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ABSTRACT ARTICLE HISTORY
Models of human mobility can be broadly applied to find solu- Received 13 October 2023
tions addressing diverse topics such as public health policy, trans- Accepted 17 May 2024

portation management, emergency management, and urban
development. However, many mobility models require individual-
level data that is limited in availability and accessibility. Synthetic
populations are commonly used as the foundation for mobility
models because they provide detailed individual-level data repre-
senting the different types and characteristics of people in a study
area. Thorough evaluation of synthetic populations is required to
detect data biases before the prejudices are transferred to subse-
quent applications. Although synthetic populations are commonly
used for modeling mobility, they are conventionally validated by
their sociodemographic characteristics, rather than mobility attrib-
utes. Mobility microdata provides an opportunity to independ-
ently/externally validate the mobility attributes of synthetic
populations. This study demonstrates a spatially-oriented data val-
idation framework and independent data validation to assess the
mobility attributes of two synthetic populations at different spa-
tial granularities. Validation using independent data (SafeGraph)
and the validation framework replicated the spatial distribution of
errors detected using source data (LODES) and total absolute
error. Spatial clusters of error exposed the locations of underre-
presented and overrepresented communities. This information
can guide bias mitigation efforts to generate a more representa-
tive synthetic population.

KEYWORDS

Population synthesis; data
validation; data bias;
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1. Introduction

Models of human mobility are used to address complex scenarios that cannot, or
should not, be readily replicated in the real world. Through the simulation of indi-
vidual-based mobility, we can test scenarios related to viral transmission (Silva
et al. 2020, Kerr et al. 2021, Truszkowska et al. 2021, 2022), public health policy
(Epstein, 2009, Tracy, et al. 2018), emergency evacuation strategies (Torrens, 2018,
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Trivedi and Rao, 2018), transportation management (Benenson et al. 2008, Scherr
et al. 2020), and urban development (Batty, 2005, Ligmann-Zielinska and Jankowski,
2007, Torrens and Nara, 2012). However, access to the individual-level data
required to build individual-based mobility models is limited in its availability and
accessibility (Crooks et al. 2008, Anderson and Dragicevi¢, 2020, Heppenstall et al.
2020).

Population synthesis can be used to generate a synthetic (i.e. artificial) population
of individuals for applications which require individual-level data that is not available
elsewhere. Synthetic populations represent the different types and various characteris-
tics of individuals in a study area’s population. Depending on the application, individu-
als in a synthetic population may be assigned to a household with additional
household attributes. The aggregate characteristics of the individuals, and their house-
holds, should be representative of the entire study area as well as the smaller spatial
units where individuals reside. While recently developed population synthesis tools
(e.g. Chapuis et al. 2021, Salat et al. 2023) can ease the process of generating a syn-
thetic population, their internal validation processes for aggregate populations may
not detect errors at finer scales, or for individuals.

Thorough evaluation of synthetic populations is crucial for detecting and minimiz-
ing pre-existing, technical, and emergent data biases: pre-existing biases exist in a
model’s source data and can be transferred to its output data, technical biases are the
result of the modeling process (e.g. overfitting), and emergent biases arise as the out-
put data are used and depend on the context of the application (e.g. transportation
planning). Synthetic population biases must be addressed because they ‘systematically
and unfairly discriminate against certain individuals or groups of individuals in favor of
others’ (Friedman and Nissenbaum, 1996, p. 332).

Despite their common use as a foundation for mobility modeling, synthetic popula-
tions are conventionally evaluated by their sociodemographic characteristics rather
than their mobility attributes. While there are positive associations between sociode-
mographics and mobility (Lenormand et al. 2015), the evaluation of a synthetic popu-
lation’s mobility attributes has the potential to directly improve the accuracy of
individual-based mobility models.

Mobility microdata - large, fine-resolution data sets with detailed location infor-
mation collected from mobile applications - provide the means to validate the
mobility attributes of synthetic populations. In addition, mobility microdata can be
used as external/independent validation data, not otherwise used during popula-
tion synthesis. The use of independent data during validation can improve the
detection of data biases (Cambridge Systematics, Inc., 2010). Despite this novel
opportunity, mobility microdata also contain data biases that underrepresent
underserved and/or vulnerable individuals (Rodriguez-Carrion et al. 2018, Schlosser
et al. 2021, Sourbati and Behrendt, 2021). Awareness of data bias within the valid-
ation data is important to consider when interpreting the results of synthetic popu-
lation evaluation.

For our study, we used a population synthesis technique (i.e. iterative
proportional updating) to generate synthetic populations at two spatial granularities
(Census Block Groups and Sub-Regional Areas). Then, we developed a framework for
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spatially-oriented validation using independent mobility microdata to detect and char-
acterize biases. Our study was guided by two research questions:

1. Is the usage of mobility microdata suitable for validating the mobility attributes of
synthetic populations?

2. Does synthetic population validation using a spatial framework and diverse data
sources add value to the model and its subsequent applications?

This paper addresses a gap in the literature and demonstrates that the validation of
mobility attributes complements existing methods of synthetic population evaluation.
The demonstrated data validation method has the potential to improve the accuracy
of synthetic populations, following further calibration, and the subsequent realism of
individual-based mobility models.

2. Related work
2.1. Pre-existing data bias

Pre-existing data biases are present in a synthetic population’s source and validation data
in the form of data generation bias, which is introduced during data collection and/or
compilation. Ethical concerns about data generation biases in mobility microdata and
other forms of geospatial microdata are well documented in the literature (Wesolowski
et al. 2013, Rodriguez-Carrion et al. 2018, Coston et al. 2021, Schlosser et al. 2021,
Sourbati and Behrendt, 2021). For instance, mobility microdata collected from mobile
devices is only representative of mobile device owners, and ownership varies across differ-
ent geographies and sociodemographic characteristics (Wesolowski et al. 2013). Older indi-
viduals are particularly underrepresented by mobility microdata (Sourbati and Behrendt,
2021); in contrast, higher income individuals tend to be overrepresented (Schlosser et al.
2021). Administrative data has been used to test mobility microdata for bias and reliability
(Coston et al. 2021). Although strategies exist for mitigating data generation bias
(Estabrooks and Japkowicz, 2001, Rodriguez-Carrion et al. 2018, Mohammed et al. 2020,
Schlosser et al. 2021), debiased data are only estimates, at best. The development of strat-
egies to mitigate data generation bias is an ongoing research effort.

In addition to data generation biases, synthetic populations are susceptible to stat-
istical data biases stemming from the spatial aggregation of their source data.
Spatially aggregated data is subject to the modifiable areal unit problem (MAUP), a
source of statistical bias caused by the data’s geographic scale and zonal boundaries
(Openshaw and Taylor, 1979). In synthetic populations, the MAUP tends to manifest in
the form of increased error at finer spatial granularities (Harland et al. 2012). Despite
this widespread source of data bias, examples of multiscale population synthesis stud-
ies are limited.

2.2. Technical data bias

The process of population synthesis can introduce technical biases into synthetic pop-
ulations. The oldest method of population synthesis is thought to be iterative



INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE ‘ 1915

proportional fitting (Deming and Stephan, 1940, Beckman et al. 1996); this technique
estimates individual attribute values, known as marginal controls, in contingency
tables (i.e. sampling distributions) using aggregate attribute values as constraints (i.e.
targets) (Castiglione et al. 2014, Lomax and Norman, 2016). Iterative proportional fit-
ting was the dominant method of population synthesis described in the literature until
the mid-2000s and remains a valid option for applications which do not require indi-
viduals to have household membership. However, because iterative proportional fit-
ting is ill-equipped to assign attributes to both individuals and households, technical
bias favoring either individual or household characteristics is introduced into synthetic
populations in which individuals are household members (Guo and Bhat, 2007, Zhu
and Ferreira, 2014).

Subsequent population synthesis methods, such as optimization and probabilistic
approaches, have advanced upon iterative proportional fitting to generate more accur-
ate synthetic populations. Optimization approaches, such as iterative proportional
updating (IPU), address iterative proportional fitting’s primary source of technical bias
by using optimization models to minimize the differences between summed attribute
values and aggregate constraints for both individual and household characteristics
(e.g. Ye et al. 2009, Abraham et al. 2012). However, synthetic populations generated
using an optimization approach tend to reflect the pre-existing biases of their source
data (Ramadan and Sisiopiku, 2019). On the other hand, probabilistic approaches pro-
duce synthetic populations that are not as likely to share the source data’s pre-existing
biases, but can introduce technical bias from model overfitting (e.g. Farooq et al. 2013,
Sun and Erath, 2015, Fournier et al. 2021, Kuki¢ and Bierlaire, 2022, Zhou et al. 2022).

Machine learning approaches to population synthesis offer new ways to manage
and analyze increasingly large data sets with high dimensionality (e.g. Saadi et al.
2016, Borysov et al. 2019, Alonso-Betanzos et al. 2021), yet their limited explainability,
due to ‘black box’ decision-making, may introduce hidden technical biases. Like emer-
gent data biases, examples of technical bias originating from machine learning meth-
ods of population synthesis can be difficult to detect and are not well documented.

2.3. Synthetic population evaluation

Synthetic population evaluation is performed through verification, calibration, and val-
idation; the inclusion of each assessment is crucial to the detection and minimization
of bias. Verification, frequently performed before population synthesis, evaluates the
soundness of the method’s conceptual, logical, and physical models to correct errors
and limit technical biases (Crooks et al. 2008). Calibration, conducted throughout
population synthesis, refers to the processes of quantifying the model’s uncertainty, as
well as the fine-tuning of the physical model and its parameters to improve the syn-
thetic population’s alignment to its source data, especially at finer resolutions
(Castiglione et al. 2014, Crooks et al. 2008). While calibration might effectively reduce
technical bias, it can encourage the transference of pre-existing bias to the synthetic
population. Validation, which takes place after population synthesis, has a critical role
in gauging the extent to which technical and pre-existing bias transference has
occurred.



1916 J. EMBURY ET AL.

The purpose of validation is to determine how well a synthetic population repre-
sents its real-world counterpart (Manson et al. 2012). The use of independent/external
validation data identifies data biases that reduce accuracy (Cambridge Systematics,
Inc., 2010). In the best-case scenario, synthetic population validation would use
‘ground truth’ data collected from all individuals in the study area. However, the col-
lection of ground truth validation data is not feasible for most, if not all, synthetic
populations. Historically, the lack of available fine-scale and individual data essentially
prevented the independent/external validation of synthetic populations (Crooks et al.
2008, Heppenstall et al. 2020). Adapted validation techniques that use source data (i.e.
internal data validation) are normalized and broadly accepted for synthetic population
validation.

Measures regularly used to validate a synthetic population include total absolute
error, standard root mean square error, Pearson correlation coefficient, and coefficient
of determination (Harland et al. 2012, Lovelace and Dumont, 2016, Borysov et al. 2019,
Prédhumeau and Manley, 2023). For all methods, aggregated sociodemographic char-
acteristics of the synthetic population are compared to administrative data to gauge
error in the synthetic population. None of these methods consider the spatial variation
or spatial autocorrelation of errors. Typical validation data is either untabulated micro-
data, like the US Census Bureau’s Public Use Microdata Sample, or an aggregated data
overview, such as the US Census Bureau’s American Community Survey.

Total absolute error directly compares the synthetic population to the validation
data and provides the number of synthetic individuals that have been misclassified for
each attribute, or all attributes at once (Harland et al. 2012, Wu et al. 2022,
Prédhumeau and Manley, 2023); this measure is the most straightforward representa-
tion of error. Standard root mean square error builds upon total absolute error but
emphasizes large errors with higher values (Miller and Axhausen, 2011, Sun and
Erath, 2015, Borysov et al. 2019, Wu et al. 2022).

The Pearson correlation coefficient is a measure of the linear relationship strength
between two datasets, but it does not provide a head-to-head data comparison
(Gartlehner and Moore, 2008, Niroumand et al. 2013). The Pearson correlation coeffi-
cient is typically used to complement and build confidence in other validation meas-
ures (Borysov et al. 2019, Prédhumeau and Manley, 2023). The coefficient of
determination is the square of the Pearson correlation coefficient, representing the
variance of error in the synthetic population (Borysov et al. 2019, Wu et al. 2022).
Similar to the Pearson correlation coefficient, the coefficient of determination is best
used in tandem with other validation measures (Renaud and Victoria-Feser, 2010).

Since synthetic populations are commonly used to understand transportation and
movement (e.g. Guo and Bhat, 2007, Bradley et al. 2010, Zhu and Ferreira, 2014,
Trivedi and Rao, 2018, Scherr et al. 2020, Kianersi et al. 2021, Wang et al. 2022), the
validation of mobility characteristics, in addition to sociodemographic attributes,
would provide valuable information about biases that are likely to emerge during
applications. Although not addressed by the existing literature, mobility microdata
presents an opportunity to independently validate a synthetic population’s mobility
characteristics. Large trajectory data sets have already been shown to explain observed
mobility patterns (Jin et al. 2023). Mobility microdata provides information about a
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greater proportion of individuals in the study area than travel surveys that are often
used for model development. Because it is more comprehensive than the source data,
mobility microdata may serve as a substitute for ground truth data during synthetic
population validation; further, the increasing availability of mobility microdata makes it
a practical alternative. While independent data validation with mobility microdata
might result in more representative synthetic populations, we must consider pre-exist-
ing biases in the validation data (Section 2.1).

3. Materials and methods
3.1. Study area

The study area was San Diego County, CA. San Diego County contains 1794 Census
Block Groups (CBGs) and 41 Sub-Regional Areas (SRAs), which are Census Tract aggre-
gations delineating the county’s larger neighborhood regions. The county’s residents
are demographically diverse and reside in urban, suburban, and rural communities.
Moreover, San Diego County’s presence along the US-Mexico border further compli-
cates its residents’ mobility and activity dynamics.

This study focused on synthesizing populations of residents living in moderate-
density to high-density communities. Since most of San Diego County’s residents live
in urban or suburban communities, rural areas with population densities below 100
residents per square mile were omitted. In addition, due to their unique attributes,
two military bases were removed. The filtering process created a mostly contiguous
study area of 1756 CBGs and 34 SRAs. The study area had a ‘fuzzy’ eastern boundary
because the selected SRAs extended slightly beyond the selected CBGs.

3.2. Study data

This study used six data sets to generate and evaluate synthetic populations at two
spatial granularities (CBGs and SRAs) (Table 1). The boundaries for CBGs and SRAs (San
Diego Association of Governments, 2015a, 2015b) were spatially joined to the study
data in order to perform spatial aggregations by CBG and SRA, and spatial analysis
(Table 1, Rows 1-2). Administrative data sets used for population synthesis, calibration,
and internal data validation included a travel survey (individual sociodemographic and
mobility data) (State of California, 2018), a community survey (fine-scale sociodemo-
graphic data) (US Census Bureau, 2022a) and commuter data (fine-scale origin-destina-
tions and industry data) (US Census Bureau, 2022b) (Table 1, Rows 3-5); while
generally considered reliable, these data sets include pre-existing nonresponse bias
(Shapiro, 2001).

The sixth data set was obtained from a private data company, SafeGraph
(SafeGraph, 2023), and was used for independent/external data validation (Table 1,
Row 6). We accessed SafeGraph’s ‘Monthly Patterns’ data for 2019 using the Dewey
APl (https://www.deweydata.io/). The ‘Monthly Patterns’ data sets contain monthly
aggregated information about the number of devices (i.e. device counts), recorded
continuously (24 hours per day, 7 days per week), at individual points of interest. We
compiled the data to create a data set containing the total device counts for 2019 for
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all points of interest in the study area. SafeGraph data is biased by data suppression
performed when fewer than five device counts from an origin CBG were recorded at a
point of interest during a given month. SafeGraph data also shares data generation
biases that are common to most mobility microdata including the underrepresentation
of older individuals who may not own or carry a mobile device, and the overrepresen-
tation of affluent individuals who are more likely to carry multiple devices (Schlosser
et al. 2021, Sourbati and Behrendt, 2021). In this study, we assume that one device
count equals a trip by a single individual.

3.3. Population synthesis and calibration

The marginal controls for population synthesis were selected using the administrative
data. An attribute was eligible for selection if it was present in the travel survey and
either the community survey or commuter data, and if the attribute did not include
suppressed data. The following household and individual marginal controls were used
for the study:

e Household: household size, annual household income, number of workers, number
of vehicles, and housing status (i.e. own or rent)

e |Individual: age, sex, racial identity, Hispanic identity, work status, work category,
and education completed.

From the community survey, 174 attributes related to the marginal controls were
selected and combined to match the less detailed format of the travel survey (e.g. the
total number of different age groups was reduced). From the commuter data, the
number of workers across 23 industry sectors, combined into four work categories,
were used for the work status and work category. The processed community survey
and commuter data provided the target values for population synthesis.

Next, Iterative Proportional Updating (IPU) and the ipfr R package (Ward, 2020) were
used to create a multidimensional sampling distribution, a contingency table with a
‘dimension’ for each marginal control. IPU takes an optimization approach that itera-
tively balances the household and individual marginal controls and returns an optimal
solution with minimal differences between the sampling distribution and target values;
below is the formula for the IPU optimization model (Equation 1) (Ye et al. 2009):

Minimize (> (dijwi —c,-)/c,}z or 3, [(Zf d,-,jw,-)z/cj] or Y U(Z, dijwi —cj)|/c,}

Subject to w; > 0,
where i denotes a household (i=1,2,...,n),

j denotes the constraint or population characteristic of interest (j=1,2,...,m),

d;; represents the frequency of the population characteristic(household or person

type)j in household,

w; is the weight attributed to the ith household, and

G is the value of the population characteristic j

(1)

Then, households from the travel survey, along with their individual members, were
randomly sampled based on the sampling distribution. Households (n=2666) were
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included during sampling if one or more of that household’s individuals (n=5749)
made a geocoded trip within the study area.

Last, the model was fine-tuned by calibrating the parameters (Table 2). The model
used minimum and maximum ratio parameters to set how many times a household
record could be sampled, a maximum iteration parameter, and a secondary importance
parameter that balanced optimization priorities between household and individual mar-
ginal controls. For minimum ratio, maximum ratio, and secondary importance, the
selected parameter value was a threshold where further fine-tuning no longer produced a
detectable reduction in overall differences between the synthetic populations’ aggregated
attribute values and the target values. For maximum iteration, there was little discernible
difference between the tested parameter values, so the lowest value was selected.

The population synthesis process described in this section was performed for both
CBGs and SRAs in order to assess synthetic populations at different spatial granular-
ities. Figure 1 illustrates the population synthesis and calibration procedure.

3.4. Synthetic population validation

The synthetic populations were validated based on two types of mobility attributes.
The first group of attributes included the number of commutes originating from each
CBG/SRA, by work category and in total. The study’s four work categories were clerical
or administrative, labor (i.e. manufacturing, construction, maintenance, and farming),
professional (i.e. professional, management, and technical), and sales or service. These
attributes were internally validated by the commuter data. These mobility attributes
can be compared head-to-head using the synthetic population and commuter data.

Table 2. Parameter values tested during calibration of the population synthesis model.

Minimum Maximum Minimum Maximum Step
Parameter allowed allowed tested tested size Selected
Minimum ratio 0 1 0.05 0.2 0.05 0.1
Maximum ratio 0 1 5 20 5 10
Maximum iteration 1 N/A 100 500 100 100
Secondary importance 0 1 0.7 1 0.1 0.8
Input : : Processes : Output
D Iterative Proportional Updating: I
Model : R P
—_—— Generate a sampling distribution using an
Parameters L N
optimization model, model parameters, and
. : : the target data.
1777 7 TargetData : !

Synthetic
Population

of households
and individuals

T — with their individuals, according to the

0
l ACS LODES L :
: /Soc\odemographu//commuter/ |: synrphgtli)cu;:;illoa:oiiygi:xigé Eéiz‘eehi\ds
Data Data . ——> d
J. :
£ sampling distribution.

7" " “samplingData

: ot
:l NHTS NHTS it
l Household Individual :
1 Data Data I
s J.

!

Calibration: Measure the differences
between the synthetic population and the
target data. Adjust the model parameters and
re-run as needed.

Figure 1. The methodological framework for population synthesis and model calibration.
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The second group of attributes included the number of trips originating from each
CBG/SRA, by trip purpose and in total. The eight trip purposes (i.e. activity types)
selected from the travel survey were attending school as a student, buying goods,
buying meals, buying services, health care visits, other general errands, recreation, and
religious or community activities. These attributes were independently/externally vali-
dated using SafeGraph data. Because SafeGraph data provides the destinations of trips
(i.e. points of interest), rather than trip purposes, we made a crosswalk to join the syn-
thetic populations’ trip purposes to the destinations’ industry classifications.
Additionally, since SafeGraph records data for work and non-work trips, we created a
second crosswalk to match the synthetic populations’ work categories to the destina-
tions’ industry classifications. For example, the ‘restaurants and other eating places’
industry classification was matched to the ‘buying meals’ trip purpose and the ‘food
services’ work trip. If multiple industry classifications were matched to a work cat-
egory, then the number of commutes were proportionally divided among them. Using
the crosswalks, the number of work and non-work trips originating from each CBG/
SRA were compared to the number of SafeGraph trips made to destinations with
matched industry classifications. For these mobility attributes, we must use indirect
comparison techniques, rather than a direct one-to-one comparison, because we are
validating one day of the synthetic populations’ trips to a year of aggregated
SafeGraph data. Further, SafeGraph does not capture data for all individuals in the
study area. The assessment of SafeGraph data’s suitability for independent/external
data validation was one of the study’s two objectives.

Three methods were used to validate the synthetic populations. The first two meth-
ods are well-established for synthetic population validation, while the third is a novel
spatially-oriented validation framework. For the first method, we determined the total
absolute error (TAE) in the number of commutes originating from each CBG/SRA of
the synthetic populations, using the commuter data. For the second method, we cal-
culated Pearson correlation coefficients to evaluate the strength of the linear relation-
ship between the synthetic populations’ mobility attributes and the validation data.
Since the Pearson correlation analysis is not a direct head-to-head comparison, both
groups of mobility attributes were validated.

The third method follows a three-step spatially-oriented validation framework. First,
we calculated the mobility attribute differences between the synthetic populations
and the validation data. Percentage differences between the synthetic populations
and commuter data were used to directly validate the number of commutes originat-
ing from each CBG/SRA (Equation 2). Meanwhile, percentile differences between the
synthetic populations and the SafeGraph data were used as a normalized measure to
indirectly validate the number of trips originating from each CBG/SRA (Equation 3).
Since we assume that validation data is less biased than the synthetic populations,
these mobility differences represent error in the synthetic populations.

NWSP; — NWL;

Percentage Difference; = — L X 100
i

where NWSP; is the number of workers estimated by the synthetic population at a
geographic region i,and
NWL; is the number of workers obtained from LODES at a geographic region i

()
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. . __ RSP; RSG;
Percentile Difference; = NP x 100 — NG x 100

where RSP; is the rank number of trips estimated by the synthetic population at a
geographic region i,

NSP is the total number of geographic regions in the synthetic population,
RSG; is the rank number of trips obtained from the SafeGraph data at a
geographic region i,and
NSG is the total number of geographic regions in the SafeGraph data

(3)

Next, the mobility differences were spatially analyzed to characterize the distribu-
tion of error in the synthetic populations. Using the Global Moran’s |, we determined
whether the percentage/percentile differences displayed spatial autocorrelation. After
confirming global spatial autocorrelation, hot and cold spots were identified using
local spatial autocorrelation (Anselin, 1995). We assigned cluster designations (i.e.
high-high or low-low) to spatial units if their Local Moran’s | was statistically significant
at a confidence level of 95% (p < = 0.05). A high-high designation indicated that both
the spatial unit and its neighbors have high values (i.e. positive mobility differences).
Similarly, a low-low designation indicated that the spatial unit and its neighbors have
low values (i.e. negative mobility differences). Clusters of high-high (p <= 0.05) or
low-low (p < = 0.05) spatial units were merged using a dissolve operation to identify
regions (i.e. dissolved clusters) where positive spatial autocorrelation occurred.

To visualize the spatial units’ percentage/percentile differences, we mapped their
standard deviations from the mean. Positive deviations from the mean indicated that
the synthetic population’s values were higher than those in the validation data (i.e.
overrepresentation), whereas negative deviations indicated that the synthetic popula-
tion’s values were lower than the validation data (i.e. underrepresentation). A difference
of zero meant there was no difference between the synthetic population and validation
data. The dissolved clusters were added to the map to reinforce the locations of clus-
ters. Last, by interpreting the spatial distributions of percentage/percentile differences,
we characterized bias within the synthetic populations.

The first two validation methods built a foundation for the spatially-oriented valid-
ation framework. The results of the first method served as a baseline for assessment,
and the findings from the second method justified the usage of mobility differences
as a validation measure. The establishment of a spatial validation framework that sup-
ports direct and indirect comparisons to validation data was the study’s second object-
ive. Figure 2 summarizes the entire three-method validation process.

4. Results
4.1. Synthetic population composition

This section compares the total size and overall sociodemographic compositions of
the synthetic populations to administrative data.

The synthetic population generated for SRAs (SP-SRA) had a total population of
3.09 million individuals in 1.13 million households, and the synthetic population gen-
erated for CBGs (SP-CBG) had 2.85 million individuals in 1.09 million households. The
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Figure 2. The process for validating the synthetic populations’ worker origins with internal valid-
ation data (LODES), and the synthetic populations’ trip origins and activities with independent/
external validation data (SafeGraph), using two established validation methods (left) and a spa-
tially-oriented validation framework (right).

total populations of SP-SRA and SP-CBG were 4.7% and 12.0% smaller than the admin-
istrative data’s population size (n=3,237,526), respectively. There were 2.6% more
households in SP-SRA (n=1,125,462) and 0.6% fewer households in SP-CBG
(n=1,090,164) than in the administrative data (n=1,096,758). In addition, when com-
pared to the administrative data’s working population size (n=1,392,686), SP-SRA
(n=1,391,458) had 0.1% fewer workers while SP-CBG (n=1,441,229) had 3.5% more
workers.

Next, we assessed the synthetic populations’ sociodemographic compositions for
each of the marginal controls. For the household attributes (household size, annual
income, number of workers, number of vehicles, and housing status [i.e. own or rent]),
the compositions of the synthetic populations were similar to the administrative data,
with two notable exceptions. First, both synthetic populations had fewer households
with one worker and more households with two workers. Second, SP-CBG had rela-
tively more households living in owned housing than either SP-SRA or the administra-
tive data.

There were more discrepancies for the individual attributes (age, sex, racial identity,
Hispanic identity, work status, work category, and education completed). For the age
category, SP-SRA and SP-CBG had fewer individuals that were 18-34 years old than the
administrative data, with corresponding discrepancies for the education completed
(lower number of N/A values) and work (lower number of N/A values) categories. Also,
SP-CBG had fewer individuals of Hispanic ethnicity than either SP-SRA or the adminis-
trative data. Table 3 contains the complete results of the composition analysis.

4.2. Validation measure 1: total absolute errors

To obtain a baseline with which to compare the results of validation using the spa-
tially-oriented validation framework, we calculated the total absolute error (TAE) in the
number of commuters originating from each spatial unit, using the commuter data
set. We also calculated summary statistics for the absolute errors to reveal variation
across the spatial units.
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Table 3. Comparison of the household and individual sociodemographic compositions of SP-SRA
and SP-CBG to the administrative source data.

Administrative
Attribute Data® (%) SP-SRA (%) SP-CBG (%)

Household Household size 1 263,096 240 240,919 214 255,479 234
attributes (number of 2 356,193 325 346,707 30.8 354,626 325
household 3 188,719 172 215,050 19.1 201,676 185
members) 4 161,145 147 181,620 16.1 166,815 153
5+ 127,605 11.6 141,166 12,5 111,568 10.2
Annual household 0-25,000 179,735 16.4 199,928 17.8 184,423 16.9
income ($) 25,001-50,000 212,233 194 213,812 19.0 199,314 183
50,001-75,000 184,832 169 190,154 16.9 186,895 17.1
75,001-100,000 141,287 129 143,094 12.7 140,218 129
100,001-150,000 186,349 17.0 187,704 16.7 189,725 174
150,001-200,000 89,625 8.2 88,174 7.8 87,991 8.1
200,001+ 102,697 94 102,596 9.1 101,598 9.3
Number of household 0 186,757  17.0 183,925 16.3 204,947 188
workers® 1 514,342 469 402,093 35.7 411,002 37.7
2 308,643  28.1 446,167 39.6 404,615 37.1
3+ 87,019 79 93,277 83 69,600 6.4
Number of household 0 61,951 5.6 69,040 6.1 56,405 5.2
vehicles 1 341,368 311 351,969 313 339973 31.2
2 438,430 40.0 445924 39.6 442,474 40.6
3 170,880 156 170,237 15.1 165,261 15.2
4+ 84,129 7.7 88292 7.8 86,051 7.9
Housing status (owned own 577,378 526 609,163 54.1 629,706 57.8
or rented residence) rent 519,380 474 516,299 459 460,458 42.2
Individual ~ Age (years) 0-17 719,059 222 842,101 273 725,026 254
attributes 18-34 883,392 273 719,984 233 596,508 20.9
35-64 1,218,436 376 1,134,855 36.8 1,122,617 39.4
65+ 416,639 129 388919 126 405,737 14.2
Sex female 1,611,745 49.8 1,544,991 50.1 1,441,326 50.6
male 1,625,781 50.2 1,540,868 49.9 1,408,562 49.4
Racial identity American Indian or 17,707 0.5 17,544 0.6 11,784 04
Alaska Native
Asian 383,009 11.8 351,275 114 308,989 10.8
Black or African American 162,943 50 121,455 39 95,754 3.4
Native Hawaiian or 14,017 0.4 10,958 0.4 8429 0.3
Pacific Islander
White 2,289,287 70.7 2,183,891 70.8 2,066,282 72.5
multiple 164,953 51 177,23 57 172961 6.1
other 205,612 64 223,613 7.2 185689 6.5
Hispanic identity no 2,154,841 66.6 2,114,737 68.5 2,059,721 723
yes 1,082,685 334 971,122 315 790,167 27.7
Work status no 1,645,812 50.8 1,498,663 48.6 1,408,659 49.4
yes 1,591,714 49.2 1,587,196 51.4 1,441,229 50.6
Work category clerical or administrative 182,529 56 178,701 58 160,782 5.6
labor® 243,278 75 237,059 7.7 194,587 6.8
professional® 629,395 194 696,274 226 671,212 236
sales or service 464,096 143 471,254 153 412,382 145
N/A (not working) 1,718,228 53.1 1,502,571 48.7 1,410,925 49.5
Education completed less than high school 287,410 89 230,055 7.5 155192 5.4
high school 400,465 124 435,021 14.1 402,587 14.1
some college 664,202 20.5 629,570 204 630,880 22.1
Bachelor’s degree 500,425 155 570,802 185 562,015 19.7
graduate degree 312,236 9.6 383,201 124 379,590 13.3
N/A (<25 years old) 1,072,788 33.1 837,210 27.1 719,624 25.3

*The ‘Work status’ and ‘Work category’ attributes are sourced from LODES data; all other attributes are sourced from
ACS data.

PNumber of household workers is an estimate based on the number of workers per family unit.

‘Labor: Manufacturing, construction, maintenance, and farming.

dProfessional: Professional, management, and technical.
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SP-SRA had an absolute error of 190,439 commuters across all work categories,
accounting for 12.0% of the total workforce in SP-SRA. All work categories except for
the ‘sales or service’ category had positive error, indicating more commuters in the
synthetic population than the validation data. The ‘professional’ work category (i.e.
professional, management, and technical industries) had the greatest absolute error
(TAE = 540,682 commuters) among the four work categories as well as the most vari-
ation across spatial units (SD = 11,763.5). Meanwhile, the ‘labor’ work category (i.e.
manufacturing, construction, maintenance, and farming industries) had the lowest
absolute error (TAE = 2293 commuters) and the ‘sales or service’ category had the
least variation (SD =7,041.1). For all work categories, scatterplots of the absolute error
and the total number of commuters (validation data) revealed that error became
greater, in either the positive or negative direction, as the number of commuters
increased.

SP-CBG, the synthetic population with higher spatial granularity, had an absolute
error of 33,741 commuters, making up only 2.3% of SP-CBG’s total workforce. Despite
SP-CBG's lower total absolute error, the individual work categories had high absolute
error, which surpassed the errors in SP-SRA’s labor, professional, and sales or service
categories. The ‘clerical or administrative’ and ‘professional’ work categories had posi-
tive errors, while the ‘labor’ and ‘sales or service’ errors were negative. Like SP-SRA,
the ‘professional’ work category had the greatest total absolute error (TAE = 514,433
commuters) and variation (SD =341.2) in SP-CBG. Again, the ‘sales or service' category
had the least variation (SD=183.1) but the ‘clerical or administrative’ work category
had the least error (TAE = 26,707 commuters). Table 4 lists the full results of the error
analysis.

The analysis revealed general trends in the synthetic populations. For instance,
population synthesis overestimated the number of commuters in the ‘professional’
work category while underestimating the number of commuters in the ‘sales or ser-
vice’' category. Therefore, it stands to reason that spatial units that are home to a lot
of ‘professional’ commuters will have a greater positive error while spatial units that
are home to many ‘sales or service’ commuters will have a greater negative error.
Figure 3 illustrates the spatial distribution of total error, which manifests in positive
and negative clusters. Spatial autocorrelation was confirmed using the Global Moran'’s

Table 4. Total error and summary statistics for the number of commuters residing in each spatial
unit, by work category, for SP-SRA and SP-CBG.

Minimum Maximum Mean absolute Standard

Work Category Total error error error error deviation
SP-SRA  All work categories 190,439 —13,744 25,584 5601.1 9374.9
Clerical or administrative 45,908 —1055 4477 1350.2 1098.9

Labor? 2293 —3279 2958 67.4 1407.6
Professional® 540,682 1113 43,442 15,902.4 11,763.5

Sales or service —398,444 —24,959 —52 -11,718.9 7041.1

SP-CBG  All work categories 33,741 —2814 2,462 19.2 303.2
Clerical or administrative 26,707 —281 453 15.2 499

Labor? —42,163 —899 275 —-24.0 60.9
Professional® 514,433 -77 4551 292.6 341.2

Sales or service —465,236 —2280 926 —264.6 183.1

3Labor: Manufacturing, construction, maintenance, and farming.
bProfessional: Professional, management, and technical.
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Figure 3. The spatial distribution of total error in the total number of commuters residing in each
spatial unit in SP-SRA (left) and SP-CBG (right), symbolized using standard deviations from the
mean. Based on the Local Moran’s |, the bold black lines in the top maps outline dissolved clusters
highlighting statistically significant spatial clusters of positive standard deviation (high-high),
whereas those in the bottom maps outline dissolved clusters of negative standard deviation
(low-low).

| (SP-SRA: 1=0.301, p =0.002; SP-CBG: /=0.368, p < 0.001). The maps of both synthetic
populations display dissolved clusters of positive error in the central and northwest
parts of the study area, while a dissolved cluster of negative error is located in the
southern part of the study area. In Section 4.4, we compare these results to those
derived using the spatially-oriented validation framework.
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4.3. Validation measure 2: Pearson correlation coefficients

In addition to absolute error, we calculated Pearson correlation coefficients for the
number of commuters residing in each spatial unit to determine the linear relationship
of this attribute in the synthetic populations and the commuter data. Across all work
categories, high correlation coefficients in SP-SRA (r>0.942, p<0.001) and SP-CBG
(r>0.796, p <0.001) indicated strong linear relationships between the synthetic popu-
lations and commuter data. The correlation coefficients for SP-SRA were higher than
those for SP-CBG for all work categories. Additionally, the correlation coefficients were
higher for work categories with more total commuters (i.e. ‘professional’, ‘sales or ser-
vice’) and were lower for work categories with fewer total commuters (i.e. ‘labor,
‘clerical or administrative’) (Table 5).

We also calculated the Pearson correlation coefficient values for the number of trips
originating from each spatial unit by activity. In general, the values of the Pearson cor-
relation coefficients for the number of trips (SafeGraph) were lower than those for the
number of commutes (commuter data), implying weaker linear relationships between
the synthetic populations and SafeGraph data. However, the correlation coefficients
remained greater for SP-SRA than SP-CBG. The highest Pearson correlation coefficients
were for the total number of trips originating from each spatial unit (SP-SRA: r=0.942,
p <0.001; SP-CBG: r=0.914, p <0.001), rather than the number of trips related to a
specific activity. Also, the correlation coefficients were higher for activities with a clear
association with a point-of-interest industry classification (e.g. buying meals and res-
taurants/other eating places); this phenomenon is more prominent in SP-SRA
(Table 5).

Since there are strong linear relationships between the mobility attributes in the
synthetic populations and the validation datasets, the usage of mobility differences as
a validation measure for the spatially-oriented validation framework is reasonable.

Table 5. Pearson correlation coefficients (r) for the total number of workers and the number of
workers by industry per spatial unit for SP-SRA and LODES commuter data, and SP-CBG and
LODES commuter data.

Attribute SP-SRA (r) SP-CBG (1)

Work category (LODES)  Total workers (all categories) 0946  **¥* (0883  *¥*
Clerical or administrative 0.942 FFF 0796  FF*
Labor: manufacturing, construction, maintenance, farming ~ 0.951  *** 0801  ***
Professional: professional, management, technical 0.959 Fk*  0923  FHk
Sales or service 0979 FFE 0879  **¥*

Activity (SafeGraph) Total trips (all activities) 0.942 FF* 0914  BHE
Attend school as a student 0906 **¥* (0890  **¥*
Buy goods (groceries, clothes, appliances, gas) 0.900 F¥* 0890  *¥*
Buy meals (go out for a meal, snack, carry-out) 0.925 FFX 0903  *¥*
Buy services (dry cleaner, banking, car service, pet care) 0903 F** (0859  Fk*
Health care visit (medical, dental, therapy) 0928 FFk 0869  *¥*
Other general errands (post office, library) 0.850 F**  0.856  F**
Recreational activities (parks, movies, bars, museums) 0917 *F* 0861  ***
Religious or other community activities 0.904 KX 0818  *¥¥¥

Pearson correlation coefficients (r) for the total number of trips and the number of trips by activity per spatial unit
for SP-SRA and SafeGraph data, and SP-CBG and SafeGraph data.

Significance levels:.

*p < 0.05.

*4p < 0.01.

%D < 0.001.
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4.4. Validation measure 3: spatially analyzed mobility differences

The spatially-oriented validation framework uses mobility differences as the validation
measure. Percentage differences are calculated when the validation data is directly
comparable to the synthetic populations (e.g. commuter data); otherwise, percentile
differences are calculated (e.g. SafeGraph data). Because the method supports direct
and indirect comparisons of the synthetic populations to validation data, both the
commuter and SafeGraph data sets were used for validation.

The commuter data was used to validate the total number of commutes originating
from each spatial unit. The mean percentage difference for SP-SRA equaled 15.5%
with a standard deviation of 21.4%. SP-CBG had a lower mean percentage difference
(3.9%) but greater variability (SD = 35.5%) than SP-SRA. The frequency of percentage
differences for SP-SRA and SP-CBG both approached normal distributions.

Upon mapping, the percentage differences for SP-SRA and SP-CBG displayed obvi-
ous spatial clustering that was confirmed using the Global Moran’s | (SP-SRA: /=0.275,
p =0.004; SP-CBG: /=0.405, p < 0.001) (Figure 4). The locations of dissolved clusters of
positive and negative mobility differences were identified using the Local Moran's I.
Dissolved clusters of spatial units with negative standard deviations from the mean
highlight neighborhoods where the number of commuters was underestimated.
Likewise, dissolved clusters of spatial units with positive standard deviations from the
mean identify neighborhoods where the number of commuters was overestimated.
Dissolved clusters of positive standard deviation can be found in the central and
coastal regions of the study area while a large dissolved cluster of negative standard
deviation is located in the southern part of the study area. The spatial distributions of
mobility differences (Figure 4) and total error (Figure 3) are strikingly similar, although
the dissolved clusters of positive standard deviation extend further east in the maps
of total error.

The validation method was repeated using SafeGraph as the validation dataset. The
mean difference for SP-SRA equaled 0 percentiles, as expected for the normalized
measure, with a standard deviation of 10 percentiles. However, the frequency of SP-
SRA’s percentile differences was irregular and multimodal. SP-CBG also had a mean of
0 percentiles, but it had a higher standard deviation (22 percentiles). The frequency of
percentile differences for SP-CBG approached a normal distribution. When mapped,
there were visible clusters of percentile differences for SP-SRA and SP-CBG (Figure 5).

The Global Moran’s | confirmed the positive spatial autocorrelation for SP-SRA
(I=0.338, p=0.001) and SP-CBG (/=0.346, p <0.001). With the Local Moran’s |, we
defined the locations of dissolved clusters of positive and negative standard deviation
from the mean. Dissolved clusters of positive standard deviation (i.e. overestimated
number of trips) were located along the coast, and dissolved clusters of negative
standard deviation (i.e. underestimated number of trips) dotted the study area to the
south and the east. Of note, the locations of these dissolved clusters (SafeGraph) are
similar to, but not the same as, the dissolved clusters for the number of commutes
(commuter data). Considering that the commuter data only represents work com-
mutes, not all trips, it makes sense that the distribution of clusters would not align
perfectly. However, similarities in the distribution suggest a positive correlation
between the total number of commutes and the total number of trips.



INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE ‘ 1929

SP-SRA & LODES Percentage Differences | SP-CBG & LODES Percentage Differences
 “Z27|High-High Y, | High-High

~| Clusters Clusters

: Low-Low ‘ Low-Low

Clusters : Clusters

7
Cm
Std. Deviations'FromiMean_ {7

Std. Deviations From Mean ) ormal Distribution =8}

s A

Multimodal Distribution 7 ean = 3.95% i“\s"'
Mean = 15.54% )27 D = 35.54% N
D = 21.42% ~ ] <2550 !

-25--1.55D | 7 = -25--1.5SD ) ’
-1.5--0.55D , ) i [0 -1.5 - -0.5 SDMPEC A -
+0.5 SD i 4] +0.55D R
0.5-1.5SD . g | ] 05-1.55D e
1.5-2.55D |/, ‘ 1.5-2.5SD
> 255D /| > 255D

Not included 5 Not included
Clusters (Local Moran's T - Clusters (Local Moran's T

Figure 4. The spatial distribution of percentage differences in the total number of commuters
residing in each spatial unit in SP-SRA (left) and SP-CBG (right), symbolized using standard devia-
tions from the mean. Based on the Local Moran’s |, the bold black lines in the top maps outline
dissolved clusters highlighting statistically significant spatial clusters of positive standard deviation
(high-high), whereas those in the bottom maps outline dissolved clusters of negative standard
deviation (low-low).

5. Discussion

Our study found pre-existing biases in the travel surveys used for population synthesis.
Survey respondents tended to be older, more educated, and more affluent than the
average resident in the study area, based on the community survey data. In addition,
the proportion of respondents with a Hispanic identity was much lower than the pro-
portion of residents with a Hispanic identity; these discrepancies, along with the
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Figure 5. The spatial distribution of percentile differences in the total number of trips originating
from each spatial unit in SP-SRA (left) and SP-CBG (right), symbolized using standard deviations
from the mean. Based on the Local Moran’s |, the bold black lines in the top maps outline dis-
solved clusters highlighting statistically significant spatial clusters of positive standard deviation

(high-high), whereas those in the bottom maps outline dissolved clusters of negative standard
deviation (low-low).

combination of households with 5 or more members, are likely explanations for hav-
ing fewer total individuals in the synthetic populations. When examining the synthetic
populations’ aggregate attributes for the study area (Section 4.1), these biases were
still present, but less severe than in the compiled travel surveys.

Aggregation methods used for the community survey data also introduced errors
to the synthetic populations. For instance, the combination of all households with five
or more members resulted in synthetic populations with fewer individuals than the
study area’s target values. Furthermore, there were fewer two-worker households than
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in the study area’s source data because of data ambiguity (i.e. the number of family
units in each household was not specified by the community survey). The first valid-
ation measure, total error (Section 4.2), revealed high levels of error and variability for
the work category attributes, but the Pearson correlation coefficients for the number
of commuters indicated strong linear relationships between the synthetic populations
and the commuter data (r>0.796, p <0.001) (Section 4.3).

The goal of our research was not to entirely eliminate error from our synthetic pop-
ulations, but to replicate the patterns of error using independent mobility microdata
(SafeGraph) and the spatially-oriented validation framework (Section 4.5). The Pearson
correlation coefficients for the number of trips using SafeGraph data were statistically
significant and generally comparable to those resulting from the correlation analysis
with commuter data. Though not identical, the locations of dissolved clusters of total
error (Figure 3) and mobility differences (Figure 4), both using commuter data for val-
idation, were analogous to one another in their depictions of large dissolved clusters
located in the southern (low-low) and central coastal (high-high) regions of the study
area. The mobility differences using SafeGraph validation data (Figure 5) form dis-
solved clusters of error in the same general regions; some discrepancies are expected
in Figure 5 because it includes all mobility while Figures 3 and 4 only include work-
related commutes. The shared locations of dissolved clusters for total mobility and the
number of commuters is supported by preliminary research that discovered spatial
similarity between the SafeGraph and commuter data sets (Embury et al. 2022a).
These results support the suitability of SafeGraph data for independent data validation
and demonstrate the value of using the spatially-oriented validation framework.

Differences in the results for the two synthetic populations at different spatial reso-
lutions (i.e. CBG, SRA) stress the importance of multiscale analysis of human dynamics.
While the biases detected by the Pearson correlation analysis were similar for SP-CBG
and SP-SRA, SP-CBG had weaker linear relationships with the commuter and
SafeGraph validation data than SP-SRA, likely due to its finer spatial granularity
(Harland et al. 2012). Of note, results using SafeGraph validation data may be heavily
influenced by the study’s assumption that all synthetic population trips originated
from the traveler’s residential spatial unit. This assumption is more reasonable for the
larger SRA units and likely caused greater error for the smaller CBG units. In these
cases, the value of SP-CBG's greater detail is partially diminished by its increased error.
However, SP-CBG had a greater number of spatial units and was more useful than SP-
SRA for identifying spatial relationships. The reversal of utility in SP-SRA and SP-CBG
emphasizes the need for multiscale and spatial evaluation methods.

Despite the implications of the discovered errors and biases, there are still insights
to be gleaned from the results. The dissolved clusters of mobility differences identi-
fied communities where the total number of commuters and/or the total number of
trips were significantly underrepresented (low-low) or overrepresented (high-high).
The underrepresented and overrepresented communities match identified regions of
high and low COVID-19 vulnerability (Embury et al. 2022b, Tsou et al. 2023). The sim-
ilarities indicate that the synthetic populations underrepresented the study area’s
marginalized and underserved communities (Tsou et al. 2023). The biases in the
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synthetic populations, if not mitigated, have the potential to perpetuate harm in
these communities.

Perhaps most importantly, the spatially-oriented validation framework demonstrated
its value by detecting biases that were not apparent when the synthetic populations’
attributes were compared to the administrative source data. Spatial clusters of overre-
presentation and underrepresentation can be marked for further investigation and
bias mitigation. Several compelling opportunities for bias mitigation research, to be
discussed further in Section 6.2, emerged as a result of this study.

6. Conclusion

The two-fold purpose of this study was to assess the suitability of mobility microdata for
independent data validation, and to introduce a spatially-oriented data validation frame-
work for synthetic populations. Using IPU, synthetic populations were generated at two
spatial granularities (SRAs and CBGs). Both synthetic populations, especially SP-SRA,
seemed to have low levels of bias based on their sociodemographic compositions.
However, the validation method which measured the total error in the synthetic popula-
tions using the commuter data revealed overrepresentation and underrepresentation in
the number of commuters in communities across the study area. When mapped, the total
errors showed that the synthetic populations underrepresented some of the study area’s
marginalized communities. These findings were replicated using the spatially-oriented val-
idation framework using both commuter data and SafeGraph data for validation.

6.1. Study limitations

The study and its findings are subject to a number of limitations, several of which are
common among spatial and spatiotemporal statistical analyses. First, the study area
had a low number of spatial units for the low granularity (SRA) portion of the study.
Although the number of spatial units exceeded the minimum (n > 30) expected for a
Pearson correlation analysis, the low number of SRAs (n=34) limits confidence in the
results. Next, the study used irregularly shaped spatial units and data with different
temporal resolutions and time periods (i.e. 2017, 2019). As a result, the study is subject
to the modifiable areal unit problem (Openshaw and Taylor, 1979) and the modifiable
temporal unit problem (Coltekin et al. 2011), which state that results, and their signifi-
cance, depend on the data’s spatial and temporal boundaries. Finally, the study suf-
fered edge effects because mobility into and out of the study area was not
considered. The inclusion of inflows and outflows, especially along the US-Mexico bor-
der, may have altered the study’s findings.

Two of the study’s source datasets have considerable biases. The compiled travel sur-
veys had pre-existing biases, discussed in Section 4.1, and the SafeGraph data set has
data generation biases, discussed in Sections 2.1 and 3.2. Debiasing the data, as sug-
gested by Coston et al. (2021), may have resulted in more representative synthetic pop-
ulations and increased confidence in the results of the independent data validation.

The study makes two assumptions that must be recognized. First, all trips made by
the synthetic populations’ individuals originate from their residential spatial units. This
assumption is more problematic for the high granularity (CBG) portion of the study.
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The creation of activity schedules for individuals in the synthetic populations will fully
address this assumption by defining precise origin and destination locations for every
trip (Bradley et al. 2010, Drchal et al. 2019, Luo et al. 2024). Second, the crosswalks
used to compare travel surveys and synthetic populations contain generalizations that
may have affected the results of the study. For example, SafeGraph’s industry classifi-
cations were only given one activity purpose, although, in reality, there may be several
appropriate activities. The impact of this assumption will also be reduced by activity
scheduling and the assignment of trip destinations. While these assumptions may
affect the results of this study, they can be addressed in future research.

6.2. Future research directions

This study inspired several focus areas for future research. To start, the incorporation
of uncertainty measures in the community survey source data (Wei et al. 2023) can
provide a probabilistic grounding for validation that would enhance our interpretation
of the results. Next, debiased SafeGraph data can be used to validate the synthetic
populations. Discrepancies between the validation results can be analyzed to better
understand the debiasing process. Similar to the independent data validation per-
formed in this study, the SafeGraph data can be used to independently/externally cali-
brate the population synthesis model. The inclusion of external data during calibration
can improve results and increase overall confidence in the model.

Then, overrepresented and underrepresented communities will be subjected to
individual examination and bias mitigation. The established bias mitigation procedures
will be compared across the communities and tested for the entire study area. Lastly,
activity scheduling will be performed to address the study’s assumptions about trip
origins. The spatially-oriented data validation framework can be expanded to support
the validation of activity schedules. Ultimately, the activities will be simulated by an
agent-based model and, once again, the data validation framework can be expanded
to introduce parallel evaluation methods fit for agent-based modeling contexts.

On their own, synthetic populations provide valuable insight into the activities and
dynamics of individuals. The value of synthetic populations is amplified when they are
used for individual-based mobility modeling. Accordingly, close attention to synthetic
population validity is critical in advancing realism in individual-based mobility models
and preventing the potential perpetuation of harm caused by undetected bias.
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