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Abstract—The growing complexity of contemporary comput-
ing systems heightens susceptibility to emerging cyber threats.
Recent advancements in computer architecture security leverage
Hardware Performance Counters (HPCs) registers to monitor ap-
plications behavior and access low-level features. The integration
of Machine Learning (ML) techniques emerges as a promising
solution, overcoming the performance limitations of conventional
software-based defenses. Specialized HPC registers record varied
hardware-related events, showcasing effectiveness in detecting
malicious activities through the application of ML algorithms.
This survey presents a comprehensive and comparative analysis of
recent advancements in the emerging field of intelligent hardware-
assisted malware detection, a topic that has garnered significant
attention within the research community for the past decade.
Additionally, it outlines current challenges and forecasts future
research trends, offering insights for effective ML-based security
countermeasures based on hardware performance counters.
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I. INTRODUCTION

Cybersecurity has become a paramount concern in com-
puting systems, with attackers increasingly exploiting soft-
ware and hardware vulnerabilities to compromise information
technology infrastructures. Recent advances reveal a surge in
leveraging emerging vulnerabilities for malicious activities,
emphasizing the critical need for robust defenses against mal-
ware threats Malware, a broad term encompassing malicious
software, is a piece of code developed by cyber-attackers to
infiltrate computing systems without user consent, leading to
unauthorized data access, file destruction, and other harmful
actions [1], [2]. The escalating growth of information technol-
ogy has amplified the severity of malware as a major security
threat. Traditional software-based detection methods relying
on static signature analysis face performance drawbacks such
as static analysis limitations, inability to detect obfuscated
attacks, and excessive computational overhead, particularly on
resource-limited systems. These challenges stem from con-
straints in computing power and communication bandwidth
within embedded system environments [3], [4], [5].

In addressing these challenges, the imperative is to develop
effective and cost-efficient cybersecurity countermeasures, fo-
cusing on safeguarding user information and mitigating the
impact of emerging cyber threats [6]. This involves a paradigm
shift towards integrating security measures into the underlying
hardware, establishing a bottom-up approach to fortify comput-
ing devices rather than treating security as an afterthought [7].
Simultaneously, recent breakthroughs in Artificial Intelligence
(AI) and Machine Learning (ML), fueled by the increase in
data volume across various computing systems, have yielded

successful applications across various domains, especially in
enhancing systems security [8], [9], [10].

Recent research underscores the importance of identifying
malicious activities at the processor hardware and architecture
level due to its speed, efficiency, and lower visibility to poten-
tial attacker exploits. To this aim, Hardware-Assisted Malware
Detection (HMD) methods, specifically leveraging machine
learning trained on Hardware Performance Counter (HPC)
features, have emerged as a solution to the shortcomings of
traditional software-based malware detection [11], [12], [13],
[14], [15]. HPCs are specialized registers within a Performance
Monitoring Unit (PMU) embedded in modern microprocessors
that monitor the applications’ hardware events (e.g., number
of executed cycles, instructions, associated cache misses, etc.)
[16], [17], [18], [19]. Furthermore, machine learning tech-
niques have demonstrated efficacy in detecting and classifying
these anomalies within low-level feature spaces. By leveraging
machine learning, systems can effectively discern potential
threats and proactively respond to evolving behaviors in real-
time [7], [20].

Current research in intelligent malware detection at the
hardware level spans various computing platforms such as
embedded systems, Internet of Things (IoT), and high-
performance systems. State-of-the-art HMD studies predomi-
nantly emphasize the development and application of standard
and advanced machine learning techniques to counter evolving
malware threats. This paper provides an in-depth analysis of
hardware-assisted malware detection techniques, focusing on
recent advancements in utilizing Al and machine learning for
enhanced system protection against malicious attacks. Repre-
senting the first extensive exploration and survey of hardware-
assisted malware techniques incorporating machine learning,
the article discusses current breakthroughs and challenges,
offering valuable insights for future research directions. We
anticipate that this review will lay the foundations and facilitate
further research, empowering the application of machine learn-
ing to combat the increasing complexity of cyber threats at the
hardware level of processors, thereby enhancing the domain of
hardware-assisted security.

The remainder of this paper is structured into distinct
sections that delve into the key aspects of intelligent malware
detection based on HPCs. Section II provides an exploration
of the ML techniques employed for detecting anomalies in
low-level feature spaces. Moving forward, Section III presents
a thorough review and comparative analysis of the state-of-
the-art studies in hardware-assisted malware detection. Next,
Section IV describes open challenges and opportunities in this
emerging research field. Lastly, Section V concludes this study.



TABLE I: Description of common malware types used in recent works

Type Descriptions and Characteristics

Virus Program that replicates and attaches itself to a legitimate program or document while relying on the host
program to get activated. It causes the malicious pattern to spread and malfunction other executables and
spreads from one computer to another.

Trojan Program that appears legitimate, while performing malicious operations in the background fo damage
systems. Incapable of self-replication, Trojans rely on social engineering techniques to manipulate users
into executing them.

Rootkit Program that conceals its presence on a host system by modifying the operating system, ensuring privileged
access while remaini d in the system’s processes.

Backdoor Program that exploits method of bypassing normal authentication procedures by avoiding the system’s
security mechanism. It can m:mll mclf as part of an exploit to take advantage of victim computing

system’s weaknesses or

Worms Program that spreads autonomously across systems, often through networks, without relying on host file
activation. Worms exploit opemlmg system vulnerabilities to propamle invisibly and infect other systems.

Ransomware | Program that encrypts user or 1 data on a cy payment for access restoration.
During this time, the files remain on the computer but are inaccessible. Once the payment is received, the
ransomed data is unlocked and decrypted.

Spyware Program that monitors and records user activities on infected systems, sending the collected data to a third
party without user consent. It consumes significant system resources, affecting performance and speed,
potentially causing permanent damage.

Blended A k.a. hybrid malware that combines the features of two or more types of malware to build a more powerful

Threat and sophisticated attack [1]. It can cause harm to the infected system or nemnrk as they propagate, using

multiple infection methods while the various systems’

II. HARDWARE-ASSISTED MALWARE DETECTION:
OVERVIEW AND MACHINE LEARNING PROCEDURE

The escalating numbers and sophistication of malicious
software infections affect individuals and organizations. These
malware programs, with diverse functionalities, are designed
for harmful purposes like remote control, data theft, unautho-
rized access, file destruction, and conducting Denial-of-Service
attacks [1], [10]. In Table I, we present brief descriptions of
common types of malware attacks that are widely analyzed in
prior malware detection and classification researches.

Figure 1 provides an overview of process of machine
learning-driven approaches designed for enhancing cybersecu-
rity, specifically in the context of hardware-assisted malware
detection. This process encompasses stages from application
monitoring for HPC data profiling, feature engineering, and
training ML-based detectors and online inference. The contin-
uous learning of ML models through the analysis of low-level
microarchitectural features aims to recognize and counteract
malicious patterns. This proactive and intelligent approach
safeguards the processor architecture from potential threats,
encompassing not only malicious software but also extending
to microarchitectural side-channel attacks [21], [22].

A. Feature Engineering: Determining Key Hardware Features

Developing effective ML-based hardware-assisted malware
detectors begins with crucial steps like data collection and
feature selection [7], [11], [14], [16]. In modern micro-
processors, numerous microarchitectural events can be col-
lected, but choosing relevant low-level features is essential to
avoid computational complexity and delays associated with
high-dimensional datasets. Specifically, identifying essential
low-level microarchitectural features is crucial for hardware-
assisted malware detection for several reasons: a) The abun-
dance of microarchitectural events (e.g., 100+ in Intel Xeon)
leads to high-dimensional data [14], b) Processing raw datasets
involves computational complexity and induces delays [23],
and c) Selecting pertinent microarchitectural events poses
challenges in specifying non-trivial events for diverse malware
classes [15]. This challenge is compounded by the limited
availability of HPC registers in different processors, typically
ranging from 2 to 8.

The issue of limited HPC registers, intricately connected
to run-time malware detection, discusses a significant HMD
challenge addressed in recent works [14], [15]. It involves
pinpointing a minimal set of HPCs that precisely capture
the characteristics of malicious attacks, thereby minimizing
unnecessary computational overhead. This pursuit ensures the
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Fig. 1: General overview of hardware-assisted security countermea-
sures against malware using machine learning

development of an efficient ML-based security countermeasure
with minimal impact on system performance. Concerning the
limitations of the underlying processor’s architecture, espe-
cially in resource-constrained computing platforms like em-
bedded systems and IoT devices with restricted HPC registers,
efficient yet accurate run-time detection relies on critical
feature selection. Recent HMD studies such as [14], [15],
[19] have addressed effective run-time HMD, identifying the
minimal set of essential performance counter events required
for data collection in a single run.

Figure 1 demonstrates four major steps in the feature
engineering process. (a) Feature cleaning involves analyzing
the raw data to find empty entries, outliers, and any other
abnormal data entries so that they can be removed from the
ML process. It can also provide feedback for improving data
collection. (b) Feature normalization is a critical step to scale
the tabular data along its column or row values, preventing
some data or features with large values from dominating the
learning process. This technique is effective, particularly for
ML algorithms that are sensitive to feature distance values.
Common normalization techniques include L1/L2 normaliza-
tion and MinMax normalization. (c) Feature selection includes
feature importance analysis, feature correlation analysis, and
selecting top features. This process is typically performed
offline and tested effectively for the target ML model. (d)
Feature Extraction is to extract the data entries with the top
features to formulate a training dataset. In the online inference
phase, it is to extract the online data to have the same top
features and dimensionality as the training set for processing
inference through ML detectors.

As depicted in Figure 1, the chosen HPC features are
utilized to train individual ML-based detectors. The classifier
endeavors to establish a correlation between the feature values
and application behavior, aiming to predict the presence of
malicious patterns (benign or attack type). Several feature
selection techniques have played a prominent role in previous
ML-based HMD efforts. These include techniques such as
correlation attribute evaluation [14], [24], [25], [15], [26],
[27], principal component analysis [15], [26], [28], gain ratio
evaluation [16], [19], [29], and Fisher Score [30], [12].

B. ML Techniques for Malware Detection
Figure 2 illustrates various types of machine learning algo-
rithms used in HMD techniques, where we briefly describe the
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Fig. 2: Various types of machine learning algorithms used in HMD techniques, examples, and architectures

ML models, along with their examples and architectures. As
depicted, various types of algorithms from classical rule-based
and tree-based models to ensemble learning and advanced
models like neural network, reinforcement learning and trans-
fer learning have been deployed to address various challenges
of hardware-assisted malware detection. Overall, to categorize
unknown applications into either benign or malicious software
using ML algorithms, the classification process can be divided
into two stages including training and testing. First, we need to
construct the classification model by training the ML classifiers
using the extracted hardware data. The extracted features are
then converted to vectors in the training set. Both the feature
vectors and the class label of each sample (i.e., malicious or
benign) are used as inputs for a classification algorithm.

By analyzing the training samples, the deployed ML algo-
rithm constructs a classifier capable of detecting the patterns
of malicious samples with some level of accuracy and perfor-
mance detection. Next, during the testing stage, the vectors
of the new file samples are first extracted using the same
feature cleaning, normalization and extraction techniques as
in the training phase. This unseen data then is fed to the
trained classifier to examine the detection rate of the malware
detection process. The classifier attempts to classify the new
file samples based on the extracted feature vectors.

C. Performance Evaluation Metrics

Assessing the effectiveness of ML classifiers is a crucial
phase in the implementation of robust malware detection
techniques. Within the realms of AI and machine learning,
various metrics are employed to evaluate the performance of an
intelligent detection method. Table II provides a consolidated
overview of the evaluation metrics utilized for performance
analysis of ML-based malware detection techniques.

As observed, all metrics are calculated based on the counts
of prediction correctness and incorrectness to each class, which

are the counts of true positive, false positive, true negative, and
false negative. These four counts form a confusion matrix,
which is comprised of two dimensions namely “actual” and
“predicted”, and identical sets of “classes” in both dimensions.
Each row of the confusion matrix represents the instances in a
predicted class while each column represents the instances in
an actual class (or vice versa) [31]. Various metrics can be em-
ployed to evaluate the performance of a model, depending on
the system under consideration. While error rate and accuracy
provide a general overview of model performance, they may
not accurately represent performance in real-world network
environments with imbalanced datasets. In such cases, where
normal samples significantly outnumber abnormal ones, F-
Measure emerges as a more comprehensive metric, accounting
for both precision and recall, and proving resilient to class
imbalance. F-Measure (F-score), is often favored for indicating
the overall detection performance, offering a balanced perspec-
tive where precision and recall need to be traded off.

In binary malware detection, metrics such as True Positive
Rate (TPR), True Negative Rate (TNR), False Positive Rate
(FPR), and False Negative Rate (FNR) offer detailed insights
into a model’s prediction capabilities for malware and benign
samples. TPR signifies the proportion of correctly identified
malware among all predicted malware, crucial for assessing
detection accuracy. Conversely, TNR measures the correct
classification of benign samples, addressing false alarms.
Precision gauges positive prediction accuracy, while recall
evaluates positive prediction completeness. Receiver Operating
Characteristic (ROC) and Area under the ROC Curve (AUC)
provide a graphical representation of the model’s performance,
offering insights into trade-offs between True Positive (TP) and
False Positive (FP). Additionally, AUC measures the entire
area under the ROC, with higher values indicating better
detection performance.



TABLE II: Performance metrics used for evaluating ML-based malware detection techniques

Evaluation Metric Equation/Description

True Positive (T'P)

Count of correct positive prediction (e.g., malware is predicted as malware).

False Positive (F'P)

Count of incorrect positive prediction (e.g., benign is predicted as malware).

True Negative (T'N)

Count of correct negative prediction (e.g., benign is predicted as benign).

False Negative (FN)

Count of incorrect negative prediction (e.g., malware is predicted as benign).

Specificity: True Negative Rate (TNR)

TNR=TN/(TN + FP), TNR =1— FPR, defined as the proportion of genuinely negative samples

as negative result among all negative samples.

False Negative Rate (FNR)

FNR = FN/(FN + TP), FNR = 1 — TPR, defined as the proportion of genuinely positive samples predicted as negative result among all positive samples.

False Positive Rate (FPR)

False alarm rate, defined as the proportion of genuinely negative samples predicted as positive results among all negative sample, FPR = FP/(FP +TN), FPR=1—-TNR.

Recall/sensitivity: True Positive Rate (TPR)

TPR=TP/(TP+FN),TPR=1—FNR, defined as the proportion of genuinely positive samples predicted as positive results among total positive samples. It refers to the proportion
of correctly identified positives ( the rate of malware samples) by the model.

Precision (P)

P =TP/(FP + TP), Defined as the ratio of true positive predictions to total predicted positives, indicating the cc

level of attack detection.

F-Measure (F1-Score)

Fmeasure = 2 X (P x R)/(P + R), Represents a weighted average of precision (P) and recall (R). It offers a more comprehensive evaluation than accuracy, considering both precision
and recall, and is robust for evaluating both balanced and imbalanced datasets.

Detection Accuracy (ACC)

ACC = (TP +TN)/(TP+ FP+ TN + FN), The ratio of correctly classified samples to total samples. Accuracy is a suitable metric when the dataset is balanced.

Error Rate (ERR)
dataset.

ERR = (FP + FN)/(P + N), where P, N represents total positive and negative samples respectively. It is the number of all incorrect predictions divided by the total number of the

Receiver Operating Characteristic (ROC) Curve | Visually depicts the trade-offs between true positive rate and false positive rate, providing insights into detection performance with varying discrimination thresholds. Each prediction result
corresponds to a point in the ROC space, and the upper-left corner (coordinate (0, 1)) signifies optimal detection, denoting 100% sensitivity and 100% specificity.

Area Under the Curve (AUC)
beneath the ROC curve, spanning from (0,0) to (1,1).

AUC = jol TPR(z)dz = [01 P(A > 7(x))dx, where T is the thresholds on the decision function used to compute FPR and TPR. AUC quantifies the entire two-dimensional area

D. Performance Monitoring Tools

Here, we review some widely used performance monitor-
ing tools across various operating systems (Windows, Linux,
and macOS) in previous studies. These tools are employed
to monitor application behavior and collect hardware-related
events, aiding in the analysis of application performance. These
tools include Perf [32], Pin [33], PAPI [34], Intel VTune [35],
and Intel PCM [36]. All these tools are available for Linux
systems while only Intel VTune and Intel PCM can monitor
HPCs in Windows and macOS systems. Perf, PAPI, and Pin
demand some knowledge of command lines for users due to
the lack of a GUI interface. Perf tool is a Linux-based low-level
performance monitoring tool that can instrument CPU perfor-
mance counters, tracepoints, kprobes, and uprobes (dynamic
tracing). Its monitoring granularity scales as least as 10ms
without customization. Pin tool collects various program’s
ISA-dependent features such as instruction mix, instruction-
level parallelism, register traffic, and branch predictability to
examine the application behavior [33].

Performance Application Programming Interface (PAPI)
[37] provides a cross-platform interface for monitoring hard-
ware performance counters on processors that are equipped
with specific registers for hardware events. Intel has developed
a licensed tool called Vtune [35] to discover and resolve
performance bottlenecks in running programs for tweaking and
debugging purposes. It offers a robust GUI interface and sup-
ports a wide range of profiling, including HPCs, call graphs,
performance bottlenecks, and hotspot hunting, in comparison
to the previous tools. Moreover, PCM [36] is the performance
monitoring unit implemented in Intel’s processors (e.g., Xeon,
Atom, and Xeon Phi) to monitor performance and energy-
related metrics in both Windows and Linux environments.
Compared to Perf and PAPI tools, Intel PCM supports both
core and uncore events monitoring in real-time.

ITII. STATE-OF-THE-ARTS ON HARDWARE-ASSISTED
MALWARE DETECTION

In this section, we review the latest proposals on hardware-
assisted malware detection using ML techniques. Figure 3
illustrates the yearly analysis of publications on this research
topic, captured from Google Scholar which indicates a growing
interest within the research community over the past decade.
Furthermore, in Table III, we provide a comparative overview
of prominent research on hardware-assisted malware detection.
Space constraints limit the inclusion of all prior HMD research,
thus, selected key studies are highlighted in this section. For
the purpose of thorough and structured exploration, as de-
scribed below we classify prior studies into several categories

according to each work’s specific focus and the challenges
addressed.

A. General Hardware-Assisted Malware Detection

The study by Demme et al. [11] pioneered the exploration
of HPCs for accurate malware detection via ML techniques.
The research successfully demonstrated the efficacy of offline
ML algorithms in pinpointing malicious software. Further-
more, it showcased the applicability of HPCs in detecting
malware at the Linux OS level, including Linux rootkits and
cache side-channel attacks on Intel and ARM processors. The
study achieved notable detection performance results for An-
droid malware by employing ML algorithms, such as Artificial
Neural Network (ANN) and K-Nearest Neighbor (KNN). Prior
to that, the study conducted in [38] utilized HPCs for both
static and dynamic integrity checking of running programs.
The authors employed a tool named Eurequa to identify ma-
licious modifications in programs by detecting equations and
hidden mathematical relationships among HPCs. While their
approach did not involve ML, it showed the potential of HPCs
for security applications with minimal run-time overhead.

Tang et al. [12] explored the feasibility of unsupervised
learning with HPCs features to detect return-oriented pro-
gramming (ROP) and buffer overflow attacks by identifying
anomalies. The Fisher Score metric was employed for feature
selection, distinguishing malicious code execution from non-
malicious instances for each event and ranking them. The top
7 ranked features were then used to train one-class Support
Vector Machine (oc-SVM) classifier, detecting deviations in
program behavior indicative of potential malicious attacks. The
study also compared performance across different sampling
frequencies of HPCs.

The works by Wang et al. [56], [57] utilized HPCs in-
formation to detect rootkits that modify system calls through
statistical methods. These approaches focused on counting
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TABLE III: Overview of recent research on hardware-assisted malware detection leveraging machine learning techniques

Research| Year Platform | Machine Learning | Threat Type Major Contribution and Challenge Addressed
Model
[11] 2013 Android, | KNN, NN, DT, RF Malware Utilized HPCs for ML-based malware detection at the OS level. The study revealed that performance counter data can effectively identify
Linux malware, and the ML model trained with HPCs demonstrates resilience to slight variations in malware programs. are robust to minor variations
in malware programs.

[12] 2014 Linux ocSVM Malware Demonstrated that applications” HPC features combined with unsupervised ML can detect deviations from malware programs. Their findings
show the microarchitectural characteristics of benign and malware programs have different patterns.

[13] 2015 Windows | LR, ANN Malware Proposed M are Py (MAP) framework for real-time HMD. Their work proposed a two-level detection framework where the
hardware classifier prioritizes the work of a more accurate but more expensive ML defense mechanism. They also explored integrating the MAP
i with an open-source x86-compatible core.

[39] 2015 Windows | LR, NN, EL Backdoor, PWS, Rogue, Trojan, Focused on per class malware detection using HPCs, compared the accuracy of specialized and general malware detectors, highlighting the

Worm effectiveness of specialization in HMD.

[16] 2017 Linux SVM, ocSVM, NB, DT Kernel Rootkits Used synthetic rootkit traces of HPC features to train ML to detect kernel-level rootkit attacks. Their experimental results show that HPCs can
be effective features for rootkit detection.

[24] 2017 Linux OneR, MLP, BN, SMO, Malware Assessed various hardware-based malware detectors across different metrics of accuracy, accuracy/area, Power Delay Product (PDP), and latency.

SGD, LR
[40] 2017 Windows | LR, MLP, DT, SVM Adversarial malware Proposed a resilient defense solution to reverse- i ing based adversarial attacks through retraining, randomized features and HPC event
periods.
[14] 2018 Linux BN, J48, JRip, MLP, Malware Broke the trade-off between the number of features used for developing effective malware detectors and the limited number of HPC registers
OneR, RT, SGD, SMO, available in today’s microprocessors. Identified the top HPCs, implemented various MLs for HMD using different HPC numbers, and proposed
AB, BG solutions for run-time malware detection with only 2 or 4 HPCs.

[25] 2018 Linux AB, LR, BN, MLP, J48, viruses, worms, rootkits, and tro- Explored ensemble learning’s effectiveness for HMD, comparing general and ensemble classifiers in terms of accuracy, robustness, performance,
JRip jans and hardware overhead.

28] 2018 Windows | DT, RE, MLP, KNN, Malware Questioned the effectiveness of HPC-based malware detection, revealing larger performance variations across different ML classifiers.
AB, NB

[26] 2018 Linux BN, J48, JRip, MLP, Ransomware Presented a customized hardware malware detection and identification solution for embedded systems. Results show heavyweight classifiers
OneR, RepTree, SMO (MLP, BayesNet, SMO) excel in average malware detection accuracy, while lightweight classifiers (JRip, OneR) demonstrate superior accuracy

per unit area across all tested malware classes.

[15] 2019 Linux J48, JRip, MLP, OneR, Virus, Trojan, Rootkit, a specialized two-stage run-time HMD, called 2SMaRT. The first stage classifies applications into benign or specific malware classes

AB (Virus, Rootkit, Backdoor, Trojan) using i ification. In the second stage, 2SMaRT employs tailored machine learning models for
each malware class, ing detection performance.

[41] 2019 Linux LR, NN Adversarial malware (Backdoor, Created adversarial attacks on HMD systems by injecting perturbations into HPC traces. Employed an adversarial sample predictor and then

Rootkit, Virus, Worm, Trojans) used reverse-engineered malware samples together with perturbed noise to evade malware detection systems.

[4] 2019 Linux MLP, OneR, LR, JRip ToT malware Mitigated security risks in extensive IoT networks by introducing the HaRM framework. This framework utilizes a low computational overhead
ML classifier (OneR), catering to the requirements of IoT devices while maintaining effective malware detection accuracy. Formulated an optimal
control problem for malware i while maintaining network integrity.

[27] 2020 Linux MLP, OneR, LR, J48, ToT malware Proposed a two-stage framework with a lightweight malware detector in IoT network followed by a stochastic controller.

SVM, SGD
[42] 2020 Linux J48, JRip, LR, KNN, Stealthy Malware (Trojan, Rootk- Addressed the challenge of stealthy malware in hardware-assisted malware detection and proposed a specialized time series Fully Convolutional
BOFF, FCN its, Backdoor, Blended) Neural Network (FCN) approach for accurate embedded malware detection using HPCs, in which standard ML techniques fail to detect.
[43] 2020 Xilinx RNN, Linear Regression BASHLITE Botnet, PNScan Tro- Explored machine learning interpretability in HMD, i . Demonstrated improved detection performance through
Zynq jan, Mirai Botnet explainable ML.
SoC

[44] 2020 Linux oc SVM Malware Trained a one-class SVM with time series data in a multi-thread environment, considering per-thread and ss-thread features in
devices. This enables continuous monitoring of multi-thread HPC readings for run-time malware detection.

[17] 2021 Linux Time series FCN, MLP, Stealthy Malware (Trojan, Rootk- Proposed a lightweight time series FCN-based approach to accurately detect stealthy malware trace at run-time using the top HPC event, branch

ResNet, MCDNN, JRip, its, Back- door, Blended) instructions. Presented a comparative analysis of diverse ML models for hardware-assisted stealthy malware detection.
J48, LR, KNN, BOPF

[45] 2021 ‘Windows | RF, LR Malware Quantified machine learning effectiveness with y in HMD and i an uncertainty estimator to consider uncertain
predictions when dealing with unseen malware.

[46] 2021 Linux EL(AB), RF, DT, GNB, Zero-day malware, Worm, Virus, Addressed the challenge of zero-day malware in HMD techniques. Indicated that classical ML models proved effective for known malware but

SGD, LR, ET Botnet, Ransomware, Spyware, | faced a high FPR in zero-day malware detection, leading to the proposal of AdaBoosting over RF for improved zero-day malware detection
Adware, Trojan, Rootkit, and using HPCs.
Backdoor
[47] 2021 Windows,| CNN, ID-CNN, RF, DT, Trojan, Worm, d Ran- ddi d the of real-time malware detection in cloud (IaaS) environment, extending the HMD solution to cloud.
Linux KNN somware, Spyware, Virus
[20] 2021 Linux SGD, MLP, RepTree, Worm, Virus, Trojan, and Back- Proposed an online adaptive and cost-efficient decision maker using a rule-based JRip algorithm to select the most efficient ML models at
OneR, Jrip door run-time to be used as the online malware detector ding to the users’ f and hard overhead.
291 2022 Linux CNN, TL, RE DT, Zero-day malware, Worm, Virus, Proposed Deep-HMD, a deep neural network and transfer learning-based approach for hardware image-based malware detection. Converted
GNB, LR, ET, Ridge, Botnet, Ransomware, Spyware, tabular HPCs malware and benign data into 2D images and applied transfer learning, demonstrating superior effectiveness in both known and
KNN, SVM, BDT Adware, Trojan, Rootkit, and | zero-day malware detection.
Backdoor

48] 2022 Linux DT, NN Adversarial malware Presented a moving target defense mechanism to defend against adversarial attacks in HMD techniques by changing the numbers and set of
HPCs and classifiers.

[49] 2022 Android | BN, SL, MLP, PART, Android malware Proposed OptiEdge, an ML-guided hardware-assisted resource and timing estimation tool that can effectively reduce the design space exploration

SMO for edge devices’ design through HLS optimization for MLs in on-device hardware-assisted cybersecurity in edge.

[50] 2022 Windows [ LR, DT, SVM Adversarial malware Tt shows existing HMDs can be effectively reverse-engineered and subsequently evaded. They suggested that retraining over adversarial samples
is not effective. As a result, they proposed uniform random switching among ML detectors at run-time to defend against effective reverse
engineering attacks. Their approach showed an increased detection performance for both evasive and non-evasive malware.

[19] 2022 Linux RL(UCB), EL, JRip, | Zero-day malware, Worm, Virus, | First work that tackles major issues in adaptive and cost-aware zero-day malware detection using HPCs, considering desired performance metrics

J48, LR, MLP, OneR, | Botnet, Ransomware, Trojan, | and available hardware resource; meantime propose a unified feature selection method based on heterogeneous feature fusion approach.
RepTree Rootkit, Backdoor, etc.
B51] 2023 | Linux RL(A2C), CNN, RF, | Worm, Virus, Botnet, | Proposed a hybrid and adaptive image-based framework for online hardware-assisted zero-day malware detection in IoMT devices using Al-
DT, SGD, LR, Ridge, | Ransomware, Trojan, Rootkit, | enabled reinforcement learning approach. Assessed and compared various ML classifiers for zero-day malware detection using HPCs.
SVM, BDT Backdoor, etc.
521 2023 | Linux SVM, RF, GBM, AB Ransomware Determined the optimal hardware features and time granularity for early ransomware detection.
[53] 2023 Linux MLP, LR, DT Adversarial malware (Backdoor, | Enhanced adversarial defense by adding stochastic noise through controlled undervolting in HMDs’ computations during inference.
Rogue, Trojan, Worm)
[54] 2023 Linux Binary RF, LightGBM, Adware, Botnet, Keyl , Ran- duced a customized hard monitoring framework and employed various MLs to enhance cybersecurity through a two-level malware
XGBoost, DT, LR, MLP | somware, Rootkit, Spyware, Tro- | detection and identification framework using HPCs in biomedical computing systems. Assessed and compared various binary and multiclass ML
& multi-classifiers RF, | jan, Worm models for accurate and efficient hardware-assisted malware detection and classification in biomedical applications.
DT, MLR, etc.
[55] 2024 Linux RF, DT, LightGBM, Trojan, Botnet, Backdoor, Virus, Presented a thorough evaluation of machine learning algorithms’ reliability in hardware Intrusion Detection Systems (IDSs) considering factors
XGBoost, GB, BDT, ET Worm, Rootkit, Ransomware, Ad- of training data size, the number of HPCs used, and internal data ility (malware Ithi ). Further, i d an model observer for
ware, Spyware an ent d and reliable malware detection.

K Nearest Neighbor: KNN, BayesNet: BN, NaiveBayes: NB, Logistic Regression: LR, AdaBoost: AB, Bagging: BG, Support Vector Machine: SVM, One Class SVM: ocSVM, Neural Netework: NN, Last Level Cache References: LLC, REPTree: RT,
Decision Tree: DT, Random Forest: RF, Ensemble Learning: EL, Bag-of-Pattern-Features: BOFF, Ridge Classifier: Ridge, BaggedDT: BDT, ExtraTree: ET, Multinomial Logistic Regression: MLR, Fully Convolutional Network: FCN, TL: Transfer Learning,
Reinforcement Learning: RL, Actor Critic Advantage: A2C, Upper Confidence Bound: UCB, High Level Synthesize: HLS, SimpleLogic: SL, Sequential Minimal Optimization: SMO.

hardware events during each system call execution in a guest
Virtual Machine, enabling the identification of modifications
to kernel control flow. Despite their effectiveness, these works
employed complex detection architectures that do not rely on
machine learning and data mining solutions. Such architectures
may not be suitable for implementation in resource-constrained
embedded and IoT devices.

The research in [58] presented HPCMalHunter, an
anomaly-based malware detection technique utilizing machine
learning classifiers at the hardware level. This framework
predicted malware presence with high accuracy using a Sup-

port Vector Machine (SVM) classifier. Initially, the detector
gathered a set of HPC events concurrently from the running
application. In the subsequent step, the authors employed a
Singular Value Decomposition (SVD)-based feature reduction
technique to identify the most significant HPC events.

In studies [13], [59], the authors introduced the MAP
framework for real-time hardware-assisted malware detec-
tion. They explored sub-semantic features in the low-level
microarchitectural space, including executed instruction fea-
tures, memory address pattern features, and architectural event
features. Their approach utilized Logistic Regression and



Artificial Neural Network classifiers for malware detection,
requiring changes to the microprocessor pipeline for real-time
implementation. The authors discussed estimated latency and
area utilization of the proposed algorithm implementations.
In [39], the focus is on per-class malware detection using
hardware performance counter information. The authors de-
veloped ML-based specialized detectors trained for individual
malware classes, predominantly employing logistic regression
and neural network classifiers. Utilizing the same features as
Ozsoy et al. [13], they compared the accuracy of specialized
and general malware detectors, highlighting the effectiveness
of specialization in hardware-assisted malware detection. They
further enhanced accuracy through specialized ensemble learn-
ing, combining LR and NN classifiers.

Singh et al.’s work [16] focused on utilizing ML algorithms
on synthetic traces of HPC features to detect kernel-level
rootkit attacks. To reduce features, they employed the Gain
Ratio technique from the WEKA toolkit [60], achieving high
accuracy in detecting synthetic rootkits. The study collected
HPC samples only at the program’s end and trains ML
classifiers using these HPCs to detect and classify rootkits.
Notably, rootkits utilizing direct kernel object manipulation
(DKOM) have minimal impact on HPCs, posing a challenge
for simple HPC-based detection. In [24], various ML classifiers
for malware detection were evaluated, ranging from simple
OneR to complex MLP. The study assessed detectors based
on accuracy, accuracy/area, Power Delay Product (PDP), and
latency. While complex classifiers achieved close to 90%
accuracy, their implementation overheads led to inferior perfor-
mance in PDP, accuracy/area, and latency compared to simpler
alternatives. The OneR algorithm emerged as the most cost-
effective, with over 80% accuracy and fast execution (less
than 10ns), achieving the highest accuracy per logic area while
primarily relying on a single branch-instruction feature.

Sayadi et al. [14], [25] proposed ensemble machine learn-
ing solutions for effective run-time malware detection using
low-level microarchitectural features. To optimize run-time
detection with limited hardware performance counters, the
authors employed systematic feature selection. They used the
Correlation Attribute Evaluation technique to select top events
by calculating Pearson’s correlation coefficient between HPC
features and determining the most significant ones.

In particular, the research in [14], the challenge of limited
HPC registers for run-time malware detection was addressed
by focusing on specialized ML techniques trained with a small
number of HPC features (2-4). The study highlighted that
across various ML models the accuracy of hardware-based
malware detection decreases with the number of HPCs used.
To enhance performance, ensemble learning techniques were
proposed, eliminating the need to run an application multiple
times. They implemented eight robust ML models and two
ensemble learning classifiers (Adaboost and Bagging), and
compared them in terms of detection accuracy, robustness,
performance (accuracyxrobustness) and hardware overhead.
Results showed that the proposed ensemble learning malware
detection with just 2 HPCs outperformed standard classifiers
with 8 HPCs by up to 17%, matching the robustness and
performance of standard ML-based detectors with 16 HPCs
while using only 4 HPCs and enabling effective run-time
hardware-assisted malware detection.

The work in [15] proposed, 2SMaRT, a two-stage machine
learning-based approach for specialized run-time malware de-

tection in which in the first level classifies applications using a
multiclass classification technique into either benign or one of
the malware classes (Virus, Rootkit, Backdoor, and Trojan).
In the second level, to have a high detection performance,
the authors deploy a machine learning model that works
best for each class of malware and further apply effective
ensemble learning to enhance the performance of malware
detection. The experimental results indicated that 2SMaRT
using ensemble technique with just 4HPCs outperforms state-
of-the-art classifiers with 8HPCs by up to 31.25% in terms of
detection performance, on average across different classes of
malware.

The research in [61], presented a hardware-level malware
detection framework named Akoman that utilizes Discrete
Wavelet Transform (DWT) and behavioral signatures derived
from hardware events to determine the behavior of running
programs. For each known malware type, two signatures are
generated by collecting four hardware event traces from the
executions of malware samples belonging to that family. The
first signature, obtained through SVD, is used for fast initial
matching, while the second, obtained through discrete wavelet
transform, is employed for precise final matching. The work
in [52] focused on determining the optimal hardware features
and time granularity for early ransomware detection. The
study examined HPC counter statistics gathered at intervals of
100ms, 500ms, and five seconds. The authors trained several
classical ML models to compare configurations and found
that capturing 5 HPC registers every 100ms for the first 3
seconds of payload execution achieves the best results with
the AdaBoost classifier, achieving above 90% accuracy.

In [28], unlike other HMD research, the suitability of low-
level microarchitectural features for distinguishing malware
from benign applications is questioned. The authors argued
that there is no inherent relationship between low-level mi-
croarchitectural features and high-level application behavior.
They contended that positive results in previous works stem
from optimistic assumptions, presenting their best result with
an Fl-score of 80.78%. However, they conducted a 10-fold
cross-validation of HPC-based malware detection, revealing
larger performance variations across different machine learning
classifiers. Similar variations are noted in previous works
employing different machine learning classifiers.

B. Addressing Advanced Threats: Stealthy and Zero-Day Mal-
ware Detection

Stealthy attacks involve concealing malicious code within
benign applications, making detection more challenging [62].
Prior hardware-assisted malware detection approaches often
assume malware as a separate thread, overlooking scenarios
where malware is embedded in benign applications. This em-
bedded malware, a form of stealthy threat, remains undetected
by commercial antivirus software.

The works in [42], [17] were the first HMD efforts that
addressed this research gap by tackling the challenge of de-
tecting embedded malware using hardware features. Embedded
malware involves stealthy cyber-attacks where malicious code
hides within benign applications, eluding traditional detection
methods. In HMD methods, directly inputting HPC data into
ML can lead to contamination, as malicious code within
benign applications combines with HPC features. Addressing
this issue, the authors introduced StealthMiner, a specialized
time series ML approach based on the Fully Convolutional



Network (FCN), aiming to detect stealthy malware, embedded
within benign traces, at run-time using the time series branch
instructions feature, the most prominent hardware event.

The study in [45] proposed an ensemble-based (bagging)
approach for quantifying uncertainty in predictions made by
ML models in HMD techniques. The study introduced an
uncertainty estimator, showing that considering uncertain pre-
dictions enables ML models to handle zero-day malware.
Furthermore, the work in [63] employed a power grid case
study to demonstrate that HPC effectively detects stealthy
rootkits in an 8-grid power system, offering a landscape review
of HPC’s role in malware detection.

While showing promise for known malware detection,
accurately identifying zero-day malware has been overlooked
in prior HMD works. Zero-day attack is a type of serious cy-
bersecurity threat that exploits software security vulnerabilities
that are undocumented (unknown) in the training database of
the detection mechanism. Zero-day attacks exploit potentially
serious software security vulnerabilities that are undocumented
(unknown) in the database of the detection mechanism [64],
[65]. In addressing the challenge of zero-day malware de-
tection, He et al. [46] conducted experiments using machine
learning to detect known and zero-day malware. Classical MLs
were found effective for known malware types but suffered
from a high false positive rate in zero-day malware detection.
By applying AdaBoosting over RF model, they achieved a 4%
improvement in the Fl-score for zero-day malware detection.

In a recent research [29], a multi-stage zero-day malware
detection method based on deep transfer learning was devel-
oped. Investigating the feasibility of transfer learning across
different domains and applications is crucial. Training models
on diverse datasets from various domains may lead to more
robust and generalized malware detection capabilities. The
proposed method in this study involved converting four HPC
features into two-dimensional images and applying transfer
learning with a pre-trained ResNet model on ImageNet to
enhance learning of hidden patterns of zero-day malware.
Results demonstrated the effectiveness of deep neural network
and transfer learning for HMD, addressing the open challenge
of zero-day malware detection in current research.

Furthermore, He et al. [19] is the first work that tackles
major issues in adaptive and cost-aware zero-day malware
detection using low-level hardware events. They proposed a
unified feature selection method based on heterogeneous fea-
ture fusion to determine prominent HPC events for on-device
HMD. Additionally, the authors introduced Reinforced-HMD,
a novel reinforcement learning-based framework designed for
adaptive and cost-aware unknown malware detection, focus-
ing on desired performance metrics and available hardware
resources. The framework utilized six classical and two rein-
forcement learning algorithms, including the Upper Confidence
Bound (UCB) approach, and undergoes thorough efficiency
analysis for detecting unknown malware using HPC events.
Their analysis demonstrated Reinforced-HMD’s accuracy and
robustness, achieving a 96% F1-score and AUC metrics.

In a recent study [55], the authors focused on the reliability
analysis of hardware-oriented Intrusion Detection Systems
(IDSs). While ensuring the dependability of ML models’
decisions is crucial, it has been overlooked in previous studies.
This work conducted a thorough evaluation of ML algorithms
in IDSs, considering factors such as training data size, the
number of hardware events used, and internal data separability

(malware stealthiness). To enhance reliable intrusion detection,
an effective model observer module is integrated during ML
inference to assess prediction reliability at run-time, determin-
ing the ML model’s confidence.

C. Impact of Adversarial Attacks on HMD Techniques

While artificial intelligence, in particular machine learning,
has been widely embraced to enhance security countermea-
sures, recent research has uncovered new security challenges,
notably adversarial attacks [66], [67], [68]. Despite ML clas-
sifiers demonstrating resilience against random noises, vul-
nerabilities have emerged, allowing adversaries to manipulate
outcomes by adding specially crafted perturbations to input
data. As ML models become integral for malware detection,
adversaries may employ dynamic strategies to evade detection.
Investigating robustness against adversarial attacks, especially
those targeting hardware features, is a critical challenge.

In the context of HMD, which relies on microarchitectural
events captured via HPCs, [41] demonstrated an adversarial
attack on malware detection systems. This attack involved
injecting perturbations into HPC traces using an adversarial
sample generator application. Addressing these vulnerabilities
presents a new avenue for future research in developing
adversary-resilient ML-based malware attack detectors. Das
et al. [18] explore the accurate measurement of events using
performance counters, uncovering challenges of dealing with
performance counters data in security applications. They high-
light the impact of HPC intricacies on exploit prevention and
malware detection, while showing the potential manipulation
of HPCs by adversaries to bypass security defenses.

In [40], the authors proposed a resilient solution to defend
ML-based HMD against reverse engineering. They highlighted
HMD’s vulnerability to adversarial attacks and emphasize
that retraining on adversarial malware datasets is ineffective.
To address this, they suggested constructing detectors with
randomized features and HPCs collection periods, switching
them stochastically to thwart attackers’ predictions. In another
study [48], a Moving Target Defense (MTD) technique is
proposed for adversarial attacks on HMD. MTD dynamically
changed the number and set of performance counters and the
classifier, confusing attackers. It used random selection of 4
features and 2 ML models (Decision Tree, Neural Network)
at run-time, successfully defending against adversarial attacks
without performance degradation. However, its effectiveness
against non-adversarial malware attacks remained untested.

In [50], the authors demonstrated the effectiveness of
reverse-engineering ML models while highlighting the lim-
itations of retraining for run-time attacks. They proposed a
strategy of uniform random switching among ML detectors
to enhance defense against reverse engineering, akin to the
concept of moving target defense. Similarly, Islam et al. [53]
addressed the adversarial attacks through reverse engineering.
They proposed Stochastic-HMDs, which involved introducing
stochastic noises into the computations of model inference to
defend reverse engineering based adversarial attacks. They ma-
nipulated the stochastic noise through controlled undervolting
by scaling the supply voltage below nominal level to add noises
in the HMDs’ computations during inference.

D. Securing Edge and Beyond: Malware Detection in Embed-
ded Systems, loT, and Cloud

Sayadi et al. [26] extended the concept of malware de-
tection using microarchitectural events to embedded systems,



presenting a customized ML-based hardware-assisted mal-
ware detection and identification solution for these resource-
constrained devices. The work identified challenges in effective
malware detection for embedded devices, emphasizing the
limitations of conventional software-based methods in these
systems. Due to the low overhead of hardware monitoring,
their deployment is seen as a promising solution. The proposed
lightweight HMD addressed the constraints of embedded sys-
tems by leveraging HPC features. It employed various ML
classifiers to detect and classify different malware classes at
run-time, using four crucial HPC features: branch instruc-
tions, cache references, branch misses, and node-stores. This
approach aimed to achieve accurate and effective run-time
malware detection despite the limited computing power and
resources in embedded systems. Results showed heavyweight
classifiers (MLP, BayesNet, SMO) excelled in average mal-
ware detection accuracy, while lightweight classifiers (JRip,
OneR) demonstrated superior accuracy per unit, with MLP
being the least effective.

Exploring synergies between hardware-assisted detection
and network-level detection techniques can improve overall
system security. Integrating insights from both levels can
enhance the ability to detect sophisticated malware threats.
Aligned with this idea, in [4], the authors addressed security
risks in large-scale IoT networks, emphasizing the challenges
of malware propagation. Traditional approaches fall short,
leading to the introduction of HaRM, a run-time malware
detector achieving rapid 92.21% accuracy within 10ns. A
stochastic model predictive controller confines malware prop-
agation in real-time, ensuring uncompromised network perfor-
mance. Further, in [27] the authors expanded their prior work
exploring network effects, proposing a two-stage framework
with a lightweight malware detector followed by a stochas-
tic controller, outperforming existing solutions by achieving
nearly 200% higher network throughput on IoT devices.

The utilization of HPCs extends beyond control-flow al-
terations for malware detection, proving effective in detecting
firmware modifications. In the study presented in [69], Con-
Firm is introduced as a cost-efficient technique for identifying
malicious changes in embedded control system firmware.
The approach involved measuring low-level hardware events
captured by HPC registers during firmware execution. The
evaluation encompassed various firmware types on ARM- and
PowerPC-based embedded processors, assessing detection ca-
pability and performance overhead. Furthermore, the proposal
is extended to handle more complex control flows, introducing
a machine learning-based classifier in [70] to automatically
extract relations between different hardware features.

The study presented in [43] explored the interpretability of
HMD techniques by introducing a framework that employed
explainable machine learning. This framework enhanced the
explainablity of classification results, making them more ac-
cessible and understandable for human analysis. They collected
time series HPC data from Xilinx Zynq7000 SoC evaluation
board, trained an RNN, and employed the model’s output to
train a linear regression model for feature contribution factors.
This interpreted which HPC features contribute to malicious
attacks and when they occur.

Moreover, in research [44], a one-class SVM is built
using only benign data to classify normal and malware on
programmable logic controllers (PLCs). Their approach moni-
tored real-time HPCs with an outside-of-the-process approach,

collecting separate HPCs from each thread. Per-thread and
cross-thread features are extracted, with the former modeling
activity patterns within threads and the latter modeling tempo-
ral relationships among activity patterns between threads. The
work in [71] explored utilizing HPCs and ML for IoT device
security. The study delved into topics including authentica-
tion, access control, secure offloading, and malware detection
schemes, assessing their benefits, drawbacks, and potential for
safeguarding IoT infrastructure on both the edge and the cloud,
along with individual IoT devices.

In [51], a hybrid and adaptive image-based framework for
online hardware-assisted zero-day malware detection in the
Internet of Medical Things (IoMT) is proposed. The method
based upon Deep Reinforcement Learning (DRL) dynamically
selected the best Deep Neural Network (DNN) detector at run-
time from a pool of continuously trained models, customized
for each device. Tabular hardware-based data are converted
into small-size images then using transfer learning to enhance
model performance for unknown malware detection. A DRL
agent, consisting of two Multi-Layer Perceptrons (MLPs) func-
tioning as an Actor and a Critic, is trained to dynamically select
the optimal DNN model at run-time. This decision-making
process ensured highly accurate zero-day malware detection
using a limited number of hardware events, leading to high
malware detection performance.

Tian et al. [47] addressed real-time security challenges in
virtual machines in the Infrastructure as a Service (IaaS) cloud
environment. Using Lamport’s ring buffer algorithm, they
implement concurrent real-time control flow collection and
security checks. Intel Processor Trace (PT)’s Virtual Machine
Introspection captured control flow information outside the tar-
get VM. They converted this information into two-dimensional
color images and employ a CNN-based method for malware
detection. This represented the sole effort in cloud-based
malware detection utilizing HPCs. Although its performance
may not reach state-of-the-art levels, it underscored potential
avenues for future research in cloud security.

The work in [49] proposed accelerated MLs for efficient
on-device HMD. The authors proposed OptiEdge, an ML-
guided hardware-assisted resource and timing estimation tool
that can effectively reduce the design space exploration for
edge devices’ design through effective High Level Synthesize
(HLS) optimization techniques for different ML algorithms.
Furthermore, the recent research in [54] extends the appli-
cability of HMDs to biomedical computing systems. The
work introduced a tailored hardware monitoring framework
and employed ML algorithms to enhance the accuracy and
efficiency of malware detection and classification using real-
time data from biomedical processors’ hardware events. The
reported results highlighted the effectiveness of the XGBoost
model, achieving a 95% detection rate in F-measure and
accuracy with efficient resource utilization and low inference
latency.

IV. RESEARCH CHALLENGES AND OPPORTUNITIES

1) Architectural Reasoning of HPCs for Malware Detection:
While hardware performance counter registers have been ex-
tensively utilized for enhancing security, the lack of detailed
architectural analysis poses a challenge. Obtaining a deep
understanding of the interactions between microarchitectural
features and malware behavior is crucial for effective security
analysis. Current practices often involve extracting features



without comprehensive explanations of their relevance to mal-
ware traits. A common approach includes feature selection, but
the connection between selected features and achieved results
remains largely unexplored. Researchers need to emphasize
providing clear explanations for the chosen features in machine
learning-based malware detection, ensuring a more compre-
hensive and interpretable analysis of security implications.

2) HPCs Validation for Security and Cross-Architecture Com-
patibility: Lack of solid documentation and indefinite in-
ference of HPC features pose challenges, requiring further
support and understanding for accurate performance moni-
toring. This is because security analysis was not the ini-
tial purpose for designing such registers in modern micro-
processors. Complexity variations across architectures make
consistent HPC-assisted information extraction challenging.
Researchers should validate findings on diverse microprocessor
architectures and provide detailed documentation of perfor-
mance counter configurations for enhanced reproducibility and
credibility of security-related works. Ensuring compatibility
and effectiveness across different processor architectures is
crucial, as microarchitectural events may vary, necessitating
adaptability for widespread applicability. Addressing these
challenges will contribute to the robustness and reliability of
hardware-assisted malware detection techniques.

3) Privacy-Preserving Malware Detection: Balancing accurate
malware detection and identification with user privacy has
become a growing concern. Future research should priori-
tize developing privacy-preserving methods that effectively
recognize malicious activity while protecting users’ sensitive
information. This entails exploring innovative techniques for
privacy prioritization, ensuring ethical and regulatory align-
ment. In networked and distributed systems, privacy is a
paramount concern due to device interconnectivity. Traditional
centralized malware detection raises data privacy concerns.
Exploring solutions such as decentralized models leveraging
edge computing, blockchain technology, and incorporating
differential privacy for peer-to-peer collaboration present a
potential to address these privacy challenges.

4) Energy-Efficient Malware Detection: Addressing energy
constraints of resource-limited computing systems (e.g. mobile
platforms, embedded systems, and biomedical devices) is a
crucial focus for advancing HMD methods. The challenge
lies in minimizing the energy overhead associated with de-
tection processes to ensure optimal system performance. A
promising avenue involves the integration of Tiny Machine
Learning (TinyML) techniques, which specialize in deploying
lightweight ML models tailored for devices with limited com-
putational capabilities. This approach aims to strike a balance
between accuracy and computational efficiency, optimizing the
use of hardware features for effective malware detection. In
addition, investigating dedicated hardware accelerators and co-
processors tailored for on-core malware detection in resource-
constrained environments presents a potential solution to of-
fload computational burdens and conserve energy resources,
enabling accurate yet efficient malware detection.

V. CONCLUSION
Hardware performance counter registers serve as dedicated
hardware units for tracking applications’ performance-related
events in modern microprocessors. This paper extensively ex-
plored recent advancements in application of machine learning

techniques for malware detection based on hardware perfor-
mance counters profiles, known as Hardware-Assisted Mal-
ware Detection (HMD). Additionally, it provides insights into
current challenges and future directions for the development of
more efficient and advanced intelligent malware detection tech-
niques leveraging hardware performance counters. This work
serves as a valuable resource for cybersecurity researchers,
offering insights into countering cyber-attacks at the hardware
level using machine learning techniques.
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