2024 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) | 979-8-3503-8622-6/24/$31.00 ©2024 1EEE | DOI: 10.1109/BIBM62325.2024.10822135

2024 International Conference on Bioinformatics and Biomedicine (BIBM)

PERGAT: Pretrained Embeddings of Graph Neural

Networks for miRNA-Cancer Association Prediction

Sa Li, Jonah Shader, Tianle Ma
Oakland University

{sa,jonahshader,tianlema} @oakland.edu

Abstract—

MicroRNAs (miRNAs) play a crucial role in the regulation
of gene expression and have been implicated in the patho-
genesis of various cancers. Predicting miRNA-cancer associ-
ations is essential for understanding cancer mechanisms and
developing therapeutic strategies. In this work, we introduce
a computational method named PERGAT (Pretrained Embed-
dings based on the Residual Graph Attention Network) for
predicting miRNA-cancer associations. Extensive experimental
results demonstrate the superior performance of PERGAT com-
pared to other state-of-the-art methods. We achieved the AUC
as high as 0.9641 in terms of the area under the Receiver
Operating Characteristic (ROC) curves, and the area under
the precision-recall curves as 0.9377. Our approach leverages
the structure of miRNA-disease networks to capture complex
relationships efficiently and improves prediction accuracy. Ad-
ditionally, PERGAT exhibits exceptional performance in three
cancer case studies, underscoring its reliability for studying
miRNA-disease associations. The data and source codes are
available at https://github.com/ericsaliway/PERGAT.

Index Terms—miRNA-disease association, link prediction,
graph neural network, node embeddings.

I. INTRODUCTION

ICRORNAS (miRNAs) are small non-coding RNAs
M that regulate gene expression by targeting messenger
RNAs (mRNAs) and triggering their degradation or transla-
tional repression [2], [3]. Research has shown that abnormal
miRNA expression is closely linked to the onset and pro-
gression of various diseases, including cancer, cardiovascular
diseases, neurological disorders, and more [4]-[6]. miRNAs
can regulate the expression of key genes, thereby affecting
cellular processes such as proliferation, differentiation, and

apoptosis, playing a crucial role in the mechanisms of disease
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development. Consequently, designing an effective method to
predict potential associations between miRNAs and diseases
is essential [7]-[9].

Graph-based learning approaches, such as Graph Neural
Networks (GNNs) [10], exploit this structural information
to enhance the learning process. These models are designed
to capture the interactions between nodes, considering both
local and global graph properties. By incorporating the rich
information present in the graph, we can learn more accu-
rate and robust hypotheses for tasks like node classification,
link prediction, and graph classification. This graph-based
approach often leads to improved performance compared to
traditional methods that do not consider the underlying graph
structure [11]-[17]. As a graph-based semi-supervised learning
method, GNNs do not require labels for all nodes. This fea-
ture is particularly powerful for inferring miRNA-associated
diseases, as many miRNAs have not been thoroughly investi-
gated in relation to diseases [18]-[21]. Furthermore, a single
miRNA can be associated with multiple diseases, allowing the
prediction of disease-miRNA associations to be formulated as
a multi-label classification problem [22].

In this paper, we introduce deep learning (unsupervised
feature learning) [23] techniques into the training of GNN
model on multi-omics data. We present PERGAT, a Pretrained
Embeddings based on the Residual Attention Graph Neural
Network for prediction of miRNA-cancer associations. An
overview of PERGAT is shown in Figure 1.

This study makes four major contributions to the under-
standing of disease-miRNA associations:

« We incorporate link prediction methods to infer potential

relationships in miRNA-disease network with pretrained
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embeddings.

o Our approach includes embedding clustering techniques
to group structurally similar miRNAs and diseases, en-
hancing the understanding of miRNA disease associa-
tions, and facilitating better understanding and visualiza-
tion of graph structures.

« We propose a novel GNN model, PERGAT, which lever-
ages residual connections and multi-head attention mech-
anisms to enhance graph node representation learning.

o We evaluate the model’s performance through compre-
hensive experiments, highlighting its predictive accuracy
and effectiveness in embedding clustering and link pre-

diction.

II. RELATED WORK

In
Attention Graph Convolutional Network (MMGCN) to pre-

[24], the authors introduce a Multi-view Multichannel

dict potential miRNA—disease associations. Unlike traditional
multisource information integration methods, MMGCN uses
a GCN encoder to independently capture features of miRNAs
and diseases from various similarity views.

The framework presented in [25] explores three graph
construction methods and investigates seven GCN models with
four distinct graph pooling techniques. Another deep learning
approach, EOESG [26], predicts potential miRNA-disease
associations by leveraging embeddings within embeddings
and a simplified convolutional network. This model integrates
disease similarity, miRNA similarity, and the miRNA-disease
association network to form a coupled heterogeneous graph.
Li et al. [27] introduce PGCN, which leverages graph convo-
lutional neural networks (GCNs) to prioritize genes associated
with specific diseases. The method focuses on embedding both
diseases and genes into a shared latent space where proximity
in this space signifies potential disease-gene associations.

Other GCN-based models have been employed to learn gene
feature representations by aggregating features from neigh-
boring miRNA nodes in the network [28]-[30]. Furthermore,
MAMEFGAT [31] uses GAT as its core for feature aggregation
and integrates a multi-modal adaptive fusion module to extract
features, and incorporates multi-modal residual feature fusion

to address the issue of excessive feature smoothing in GATs.
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Previous efforts to predict miRNA-disease associations have
utilized a range of machine learning and deep learning
techniques, such as matrix factorization, random walks, and
convolutional neural networks. However, to the best of our
knowledge, the use of Graph Neural Networks (GNNs) for
predicting miRNA-cancer associations through pretraining em-

beddings remains largely underexplored.

III. METHODS

In this study, we introduce PERGAT, a Pretrained Embed-
dings approach utilizing a Residual Graph Attention Network
to predict miRNA-cancer associations. PERGAT is developed
with the objective of learning representation vectors for both
miRNAs and diseases to enhance the prediction of disease-
related miRNAs. The model is designed to preserve the
original features of miRNAs and diseases, focusing on known
miRNA-disease associations with differential expression anal-
ysis of miRNAs [32].

A. miRNA Enrichment Analysis

We use Fisher’s exact test [33] to compute p-value for
contingency table. The test evaluates the null hypothesis that
the proportions of diseases associated with each miRNA are
independent. Similar to miRNA enrichment tool miEAA [34],
we perform the enrichment analysis directly at the level of
miRNAs.

The hypergeometric probability that gives the probability of

obtaining a specific arrangement of the contingency table is:

() ()

P
M

where:

o N: Total number of unique diseases.

o K: Number of diseases associated with miRNA;.

e M: Number of diseases associated with miRNA ;.

e T Number of shared diseases between miRNA; and
miRNA ;.

. (I; ): The binomial coefficient, defined as:

()

K!
n!(K —n)!
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FIG. 1 — Overview of PERGAT framework. The framework follows four key steps. It begins by applying Fisher’s Exact Test to miRNA-miRNA and disease-disease networks to

identify significant associations. Next, it performs pre-training using a multi-head self-attention layer with residual connections. Finally, a link prediction task is performed using

the multi-head self-attention layer, and an output prediction is generated with a fully connected layer to identify potential miRNA-disease links.

For the observed table Tgps, the p-value is the sum of the

probabilities of all possible tables as following:

p-value = Z P(T)

T>Tobs

B. Weighted Enrichment Graph Construction

The construction of the miRNA-disease association graph is
based on the representation of miRNAs and diseases as nodes,
and their associations as directed edges. For each miRNA-
disease (cancer) association a;, nodes and edges are added to
the graph G = (V, E) as follows:

1) Nodes:

V = {miRNA,, disease; | i =1,...,n}
2) Edges: Directed edges £ C V x V are added as:
E = {(miRNA;, disease;) | i = 1,...,n}

Each node v € V' has the following attributes:

e p-value p,: The adjusted p-value indicating the strength

of the association.
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« Significance s,: A binary value indicating whether the p-
value is statistically significant (significant) or not
(non-significant).

o Type t,: The type of the node, either miRNA or

disease.
Each directed edge e € I has the following attributes:

e Weight w.: The adjusted p-value p. associated with
the miRNA-disease pair, indicating the strength of the
association.

« Significance s.: A binary value indicating whether the

association is statistically significant.

C. Residual Multi-Head Attention Graph Neural Network

In this research, a new GNN model, named Residual Multi-
Head Attention Graph Neural Network (R-MHAGNN), was
used for knowledge representation learning. The attention
mechanism was implemented with a single linear transforma-
tion to aggregate node features from source and destination
nodes, utilizing learnable parameters for attention and per-
forming feature transformations via linear layers. Specifically,
residual connections are integrated with enhanced attention

mechanisms for graph data, and dropout regularization is used
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to improve both the performance and robustness of the network
when applied to the downstream tasks.
The update rule for the feature vector of node i at layer

{ + 1 with multi-head attention is defined as follows:

RO+D _ 1
K K

+ Wreahi"

K
Z Z Dropout (O‘E?k) Wlil)Dropout (h.gl)) + b)
k=1jeN (i)

(€]

where:

. hglﬂ): The hidden state of node 7 in the (I + 1)-th layer.

e o(-): The activation function, specifically LeakyReLU
in this case.

. Zj N The sum over the neighbors j of node i.

« Dropout alt)

iJ,
O‘x)k for the k-th head.

« Dropout (hg-l)): The dropout applied to the hidden state

k) The dropout applied to the edge weight

hg-l) of neighbor j.

. W,il): The weight matrix of the k-th attention head.

e W,es: The residual weight matrix applied to the hidden
state of node .

. hgl) and h;l): The feature vectors of node % and its
neighbor j at layer [.

o K: The number of attention heads.

e b: The bias vector.

The attention score calculation for the k-th head is defined

as:

@ _
Cijke =

softmax; (eg) k) )

where:

O]

el = LeakyReLU (af [w"n: | w"n;]) @)

Here:

@
Qs ke

and j for the k-th head.
O]
ij,k
i and j for the k-th head.

« softmax; denotes the softmax function applied across all

is the normalized attention score between nodes 7

o € is the unnormalized attention score between nodes

neighbors j of node .
o LeakyReLU(:) is the Leaky ReLU activation function

applied to the attention score.
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e dj is the learnable weight vector for the k-th attention
head.
o || denotes the concatenation operation between the trans-

formed feature vectors W,gl)hi and W,El)hj.

D. Reconstructing the miRNA-Disease Association Network

We constructed a miRNA-disease association network by
the learned embedding for the downstream tasks. We first
extracted miRNA and disease embeddings to map each en-
tity to its corresponding low-dimensional vector representa-
tion. Relationships between miRNAs and diseases were then
derived from the dbDEMC database [35], which identified
specific pairs based on biological data. For each valid miRNA-
disease pair, we created a JSON structure that encapsulated the
miRNA and disease properties, including their embeddings,
and defined their interaction as a "ASSOCIATED” relation-
ship.

E. Negative Sampling

Negative sampling [38]-[40], provides an efficient method
for approximating the partition function of an unnormalized
distribution. This approach significantly accelerates the train-
ing process of models by selecting a set of negative examples
that do not follow the target distribution, making it compu-
tationally more tractable [41]. In PERGAT, negative samples,
which represent non-existent or unknown associations between
miRNAs and diseases, are generated and splited into training,
validation, and test sets, mirroring the distribution of positive
samples. The model learns to distinguish between existing
and non-existing associations, thereby improving its predictive

capability.
F. Training and Evaluation

We utilize a k-fold cross-validation method to achieve
robust evaluation. For each fold, distinct DGL graphs [42]
are constructed for the training, validation, and test phases.
These graphs are built using the positive and negative samples.
Importantly, the edges corresponding to the test and validation
sets are removed from the training graph to ensure that the
model does not have access to these edges during training.
This removal process guarantees that the model’s predictions

on the test set are based solely on the information learned from
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the training data. The model’s performance is evaluated on the
test set using a range of metrics, including AUC, Fl-score,
precision, recall, focal loss, accuracy, and mAP (Table II). The
test set contains edges that were not seen during training. A
Multi-Layer Perceptron (MLP) is used to predict the existence
of edges based on the node embeddings. This decouples the
embedding generation process from the prediction process,
allowing for more flexibility in how predictions are made.
Focal Loss is used as the loss function, which is designed
to handle class imbalance by focusing more on difficult-to-
classify examples [43]. This is particularly useful in link
prediction tasks, where the majority of edges are negative

examples.

IV. RESULTS

A. Data selection and processing

We validated PERGAT’s predicted miRNA-disease associ-
ations using experimental data from the dbDEMC database,
which is a specialized resource focusing on the differential
expression of microRNAs (miRNAs) in human cancers. The
latest version includes 3,268 differentially expressed miRNAs
across 40 cancer types, with 2,584 of these specifically related
to humans, encompassing 46,388 interactions. The dbDEMC
3.0 includes p-value of miRNA returned by the enrichment
analysis of the differentially expressed miRNA (DEM) targets
on GO terms and KEGG pathways [36], which is available for
download at https://www.biosino.org/dbDEMC.

To further confirm our results, miRNA-disease association
records were also retrieved from the most recent release of
HMDD (v4.0) [44] and miR2Disease [45].

B. Learning Similarities Between miRNA Entities

The similarity between two feature vectors reflects their
inherent similarity within the original network. As a result,
the vector similarities in PERGAT models correspond to the
relationships between entities in the miRNA-disease network.
For example, Figure 3 shows the similarity matrices, which
depict the embedding similarities between miRNA entities and
disease entities, respectively, with scores generated for the
most frequent entities found in the dbDEMC database. We
can see that the similarity of the miRNA pair hsa-miR-200b
and hsa-miR-374a has the highest score, 0.9997, indicating
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that they have almost identical learned embeddings. These
findings can be supported by the fact that the two miRNAs
share common attributes in terms of cancer type and their
targets. Positive values indicate upregulation, while negative
values indicate downregulation of the miRNA in the disease

condition compared to the control, as shown in Table L.

C. Prediction of miRNA-Disease Association

We assessed PERGAT’s performance by calculating the
area under the receiver operating characteristic curve (AUC).
To achieve robust evaluation for PERGAT, we utilize a k-
fold cross-validation method (Figure 2). The average metrics
for AUC, Fl-score, accuracy, precision, recall, and mAP
are 96.41%, 91.21%, 90.45%, 84.50%, 95.10%, and 92.30%,

respectively, as shown in Table II.

D. Optimizing the Dimensionality of Node Representation

The node representation implies the complex information in
latent feature space, and its dimensionality affects the predic-
tive performance of the model. A low number of dimensions
may lead to the loss of information, while a high number of
dimensions will lead to the introduction of noise and time
consuming for calculation. Thus, discovery of the optimized
dimension of the node representation is attempted based on
the 5-CV through changing dimension in the range of {16,
32, 64, 128, 256, 512}. The experiment is repeated 10 times
for each dimension. Here, Acc, Roc and Aupr are utilized
to evaluate the effect of dimension on model performance
and statistical average results are shown in Table 4. We
can conclude that higher dimensionality tends to be better
performance. However, a high feature vector can lead to a huge
computational burden and long model training time. Therefore,
the optimal feature dimension for node representation is set to
256.

E. Model Stability

Dropout improves the model’s generalization and reduces
overfitting by randomly deactivating certain neurons in the
graph neural network during training. To assess the stability
of PERGAT, we used the same setup described in [46]-
[48]. The dropout probability p was varied from 0.1 to 0.9
in increments of 0.1, and the resulting AUC values were

examined to evaluate the model’s stability. As shown in Fig. 6,
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Receiver Operating Characteristic (ROC)

ROC fold 1 (AUC = 0.5711)
ROC fold 2 (AUC = 0.8717)
ROC fold 3 (AUC = 0.9669)
ROC fold 4 (AUC = 0.9588)
ROC fold 5 (AUC = 0.5545)
—— Mean ROC (AUC = 0.9641)

FIG. 2 — Our approach for predicting miRNA-disease associations using 5-fold cross-validation. (a) The ROC curves. (b) The PR curves. As a result, PERGAT achieved a AUC of
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0.9641, demonstrating the reliable predictive ability of PERGAT.
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FIG. 3 — Similarity matrices represent miRNA-miRNA similarities and disease-disease similarities. These similarity values are obtained by calculating the cosine similarity between

the embeddings of the respective pairs of entities being compared.

miRNA ID Source ID Cancer Type Design logFC  Expression Status  Experiment ID
hsa-miR-200b GSE47841 ovarian cancer cancer vs normal 4.55 UP EXP00259
hsa-miR-200b E_MTAB_408  prostate cancer cancer vs normal 1.50 UP EXP00638
hsa-miR-200b GSE40525 breast cancer cancer vs normal 3.01 18)3 EXP00192
hsa-miR-200b GSE33743 gastric cancer cancer vs normal 0.92 Up EXPO00175
hsa-miR-200b-3p TCGA_READ  colorectal cancer  cancer vs normal 2.23 UP EXP00391
hsa-miR-374a GSE47841 ovarian cancer cancer vs normal -0.28 DOWN EXP00259
hsa-miR-374a E_MTAB_408 prostate cancer cancer vs normal 1.17 UP EXP00638
hsa-miR-374a GSE40525 breast cancer cancer vs normal 1.97 UpP EXP00192
hsa-miR-374a* GSE33743 gastric cancer cancer vs normal 0.56 10)3 EXP00175
hsa-miR-374a-3p TCGA_READ  colorectal cancer  cancer vs normal 6.62 UP EXP00391
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TABLE I - Differentially Expressed miRNAs (DEM) for hsa-miR-200b and hsa-miR-374a in dbDEMC database.
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Fold AUC (%) F1_Val. (%) Acc. (%) Prec. (%) Recall (%) mAP (%)
1 97.11£0.39 91.47+0.50  90.88+0.59 85.89+0.78 93.83+0.42 93.85+0.86
2 97.1740.44 90.76x0.49  89.82+0.59 83.15+0.83 95.89+0.10 92.72£1.06
3 96.69+0.45 91.71+0.50  90.39+0.57 85.20+£0.79 95.29+0.24 93.34+0.73
4 95.66+0.50 91.68+0.48  90.02+0.58 85.40+0.82 94.96+0.28 91.96+1.02
5 95.45£0.43 90.45+£0.47  89.49+0.62 82.88+0.76 95.53%0.19 93.11+0.95
Mean 96.41+0.44 91.21+0.49  90.45+0.59 84.50+0.80 95.10+0.25 92.30+0.92

TABLE II — The effectiveness of our approach assessed using 5-fold cross-validation.

The best score in each column is shown in bold.

Models AUC (%) F1_Val.(%) Acc. (%) Prec. (%) Recall(%) mAP (%)
GIN 93.80+£0.32 89.58+0.26 89.34+0.26 82.89+0.78 87.70+0.24 90.36+0.59
GAT 94.04£0.26 90.72£0.25 90.31+0.26 84.03+0.37 87.93+0.20 91.72+0.06
GCN 92.50+0.27 89.03£0.26 84.17+0.24 84.35+0.27 91.83+0.40 88.63+0.16

GraphSage 94.02+0.07 90.69+0.36
PERGAT  96.41+0.44 91.21+0.49

89.67+0.29 85.98+0.22 81.02+0.56 88.92+0.10
90.45+0.59 84.50+0.80 95.10+0.25 92.30+0.92

TABLE III — The comparison of PERGAT with state-of-the-art models across 5-fold
cross-validation on the dbDEMC dataset. The best score in each column is shown in
bold.

the mean AUC across different datasets fluctuated slightly
within a range of 0.05, suggesting that varying dropout rates
have minimal effect on PERGAT’s performance, confirming

the model’s robustness and stability.

FE. Comparison with the Baseline Models

To illustrate the effectiveness of our method, we com-
pare PERGAT model with several baseline models. Both the
comparison models and PERGAT are evaluated on the same
dataset in this study. We employ 10 repetitions of 5-fold cross-
validation to assess the performance of the PERGAT model
in comparison with other baseline methods on the dbDEMC
dataset. As depicted in Figures 4 and Table III and detailed in
Tables 1 and 2, our proposed PERGAT method demonstrates

BN Acc. NN Prec. [ Fl-score [ AUC [ Recall [0 mAP

0.90 4

Score

0.85 4

0,80 4

16 EH 64 128
Latent dimensions

256 512

FIG. 4 — The average accuracy, precision, recall, F1-score and AUC values of PERGAT

under different latent dimensions upon 5-fold cross-validation.
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FIG. 5 — The average values for accuracy, precision, recall, Fl-score, and AUC of
PERGAT across different GNN models using 5-fold cross-validation.

(a) AUC for validation (b) AUC for test

FIG. 6 — The mean AUC of R-MHAGNN evaluated across datasets dbDEMC and HMDD
v.3 with varying dropout probabilities.

competitive performance.

G. Ablation Experiments

The PERGAT model integrates miRNA features learned
from the miRNA-disease network. To assess the contribution
of different components to predicting miRNA-cancer associa-
tions, we conducted several ablation experiments with various
model variants:

1) RGAT: This variant uses the original features of both
cancer and miRNA nodes without pre-training the miRNA-
disease network, while leaving the rest of the model un-
changed.

2) PRGAT: Residual connections in the Graph Attention
Network (GAT) layer are disabled to investigate whether
removing these connections enhances the embedding repre-
sentation learning of PERGAT and improves the model’s
prediction performance.

3) PERGAT-atte: Setting the attention dropout rate to zero
aims to explore if this compels the model to focus on a
broader set of neighbors, thus reducing over-reliance on a few

connections and potentially improving prediction performance.

Authorized licensed use limited to: OAKLAND UNIVERSITY. Downloaded on May 01,2025 at 04:03:18 UTC from IEEE Xplore. Restrictions apply.



Rank Disease miRNA Score Evidence

1 lung adenocarcinoma hsa-miR-221 0.8732 miR2Disease
2 lung adenocarcinoma hsa-miR-153 0.8729 miR2Disease
3 lung adenocarcinoma hsa-miR-182 0.8716 miR2Disease
4 lung adenocarcinoma hsa-miR-424 0.8715 miR2Disease
5 lung adenocarcinoma hsa-miR-184 0.8708 miR2Disease
6 lung adenocarcinoma hsa-miR-129 0.8708 miR2Disease
7 lung adenocarcinoma hsa-miR-522-5p 0.8636 HMDD

8 lung adenocarcinoma hsa-miR-208 0.8247 miR2Disease
9 lung adenocarcinoma hsa-miR-33 0.8244 miR2Disease
10 lung adenocarcinoma hsa-miR-190 0.8242 miR2Disease
11 breast cancer hsa-let-7c 0.8881 HMDD

12 breast cancer hsa-miR-99a 0.8879 miR2Disease
13 breast cancer hsa-miR-522-5p 0.8875 HMDD

14 breast cancer hsa-miR-424 0.8867 miR2Disease
15  breast cancer hsa-miR-7515  0.8852 Unconfirmed
16  breast cancer hsa-miR-199a-3p 0.8783 HMDD

17  breast cancer hsa-miR-21 0.8761 miR2Disease
18  breast cancer hsa-miR-125b  0.8710 miR2Disease
19  breast cancer hsa-miR-142-3p 0.8582 miR2Disease
20  breast cancer hsa-miR-30b 0.8243 miR2Disease
21  pancreatic cancer hsa-miR-99a 0.8720 miR2Disease
22 pancreatic cancer hsa-miR-182 0.8704 miR2Disease
23 pancreatic cancer hsa-miR-9* 0.8700 miR2Disease
24  pancreatic cancer hsa-miR-21 0.8691 miR2Disease
25  pancreatic cancer hsa-miR-29b 0.8687 miR2Disease
26 pancreatic cancer hsa-miR-522-5p 0.8683 Unconfirmed
27  pancreatic cancer hsa-miR-30b 0.8675 miR2Disease
28  pancreatic cancer hsa-miR-3180@ 0.8660 Unconfirmed
29  pancreatic cancer hsa-miR-188 0.8654 miR2Disease
30  pancreatic cancer hsa-let-7c 0.8614 HMDD

TABLE IV — The prediction outcomes for the top 10 potential miRNAs associated with
lung adenocarcinoma, breast cancer, and pancreatic cancer, respectively, as identified by
PERGAT based on known associations in HMDD v4 and miR2Disease, are as follows:
10 out of 10 for lung adenocarcinoma, 9 out of 10 for breast cancer, and 8 out of 10 for

pancreatic cancer were confirmed.

4) PERGAT-feat: By setting the feature dropout rate to
zero, we examine whether the absence of feature dropout
affects the model’s generalization ability, potentially making
it more robust to missing information.

We perform 5-fold cross-validation on the deDEMC dataset
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FIG. 7 — Comparative analysis of various models through ablative experiments.

to evaluate and compare the performance of these models. As
illustrated in Fig. 7, the results indicate that all variant models

show lower performance compared to the original model.

H. Case studies

To validate the performance of PERGAT in predicting
miRNA-disease associations, we conducted case studies on
three major tumor types: lung adenocarcinoma, breast cancer,
and pancreatic cancer, using the dbDEMC 3.0 dataset. We con-
structed training samples by excluding associations with the
specific disease under study and including negative miRNA-
disease associations alongside experimentally verified positive
ones. The specific disease associations were then used to create
testing samples. We trained the PERGAT model on these
training samples and used it to predict associations between
miRNAs and the specific disease. We ranked the predictions
and selected the top scores as potential candidates. Subse-
quently, we verified the top 10 predictions by cross-referencing
with the latest data from HMDD v4.0 and miR2Disease for
supporting evidence. 10 out of 10 for lung adenocarcinoma,
9 out of 10 for breast cancer, and 8 out of 10 for pancreatic

cancer were confirmed as shown in Table IV.

V. CONCLUSION

We present a novel method for predicting miRNA-cancer as-
sociations using Pretrained Embedding based on Graph Neural
Networks (PERGAT). Our approach leverages the structural
information in miRNA-disease networks and demonstrates
superior performance compared to existing methods. Our

proposed method effectively captures the topological structure
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of miRNA-cancer networks and leverages it for accurate
association prediction. The ability of GNNs to learn from
graph-structured data makes them well-suited for this task.
This work highlights the potential of GNNs in biomedical
research and opens up new avenues for studying miRNA-
related diseases.

However, the model has some limitations, such as the lack
of interpretability in the learned embeddings and attention
mechanisms, as complex models like GATs may obscure the
biological processes behind predictions. In the future, we will
integrate multi-omics data such as gene expression, protein
interactions, and epigenetic changes, to improve the model’s
ability to capture deeper biological insights and enhance

prediction accuracy across more diseases.
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