a remote-control excavator to perform a real-world demolition oper-
ation (i.e., separating different types of material from a mix). Material separation is
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Fig. 1 Overview of data collection and labeling, data processing, and model development

crucial in demolition operations as it directly impacts the efficiency of the process.
Proper material separation enables the recycling of valuable resources, reduces the
environmental impact of demolition, and saves time and money by reducing the
costs associated with waste disposal [12]. While conducting the experiments, two
video cameras were used to record each experiment. Figure 2 shows the experiment
settings, including the excavator, the material mix, two video cameras, and a student
performing the experiment.

Figure 3 shows the excavator and video cameras used for small-scale experiments.
The 20-Ib excavator has a maximum carrying capacity of 180 Lbs and a digging
power of 1.1 Lbs per cubic inch with a motor power of 110 Lbs. It comes with
various attachments such as a fork, shovel, and drill, and has 2000 mAh battery
providing 45 to 50 min of work time. Two Logitech C922 HD PRO webcams were
used to record experiments. Each webcam has a Full HD 1080p video recording
resolution at 30 frames per second with a 78° field of view.

Figure 4 shows three demolition activities (i.e., grabbing, swinging, and dumping),
based on which undergraduate students labeled recorded videos by assigning a label
to each activity and noting the start and end time in a spreadsheet. The labeling

Fig. 2 An undergraduate student performing a small-scale experiment (left) and the face-on view
of the experiment setting (Right)
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Fig. 3 Top race TR-211M
full functional
remote-control excavator
(left) and the Logitech C922
HD PRO Webcam (Right)

Fig. 4 Demolition
activities: a grabbing,
b swinging, and ¢ dumping

process was supervised by graduate students to ensure validity. Recorded videos
were then broken down into shorter clips, each showing a particular activity with a
corresponding activity label (Fig. 1).

3.2 Data Processing

Preprocessing video data is vital for enhancing data quality and reliability, which
facilitates accurate analysis and meaningful information extraction. In this study, we
used a few video processing techniques, such as gray scaling, frame resizing, pixel
normalization, Gaussian smoothing, zero-padding, and truncating.
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Gray scaling converts colored images into grayscale, while frame resizing changes
the size of video frames for faster processing or better visual output. Pixel normal-
ization adjusts brightness and contrast by transforming pixel values to a fixed range,
while Gaussian smoothing reduces noise and unwanted details. Zero-padding and
truncating handle data of varying lengths, ensuring consistent dimensions for easier
Al model processing. These pre-processing techniques can be used in combination
for more effective handling of data [13, 14].

3.3 Model Development

3D CNNs are powerful tools for video classification as they capture spatial and
temporal features and process video data in three dimensions, leading to a better
understanding of relationships in video sequences. They outperform 2D CNNs and
hand-crafted features and are designed to handle high-dimensional video data. Recent
studies emphasize the importance of leveraging both spatial and temporal informa-
tion for accurate video analysis and demonstrate the superiority of 3D CNNs in
classification tasks [15, 16].

3D Convolutional and Pooling layers extract and downsize important features
from 3D input data in a Convolutional Neural Network. The 3D Convolutional layers
learn local features, while the 3D Pooling layers preserve only the most important
ones, allowing the network to effectively identify and use relevant features for the
task at hand. Repeated use of these layers enables the network to learn increasingly
complex features at different levels of abstraction, improving overall performance
[17].

Figure 5 shows the model architecture developed and used to identify excavator
activities (i.e., grabbing, swinging, and dumping) performing demolition activities.
The model consists of 3D Convolutional layers, followed by 3D pooling layers and
dropout layers. It extracts spatial and temporal features present in the input video data.
Extracted features were then fed into fully connected layers to predict the output.

Model Training. Consideration of hyperparameters is crucial before training deep
learning models. Important hyperparameters include batch size, epochs, learning rate,
optimizer, loss function, and activation function. The batch size affects generalization
ability and computation time, while the number of epochs defines the number of
times the dataset is used to train the model. The learning rate controls the magnitude
of updates, with low rates leading to slow convergence and high rates leading to
instability. The optimizer adjusts weights and biases based on loss function gradients,
which is a measure of difference between predicted and true outputs. Activation
functions determine neuron activation or output and contribute to final prediction.
A well-chosen combination of hyperparameters leads to a well-trained model [18].
(See Table 1 for values of discussed hyperparameters).

Model Evaluation. Before training the model, 85 percent of video clips were used
to train the model, while the rest were used for evaluating the model performance.
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Fig. 5 Model architecture

The model has been developed using TensorFlow 2.10.0 and Python 3.10.0. The
training has been performed with a personal computer that had an AMD Ryzen
Threadripper PRO 3995WX processor with 64 cores @ 2.70 GHz, 256 GB of DDR4
RAM, and one NVIDIA RTX A4000 GPU.
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Table 1 Selected

hyperparameters and their Hyperparameter Value
corresponding values Learning rate 0.0001
Batch size 64
Epochs 50
Optimizer Adam
Loss function Categorical cross-entropy
Activation function ReLU?
Metric Accuracy

4 Expect for the last layer, which has a SoftMax activation function
to make a prediction

4 Results

This section presents the results of data collection efforts and the model development
process.

4.1 Data Collection and Data Processing

The total duration of recorded video with both webcams from the experiments was
45 min and 51 s and, considering 30 frames per second, consisting of 82,535 frames.

As mentioned earlier, recorded videos were labeled and divided into shorter video
clips, each presenting a single activity. Table 2 shows the distribution of video clips
across different activities (e.g., 345 swinging activities were label). Overall, the
recorded videos were divided into 889 video clips, of which 755 were used for
training and 134 were used for evaluating model performance.

The lengths of video clips (Fig. 6) are observed to be significantly different, but
model training requires video clips with equal lengths. Therefore, a threshold was
determined, and zero-padding and truncating have been used at the same time to
add zeros (i.e., black frames) at the end of shorter video clips (i.e., those with fewer
frames than the threshold) and remove additional frames from longer video clips (i.e.,
those with a larger number of frames than the threshold). The mean of video clip
durations is 2.45 s, which is used as the threshold for zero-padding and truncation.
The red line shows the threshold in Fig. 6.

Table 2 Number of video

clips for each activity Activity Grabbing | Swinging | Dumping
Total number of video clips | 291 345 253
Number training video clips | 252 291 212
Number of test video clips 39 54 41
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4.2 Model Development

After processing the video clips and ensuring that they all had equal length, the
model was developed using the hyperparameters discussed in Sect. 3.3. The model
achieved a training accuracy of 0.85 and a test accuracy of 0.78. To determine if the
model was properly trained, learning curves were employed. In the learning curve, a
large gap between the training and test accuracies with relatively low scores for both
indicates underfitting, while continued decrease in the training error and a decrease
in the test error followed by an increase indicates overfitting. Overfitting implies that
the model may have learned the training data too well and may not generalize well
to new data.

The learning curves of the model are shown in Fig. 7, which illustrate the accuracy
and loss values of the model at each epoch. It can be observed that both the training
and test accuracy have been consistently increasing, while the training and test error
have been decreasing. This indicates that the model was able to successfully learn
patterns within the training data and was able to generalize well to the test data.
However, after the 35th epoch, the model started to overfit as the gap between the
training and validation accuracy and the test error began to increase.
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Fig. 7 Model learning curves
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Table 3 Confusion matrix for model predictions

Grabbing (Predicted) Swinging (Predicted) Dumping (Predicted)
Grabbing (True) 30 6 3
Swinging (True) 6 43 5
Dumping (True) 2 7 32

Table 3 shows the confusion matrix for the model predictions. Each row represents
the number of test instances in a true class, and each column represents the number
of instances in a predicted class.

To compute the class-wise accuracy, the number of true positives for each activity
is divided by the total number of video clips for that activity. Therefore, the model
accuracy in predicting grabbing, swinging, and dumping activities are 0.77, 0.79,
and 0.78, respectively.

5 Discussion

The objective of our study was to develop an automated vision-based activity iden-
tification model for excavator activities during demolition operations, which differ
from construction operations in terms of their complexity and variability. Traditional
approaches for tracking heavy equipment productivity during demolition operations
are costly, time-consuming, and prone to error. Therefore, we proposed an activity
identification model that utilizes computer vision and deep learning algorithms to
recognize three demolition activities (i.e., grabbing, swinging, and dumping) based
on video footage.

We found that the proposed model achieved an overall accuracy of 78%, which
demonstrates its potential for identifying excavator activities during demolition oper-
ations. However, we also observed some misclassifications, which can be attributed
to the overlapping nature of the activities during material separation. For example, the
grabbing activity may have been misclassified with swinging due to the simultaneous
rotation of the excavator’s body and bucket’s closure during these activities. Simi-
larly, the swinging activity may have been misidentified with grabbing and dumping
due to the overlap between these activities, as the bucket may still be in motion while
the excavator is swinging, leading to confusion between the three activities. Addi-
tionally, the grabbing activity may have been confused with the dumping activity, as
these activities only differ in the opening and closing of the excavator’s bucket.

Despite these limitations, our proposed model has several practical implications
for real-world demolition projects. It can improve the accuracy and efficiency of
identifying heavy equipment activities related to material separation during demo-
lition operations, which will enable project managers to monitor and evaluate the
productivity of demolition projects. Additionally, it can reduce the time and labor
required to track and manually label heavy equipment activities, allowing workers
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to focus on more critical tasks. Moreover, it can enhance safety on demolition sites
by providing an automated and accurate monitoring system for heavy equipment
activities, thus reducing the risk of accidents. Lastly, it can support the development
of effective demolition plans and strategies by providing real-time data on equipment
productivity, which can inform decision-making and improve project outcomes.

6 Conclusion and Future Research

The success of demolition projects relies heavily on the efficiency of heavy equip-
ment operations, which have traditionally been tracked manually. Such a manual
tracking approach is time-consuming, labor-intensive, and prone to errors. Recent
studies have explored the use of artificial intelligence to automate this process, but
the complex and dynamic nature of demolition activities presents challenges in accu-
rately identifying heavy equipment activities. This study proposes a 3D CNN-based
model that can automatically identify excavator activities related to material separa-
tion during demolition operations. The model extracts spatial and temporal features
simultaneously and was trained using manually labeled video datasets of small-
scale demolition experiments. The study validates the feasibility of the vision-based
activity identification model, which has the potential to monitor the productivity of
real-world demolition projects.

While providing an important contribution to demolition activity identification
models, this study has certain limitations, including the limited set of materials used
in small-scale experiments, the limited number of activities investigated, and the
controlled nature of the experiments. Future research efforts could explore a dual-
stream approach, using more cameras and evaluating their placement, incorporating
other modules such as detection and tracking, and conducting hyperparameter opti-
mization to improve the model’s accuracy and robustness. The proposed vision-based
activity identification model proposed in this study has several practical applica-
tions for real-world demolition projects, such as improving productivity monitoring,
reducing time and labor costs, supporting effective demolition planning, and facil-
itating research for improving equipment efficiency. Its development represents an
important step forward in the field and has the potential to positively impact the
construction industry and society.
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