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Detecting synthetic population bias using a spatially- 
oriented framework and independent validation data

Jessica Emburya , Atsushi Naraa , Sergio Reya , Ming-Hsiang Tsoua and 
Sahar Ghanipoor Machianib 

aDepartment of Geography, San Diego State University, San Diego, CA, USA; bDepartment of Civil, 
Construction, and Environmental Engineering, San Diego State University, San Diego, CA, USA 

ABSTRACT 
Models of human mobility can be broadly applied to find solu
tions addressing diverse topics such as public health policy, trans
portation management, emergency management, and urban 
development. However, many mobility models require individual- 
level data that is limited in availability and accessibility. Synthetic 
populations are commonly used as the foundation for mobility 
models because they provide detailed individual-level data repre
senting the different types and characteristics of people in a study 
area. Thorough evaluation of synthetic populations is required to 
detect data biases before the prejudices are transferred to subse
quent applications. Although synthetic populations are commonly 
used for modeling mobility, they are conventionally validated by 
their sociodemographic characteristics, rather than mobility attrib
utes. Mobility microdata provides an opportunity to independ
ently/externally validate the mobility attributes of synthetic 
populations. This study demonstrates a spatially-oriented data val
idation framework and independent data validation to assess the 
mobility attributes of two synthetic populations at different spa
tial granularities. Validation using independent data (SafeGraph) 
and the validation framework replicated the spatial distribution of 
errors detected using source data (LODES) and total absolute 
error. Spatial clusters of error exposed the locations of underre
presented and overrepresented communities. This information 
can guide bias mitigation efforts to generate a more representa
tive synthetic population.
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1. Introduction

Models of human mobility are used to address complex scenarios that cannot, or 
should not, be readily replicated in the real world. Through the simulation of indi
vidual-based mobility, we can test scenarios related to viral transmission (Silva 
et al. 2020, Kerr et al. 2021, Truszkowska et al. 2021, 2022), public health policy 
(Epstein, 2009, Tracy, et al. 2018), emergency evacuation strategies (Torrens, 2018, 
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Trivedi and Rao, 2018), transportation management (Benenson et al. 2008, Scherr 
et al. 2020), and urban development (Batty, 2005, Ligmann-Zielinska and Jankowski, 
2007, Torrens and Nara, 2012). However, access to the individual-level data 
required to build individual-based mobility models is limited in its availability and 
accessibility (Crooks et al. 2008, Anderson and Dragi�cevi�c, 2020, Heppenstall et al. 
2020).

Population synthesis can be used to generate a synthetic (i.e. artificial) population 
of individuals for applications which require individual-level data that is not available 
elsewhere. Synthetic populations represent the different types and various characteris
tics of individuals in a study area’s population. Depending on the application, individu
als in a synthetic population may be assigned to a household with additional 
household attributes. The aggregate characteristics of the individuals, and their house
holds, should be representative of the entire study area as well as the smaller spatial 
units where individuals reside. While recently developed population synthesis tools 
(e.g. Chapuis et al. 2021, Salat et al. 2023) can ease the process of generating a syn
thetic population, their internal validation processes for aggregate populations may 
not detect errors at finer scales, or for individuals.

Thorough evaluation of synthetic populations is crucial for detecting and minimiz
ing pre-existing, technical, and emergent data biases: pre-existing biases exist in a 
model’s source data and can be transferred to its output data, technical biases are the 
result of the modeling process (e.g. overfitting), and emergent biases arise as the out
put data are used and depend on the context of the application (e.g. transportation 
planning). Synthetic population biases must be addressed because they ‘systematically 
and unfairly discriminate against certain individuals or groups of individuals in favor of 
others’ (Friedman and Nissenbaum, 1996, p. 332).

Despite their common use as a foundation for mobility modeling, synthetic popula
tions are conventionally evaluated by their sociodemographic characteristics rather 
than their mobility attributes. While there are positive associations between sociode
mographics and mobility (Lenormand et al. 2015), the evaluation of a synthetic popu
lation’s mobility attributes has the potential to directly improve the accuracy of 
individual-based mobility models.

Mobility microdata – large, fine-resolution data sets with detailed location infor
mation collected from mobile applications – provide the means to validate the 
mobility attributes of synthetic populations. In addition, mobility microdata can be 
used as external/independent validation data, not otherwise used during popula
tion synthesis. The use of independent data during validation can improve the 
detection of data biases (Cambridge Systematics, Inc., 2010). Despite this novel 
opportunity, mobility microdata also contain data biases that underrepresent 
underserved and/or vulnerable individuals (Rodriguez-Carrion et al. 2018, Schlosser 
et al. 2021, Sourbati and Behrendt, 2021). Awareness of data bias within the valid
ation data is important to consider when interpreting the results of synthetic popu
lation evaluation.

For our study, we used a population synthesis technique (i.e. iterative 
proportional updating) to generate synthetic populations at two spatial granularities 
(Census Block Groups and Sub-Regional Areas). Then, we developed a framework for 
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spatially-oriented validation using independent mobility microdata to detect and char
acterize biases. Our study was guided by two research questions:

1. Is the usage of mobility microdata suitable for validating the mobility attributes of 
synthetic populations?

2. Does synthetic population validation using a spatial framework and diverse data 
sources add value to the model and its subsequent applications?

This paper addresses a gap in the literature and demonstrates that the validation of 
mobility attributes complements existing methods of synthetic population evaluation. 
The demonstrated data validation method has the potential to improve the accuracy 
of synthetic populations, following further calibration, and the subsequent realism of 
individual-based mobility models.

2. Related work

2.1. Pre-existing data bias

Pre-existing data biases are present in a synthetic population’s source and validation data 
in the form of data generation bias, which is introduced during data collection and/or 
compilation. Ethical concerns about data generation biases in mobility microdata and 
other forms of geospatial microdata are well documented in the literature (Wesolowski 
et al. 2013, Rodriguez-Carrion et al. 2018, Coston et al. 2021, Schlosser et al. 2021, 
Sourbati and Behrendt, 2021). For instance, mobility microdata collected from mobile 
devices is only representative of mobile device owners, and ownership varies across differ
ent geographies and sociodemographic characteristics (Wesolowski et al. 2013). Older indi
viduals are particularly underrepresented by mobility microdata (Sourbati and Behrendt, 
2021); in contrast, higher income individuals tend to be overrepresented (Schlosser et al. 
2021). Administrative data has been used to test mobility microdata for bias and reliability 
(Coston et al. 2021). Although strategies exist for mitigating data generation bias 
(Estabrooks and Japkowicz, 2001, Rodriguez-Carrion et al. 2018, Mohammed et al. 2020, 
Schlosser et al. 2021), debiased data are only estimates, at best. The development of strat
egies to mitigate data generation bias is an ongoing research effort.

In addition to data generation biases, synthetic populations are susceptible to stat
istical data biases stemming from the spatial aggregation of their source data. 
Spatially aggregated data is subject to the modifiable areal unit problem (MAUP), a 
source of statistical bias caused by the data’s geographic scale and zonal boundaries 
(Openshaw and Taylor, 1979). In synthetic populations, the MAUP tends to manifest in 
the form of increased error at finer spatial granularities (Harland et al. 2012). Despite 
this widespread source of data bias, examples of multiscale population synthesis stud
ies are limited.

2.2. Technical data bias

The process of population synthesis can introduce technical biases into synthetic pop
ulations. The oldest method of population synthesis is thought to be iterative 
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proportional fitting (Deming and Stephan, 1940, Beckman et al. 1996); this technique 
estimates individual attribute values, known as marginal controls, in contingency 
tables (i.e. sampling distributions) using aggregate attribute values as constraints (i.e. 
targets) (Castiglione et al. 2014, Lomax and Norman, 2016). Iterative proportional fit
ting was the dominant method of population synthesis described in the literature until 
the mid-2000s and remains a valid option for applications which do not require indi
viduals to have household membership. However, because iterative proportional fit
ting is ill-equipped to assign attributes to both individuals and households, technical 
bias favoring either individual or household characteristics is introduced into synthetic 
populations in which individuals are household members (Guo and Bhat, 2007, Zhu 
and Ferreira, 2014).

Subsequent population synthesis methods, such as optimization and probabilistic 
approaches, have advanced upon iterative proportional fitting to generate more accur
ate synthetic populations. Optimization approaches, such as iterative proportional 
updating (IPU), address iterative proportional fitting’s primary source of technical bias 
by using optimization models to minimize the differences between summed attribute 
values and aggregate constraints for both individual and household characteristics 
(e.g. Ye et al. 2009, Abraham et al. 2012). However, synthetic populations generated 
using an optimization approach tend to reflect the pre-existing biases of their source 
data (Ramadan and Sisiopiku, 2019). On the other hand, probabilistic approaches pro
duce synthetic populations that are not as likely to share the source data’s pre-existing 
biases, but can introduce technical bias from model overfitting (e.g. Farooq et al. 2013, 
Sun and Erath, 2015, Fournier et al. 2021, Kuki�c and Bierlaire, 2022, Zhou et al. 2022).

Machine learning approaches to population synthesis offer new ways to manage 
and analyze increasingly large data sets with high dimensionality (e.g. Saadi et al. 
2016, Borysov et al. 2019, Alonso-Betanzos et al. 2021), yet their limited explainability, 
due to ‘black box’ decision-making, may introduce hidden technical biases. Like emer
gent data biases, examples of technical bias originating from machine learning meth
ods of population synthesis can be difficult to detect and are not well documented.

2.3. Synthetic population evaluation

Synthetic population evaluation is performed through verification, calibration, and val
idation; the inclusion of each assessment is crucial to the detection and minimization 
of bias. Verification, frequently performed before population synthesis, evaluates the 
soundness of the method’s conceptual, logical, and physical models to correct errors 
and limit technical biases (Crooks et al. 2008). Calibration, conducted throughout 
population synthesis, refers to the processes of quantifying the model’s uncertainty, as 
well as the fine-tuning of the physical model and its parameters to improve the syn
thetic population’s alignment to its source data, especially at finer resolutions 
(Castiglione et al. 2014, Crooks et al. 2008). While calibration might effectively reduce 
technical bias, it can encourage the transference of pre-existing bias to the synthetic 
population. Validation, which takes place after population synthesis, has a critical role 
in gauging the extent to which technical and pre-existing bias transference has 
occurred.
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The purpose of validation is to determine how well a synthetic population repre
sents its real-world counterpart (Manson et al. 2012). The use of independent/external 
validation data identifies data biases that reduce accuracy (Cambridge Systematics, 
Inc., 2010). In the best-case scenario, synthetic population validation would use 
‘ground truth’ data collected from all individuals in the study area. However, the col
lection of ground truth validation data is not feasible for most, if not all, synthetic 
populations. Historically, the lack of available fine-scale and individual data essentially 
prevented the independent/external validation of synthetic populations (Crooks et al. 
2008, Heppenstall et al. 2020). Adapted validation techniques that use source data (i.e. 
internal data validation) are normalized and broadly accepted for synthetic population 
validation.

Measures regularly used to validate a synthetic population include total absolute 
error, standard root mean square error, Pearson correlation coefficient, and coefficient 
of determination (Harland et al. 2012, Lovelace and Dumont, 2016, Borysov et al. 2019, 
Pr�edhumeau and Manley, 2023). For all methods, aggregated sociodemographic char
acteristics of the synthetic population are compared to administrative data to gauge 
error in the synthetic population. None of these methods consider the spatial variation 
or spatial autocorrelation of errors. Typical validation data is either untabulated micro
data, like the US Census Bureau’s Public Use Microdata Sample, or an aggregated data 
overview, such as the US Census Bureau’s American Community Survey.

Total absolute error directly compares the synthetic population to the validation 
data and provides the number of synthetic individuals that have been misclassified for 
each attribute, or all attributes at once (Harland et al. 2012, Wu et al. 2022, 
Pr�edhumeau and Manley, 2023); this measure is the most straightforward representa
tion of error. Standard root mean square error builds upon total absolute error but 
emphasizes large errors with higher values (M€uller and Axhausen, 2011, Sun and 
Erath, 2015, Borysov et al. 2019, Wu et al. 2022).

The Pearson correlation coefficient is a measure of the linear relationship strength 
between two datasets, but it does not provide a head-to-head data comparison 
(Gartlehner and Moore, 2008, Niroumand et al. 2013). The Pearson correlation coeffi
cient is typically used to complement and build confidence in other validation meas
ures (Borysov et al. 2019, Pr�edhumeau and Manley, 2023). The coefficient of 
determination is the square of the Pearson correlation coefficient, representing the 
variance of error in the synthetic population (Borysov et al. 2019, Wu et al. 2022). 
Similar to the Pearson correlation coefficient, the coefficient of determination is best 
used in tandem with other validation measures (Renaud and Victoria-Feser, 2010).

Since synthetic populations are commonly used to understand transportation and 
movement (e.g. Guo and Bhat, 2007, Bradley et al. 2010, Zhu and Ferreira, 2014, 
Trivedi and Rao, 2018, Scherr et al. 2020, Kianersi et al. 2021, Wang et al. 2022), the 
validation of mobility characteristics, in addition to sociodemographic attributes, 
would provide valuable information about biases that are likely to emerge during 
applications. Although not addressed by the existing literature, mobility microdata 
presents an opportunity to independently validate a synthetic population’s mobility 
characteristics. Large trajectory data sets have already been shown to explain observed 
mobility patterns (Jin et al. 2023). Mobility microdata provides information about a 
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greater proportion of individuals in the study area than travel surveys that are often 
used for model development. Because it is more comprehensive than the source data, 
mobility microdata may serve as a substitute for ground truth data during synthetic 
population validation; further, the increasing availability of mobility microdata makes it 
a practical alternative. While independent data validation with mobility microdata 
might result in more representative synthetic populations, we must consider pre-exist
ing biases in the validation data (Section 2.1).

3. Materials and methods

3.1. Study area

The study area was San Diego County, CA. San Diego County contains 1794 Census 
Block Groups (CBGs) and 41 Sub-Regional Areas (SRAs), which are Census Tract aggre
gations delineating the county’s larger neighborhood regions. The county’s residents 
are demographically diverse and reside in urban, suburban, and rural communities. 
Moreover, San Diego County’s presence along the US-Mexico border further compli
cates its residents’ mobility and activity dynamics.

This study focused on synthesizing populations of residents living in moderate- 
density to high-density communities. Since most of San Diego County’s residents live 
in urban or suburban communities, rural areas with population densities below 100 
residents per square mile were omitted. In addition, due to their unique attributes, 
two military bases were removed. The filtering process created a mostly contiguous 
study area of 1756 CBGs and 34 SRAs. The study area had a ‘fuzzy’ eastern boundary 
because the selected SRAs extended slightly beyond the selected CBGs.

3.2. Study data

This study used six data sets to generate and evaluate synthetic populations at two 
spatial granularities (CBGs and SRAs) (Table 1). The boundaries for CBGs and SRAs (San 
Diego Association of Governments, 2015a, 2015b) were spatially joined to the study 
data in order to perform spatial aggregations by CBG and SRA, and spatial analysis 
(Table 1, Rows 1–2). Administrative data sets used for population synthesis, calibration, 
and internal data validation included a travel survey (individual sociodemographic and 
mobility data) (State of California, 2018), a community survey (fine-scale sociodemo
graphic data) (US Census Bureau, 2022a) and commuter data (fine-scale origin-destina
tions and industry data) (US Census Bureau, 2022b) (Table 1, Rows 3–5); while 
generally considered reliable, these data sets include pre-existing nonresponse bias 
(Shapiro, 2001).

The sixth data set was obtained from a private data company, SafeGraph 
(SafeGraph, 2023), and was used for independent/external data validation (Table 1, 
Row 6). We accessed SafeGraph’s ‘Monthly Patterns’ data for 2019 using the Dewey 
API (https://www.deweydata.io/). The ‘Monthly Patterns’ data sets contain monthly 
aggregated information about the number of devices (i.e. device counts), recorded 
continuously (24 hours per day, 7 days per week), at individual points of interest. We 
compiled the data to create a data set containing the total device counts for 2019 for 
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all points of interest in the study area. SafeGraph data is biased by data suppression 
performed when fewer than five device counts from an origin CBG were recorded at a 
point of interest during a given month. SafeGraph data also shares data generation 
biases that are common to most mobility microdata including the underrepresentation 
of older individuals who may not own or carry a mobile device, and the overrepresen
tation of affluent individuals who are more likely to carry multiple devices (Schlosser 
et al. 2021, Sourbati and Behrendt, 2021). In this study, we assume that one device 
count equals a trip by a single individual.

3.3. Population synthesis and calibration

The marginal controls for population synthesis were selected using the administrative 
data. An attribute was eligible for selection if it was present in the travel survey and 
either the community survey or commuter data, and if the attribute did not include 
suppressed data. The following household and individual marginal controls were used 
for the study:

� Household: household size, annual household income, number of workers, number 
of vehicles, and housing status (i.e. own or rent)

� Individual: age, sex, racial identity, Hispanic identity, work status, work category, 
and education completed.

From the community survey, 174 attributes related to the marginal controls were 
selected and combined to match the less detailed format of the travel survey (e.g. the 
total number of different age groups was reduced). From the commuter data, the 
number of workers across 23 industry sectors, combined into four work categories, 
were used for the work status and work category. The processed community survey 
and commuter data provided the target values for population synthesis.

Next, Iterative Proportional Updating (IPU) and the ipfr R package (Ward, 2020) were 
used to create a multidimensional sampling distribution, a contingency table with a 
‘dimension’ for each marginal control. IPU takes an optimization approach that itera
tively balances the household and individual marginal controls and returns an optimal 
solution with minimal differences between the sampling distribution and target values; 
below is the formula for the IPU optimization model (Equation 1) (Ye et al. 2009):

Minimize
P

j

P
i di, jwi − cj
� �

=cj
� �2 or

P
j

P
i di, jwi

� �2
=cj

h i

or
P

j

P
i di, jwi − cj

� ��
�

�
�=cj

h i

Subject to wi � 0,
where i denotes a household i ¼ 1, 2, . . . , nð Þ,

j denotes the constraint or population characteristic of interest j ¼ 1, 2, . . . , mð Þ,
di, j represents the frequency of the population characteristicðhousehold or person

typeÞj in household,
wi is the weight attributed to the ith household, and
cj is the value of the population characteristic j

(1) 

Then, households from the travel survey, along with their individual members, were 
randomly sampled based on the sampling distribution. Households (n ¼ 2666) were 
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included during sampling if one or more of that household’s individuals (n ¼ 5749) 
made a geocoded trip within the study area.

Last, the model was fine-tuned by calibrating the parameters (Table 2). The model 
used minimum and maximum ratio parameters to set how many times a household 
record could be sampled, a maximum iteration parameter, and a secondary importance 
parameter that balanced optimization priorities between household and individual mar
ginal controls. For minimum ratio, maximum ratio, and secondary importance, the 
selected parameter value was a threshold where further fine-tuning no longer produced a 
detectable reduction in overall differences between the synthetic populations’ aggregated 
attribute values and the target values. For maximum iteration, there was little discernible 
difference between the tested parameter values, so the lowest value was selected.

The population synthesis process described in this section was performed for both 
CBGs and SRAs in order to assess synthetic populations at different spatial granular
ities. Figure 1 illustrates the population synthesis and calibration procedure.

3.4. Synthetic population validation

The synthetic populations were validated based on two types of mobility attributes. 
The first group of attributes included the number of commutes originating from each 
CBG/SRA, by work category and in total. The study’s four work categories were clerical 
or administrative, labor (i.e. manufacturing, construction, maintenance, and farming), 
professional (i.e. professional, management, and technical), and sales or service. These 
attributes were internally validated by the commuter data. These mobility attributes 
can be compared head-to-head using the synthetic population and commuter data.

Table 2. Parameter values tested during calibration of the population synthesis model.

Parameter
Minimum  
allowed

Maximum  
allowed

Minimum  
tested

Maximum  
tested

Step  
size Selected

Minimum ratio 0 1 0.05 0.2 0.05 0.1
Maximum ratio 0 1 5 20 5 10
Maximum iteration 1 N/A 100 500 100 100
Secondary importance 0 1 0.7 1 0.1 0.8

Figure 1. The methodological framework for population synthesis and model calibration.
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The second group of attributes included the number of trips originating from each 
CBG/SRA, by trip purpose and in total. The eight trip purposes (i.e. activity types) 
selected from the travel survey were attending school as a student, buying goods, 
buying meals, buying services, health care visits, other general errands, recreation, and 
religious or community activities. These attributes were independently/externally vali
dated using SafeGraph data. Because SafeGraph data provides the destinations of trips 
(i.e. points of interest), rather than trip purposes, we made a crosswalk to join the syn
thetic populations’ trip purposes to the destinations’ industry classifications. 
Additionally, since SafeGraph records data for work and non-work trips, we created a 
second crosswalk to match the synthetic populations’ work categories to the destina
tions’ industry classifications. For example, the ‘restaurants and other eating places’ 
industry classification was matched to the ‘buying meals’ trip purpose and the ‘food 
services’ work trip. If multiple industry classifications were matched to a work cat
egory, then the number of commutes were proportionally divided among them. Using 
the crosswalks, the number of work and non-work trips originating from each CBG/ 
SRA were compared to the number of SafeGraph trips made to destinations with 
matched industry classifications. For these mobility attributes, we must use indirect 
comparison techniques, rather than a direct one-to-one comparison, because we are 
validating one day of the synthetic populations’ trips to a year of aggregated 
SafeGraph data. Further, SafeGraph does not capture data for all individuals in the 
study area. The assessment of SafeGraph data’s suitability for independent/external 
data validation was one of the study’s two objectives.

Three methods were used to validate the synthetic populations. The first two meth
ods are well-established for synthetic population validation, while the third is a novel 
spatially-oriented validation framework. For the first method, we determined the total 
absolute error (TAE) in the number of commutes originating from each CBG/SRA of 
the synthetic populations, using the commuter data. For the second method, we cal
culated Pearson correlation coefficients to evaluate the strength of the linear relation
ship between the synthetic populations’ mobility attributes and the validation data. 
Since the Pearson correlation analysis is not a direct head-to-head comparison, both 
groups of mobility attributes were validated.

The third method follows a three-step spatially-oriented validation framework. First, 
we calculated the mobility attribute differences between the synthetic populations 
and the validation data. Percentage differences between the synthetic populations 
and commuter data were used to directly validate the number of commutes originat
ing from each CBG/SRA (Equation 2). Meanwhile, percentile differences between the 
synthetic populations and the SafeGraph data were used as a normalized measure to 
indirectly validate the number of trips originating from each CBG/SRA (Equation 3). 
Since we assume that validation data is less biased than the synthetic populations, 
these mobility differences represent error in the synthetic populations.

Percentage Differencei ¼
NWSPi − NWLi

NWLi
� 100

where NWSPi is the number of workers estimated by the synthetic population at a
geographic region i, and

NWLi is the number of workers obtained from LODES at a geographic region i

(2) 
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Percentile Differencei ¼
RSPi

NSP
� 100 −

RSGi

NSG
� 100

where RSPi is the rank number of trips estimated by the synthetic population at a
geographic region i,

NSP is the total number of geographic regions in the synthetic population,
RSGi is the rank number of trips obtained from the SafeGraph data at a

geographic region i, and
NSG is the total number of geographic regions in the SafeGraph data

(3) 

Next, the mobility differences were spatially analyzed to characterize the distribu
tion of error in the synthetic populations. Using the Global Moran’s I, we determined 
whether the percentage/percentile differences displayed spatial autocorrelation. After 
confirming global spatial autocorrelation, hot and cold spots were identified using 
local spatial autocorrelation (Anselin, 1995). We assigned cluster designations (i.e. 
high-high or low-low) to spatial units if their Local Moran’s I was statistically significant 
at a confidence level of 95% (p < ¼ 0.05). A high-high designation indicated that both 
the spatial unit and its neighbors have high values (i.e. positive mobility differences). 
Similarly, a low-low designation indicated that the spatial unit and its neighbors have 
low values (i.e. negative mobility differences). Clusters of high-high (p < ¼ 0.05) or 
low-low (p < ¼ 0.05) spatial units were merged using a dissolve operation to identify 
regions (i.e. dissolved clusters) where positive spatial autocorrelation occurred.

To visualize the spatial units’ percentage/percentile differences, we mapped their 
standard deviations from the mean. Positive deviations from the mean indicated that 
the synthetic population’s values were higher than those in the validation data (i.e. 
overrepresentation), whereas negative deviations indicated that the synthetic popula
tion’s values were lower than the validation data (i.e. underrepresentation). A difference 
of zero meant there was no difference between the synthetic population and validation 
data. The dissolved clusters were added to the map to reinforce the locations of clus
ters. Last, by interpreting the spatial distributions of percentage/percentile differences, 
we characterized bias within the synthetic populations.

The first two validation methods built a foundation for the spatially-oriented valid
ation framework. The results of the first method served as a baseline for assessment, 
and the findings from the second method justified the usage of mobility differences 
as a validation measure. The establishment of a spatial validation framework that sup
ports direct and indirect comparisons to validation data was the study’s second object
ive. Figure 2 summarizes the entire three-method validation process.

4. Results

4.1. Synthetic population composition

This section compares the total size and overall sociodemographic compositions of 
the synthetic populations to administrative data.

The synthetic population generated for SRAs (SP-SRA) had a total population of 
3.09 million individuals in 1.13 million households, and the synthetic population gen
erated for CBGs (SP-CBG) had 2.85 million individuals in 1.09 million households. The 
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total populations of SP-SRA and SP-CBG were 4.7% and 12.0% smaller than the admin
istrative data’s population size (n ¼ 3,237,526), respectively. There were 2.6% more 
households in SP-SRA (n ¼ 1,125,462) and 0.6% fewer households in SP-CBG 
(n ¼ 1,090,164) than in the administrative data (n ¼ 1,096,758). In addition, when com
pared to the administrative data’s working population size (n ¼ 1,392,686), SP-SRA 
(n ¼ 1,391,458) had 0.1% fewer workers while SP-CBG (n ¼ 1,441,229) had 3.5% more 
workers.

Next, we assessed the synthetic populations’ sociodemographic compositions for 
each of the marginal controls. For the household attributes (household size, annual 
income, number of workers, number of vehicles, and housing status [i.e. own or rent]), 
the compositions of the synthetic populations were similar to the administrative data, 
with two notable exceptions. First, both synthetic populations had fewer households 
with one worker and more households with two workers. Second, SP-CBG had rela
tively more households living in owned housing than either SP-SRA or the administra
tive data.

There were more discrepancies for the individual attributes (age, sex, racial identity, 
Hispanic identity, work status, work category, and education completed). For the age 
category, SP-SRA and SP-CBG had fewer individuals that were 18–34 years old than the 
administrative data, with corresponding discrepancies for the education completed 
(lower number of N/A values) and work (lower number of N/A values) categories. Also, 
SP-CBG had fewer individuals of Hispanic ethnicity than either SP-SRA or the adminis
trative data. Table 3 contains the complete results of the composition analysis.

4.2. Validation measure 1: total absolute errors

To obtain a baseline with which to compare the results of validation using the spa
tially-oriented validation framework, we calculated the total absolute error (TAE) in the 
number of commuters originating from each spatial unit, using the commuter data 
set. We also calculated summary statistics for the absolute errors to reveal variation 
across the spatial units.

Figure 2. The process for validating the synthetic populations’ worker origins with internal valid
ation data (LODES), and the synthetic populations’ trip origins and activities with independent/ 
external validation data (SafeGraph), using two established validation methods (left) and a spa
tially-oriented validation framework (right).
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Table 3. Comparison of the household and individual sociodemographic compositions of SP-SRA 
and SP-CBG to the administrative source data.

Attribute
Administrative  

Dataa (%) SP-SRA (%) SP-CBG (%)

Household 
attributes

Household size  
(number of  
household  
members)

1 263,096 24.0 240,919 21.4 255,479 23.4
2 356,193 32.5 346,707 30.8 354,626 32.5
3 188,719 17.2 215,050 19.1 201,676 18.5
4 161,145 14.7 181,620 16.1 166,815 15.3
5þ 127,605 11.6 141,166 12.5 111,568 10.2

Annual household  
income ($)

0–25,000 179,735 16.4 199,928 17.8 184,423 16.9
25,001–50,000 212,233 19.4 213,812 19.0 199,314 18.3
50,001–75,000 184,832 16.9 190,154 16.9 186,895 17.1
75,001–100,000 141,287 12.9 143,094 12.7 140,218 12.9
100,001–150,000 186,349 17.0 187,704 16.7 189,725 17.4
150,001–200,000 89,625 8.2 88,174 7.8 87,991 8.1
200,001þ 102,697 9.4 102,596 9.1 101,598 9.3

Number of household  
workersb

0 186,757 17.0 183,925 16.3 204,947 18.8
1 514,342 46.9 402,093 35.7 411,002 37.7
2 308,643 28.1 446,167 39.6 404,615 37.1
3þ 87,019 7.9 93,277 8.3 69,600 6.4

Number of household  
vehicles

0 61,951 5.6 69,040 6.1 56,405 5.2
1 341,368 31.1 351,969 31.3 339,973 31.2
2 438,430 40.0 445,924 39.6 442,474 40.6
3 170,880 15.6 170,237 15.1 165,261 15.2
4þ 84,129 7.7 88,292 7.8 86,051 7.9

Housing status (owned  
or rented residence)

own 577,378 52.6 609,163 54.1 629,706 57.8
rent 519,380 47.4 516,299 45.9 460,458 42.2

Individual 
attributes

Age (years) 0–17 719,059 22.2 842,101 27.3 725,026 25.4
18–34 883,392 27.3 719,984 23.3 596,508 20.9
35–64 1,218,436 37.6 1,134,855 36.8 1,122,617 39.4
65þ 416,639 12.9 388,919 12.6 405,737 14.2

Sex female 1,611,745 49.8 1,544,991 50.1 1,441,326 50.6
male 1,625,781 50.2 1,540,868 49.9 1,408,562 49.4

Racial identity American Indian or  
Alaska Native

17,707 0.5 17,544 0.6 11,784 0.4

Asian 383,009 11.8 351,275 11.4 308,989 10.8
Black or African American 162,943 5.0 121,455 3.9 95,754 3.4
Native Hawaiian or  

Pacific Islander
14,017 0.4 10,958 0.4 8429 0.3

White 2,289,287 70.7 2,183,891 70.8 2,066,282 72.5
multiple 164,953 5.1 177,123 5.7 172,961 6.1
other 205,612 6.4 223,613 7.2 185,689 6.5

Hispanic identity no 2,154,841 66.6 2,114,737 68.5 2,059,721 72.3
yes 1,082,685 33.4 971,122 31.5 790,167 27.7

Work status no 1,645,812 50.8 1,498,663 48.6 1,408,659 49.4
yes 1,591,714 49.2 1,587,196 51.4 1,441,229 50.6

Work category clerical or administrative 182,529 5.6 178,701 5.8 160,782 5.6
laborc 243,278 7.5 237,059 7.7 194,587 6.8
professionald 629,395 19.4 696,274 22.6 671,212 23.6
sales or service 464,096 14.3 471,254 15.3 412,382 14.5
N/A (not working) 1,718,228 53.1 1,502,571 48.7 1,410,925 49.5

Education completed less than high school 287,410 8.9 230,055 7.5 155,192 5.4
high school 400,465 12.4 435,021 14.1 402,587 14.1
some college 664,202 20.5 629,570 20.4 630,880 22.1
Bachelor’s degree 500,425 15.5 570,802 18.5 562,015 19.7
graduate degree 312,236 9.6 383,201 12.4 379,590 13.3
N/A (<25 years old) 1,072,788 33.1 837,210 27.1 719,624 25.3

aThe ‘Work status’ and ‘Work category’ attributes are sourced from LODES data; all other attributes are sourced from 
ACS data.

bNumber of household workers is an estimate based on the number of workers per family unit.
cLabor: Manufacturing, construction, maintenance, and farming.
dProfessional: Professional, management, and technical.
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SP-SRA had an absolute error of 190,439 commuters across all work categories, 
accounting for 12.0% of the total workforce in SP-SRA. All work categories except for 
the ‘sales or service’ category had positive error, indicating more commuters in the 
synthetic population than the validation data. The ‘professional’ work category (i.e. 
professional, management, and technical industries) had the greatest absolute error 
(TAE ¼ 540,682 commuters) among the four work categories as well as the most vari
ation across spatial units (SD ¼ 11,763.5). Meanwhile, the ‘labor’ work category (i.e. 
manufacturing, construction, maintenance, and farming industries) had the lowest 
absolute error (TAE ¼ 2293 commuters) and the ‘sales or service’ category had the 
least variation (SD ¼ 7,041.1). For all work categories, scatterplots of the absolute error 
and the total number of commuters (validation data) revealed that error became 
greater, in either the positive or negative direction, as the number of commuters 
increased.

SP-CBG, the synthetic population with higher spatial granularity, had an absolute 
error of 33,741 commuters, making up only 2.3% of SP-CBG’s total workforce. Despite 
SP-CBG’s lower total absolute error, the individual work categories had high absolute 
error, which surpassed the errors in SP-SRA’s labor, professional, and sales or service 
categories. The ‘clerical or administrative’ and ‘professional’ work categories had posi
tive errors, while the ‘labor’ and ‘sales or service’ errors were negative. Like SP-SRA, 
the ‘professional’ work category had the greatest total absolute error (TAE ¼ 514,433 
commuters) and variation (SD ¼ 341.2) in SP-CBG. Again, the ‘sales or service’ category 
had the least variation (SD ¼ 183.1) but the ‘clerical or administrative’ work category 
had the least error (TAE ¼ 26,707 commuters). Table 4 lists the full results of the error 
analysis.

The analysis revealed general trends in the synthetic populations. For instance, 
population synthesis overestimated the number of commuters in the ‘professional’ 
work category while underestimating the number of commuters in the ‘sales or ser
vice’ category. Therefore, it stands to reason that spatial units that are home to a lot 
of ‘professional’ commuters will have a greater positive error while spatial units that 
are home to many ‘sales or service’ commuters will have a greater negative error. 
Figure 3 illustrates the spatial distribution of total error, which manifests in positive 
and negative clusters. Spatial autocorrelation was confirmed using the Global Moran’s 

Table 4. Total error and summary statistics for the number of commuters residing in each spatial 
unit, by work category, for SP-SRA and SP-CBG.

Work Category Total error
Minimum 

error 
Maximum 

error 
Mean absolute 

error 
Standard  
deviation

SP-SRA All work categories 190,439 −13,744 25,584 5601.1 9374.9
Clerical or administrative 45,908 −1055 4477 1350.2 1098.9
Labora 2293 −3279 2958 67.4 1407.6
Professionalb 540,682 1113 43,442 15,902.4 11,763.5
Sales or service −398,444 −24,959 −52 −11,718.9 7041.1

SP-CBG All work categories 33,741 −2814 2,462 19.2 303.2
Clerical or administrative 26,707 −281 453 15.2 49.9
Labora −42,163 −899 275 −24.0 60.9
Professionalb 514,433 −77 4551 292.6 341.2
Sales or service −465,236 −2280 96 −264.6 183.1

aLabor: Manufacturing, construction, maintenance, and farming.
bProfessional: Professional, management, and technical.
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I (SP-SRA: I ¼ 0.301, p ¼ 0.002; SP-CBG: I ¼ 0.368, p � 0.001). The maps of both synthetic 
populations display dissolved clusters of positive error in the central and northwest 
parts of the study area, while a dissolved cluster of negative error is located in the 
southern part of the study area. In Section 4.4, we compare these results to those 
derived using the spatially-oriented validation framework.

Figure 3. The spatial distribution of total error in the total number of commuters residing in each 
spatial unit in SP-SRA (left) and SP-CBG (right), symbolized using standard deviations from the 
mean. Based on the Local Moran’s I, the bold black lines in the top maps outline dissolved clusters 
highlighting statistically significant spatial clusters of positive standard deviation (high-high), 
whereas those in the bottom maps outline dissolved clusters of negative standard deviation 
(low-low).
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4.3. Validation measure 2: Pearson correlation coefficients

In addition to absolute error, we calculated Pearson correlation coefficients for the 
number of commuters residing in each spatial unit to determine the linear relationship 
of this attribute in the synthetic populations and the commuter data. Across all work 
categories, high correlation coefficients in SP-SRA (r � 0.942, p � 0.001) and SP-CBG 
(r � 0.796, p � 0.001) indicated strong linear relationships between the synthetic popu
lations and commuter data. The correlation coefficients for SP-SRA were higher than 
those for SP-CBG for all work categories. Additionally, the correlation coefficients were 
higher for work categories with more total commuters (i.e. ‘professional’, ‘sales or ser
vice’) and were lower for work categories with fewer total commuters (i.e. ‘labor’, 
‘clerical or administrative’) (Table 5).

We also calculated the Pearson correlation coefficient values for the number of trips 
originating from each spatial unit by activity. In general, the values of the Pearson cor
relation coefficients for the number of trips (SafeGraph) were lower than those for the 
number of commutes (commuter data), implying weaker linear relationships between 
the synthetic populations and SafeGraph data. However, the correlation coefficients 
remained greater for SP-SRA than SP-CBG. The highest Pearson correlation coefficients 
were for the total number of trips originating from each spatial unit (SP-SRA: r ¼ 0.942, 
p � 0.001; SP-CBG: r ¼ 0.914, p � 0.001), rather than the number of trips related to a 
specific activity. Also, the correlation coefficients were higher for activities with a clear 
association with a point-of-interest industry classification (e.g. buying meals and res
taurants/other eating places); this phenomenon is more prominent in SP-SRA 
(Table 5).

Since there are strong linear relationships between the mobility attributes in the 
synthetic populations and the validation datasets, the usage of mobility differences as 
a validation measure for the spatially-oriented validation framework is reasonable.

Table 5. Pearson correlation coefficients (r) for the total number of workers and the number of 
workers by industry per spatial unit for SP-SRA and LODES commuter data, and SP-CBG and 
LODES commuter data.
Attribute SP-SRA (r) SP-CBG (r)

Work category (LODES) Total workers (all categories) 0.946 ��� 0.883 ���

Clerical or administrative 0.942 ��� 0.796 ���

Labor: manufacturing, construction, maintenance, farming 0.951 ��� 0.801 ���

Professional: professional, management, technical 0.959 ��� 0.923 ���

Sales or service 0.979 ��� 0.879 ���

Activity (SafeGraph) Total trips (all activities) 0.942 ��� 0.914 ���

Attend school as a student 0.906 ��� 0.890 ���

Buy goods (groceries, clothes, appliances, gas) 0.900 ��� 0.890 ���

Buy meals (go out for a meal, snack, carry-out) 0.925 ��� 0.903 ���

Buy services (dry cleaner, banking, car service, pet care) 0.903 ��� 0.859 ���

Health care visit (medical, dental, therapy) 0.928 ��� 0.869 ���

Other general errands (post office, library) 0.850 ��� 0.856 ���

Recreational activities (parks, movies, bars, museums) 0.917 ��� 0.861 ���

Religious or other community activities 0.904 ��� 0.818 ���

Pearson correlation coefficients (r) for the total number of trips and the number of trips by activity per spatial unit 
for SP-SRA and SafeGraph data, and SP-CBG and SafeGraph data.
Significance levels:.
�p < 0.05.
��p < 0.01.
���p < 0.001.
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4.4. Validation measure 3: spatially analyzed mobility differences

The spatially-oriented validation framework uses mobility differences as the validation 
measure. Percentage differences are calculated when the validation data is directly 
comparable to the synthetic populations (e.g. commuter data); otherwise, percentile 
differences are calculated (e.g. SafeGraph data). Because the method supports direct 
and indirect comparisons of the synthetic populations to validation data, both the 
commuter and SafeGraph data sets were used for validation.

The commuter data was used to validate the total number of commutes originating 
from each spatial unit. The mean percentage difference for SP-SRA equaled 15.5% 
with a standard deviation of 21.4%. SP-CBG had a lower mean percentage difference 
(3.9%) but greater variability (SD ¼ 35.5%) than SP-SRA. The frequency of percentage 
differences for SP-SRA and SP-CBG both approached normal distributions.

Upon mapping, the percentage differences for SP-SRA and SP-CBG displayed obvi
ous spatial clustering that was confirmed using the Global Moran’s I (SP-SRA: I ¼ 0.275, 
p ¼ 0.004; SP-CBG: I ¼ 0.405, p < 0.001) (Figure 4). The locations of dissolved clusters of 
positive and negative mobility differences were identified using the Local Moran’s I. 
Dissolved clusters of spatial units with negative standard deviations from the mean 
highlight neighborhoods where the number of commuters was underestimated. 
Likewise, dissolved clusters of spatial units with positive standard deviations from the 
mean identify neighborhoods where the number of commuters was overestimated. 
Dissolved clusters of positive standard deviation can be found in the central and 
coastal regions of the study area while a large dissolved cluster of negative standard 
deviation is located in the southern part of the study area. The spatial distributions of 
mobility differences (Figure 4) and total error (Figure 3) are strikingly similar, although 
the dissolved clusters of positive standard deviation extend further east in the maps 
of total error.

The validation method was repeated using SafeGraph as the validation dataset. The 
mean difference for SP-SRA equaled 0 percentiles, as expected for the normalized 
measure, with a standard deviation of 10 percentiles. However, the frequency of SP- 
SRA’s percentile differences was irregular and multimodal. SP-CBG also had a mean of 
0 percentiles, but it had a higher standard deviation (22 percentiles). The frequency of 
percentile differences for SP-CBG approached a normal distribution. When mapped, 
there were visible clusters of percentile differences for SP-SRA and SP-CBG (Figure 5).

The Global Moran’s I confirmed the positive spatial autocorrelation for SP-SRA 
(I ¼ 0.338, p ¼ 0.001) and SP-CBG (I ¼ 0.346, p < 0.001). With the Local Moran’s I, we 
defined the locations of dissolved clusters of positive and negative standard deviation 
from the mean. Dissolved clusters of positive standard deviation (i.e. overestimated 
number of trips) were located along the coast, and dissolved clusters of negative 
standard deviation (i.e. underestimated number of trips) dotted the study area to the 
south and the east. Of note, the locations of these dissolved clusters (SafeGraph) are 
similar to, but not the same as, the dissolved clusters for the number of commutes 
(commuter data). Considering that the commuter data only represents work com
mutes, not all trips, it makes sense that the distribution of clusters would not align 
perfectly. However, similarities in the distribution suggest a positive correlation 
between the total number of commutes and the total number of trips.
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5. Discussion

Our study found pre-existing biases in the travel surveys used for population synthesis. 
Survey respondents tended to be older, more educated, and more affluent than the 
average resident in the study area, based on the community survey data. In addition, 
the proportion of respondents with a Hispanic identity was much lower than the pro
portion of residents with a Hispanic identity; these discrepancies, along with the 

Figure 4. The spatial distribution of percentage differences in the total number of commuters 
residing in each spatial unit in SP-SRA (left) and SP-CBG (right), symbolized using standard devia
tions from the mean. Based on the Local Moran’s I, the bold black lines in the top maps outline 
dissolved clusters highlighting statistically significant spatial clusters of positive standard deviation 
(high-high), whereas those in the bottom maps outline dissolved clusters of negative standard 
deviation (low-low).
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combination of households with 5 or more members, are likely explanations for hav
ing fewer total individuals in the synthetic populations. When examining the synthetic 
populations’ aggregate attributes for the study area (Section 4.1), these biases were 
still present, but less severe than in the compiled travel surveys.

Aggregation methods used for the community survey data also introduced errors 
to the synthetic populations. For instance, the combination of all households with five 
or more members resulted in synthetic populations with fewer individuals than the 
study area’s target values. Furthermore, there were fewer two-worker households than 

Figure 5. The spatial distribution of percentile differences in the total number of trips originating 
from each spatial unit in SP-SRA (left) and SP-CBG (right), symbolized using standard deviations 
from the mean. Based on the Local Moran’s I, the bold black lines in the top maps outline dis
solved clusters highlighting statistically significant spatial clusters of positive standard deviation 
(high-high), whereas those in the bottom maps outline dissolved clusters of negative standard 
deviation (low-low).
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in the study area’s source data because of data ambiguity (i.e. the number of family 
units in each household was not specified by the community survey). The first valid
ation measure, total error (Section 4.2), revealed high levels of error and variability for 
the work category attributes, but the Pearson correlation coefficients for the number 
of commuters indicated strong linear relationships between the synthetic populations 
and the commuter data (r � 0.796, p � 0.001) (Section 4.3).

The goal of our research was not to entirely eliminate error from our synthetic pop
ulations, but to replicate the patterns of error using independent mobility microdata 
(SafeGraph) and the spatially-oriented validation framework (Section 4.5). The Pearson 
correlation coefficients for the number of trips using SafeGraph data were statistically 
significant and generally comparable to those resulting from the correlation analysis 
with commuter data. Though not identical, the locations of dissolved clusters of total 
error (Figure 3) and mobility differences (Figure 4), both using commuter data for val
idation, were analogous to one another in their depictions of large dissolved clusters 
located in the southern (low-low) and central coastal (high-high) regions of the study 
area. The mobility differences using SafeGraph validation data (Figure 5) form dis
solved clusters of error in the same general regions; some discrepancies are expected 
in Figure 5 because it includes all mobility while Figures 3 and 4 only include work- 
related commutes. The shared locations of dissolved clusters for total mobility and the 
number of commuters is supported by preliminary research that discovered spatial 
similarity between the SafeGraph and commuter data sets (Embury et al. 2022a). 
These results support the suitability of SafeGraph data for independent data validation 
and demonstrate the value of using the spatially-oriented validation framework.

Differences in the results for the two synthetic populations at different spatial reso
lutions (i.e. CBG, SRA) stress the importance of multiscale analysis of human dynamics. 
While the biases detected by the Pearson correlation analysis were similar for SP-CBG 
and SP-SRA, SP-CBG had weaker linear relationships with the commuter and 
SafeGraph validation data than SP-SRA, likely due to its finer spatial granularity 
(Harland et al. 2012). Of note, results using SafeGraph validation data may be heavily 
influenced by the study’s assumption that all synthetic population trips originated 
from the traveler’s residential spatial unit. This assumption is more reasonable for the 
larger SRA units and likely caused greater error for the smaller CBG units. In these 
cases, the value of SP-CBG’s greater detail is partially diminished by its increased error. 
However, SP-CBG had a greater number of spatial units and was more useful than SP- 
SRA for identifying spatial relationships. The reversal of utility in SP-SRA and SP-CBG 
emphasizes the need for multiscale and spatial evaluation methods.

Despite the implications of the discovered errors and biases, there are still insights 
to be gleaned from the results. The dissolved clusters of mobility differences identi
fied communities where the total number of commuters and/or the total number of 
trips were significantly underrepresented (low-low) or overrepresented (high-high). 
The underrepresented and overrepresented communities match identified regions of 
high and low COVID-19 vulnerability (Embury et al. 2022b, Tsou et al. 2023). The sim
ilarities indicate that the synthetic populations underrepresented the study area’s 
marginalized and underserved communities (Tsou et al. 2023). The biases in the 
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synthetic populations, if not mitigated, have the potential to perpetuate harm in 
these communities.

Perhaps most importantly, the spatially-oriented validation framework demonstrated 
its value by detecting biases that were not apparent when the synthetic populations’ 
attributes were compared to the administrative source data. Spatial clusters of overre
presentation and underrepresentation can be marked for further investigation and 
bias mitigation. Several compelling opportunities for bias mitigation research, to be 
discussed further in Section 6.2, emerged as a result of this study.

6. Conclusion

The two-fold purpose of this study was to assess the suitability of mobility microdata for 
independent data validation, and to introduce a spatially-oriented data validation frame
work for synthetic populations. Using IPU, synthetic populations were generated at two 
spatial granularities (SRAs and CBGs). Both synthetic populations, especially SP-SRA, 
seemed to have low levels of bias based on their sociodemographic compositions. 
However, the validation method which measured the total error in the synthetic popula
tions using the commuter data revealed overrepresentation and underrepresentation in 
the number of commuters in communities across the study area. When mapped, the total 
errors showed that the synthetic populations underrepresented some of the study area’s 
marginalized communities. These findings were replicated using the spatially-oriented val
idation framework using both commuter data and SafeGraph data for validation.

6.1. Study limitations

The study and its findings are subject to a number of limitations, several of which are 
common among spatial and spatiotemporal statistical analyses. First, the study area 
had a low number of spatial units for the low granularity (SRA) portion of the study. 
Although the number of spatial units exceeded the minimum (n > 30) expected for a 
Pearson correlation analysis, the low number of SRAs (n ¼ 34) limits confidence in the 
results. Next, the study used irregularly shaped spatial units and data with different 
temporal resolutions and time periods (i.e. 2017, 2019). As a result, the study is subject 
to the modifiable areal unit problem (Openshaw and Taylor, 1979) and the modifiable 
temporal unit problem (Ç€oltekin et al. 2011), which state that results, and their signifi
cance, depend on the data’s spatial and temporal boundaries. Finally, the study suf
fered edge effects because mobility into and out of the study area was not 
considered. The inclusion of inflows and outflows, especially along the US-Mexico bor
der, may have altered the study’s findings.

Two of the study’s source datasets have considerable biases. The compiled travel sur
veys had pre-existing biases, discussed in Section 4.1, and the SafeGraph data set has 
data generation biases, discussed in Sections 2.1 and 3.2. Debiasing the data, as sug
gested by Coston et al. (2021), may have resulted in more representative synthetic pop
ulations and increased confidence in the results of the independent data validation.

The study makes two assumptions that must be recognized. First, all trips made by 
the synthetic populations’ individuals originate from their residential spatial units. This 
assumption is more problematic for the high granularity (CBG) portion of the study. 
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The creation of activity schedules for individuals in the synthetic populations will fully 
address this assumption by defining precise origin and destination locations for every 
trip (Bradley et al. 2010, Drchal et al. 2019, Luo et al. 2024). Second, the crosswalks 
used to compare travel surveys and synthetic populations contain generalizations that 
may have affected the results of the study. For example, SafeGraph’s industry classifi
cations were only given one activity purpose, although, in reality, there may be several 
appropriate activities. The impact of this assumption will also be reduced by activity 
scheduling and the assignment of trip destinations. While these assumptions may 
affect the results of this study, they can be addressed in future research.

6.2. Future research directions

This study inspired several focus areas for future research. To start, the incorporation 
of uncertainty measures in the community survey source data (Wei et al. 2023) can 
provide a probabilistic grounding for validation that would enhance our interpretation 
of the results. Next, debiased SafeGraph data can be used to validate the synthetic 
populations. Discrepancies between the validation results can be analyzed to better 
understand the debiasing process. Similar to the independent data validation per
formed in this study, the SafeGraph data can be used to independently/externally cali
brate the population synthesis model. The inclusion of external data during calibration 
can improve results and increase overall confidence in the model.

Then, overrepresented and underrepresented communities will be subjected to 
individual examination and bias mitigation. The established bias mitigation procedures 
will be compared across the communities and tested for the entire study area. Lastly, 
activity scheduling will be performed to address the study’s assumptions about trip 
origins. The spatially-oriented data validation framework can be expanded to support 
the validation of activity schedules. Ultimately, the activities will be simulated by an 
agent-based model and, once again, the data validation framework can be expanded 
to introduce parallel evaluation methods fit for agent-based modeling contexts.

On their own, synthetic populations provide valuable insight into the activities and 
dynamics of individuals. The value of synthetic populations is amplified when they are 
used for individual-based mobility modeling. Accordingly, close attention to synthetic 
population validity is critical in advancing realism in individual-based mobility models 
and preventing the potential perpetuation of harm caused by undetected bias.
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