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Abstract

This work integrates different fidelity models for optimizing an extractive

distillation process. Equilibrium and rate-based approaches are used for modeling

phase separation in extractive distillation. The equilibrium-based approach assumes

vapor-liquid equilibrium at each stage, while the rate-based approach rigorously

considers mass and heat transfer rates, giving more accurate but complex

representation. Challenges arise with low-volatility, high-viscosity solvents like ionic

liquids, which can drive the system far from equilibrium. We compare equilibrium

and rate-based models for separating R-410A, an azeotropic mixture of R-32 and

R-125, using an ionic liquid entrainer. Analyzing over 4,300 simulations with

dimensionality reduction and topological analysis, we find that while predictions

from the two models exhibit similar trends, the overestimation in equilibrium-based

purities often leads to infeasible process designs. With these insights, we propose

a hybrid optimization method that combines equilibrium/mechanistic model-based

optimization with rigorous rate-based evaluation for feasible and optimal designs for

ionic liquid-assisted extractive distillation.
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1 Introduction

Depending on the fidelity and complexity, often more than one mathematical models

are developed and solved to predict and optimize a system’s behavior. 1 An example is

vapor-liquid equilibrium (VLE)-based chemical separations (e.g., absorption, distillation,

reactive distillation, and extractive distillation) where different models are regularly used

to design unit operations and intensified separation systems. 2,3 These models range from

equilibrium-based models to intricate rate-based models, thereby providing a spectrum of

predictive capabilities that reflect different assumptions about reality and our ability to

handle complexities at various scales. With the advancement in computational hardware

and the proliferation of both experimental and model-based data, a critical question

arises: How can we exploit the strengths of the individual models to improve both the

computational efficiency and the predictive accuracy of process design and optimization

schemes? Under this context, hybrid optimization frameworks that integrate mechanistic

and data-driven models offer a structured way to utilize the accuracy of detailed models

while benefiting from the efficiency of simpler ones. (Note the differences between hybrid

modeling approaches and hybrid optimization frameworks. In hybrid modeling, the model

is developed by combining fundamental knowledge or first principles with observations

or data.4 In hybrid optimization, we exploit multiple models that may include first

principles-based models, data-driven models, and hybrid surrogate models 5,6).

Hybrid optimization can be particularly useful in the context of extractive distillation

processes that combine solvent-based extraction with thermally driven distillation in a

single column.7,8 Extractive distillation has shown great promise to separate azeotropic

or close-boiling mixtures that are difficult to separate through conventional distillation.

Typically, a solvent, known as an entrainer is added to the mixture which disrupts

the azeotrope and selectively absorbs one or more components9,10, thereby making the

separation of the target compound more attainable. Both the equilibrium and rate-based

models have been used in the past for designing extractive distillation processes. For

example, Benyounes et al.11 analyzed energy efficiency using equilibrium models for

acetone-methanol-water and acetone-chloroform-benzene systems. Errico et al. 12 applied

equilibrium models for ethanol-water separation using ethylene glycol. Mendoza and

Riascos13 used a rate-based model to determine the minimum energy required for ethanol

dehydration. More recently, Fontana et al.14 compared both models for anhydrous
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bioethanol production, finding the rate-based design required 62% more stages and 8.4%

higher costs. Quijada-Maldonado et al.15 developed a pilot scale process for water-ethanol

separation using an ionic liquid (IL) as entrainer, and found that the rate-based model

predicted the separation performance of the pilot plant within a 10% relative error.

Considerable works exist on the design and analysis of extractive distillation processes,

which can be found elsewhere2,7,16–21. Optimization of extractive distillation processes

mostly involves equilibrium-based model due to its relatively simpler construct (reviews

on extractive distillation process optimization and control can be found elsewhere 22,23).

For example, Kossack et al.9 used mixed-integer models for deterministic optimization

of extractive distillation processes for a set of entrainers. Skiborowski et al. 24 reported a

hybrid evolutionary-deterministic optimization approach. Monjur et al. 25 used equilibrium

models and performed process optimization for refrigerant separation.

The choice of correct models is important to accurately determine the appropriate feed

and solvent stages of an extractive distillation column. The equilibrium model considers

that every stage is at equilibrium, thereby making it error-prone in the case of subcooled

or superheated feed streams that may enter the column far off from the equilibrium.

Also, in most cases, the temperatures of the feed and the solvent are different than

the temperature of the stage where it is introduced. For such cases, rate-based models

may be more appropriate. The rigorous modeling of mass and heat transfer phenomena

makes the rate-based approaches more appropriate for modeling complex separations,

like those involving azeotropic or close-boiling mixtures and viscous entrainers such as

ILs.26 However, uncertainties related to transport properties limited the use of rate-based

models for industrial practice in the past. Therefore, one should be careful about the

use of appropriate and experimentally validated mass transfer correlations and transport

property models when using the rate-based approach for specific mixtures and packing.

Nonetheless, several works concluded that the rate-based model is to be preferred over

the equilibrium model since the Murphree tray efficiency is difficult to predict. 27 It is

important to capture the non-ideal behavior introduced by entrainers like ILs that exhibit

negligible vapor pressure, as well as the nonlinear transport properties that affect the

interfacial mass transfer.26 This significantly affects the performance of computational

optimization when the rate-based model is used. Even for process simulation, sophisticated

and computationally intensive approaches are needed to avoid convergence issues. 28,29

Therefore, there is an interest in investigating whether the two models can be used
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interchangeably or not. Indeed, it is now established for reactive distillation that

the predictions from the equilibrium and rate-based models are in general similar. 30

Furthermore, when the vapor-liquid interfacial area is very large, the profiles obtained

from the two models become identical. While these are important findings, it is currently

unknown whether the same conclusions hold true for other intensified systems, such as

extractive distillation that utilize solvents with special thermodynamic and transport

properties such as ILs. Even if the predictions are similar, it is important to further

elucidate how these similarities can be exploited for process design and optimization.

In this work, we ask the question: How can we exploit the strengths of both the

equilibrium and the rate-based models in terms of computational efficiency and prediction

accuracy when optimizing an extractive distillation process? If successful, this would lead

to efficient model-based process optimization while incorporating accurate predictions. To

that end, we hypothesize that the equilibrium model can be used as efficient surrogate

or proxy of the original design problem thereby providing a near-optimal estimate of

decision variables (preliminary optimization step), while the rate-based model provides

an evaluation of the actual process behavior at the optimal design condition (validation

step). As we will discuss in detail in Section 2, indeed the equilibrium model can be

used to capture the trends in process behavior as functions of key decision variables.

In particular, we conduct over 4,300 simulations to compare performance predictions of

both the equilibrium and the rate-based models across a wide range of design scenarios.

Our observations indicate that, although the trends are similar, the equilibrium model

generally provides an overestimation of key performance metrics, such as product purity,

which necessitates a further refinement and validation under rate-based considerations.

Building on this, a key novelty of this work then entails to a new hybrid constraint

optimization scheme (Section 3). This approach avoids direct optimization of the complex

rate-based model, making the overall scheme computationally efficient and more tractable.

We are particularly interested in the design and optimization of an extractive distillation

process for separating R-410A, an equimass azeotropic refrigerant mixture of R-32 and

R-125, using 1-Ethyl-3-methyl-imidazolium thiocyanate ([EMIM][SCN]) as an IL entrainer.

To summarize, the novel contributions of this paper include:

• A systematic approach to compare models in terms of their prediction similarity

involving high-dimensional design space,
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• Extensive similarity analysis between the equilibrium and the rate-based extractive

distillation models using dimensionality reduction techniques, distance metrics, and

topological invariants, such as Principal Component Analysis (PCA), Wasserstein

distance, Cosine similarity, and Euler Characteristic,

• A mechanistic/data-driven hybrid algorithm for constraint design optimization,

which utilizes novel constraint refinement and update rules. Under this setting, the

rate-based model is evaluated through a black-box simulator, and the equilibrium

model is used as a surrogate. This allows us to navigate a simpler model space using

Bayesian optimization while ensuring feasible rate-based design.

The rest of the article is organized as follows: Section 2 describes the process flow

diagram, presents a comparison of the simulation results obtained based on equilibrium

and rate-based models, and uses several data-analytic metrics for similarity analysis.

Based on the analysis and observation, Section 3 presents a hybrid algorithm for process

optimization. Lastly, Section 4 includes a summary of key observations and concluding

remarks.

2 Comparison of Equilibrium and Rate-based Model

Predictions

For modeling phase separation in an extractive distillation column, two approaches are

available in the literature: the equilibrium model and the rate-based (nonequilibrium)

model.30 The equilibrium model31 simplifies the calculation by incorporating the MESH

(Material balances, Equilibrium relations, Summation checks, and Heat balances)

equations. The vapor-liquid equilibria (VLE) is calculated using activity coefficient models

(e.g., NRTL) or through the equation of states (EOS) such as Peng-Robinson. Stage-wise

energy balance is performed by considering the latent heat of vaporization and sensible

heat changes. To account for the deviation from equilibrium in practical operation in tray

and packed columns, the tray efficiency and the height equivalent of a theoretical plate

(HETP) are used. The rate-based models31–33, on the other hand, assume the VLE only

at the interface and capture actual stage efficiencies through explicit modeling of mass

transfer rates across the vapor-liquid interface using the Maxwell-Stefan equation or the
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Fickian model for diffusivities, and two-film mass transfer coefficients that account for both

vapor and liquid side resistances.31 Rate-based models also capture heat transfer effects

by incorporating heat transfer resistances and temperature gradients across the phases,

which can be significant in highly non-ideal mixtures. In addition to mass and energy

balance equations, this approach includes transport between vapor and liquid phases.

The equations incorporate both interfacial and bulk concentrations, resulting in a more

comprehensive representation of the column behavior. For interested readers, the complete

equilibrium and rate-based model equations can be found elsewhere 30,31,34.

In this section, we describe the process configuration for R-410A separation using

[EMIM][SCN]. [EMIM] [SCN] is selected because of its prior use and promise as a solvent

for the separation of R-410A mixture. It is also one of the most extensively experimentally

explored ionic liquids for this application.35 In subsequent sections, we first conduct a

base design simulation to analyze column behavior between equilibrium and rate models,

followed by a parametric study for three key design variables: R-410A feed stage, reflux

ratio, and IL flow rate. Finally, we perform a simulation-based comparison across various

design scenarios to characterize prediction similarity using several data-analytic techniques.

All simulations, analysis, and process optimization are conducted on a Dell Windows

system with an Intel(R) Core(TM) i7-13700 2.10 GHz CPU and 32 GB of memory.

2.1 Process Configuration and Base Design Simulation

For R-410A separation using [EMIM][SCN], we consider a process configuration shown in

Figure 1 that is similar to Monjur et al.25 and Viar et al.26 In our work, we consider 100

kg/hr R-410A feed flow rate that is fed to the extractive distillation column at 1 MPa and

278 K.26 The feed is introduced as a liquid because it enhances separation performance. 36

[EMIM][SCN], which has a density of 1113.9 kg/m3 and a viscosity of 20.79 mPa.s at 303.15

K,37 consists of an imidazolium-based cation core and a thiocyanate anion, with one methyl

and one ethyl group attached to the cation core. Its high selectivity for R-32 over R-125

makes it suitable for R-410A separation.26 It is introduced to the extractive distillation

column at 1 MPa and 288.15 K. Due to the negligible vapor pressure of IL, the IL feed stage

is positioned at the top of the column to ensure maximum gas-liquid contact. 38 The decision

to operate the extractive distillation column at 1 MPa follows the recommendation by Viar

et al.26 Since [EMIM][SCN] is R-32 selective, the extractive distillation column separates
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Figure 1: Base process flow diagram of extractive distillation process for R-410A
separation using [EMIM][SCN].

high-purity R-125 as a distillate from with a specified flow rate of 50 kg/hr. The IL rich

with R32 stream exits at the bottom, which is then fed to the two flash separators. These

two sequential flash separators are used for solvent regeneration and high-purity separation

of R-32. A recycling and solvent reconditioning system is used for recirculation of the IL

to the extractive distillation column. The vapor from both the flash separators are mixed

and collected as high-purity R-32. The pressure and temperature of the bottom outlet

from the second flash (with high purity [EMIM][SCN]) are adjusted using a pump and a

cooler and then recirculated to the extractive distillation column.

We perform the process simulation in Aspen Plus V14. Several pure component

and mixture properties are required for process simulation. Tables 1-3 summarize such

essential properties like normal boiling point, critical temperature, pressure, molar volume,

compressibility factor, acentric factor, and temperature-dependent properties such as heat
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Table 1: Molecular and Thermophysical Properties of [EMIM][SCN]

Property Value

Molar mass - M [g/mol] 169.240
Boiling point - Tb [K] 717.300
Critical temperature - Tc [K] 1013.600
Critical pressure - Pc [bar] 22.260
Critical volume - Vc [cm

3/mol] 666.400
Acentric factor - ω 0.393
Compressibility factor - Zc 0.176

Table 2: Temperature-dependent correlations for thermophysical properties.

Property Units Equation

Ideal Gas Heat Capacity kJ/(kmol·K) Cg
p,i(T ) = α1i + α2iT + α3iT

2 + α4iT
3

Liquid Heat Capacity kJ/(kmol·K) C l
p,i(T ) = α1i + α2iT + α3iT

2 + α4iT
3

Heat of Vaporization kJ/mol ∆Hvapi(T ) = α1i

(
1−T/Tci

1−α2i/Tci

)0.38

Liquid Viscosity mPa·s ηli(T ) = α1i exp
(
α2i
T

)
+ α3i

Liquid Vapor Pressure atm pli(T ) = exp
(
α1i +

α2i
T+α3i

)
Liquid Surface Tension mN/m σl

i = α1i + α2iT

capacity, vapor pressure, viscosity, and surface tension. We use the NRTL activity

coefficient model. It is important to ensure that the NRTL model accurately predicts

the phase equilibria. For that, we collect experimental solubility data of R-32 and R-125 in

[EMIM][SCN] at 303.15 K from Asensio-Delgado et al.37,44 and simulate the NRTL model

using the parameters listed in Table 4. As shown in Figure 2, the NRTL parameters fit

the experimental solubility well. Also, at a fixed pressure P, the absorbed amount of R-32

is greater than R-125, suggesting R-32 selectivity of [EMIM][SCN].

Next, we simulate the equilibrium and rate-based models for a base design, with

key design variables listed in Table 5. We use the RadFrac block in Aspen Plus V14

for its ability to handle both model types and various packing options. Mellapak 750Y

Sulzer-structured packing is chosen for its high surface area, as noted by Meindersma et

al.46 and Sridhar et al.47. We note that the rate-based model predictions may significantly

deviate based on our choice of mass and heat transfer correlations. In this work, based

on the recommendation of Quijada-Maldonado et al.15, we modeled mass transfer using
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Table 3: Coefficients for the property models for [EMIM][SCN].

Property α1 α2 α3 α4 Reference

Ideal Gas Heat Capacity −558.580 5.870 −0.018 2× 10−5 39

Liquid Heat Capacity −39.425 3.678 −0.014 2× 10−5 39,40

Heat of Vaporization 142.2 298 - - 41

Liquid Viscosity 3.44× 10−4 3304.06 2.474 - 42

Liquid Vapor Pressure −1× 1035 - - -
Liquid Surface Tension 79.253 −0.087 - - 43

Figure 2: Solubility of R-32 and R-125 at 303.15 K in [EMIM][SCN]. Square points depict
experimental data points. Solid lines depict solubility prediction from the NRTL model.

the Bravo et al. correlation48, and heat transfer using the Chilton-Colburn method31. In

the base case simulation, the equilibrium-based design meets the purity constraint (R-125

mass purity is 0.9953 in the distillate), while the rate-based design does not achieve the

purity (R-125 mass purity is 0.9899 in the distillate). Figure 3 shows the composition

and temperature profiles for the base design. Although the profiles are generally similar,

the equilibrium model estimates higher temperatures in the stripping section and higher

vapor mass fractions in the rectifying section compared to the rate-based model. Next, to

achieve a rate-based design that satisfies the purity requirement, the packing height was

increased by adjusting the HETP parameter. An HETP value of 0.35 m was determined
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Table 4: NRTL parameters.

Compound 1 Compound 2 α τ012 τ021 τ112 τ121 Reference

R-32 [EMIM][SCN] 0.2 0 0 1025.6 -210.04 44,45

R-125 [EMIM][SCN] 0.2 187.11 23.863 -51435 -6466.3 37,45

Table 5: Process specifications for the base case.

Parameters Value

R-410A Feed flow rate (kg/hr) 100
IL flow rate (kg/hr) 800

Composition (mass fraction): R-32 0.5
Composition (mass fraction): R-125 0.5

Thermodynamic fluid package NRTL
Reflux Ratio 2

Distillate Flow Rate (kg/hr) 50
Column Diameter (m) 0.7
Flash-1 Pressure (MPa) 0.1
Flash-2 Pressure (MPa) 0.01
Flash-1 Temperature (K) 313
Flash-2 Temperature (K) 313
R-410A feed stage (Nf) 11

IL feed stage (Ns) 2
Total stage including reboiler and condenser (Nt) 18

Explicit Constraints

R-125 mass fraction in the outlet ≥ 0.995
R-32 mass fraction in the outlet ≥ 0.995

to be suitable and was used in all subsequent results for rate-based simulations.

2.2 Parametric Study on the Effects of Key Design Variables

To investigate the qualitative and quantitative differences between the equilibrium and

rate-based model predictions, we perform a parametric study on three key design variables:

R-410A feed stage, reflux ratio, and solvent flow rate. We also quantify process performance

by calculating the process energy consumption. We use specific energy consumption

(SEC)49 as the objective function, calculated as shown in Equation 1.

SEC =
|Ereboiler|+ |Econdenser|+ |Eflash1|+ |Eflash2|+ |Epump|+ |Ecooler|

Feed flow rate
(1)
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Figure 3: Temperature and concentration profiles along the extractive distillation column
for the base design. (a) Temperature, and, (b) Composition.

where, SEC is calculated by first summing all process duties (in kW), and then normalizing

by the R-410A feed flow (in kg/hr). Thus, SEC (in kW-hr/kg R-410A) indicates the energy

required to process 1 kg of R-410A. While other objective functions like equivalent work

(in kj/kg) have previously been used for process optimization 25, our parametric study and

the hybrid optimization strategy (described in Section 3) can be adapted to them as well.

We first vary the R-410A feed stage from 3 to 17, keeping other variables fixed to the

base design values (see Table 5). Figure 4 shows that the equilibrium model consistently

predicts higher mass purity than the rate-based model. Both models identify an optimal

feed stage where SEC is minimized and separation purity is maximized. However, the

rate-based model does not meet the required purity, while the equilibrium model suggests

a design that meets the required purity. Next, we vary the reflux ratio from 0.5 to 7,

while keeping other design variables fixed to Table 5. Figure 5 shows that increasing the

reflux ratio generally increases mass purity for both models, though the equilibrium model

predicts higher purities. For the equilibrium model, purity asymptotically approaches a

critical value, while the rate-based model shows an inflection point. That is, mass purity

tends to increase until a maximum reflux ratio is achieved, and after that, the mass purity

decreases with the increase of reflux ratio. Energy consumption increases with reflux ratio.

The rate-based model again fails to meet the required purity, unlike the equilibrium model.

Finally, we vary the flow rate of [EMIM][SCN] from 500 kg/hr to 1200 kg/hr, keeping other
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variables fixed to Table 5. Figure 6 shows that increasing the solvent flow rate generally

increases mass purity and energy consumption for both models. Here, both models suggest

designs that meet the required purity, though at different IL flow rates.

Figure 4: Effect of R-410A feed stage on mass purity and energy consumption (Reflux
Ratio = 2, IL solvent to feed ratio = 8).

Based on these studies, we observe a similarity between the equilibrium and rate-based

models. Despite similar trends, the rate-based design often fails to achieve the required

purity. This leads us to hypothesize that practical design of IL-assisted extractive

distillation necessitates validation using the rate-based model. To address the challenge of

optimizing the computationally intensive rate-based model, we pose the following question:

Can we exploit the similarity between the equilibrium and rate-based models to guide the

design optimization of equilibrium-based IL-assisted extractive distillation, ensuring purity

constraints are met under rate-based considerations? To answer this, next, we explore

the design space to validate the similarity between these models across a wide range of

conditions.
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Figure 5: Effect of reflux ratio on mass purity and energy consumption (R-410A feed
stage = 11, IL solvent to feed ratio = 8).

2.3 Similarity Analysis

We conduct a space-filling simulation for both the equilibrium and rate-based models. We

note that the objective of this space-filling simulation is to understand and characterize

the similarity between the two models. These simulation results are not explicitly used

for process optimization in Section 3. Table 6 lists the input variables along with their

bounds, while R-125 mass purity, R-32 mass purity, and SEC are selected as measured

variables. We consider a total of 4383 simulations for which both the equilibrium model

and rate-based model successfully converged in Aspen Plus. Figure 7 shows the results

for the measured variables, i.e., mass purity and specific energy consumption. Note that

the mass purity of R-125 is equal to the mass purity of R-32 (since the distillate flow rate

is specified to be 50 kg/hr). We observe that the equilibrium model consistently predicts

higher mass purity than the rate-based model. Additionally, energy consumption tends to

increase with higher mass purity.

After sampling the design space, we characterize the similarity between the equilibrium
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Figure 6: Effect of Ionic Liquid Flow Rate on mass purity and energy consumption
(R-410A feed Stage = 11, Reflux Ratio = 2).

and rate-based model datasets. Given the high dimensionality (7 input variables and

3 measured variables), we use principal component analysis (PCA) to project the data

into two dimensions for visualization. PCA uses eigenvalue decomposition of the data

covariance matrix.50 to transform high-dimensional data into principal components,

capturing the maximum variance. Figure 8 shows the PCA results, highlighting a high

degree of overlap between the two models. The explained variance ratios for the first two

principal components are 0.32 and 0.15, respectively, indicating that together they capture

approximately 47% of the total variance in the dataset. We also compute loadings of PCA

on the two principal components (see Section S1 of the Supplementary Material) that verify

that reflux ratio, solvent flow rate, and feed stage are the three key features that contribute

to the variability.

While PCA uses linear transformation for dimensionality reduction and visualization

of the variance, it may not be as effective for highly nonlinear datasets. For example, in

our case, PCA captures less than 50% of the total variance, suggesting that it may not

fully capture the topological structure of our high-dimensional data. Therefore, to gain

14



Figure 7: Design space of mass purity and energy consumption between the equilibrium
model and the rate model. Simulation numbers are randomized.

deeper insights into the structural similarities and differences between the equilibrium

and rate-based models, we employed Euler characteristic51, a topological invariant that

summarizes the shape and connectivity of the structure for understanding non-linear

relationships in high-dimensional space - in our case, the 10-dimensional input-output

space of our dataset. The Euler characteristic, χ is computed via the Euler-Poincaré

formula: χ = V − E + F , where V , E, and F are the numbers of vertices, edges, and

faces, respectively. In high-dimensional data analysis, the Euler characteristic captures

underlying connectivity through the filtration value, which represents a scale parameter in

the Vietoris-Rips complex52 that determines the degree of connectivity of the data points.
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Table 6: Variable bounds for design space exploration

Input Variable Bounds

x1, R-410A feed stage 9 ≤ x1 ≤ 12
x2, Reflux ratio 2 ≤ x2 ≤ 5
x3, Solvent flow rate 700 ≤ x3 ≤ 1000
x4, Flash 1 Temperature (K) 310 ≤ x4 ≤ 320
x5, Flash 1 Pressure (MPa) 0.1 ≤ x5 ≤ 0.2
x6, Flash 2 Temperature (K) 310 ≤ x6 ≤ 320
x7, Flash 2 Pressure (MPa) 0.01 ≤ x7 ≤ 0.03

Figure 8: Principal component analysis of the design space between the rate model and
the equilibrium model.

The filtration value is a dimensionless number that represents a distance or similarity

threshold. At lower filtration values, only closely related design points (those with very

similar equilibrium and rate-based model predictions for design variables such as reflux

ratio, feed stage, and solvent flow rate) are connected. As the filtration value increases,

connections are made between more distant points, revealing larger-scale similarities or

differences between the models. The progression of Euler characteristic, χ values with

increasing filtration reflects the evolution of complexity and connectivity of the design space
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at different scales.53 Further details on the Euler characteristic and the computational

topology in general, can be found elsewhere53–55. In our work, we compute the Euler

characteristic using the Python Gudhi 3.9.0 library56.

Figure 9: Euler characteristic of the design space between the rate model and the
equilibrium model.

As shown in Figure 9, The Euler Characteristic curves for both models follow similar

trajectories over the entire range of filtration values. At low filtration values, the high Euler

characteristic values suggest many disconnected components, indicating that equilibrium

and rate-based models differ in their predictions for small, localized regions of the design

space. In practical terms, this indicates that, for certain combinations of process variables

(such as at a specific reflux ratio and IL flow rate), the models give different predictions

regarding product purity. However, as the filtration value increases, more design points

become interconnected, and the Euler Characteristic begin to stabilize, suggesting that

the models show similar trends over broader design ranges. This physically represents that

both the equilibrium and the rate-based models converge on similar predictions across

broader ranges of the design space. For instance, both models might start to agree on

the trend of increasing product purity with increasing solvent flow rate. Finally, the Euler

Characteristic values essentially become identical for filtration values > 1.5 indicating that
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no new topological features are emerging. This stabilization implies that, beyond a certain

scale, the overall structure of the design space, as predicted by both models, is similar when

viewed on a larger scale. In practical terms, this means that while the models might differ

in specific predictions, they are consistent in identifying similar global trends across the

entire design space.

Next, we quantify the distributional similarity between the two models by computing

the Wasserstein distance. This is a measure of the minimum cost of transforming one

distribution of datasets into the other, considering the geometry of the data. 57 Here,

we consider only the measured variables and construct 3-dimensional point clouds of

equilibrium and rate-based datasets. That is, each point xi ∈ D ⊂ R3, where xi represents

a 3-dimensional point in the set D, consists of R-125 mass purity, R-32 mass purity, and

SEC. We then compute the Wasserstein distance = 0.1284 using the Pot: Python optimal

transport library58. Since theWasserstein distance is low, we can infer that the two datasets

are distributionally similar. While the Wasserstein distance provides a useful metric for

comparing the overall distribution of outputs from the equilibrium and rate-based models,

it does not account for point-wise differences in predictions. This means that, even though

the Wasserstein distance is low in our work, the models could still produce significantly

different outputs for specific inputs. To further investigate this issue, We compute the

Cosine similarity59 between each type of measured variable. Note that cosine similarity

directly assesses point-wise directional agreement between the models. We find that the

Cosine similarity of R-125 mass purity (kg/kg) between the rate model and the equilibrium

model is > 0.99, Cosine similarity of R-32 mass purity (kg/kg) between the rate model and

the equilibrium model is > 0.99 and the SEC between the rate model and the equilibrium

model is also > 0.99, validating both distributional and point-wise similarity between the

equilibrium and rate-based models.

While using PCA, Euler characteristic, Wasserstein distance, and cosine similarity may

seem redundant, each serves a distinct purpose to help up understand the similarities

between the equilibrium and rate-based models from linear, topological, and geometric

perspectives. For example, PCA helped identify that both models predict similar directions

of change in the design space, but PCA may miss non-linear interactions between the

design variables which could be critical when small variations in design parameters lead

to significant differences in purity prediction. In our case, the two principal components of

PCA explained less than 50% of the variance, indicating that it doesn’t fully capture
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the topological structure of our 10-dimensional data. To address this, we used Euler

characteristic to summarize the shape and connectivity of the data. Wasserstein distance

then quantified geometric differences between the output distributions. Specifically, if the

Wasserstein distance was found to be significant, this would indicate that while the models

might agree on trends (as seen in PCA), they differ considerably in terms of the absolute

values they predict. Lastly, cosine similarity measured directional agreement between the

output vectors of the two models, thereby ensuring both distributional and point-wise

similarity.

Figure 10: Mass purity for the design space. Mass purity estimates of the equilibrium
model tend to be greater than the estimates of the rate model, but they follow similar
trend.

Finally, we analyze only the primary measured variable of interest (that is, mass

purity) in Figure 10. Several observations are outlined: i) the trends are consistent across

the entire domain of interest, ii) ordered combinations of the input parameters lead to

nested clustering, and iii) the magnitude of deviation is not consistent, as changing design

parameters by the same amount does not necessarily correspond to the same proportional
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change in the rate and equilibrium models. This prompts us to sort the equilibrium-based

purity in increasing order (see Figure 11) to investigate the relative difference in the

infeasible and feasible zones. Here, ’infeasible’ and ’feasible’ refer to converged Aspen

Plus simulations where the product purity was less than 99.5% and greater than 99.5%,

respectively.

Figure 11: Parametric study of mass purity (simulations are sorted based on the
increasing order of equilibrium based mass purity).

From Figure 11, we observe the following: 1) when the rate-based model is feasible,

the equilibrium model is also feasible, 2) The mass purity data points for the equilibrium

model lie above those of the rate-based model across the entire design space. This analysis

supports our claim that equilibrium-based models can guide the optimization for feasible

rate-based design. Consider an optimization scheme at iteration k, where the optimized

design based on the equilibrium model is infeasible for the rate-based model. We can then

use the deviation in mass purity prediction between the equilibrium and rate-based models

to tighten the purity constraint for the equilibrium model and re-optimize at iteration k+1.
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From Figure 11, we can infer that the solution for iteration k+1 will lie to the right of the

solution at iteration k. Thus, as iterations progress, a feasible solution under rate-based

consideration will be attained, given that a feasible solution exists within the domain of

interest. With this observation, we describe a hybrid optimization approach in Section 3.

3 Hybrid Optimization

Consider the following constrained process optimization problem P:

min
x

f(x)

s.t. g(x) = 0,

h(x) ≥ ϵmin,

(P)

where x ∈ Rn1 × Zn2 is a vector of n(= n1 + n2) variables, g(x) = 0 represents a set

of physical constraints (gi(x) = 0, where i = 1, 2, ...,m) representing the system behavior

or reality, and h(x) ≥ ϵmin represents a set of externally imposed operational constraints

(hj(x) ≥ ϵmin
j , where j = 1, 2, ..., q) on the system performance. Each constraint in h(x) ≥

ϵmin must be satisfied to ensure that the process performance metrics, such as minimum

product purity, maximum allowable emission, etc., are met. The overall system has (n−m)

degrees of freedom or decision variables to be optimized. The objective function f is

minimized, which gives a measure of the quality of the solution (e.g., overall process energy

consumption or cost).

Here, f(x), g(x), and h(x) are functions for which, depending on the assumptions

made on the reality, more than one models are available. For brevity, we will also use

f(x), g(x), and h(x) to represent a high-fidelity model with accurate prediction of the

system behavior. We assume that the high-fidelity model can be accessed via an oracle or

black-box simulator. Even if the entire model is known, we will treat it as an input-output

simulator.

Next, we assume the availability of an equation-oriented surrogate model P-S:

min
x

f s(x)

s.t. gs(x) = 0,

hs(x) ≥ ϵmin + δ,

(P-S)
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where fs, gs, and hs are alternative representations f , g, and h, respectively. A

key characteristic of P-S is that it provides a fast but approximate estimation of the

system’s performance measures. The parameter δ ∈ Rq enforces additional tightness in

the constraints of the surrogate Problem P-S so that its solution is most likely feasible for

the original Problem P.

First, we optimize the surrogate problem P-S. Then, we evaluate P at the solution

of P-S, and update parameters δ based on the violation of the constraints h(x) ≥ ϵmin.

This iterative approach allows us to progressively tighten constraint hs(x) ≥ ϵmin + δ in

the surrogate space to ensure that a feasible solution in the original space is eventually

attained, provided such a solution exists within the domain of interest. We describe these

steps in Algorithm 1.

Let x∗
k represent the optimal solution of the Problem P-S at iteration k. The surrogate

optimization and the corresponding black-box evaluation cover several cases:

Case 1 : hs
k(xk) < ϵmin + δk, ∀x, i.e., the Problem P-S does not have a feasible solution

at iteration k.

In this case, we restore feasibility (Lines 7 and 8 of Algorithm 1), by defining

δ
′
j = maxl∈Ωj

δj,l, where Ωj = {p : p < k & hsj,p(x
∗
p) ≥ ϵmin

j + δj,p}. Essentially,

δ
′
j is the maximum of all such δj from previous iterations p (p < k), such that the

surrogate optimization was feasible. Next, we slightly perturb the j-th operational

constraint around δ
′
j by setting δj,k+1 = δ

′
j + ϵ1, where ϵ1 is a small number and we use

ϵ1 = 5e−4.

Case 2 : hk(x
∗
k) < ϵmin, i.e., x∗

k is not a feasible solution to the Problem P as evaluated

through black-box simulation of the models in P.

In this case, we further constrain the operational constraint, hs (Line 17 of Algorithm 1),

of Problem P-S at the next iteration k + 1, i.e., we impose hs
k+1(x) ≥ ϵmin + δk+1, where

δk+1 is updated as follows:

δk+1 ←
(
1− ϵmin

)
−

(
1− δk − ϵmin

)
exp−

[
ϵmin − hk(x

∗
k)

1− ϵmin

]
(2)

Property 1 : δk+1 ≥ δk for all k in Case 2. This ensures that if infeasibility is encountered

in Problem P, then in the next iteration, additional tightness is enforced in Problem P-S.

22



Algorithm 1 Hybrid optimization scheme for feasible constrained black-box solution

1: δ0 ← 0, S ← ∅, k ← 0, m← 0, F ← +∞ ▷ Initialization
2: while k ≤ Nmax ∨m < 2 do
3: x∗

k = argmin P-S ▷ Surrogate optimization
4: if x∗

k = ∅ then ▷ Surrogate infeasibility
5: m← m+ 1
6: for j = 1, 2, ..., q do
7: δ

′
j = maxl∈Ωj

δj,l, where Ωj = {p : p < k & hsj,p(x
∗
p) ≥ ϵmin

j + δj,p}
8: δj,k+1 = δ

′
j + ϵ1 ▷ Feasibility restoration

9: end for
10: else if hs

k(x
∗
k) ≥ ϵmin + δk then ▷ Surrogate feasibility

11: m← 0
12: Evaluate fk(x

∗
k), gk(x

∗
k),hk(x

∗
k) ▷ Black box sampling

13: if hk(x
∗
k) < ϵmin then ▷ Black box infeasibility

14: for j = 1, 2, ..., q do
15: Sj ← Sj ∪ {hsj,k(x∗

k)}
16: end for
17: δk+1 ←

(
1− ϵmin

)
−

(
1− δk − ϵmin

)
exp−

[
ϵmin−hk(x

∗
k)

1−ϵmin

]
▷ Update δ

18: else if hk(x
∗
k) ≥ ϵmin then ▷ Black box feasibility

19: γU
k = max(S)

20: δk+1 ← γU
k − ϵmin + ϵ2

21: if fk(x
∗
k) ≥ F then ▷ Current solution worse than incumbent solution

22: Break
23: end if
24: F ← fk(x

∗
k) ▷ Update incumbent solution

25: end if
26: end if
27: k = k + 1
28: end while

23



Proof : Define λj,k =
ϵmin
j −hj,k(x

∗
k)

1−ϵmin
j

. Observe that, for j = 1, 2, .., q; δj,k+1 =

(1 − ϵmin
j ) − (1 − ϵmin

j ) exp(−λj,k) + δj,k exp(−λj,k). Since for all k in Case

2, λj,k ≥ 0, This implies (1 − ϵmin
j ) exp(−λj,k) ≤ (1 − ϵmin

j ) which implies

δj,k+1 = (1 − ϵmin
j )(1 − exp(−λj,k)) + δj,k exp(−λj,k). Since δj,k ≤ 1 − ϵmin

j , this

then follows δj,k+1 ≥ δj,k(1− exp(−λj,k)) + δj,k exp(−λj,k) = δj,k. ■

Essentially, the refinement of the operational constraint in iteration k + 1 depends

on the constraint violation in iteration k. Since Problem P evaluated at the solution of

Problem P-S violates the constraint, λj,k > 0. As λj,k increases, exp(−λj,k) decreases,

meaning δk+1 is proportional to the constraint violation - allowing larger adjustments for

significant violations and smaller ones as feasibility is approached.

Case 3 : hk(x
∗
k) ≥ ϵmin, i.e., the solution of the Problem P-S is feasible for the Problem P.

In this case, we have obtained a feasible solution to the original problem with high-fidelity

model. The next steps in Algorithm 1 (Lines 19 and 20) are added to see if the solution

can be improved any further if it is already not a local optimal solution. Specifcially,

we relax the purity constraint by defining γU
k = max(S), where for j = 1, 2, ..., q;

Sj = {hsj,p(x∗
p) : p < k & hj,p(x

∗
p) < ϵmin

j }. The set Sj essentially collects all such values

for the j−th operational constraint for which the surrogate model P-S is feasible but

the corresponding Black-based evaluation is infeasible (Line 15 in Algorithm 1). Then

δk+1 = γU
k − ϵmin + ϵ2, where ϵ2 = 1e−4.

Termination: The termination criteria for the Algorithm 1 are as follows:

• Incumbent solution comparison: At iteration k, if the current feasible solution is

worse than the incumbent solution, the algorithm terminates and returns the current

best incumbent solution. Otherwise, the current solution is set as the new incumbent

solution, ensuring a monotonically decreasing incumbent solution.

• Successive infeasibility: The algorithm terminates if it encounters two successive

infeasible solutions in the surrogate optimization step at iterations k− 1 and k. This

criterion ensures that even after slightly perturbing the purity constraint around δ
′
,
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if feasibility is not restored, the algorithm stops.

• Maximum iterations: The algorithm runs up to a specified maximum number of

iterations, Nmax, ensuring a finite-time solution, i.e., k ≤ Nmax.

3.1 Results for the extractive distillation process design under rate-based

considerations

We demonstrate the application of Algorithm 1 to achieve a feasible [EMIM][SCN]-assisted

extractive distillation process under rate-based considerations. Our key idea is to use

the computationally efficient equilibrium model as a surrogate (Problem P-S) for the

optimization of the rate-based extractive distillation process (Problem P). This combines

the equation-oriented optimization of design and operational decision variables using the

equilibrium model (mechanistic) with the simulation-based data-driven optimization using

the rate-based model for sampling and validation.

For the case study, the continuous variables are the reflux ratio and solvent flow rate,

while the R-410A feed state is an integer variable. The objective function is SEC, where

the goal is to achieve an optimized process that corresponds to the design with the least

energy consumption. The constraints gs(x) = 0 define the MESH equations for the

mass, equilibria and energy balance involving all process units in the flowsheet. The

operational constraint hs(x) in this case is the purity constraint for R-32 and R-125. ϵmin

is the minimum purity required, which in our work is set to be 0.995. We optimize the

equilibrium-based model P-S using a Bayesian Optimization scheme that directly interacts

with an Aspen Plus file, where the MESH equations corresponding to the extractive

distillation process are inherently built into the equilibrium model. Thus, Algorithm

1 leverages Aspen Plus’s built-in capabilities to ensure that all physical constraints

including MESH equations are respected during each iteration of the optimization process.

Within the Bayesian optimization scheme, we leverage Gaussian Processes (GP) 60 to

predict the mean (µ) and standard deviation (σ) of the objective function, guiding the

selection of new sampling points through acquisition functions that balance exploration

and exploitation61–63. In our implementation, we used GP for prediction and expected

improvement as the acquisition function to determine the next sampling point, all in a

Python 3 environment64. We note that the use of GP in Bayesian optimization does

not require the predictions from the equilibrium model to follow a Gaussian distribution.
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Table 7: Hybrid optimization for large design space

P-S optimization P evaluation

i δ ϵmin + δ FS RR SF xEQ
R125 SECEQ xRate

R125 SECrate

1 0 0.9950 11 2.2213 944.21 0.9975 0.2860 0.9943 0.2869
2 0.0006 0.9956 10 2.7282 737.01 0.9959 0.2750 0.9905 0.2767
3 0.0030 0.9980 - - - - - - -
4 0.0011 0.9961 11 1.7509 1000 0.9974 0.2778 0.9939 0.2785
5 0.0018 0.9968 11 2.1960 912.16 0.9973 0.2808 0.9937 0.2818
6 0.0025 0.9975 11 2.1880 953.07 0.9975 0.2861 0.9943 0.2869
7 0.0028 0.9978 11 4.2992 928.97 0.9979 0.3527 0.9958 0.3546
8 0.0026 0.9976 11 2.1557 978.28 0.9976 0.2884 0.9946 0.2892
9 0.0027 0.9977 11 4.2992 928.97 0.9979 0.3527 0.9958 0.3546

Instead, GPs define a prior over functions, which is updated with observed data to form a

posterior distribution that best fits the data. This method is well-established and widely

applied, including in chemical engineering, without needing the underlying data to follow

a Gaussian distribution.61,65 After the Bayesian Optimization of Problem P-S, we evaluate

the rate-based model (Problem P) at its solution. Note that the rate-based model is

implemented within Aspen Plus that includes detailed mass and energy balance equations,

as well as transport property models (given in Table 3) to simulate/evaluate Problem P

at the solution of Problem P-S. We would like to note that not every simulation in Aspen

Plus may converge. The flowsheet convergence issues often stem from the presence of a

recycle loop in the flowsheet and the presence of added nonlinearity due to complex mass

transfer and property correlations in the rate-based model. If we encounter cases for which

the equilibrium or rate-based flowsheet does not converge, we assign a high penalty for

that design condition, so that in the subsequent iterations, the same problematic design

condition is not explored. While this procedure allows the algorithm to continue, we admit

that it may restrict the search only to the points where the simulations are numerically

stable.

We first consider a larger design space with the following optimization variable bounds:

R-410A feed stage [5− 15], Reflux ratio [0.5− 5], and [EMIM][SCN] flow rate [500− 1000]

kg/hr. The progression of the algorithm and the results for all iterations are given in

Table 7. Here, column 1 refers to the iteration number, column 2 refers to the magnitude

of constraint refinement, and column 3 refers to the imposed purity constraint on the
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equilibrium model. Columns 4-6 refer to the solution obtained by optimizing the equilibrium

model. These columns report feed stage, reflux ratio, and solvent flow rate, respectively.

Columns 7 and 8 report the purity and total duty predicted by the equilibrium model.

Finally, columns 9 and 10 report the rate-based purity and total duty evaluated at the

same design condition.

In iteration 1, the equilibrium model satisfies the purity constraint, whereas the

rate-based model does not satisfy the minimum purity. Therefore, iteration 1 leads to

Case 2. We update S = {0.9975}. Also, since the rate-based evaluation does not meet the

required purity, the purity constraint of the equilibrium model for the next iteration 2 is

computed using Equation 2 (δ2 = 0.0006). At the end of iteration 2, we observe that the

equilibrium model satisfies the purity constraint but the rate model does not satisfy the

minimum purity. This again leads to Case 2. We then update S = {0.9975, 0.9959} and

compute δ3 = 0.003. In iteration 3, we notice that the equilibrium solution is infeasible, that

is, no feasible solution has been found in iteration 3 such that the equilibrium model satisfies

purity constraint ϵmin+δ3 ≥ 0.998. This leads to Case 1. So, we restore feasibility by noting

that δ
′
= 0.0006. Therefore, δ4 = 0.0006 + 0.0005 = 0.0011. The iteration progresses, and

in iteration 7, we encounter the first case where the rate-based model is feasible. This

leads to Case 3. Therefore, we first update the incumbent solution to be equal to the

SEC obtained at iteration 7. Also, max(S) = 0.9975 which implies δ8 = 0.0026. Finally,

the algorithm terminates in 9 iterations after observing that the feasible rate-based design

obtained in this iteration does not improve the incumbent solution which was obtained in

iteration 7. The algorithm gives the following optimal values of the design variables with

feasible rate-based design: R-410A feed stage = 11, Reflux ratio = 4.3, [EMIM][SCN] flow

rate = 928.97 kg/hr.

For the hybrid optimization scheme, each iteration required 50 equilibrium-based and 1

rate based process simulations. The scheme converged after 9 iterations, thereby requiring

a total of 450 equilibrium-based simulations and 9 rate-based simulations. The overall

runtime of the optimization scheme, including all simulations, was ≈ 2036 s. To compare,

we also performed a Bayesian optimization using only the rate-based model. Interestingly,

even after 460 simulations and more than 40 minutes of runtime, the scheme did not

find a feasible process condition to achieve the minimum product purity. This suggests

the usefulness of the hybrid approach. We also check the sensitivity of this solution against

different mass transfer correlations available through Aspen Plus, which are given in Section
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Table 8: Hybrid optimization for smaller design space

P-S optimization P evaluation

i δ ϵmin + δ FS RR SF xEQ
R125 SECEQ xRate

R125 SECrate

1 0 0.9950 10 2.1701 781.79 0.9961 0.2625 0.9911 0.2637
2 0.0027 0.9977 11 3.0592 985.81 0.9978 0.3194 0.9958 0.3205
3 0.0012 0.9962 9 2 873.44 0.9966 0.2692 0.9925 0.2700
4 0.0026 0.9976 11 3.3104 891.30 0.9977 0.3149 0.9950 0.3164
5 0.0017 0.9967 9 2 890.98 0.9968 0.2715 0.9929 0.2724
6 0.0028 0.9978 11 2.7728 987.91 0.9978 0.3102 0.9956 0.3112
7 0.0018 0.9968 11 2.3177 842.08 0.9968 0.2755 0.9926 0.2766
8 0.0030 0.998 - - - - - - -
9 0.0029 0.9979 11 4.5297 957.47 0.9979 0.3642 0.9961 0.3661

S2 of the Supplementary Material.

We further test Algorithm 1 on a smaller design space with the following bounds:

R-410A feed stage [9 − 12], Reflux ratio [2 − 5], and [EMIM][SCN] flow rate [700 − 1000]

kg/hr. For this smaller design, the progression of the algorithm and all the iteration results

are given in Table 8. The algorithm terminates at iteration 9 since the feasible rate-based

design in iteration 9 is worse than the incumbent solution (obtained in iteration 6). Thus,

the optimized design variables are as follows: R-410A feed stage = 11, Reflux ratio =

2.77, [EMIM][SCN] flow rate = 987.91 kg/hr. The process flowsheet corresponding to this

optimized design is shown in Figure 12.

4 Conclusions

We performed space-filling simulations to compare the predictions of the equilibrium and

the rate-based models for an ionic liquid-assisted extractive distillation process to separate

refrigerants R-32 and R-125 from R-410A mixtures. While different data analytic metrics

provide different information, all of them strongly indicated that the predictions from

both models have similar trends. The differences in absolute values might be a result of

using viscous and low-volatile liquid-based as entrainer. Interestingly, we observed that the

estimate of the product purities from the equilibrium model tends to be greater than the

rate model. This might stem from the gas diffusion rates, dominant transport properties,

and other factors, which are not considered in the equilibrium model, thereby leading
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Figure 12: Optimized flowsheet for the smaller design space. Mass purity from the
equilibrium-based model is indicated in green, while mass purity from the rate-based model
is indicated in blue.

to a potential overestimation of the concentration of R-32 and R-125 in the bulk ionic

liquid. The overestimation complicates design under strict purity constraints (e.g., R-32

requires a purity of 99.5 wt% or more). For instance, designs that are feasible based on

the equilibrium model can still be infeasible based on rate-based considerations. To that

end, we have reported a hybrid optimization scheme that was effective in exploiting the

similarity in trends to find feasible process designs with improved energy consumption. In

general, we observed that the designs derived from the equilibrium model could serve as

excellent initial guesses for practical design purposes, thereby providing benefits through

faster convergence and in silico validation.

We used Bayesian optimization for the equilibrium model, but future work could employ

global optimization methods for guaranteed optimal flowsheets, although the algorithmic

procedure presented here would remain similar. Our study focused on a fixed ionic liquid,
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but the qualitative trends predicted by the two models are also expected to be similar

for other ionic liquids. Also, the procedure presented in this work is not limited to

only extractive distillation but may be extended to integrating multiple fidelity models in

various process optimization problems. High-fidelity models can be thought of as Problem

P whereas low-fidelity models can serve as Problem P-S However, it may still be necessary

to first establish similarity between different fidelity models to ensure a feasible solution.

Also, currently, we do not have a convergence guarantee to the optimal solution, and thus,

the proposed approach can be viewed as a heuristic approach that yields near-optimal or

local solutions.

An interesting, albeit ambitious approach would integrate the proposed hybrid

optimization methodology with computer-aided molecular and process design,

simultaneously optimizing the solvent choice and process design variables. Lastly,

the methodology has the potential to significantly reduce simulation/computation time

through optimization, compared to performing many space-filling simulations.
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[23] Sun, S.; Lü, L.; Yang, A.; Shen, W.; others Extractive distillation: Advances in conceptual design, solvent
selection, and separation strategies. Chinese Journal of Chemical Engineering 2019, 27, 1247–1256.

[24] Skiborowski, M.; Rautenberg, M.; Marquardt, W. A hybrid evolutionary–deterministic optimization approach
for conceptual design. Industrial & engineering chemistry research 2015, 54, 10054–10072.

[25] Monjur, M. S.; Iftakher, A.; Hasan, M. M. F. Separation process synthesis for high-gwp refrigerant mixtures:
Extractive distillation using ionic liquids. Industrial & Engineering Chemistry Research 2022, 61, 4390–4406.

31



[26] Viar, M.; Asensio-Delgado, S.; Pardo, F.; Zarca, G.; Urtiaga, A. In the quest for ionic liquid entrainers for
the recovery of R-32 and R-125 by extractive distillation under rate-based considerations. Separation and
Purification Technology 2023, 324, 124610.

[27] Lee, J.-H.; Dudukovic, M. A comparison of the equilibrium and nonequilibrium models for a multicomponent
reactive distillation column. Computers & chemical engineering 1998, 23, 159–172.

[28] Javaloyes-Anton, J.; Kronqvist, J.; Caballero, J. A. Simulation-based optimization of distillation processes using
an extended cutting plane algorithm. Computers & Chemical Engineering 2022, 159, 107655.

[29] Pattison, R. C.; Baldea, M. Equation-oriented flowsheet simulation and optimization using pseudo-transient
models. AIChE Journal 2014, 60, 4104–4123.

[30] Peng, J.; Lextrait, S.; Edgar, T. F.; Eldridge, R. B. A comparison of steady-state equilibrium and rate-based
models for packed reactive distillation columns. Industrial & engineering chemistry research 2002, 41,
2735–2744.

[31] Taylor, R.; Krishna, R. Multicomponent mass transfer ; John Wiley & Sons, 1993; Vol. 2.

[32] Sundmacher, K.; Hoffmann, U. Development of a new catalytic distillation process for fuel ethers via a detailed
nonequilibrium model. Chemical Engineering Science 1996, 51, 2359–2368.

[33] Higler, A.; Taylor, R.; Krishna, R. The influence of mass transfer and mixing on the performance of a tray
column for reactive distillation. Chemical engineering science 1999, 54, 2873–2881.

[34] Pradhan, S.; Kannan, A. Simulation and analysis of extractive distillation process in a valve tray column using
the rate based model. Korean Journal of Chemical Engineering 2005, 22, 441–451.

[35] Baca, K. R.; Al-Barghouti, K.; Wang, N.; Bennett, M. G.; Matamoros Valenciano, L.; May, T. L.; Xu, I. V.;
Cordry, M.; Haggard, D. M.; Haas, A. G.; others Ionic Liquids for the Separation of Fluorocarbon Refrigerant
Mixtures. Chemical Reviews 2024,

[36] Finberg, E. A.; Shiflett, M. B. Process Designs for Separating R-410A, R-404A, and R-407C Using Extractive
Distillation and Ionic Liquid Entrainers. Industrial & Engineering Chemistry Research 2021, 60, 16054–16067.

[37] Asensio-Delgado, S.; Viar, M.; Pardo, F.; Zarca, G.; Urtiaga, A. Gas solubility and diffusivity of
hydrofluorocarbons and hydrofluoroolefins in cyanide-based ionic liquids for the separation of refrigerant
mixtures. Fluid Phase Equilibria 2021, 549, 113210.

[38] Chen, H.-H.; Chen, M.-K.; Chen, B.-C.; Chien, I.-L. Critical assessment of using an ionic liquid as entrainer via
extractive distillation. Industrial & Engineering Chemistry Research 2017, 56, 7768–7782.
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