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ABSTRACT

This research investigates the vulnerability of machine learning-

enabled Hardware Malware Detection (HMD) methods to adversar-

ial attacks, a pressing concern undermining their e�cacy against

malware threats. While prior adversarial learning research primar-

ily centered on image classi�cation and/or overlooked adversarial

attacks in HMDs, we delve into the distinctive challenges posed

by adversarial attacks in the context of tabular data from proces-

sors’ performance counters. This paper introduces a proactive and

robust multi-phased adversarial learning and defense framework

based on Deep Reinforcement Learning (DRL). In the initial phase,

highly e�ective adversarial attacks are employed to circumvent

ML-based detection mechanisms. Subsequently, an e�cient deep

reinforcement learning technique based on Advantage Actor Critic

(A2C) is presented to predict adversarial attack patterns in real-

time. Next, ML models are forti�ed through adversarial training to

enhance their defense capabilities against both malware and adver-

sarial attacks. To achieve greater e�ciency, an RL-based constraint

controller using an Upper Con�dence Bounds (UCB) algorithm is

proposed that dynamically assigns adversarial defense responsi-

bilities to specialized RL agents based on di�erent performance

constraints. The results demonstrate the proposed framework’s

e�ectiveness, indicating up to 86% boost in F1-score for defending

against adversarial attacks across all models, leading to detection

rate of 96.1% for the top-performing adaptive malware detector.
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1 INTRODUCTION
The escalating prevalence of security vulnerabilities within modern

computing systems has rendered them increasingly susceptible to

complex cyberattacks. In this evolving landscape, robust malware

detection has become crucial for preserving user data integrity

and con�dentiality. Conventional software-centric detection ap-

proaches have exhibited performance ine�ciencies, catalyzing the

emergence of Hardware Malware Detection (HMD) [4, 8, 18].

HMD methods harness low-level microarchitectural features

captured by Hardware Performance Counters (HPCs) and employ
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Machine Learning (ML) techniques to discern between malicious

software and legitimate programs. In this research, we have identi-

�ed and addressed �ve key challenges linked to ML-enabled hard-

ware malware detection methods.

Challenge 1- ML Models’ Susceptibility to Adversarial Attacks: ML

models, despite achieving high accuracy, are susceptible to adversar-

ial attacks where cleverly crafted input data canmislead the model’s

predictions [20]. In hardware malware detection, this vulnerability

can be exploited by attackers to evade detection or compromise the

model’s integrity, posing a signi�cant challenge to security.

Challenge 2- Adaptation of Methods to Tabular Data: While adver-

sarial learning and defense methods have excelled in image clas-

si�cation, they face challenges when applied to tabular data—an

increasingly vital aspect in emerging �elds like cybersecurity [1].

The distinctive characteristics and vulnerabilities of tabular data

pose a unique adaptation hurdle compared to image-based datasets.

Challenge 3- Complex Task of Preserving Original Malware Func-

tionality: In the context of cybersecurity, ensuring that adversarial

attacks do not disrupt the original functionality of malware is a

complex task. Adversarial attacks mask malware as benign while

maintaining its harmful actions, causing a tougher challenge in

altering feature vectors than manipulating visible image pixels.

Challenge 4- Vulnerabilities in Hardware Malware Detectors: HPC-

based malware detectors, while advantageous due to their preva-

lence and hidden nature, are not immune to vulnerabilities [5, 6, 8, 9].

Adversarial attackers can exploit these weaknesses by devising

strategies to manipulate or obfuscate features, potentially evading

detection and posing a threat to the integrity of detection systems.

Challenge 5- Lack of Robust and Adaptive Adversarial Defense: Previ-

ous e�orts focused on generating valid adversarial attacks that are

imperceptible to both human observers and well-tuned machine

learning models [6, 16]. To navigate the dynamic cybersecurity

landscape and e�ectively counter evolving threats, an essential

challenge lies in crafting a resilient and adaptable defense approach.

This work introduces an e�ective adversarial learning and de-

fense approach tailored for hardware malware detection. To this

aim, we utilize unlabeled data to train a highly discriminative Deep

Reinforcement Learning (DRL) agent for predicting adversarial at-

tacks. Subsequently, we present a multi-phased framework involv-

ing adversarial training to fortify classical ML models’ robustness.

Then, we develop specialized RL-based agents to dynamically select

ML models at run-time, aligning with the preferred performance

requirements (e.g., latency, memory footprint, accuracy, etc.). Table

1 presents a compilation of previous research alongside a compar-

ative analysis of our proposed approach concerning adversarial

attacks and learning techniques. Our proposed adversarial-resilient

malware detection approach excels in detecting adversarial attacks,



Table 1: Comparative analysis of prior adversarial attacks and learning methods with our proposed approach

Research Perturbed Features Attack Type Attack Success Rate Adversarial Defense Approach Defense Improvement Evaluation Adaptive Learning

[10] pdf �les Inference integrity (MA) 90+% : : :

[22] APK/DEX �le call graph Inference integrity (MA) 93% : : :

[15] PE header matadata Inference integrity (MA) 98% : : :

[14] API call sequences Inference integrity (MA) 100% : : :

[20] APKs Inference integrity (MA) 50% : : :

[7] API calls, permissions Inference integrity (MA) 69% Defensive distillation, adversarial training adversarial training: up to 6% (misclassi�cation rate) :

[6] HPCs Inference integrity (ĉ ô þ) 97% : : :

[9] HPCs Inference integrity (MA) : Moving target defense up to 31.5%(accuracy), 22.6%(precision) :

[5] HPCs Inference integrity (ĉ ô þ) 97% Adversarial training up to 63.1%(accuracy), 35.1%(precision), 63.2%(recall), 70.1%(F1-score) :

[8] HPCs Inference integrity (MA) 80% Adversarial training, randomized classi�er : :

This

Work

HPCs Inference integrity (MA) 100% Adversarial training, RL-based

dynamic malware defense

up to 86%(F1-score), 47%(accuracy), 63%(AUC), 64%(precision),

87%(recall), 87%(TPR)

6

Mô B: malware as benign and benign as malware, MA: malware attack

learning from them, enhancing the resiliency of HMD, and dynam-

ically adapting to counteract evolving threats. It also equips the

research community with a powerful tool to combat adversarial

threats e�ectively. The main contributions of this work include:

• We present a customized adversarial generation method tailored

to tabular hardware data in HMDs that achieves a remarkable

success rate of 100% in producing adversarial attacks. This ap-

proach underscores the susceptibility of ML-based HMDs, re-

ducing the detection rates by up to 79%.

• To address the challenges posed by the generated adversarial

attacks, we introduce a multi-phased adversarial learning frame-

work that combines deep reinforcement learning with classical

ML models. To this end, �rst, we train a highly discriminative

DRL-based adversarial predictor using unlabeled data and feed-

back rewards to predict adversarial attacks, which achieves 100%

in identifying adversarial attacks from uncertain streaming data.

• Subsequently, we propose a two-stage proactive and performance-

aware approach: the �rst stage employs adversarial training to

enhance the ML model’s robustness, and the second stage intro-

duces specialized RL-based agents. These agents dynamically

select optimal models at run-time based on prede�ned perfor-

mance criteria, ensuring robust and adaptive malware detection.

2 PROPOSED ADVERSARIAL-RESILIENT
MALWARE DETECTION FRAMEWORK

2.1 System Con�guration and Feature Analysis
- Data Acquisition: We conducted our experiments on a computer

system with an 11th Gen Intel Core i7 processor running Ubuntu

22.04.2 operating system. Data collection was facilitated using the

Perf tool available on Linux, with a sampling time of 10ms. We gath-

ered performance counter features from a diverse range of benign

and malware applications. To create a diverse and representative

dataset, we executed over 3,000 malware and benign applications

encompassing a wide range of domains and functionalities. Leverag-

ing the scripting capabilities of Perf, we automated the performance

monitoring process and seamlessly integrated it into our proposed

methodologies. This allowed us to collect a wide range of hardware

events (+30 events) from diverse applications e�ciently. We col-

lected and analyzed malware applications from online repositories

like VirusShare and VirusTotal, encompassing various classes such

as Worms, Viruses, Botnets, Ransomware, and more. To isolate and

gather HPC information, we utilized Linux Containers (LXC) that

provide direct access to hardware counters, setting it apart from

common virtual platforms like VirtualBox, which emulates HPCs.

- Feature Engineering: We further apply an enhanced feature engi-

neering approach, encompassing data cleaning, standard scaling,

and Mutual Information (MI)-based feature selection to extract

relevant hardware features. MI quanti�es the mutual dependency

between variables [17], and is employed to select the most informa-

tive HPC features highly relevant to the target label (exhibit a higher

mutual dependency). Regarding each feature set Ĕ and label ĕ , the

MI measure denoted as ą (Ĕ,ĕ ), is obtained by estimating the mar-

ginal entropies Ą (Ĕ ), Ą (ĕ ), and the joint entropy Ą (Ĕ,ĕ ), which

is equal to ą (Ĕ,ĕ ) = Ą (Ĕ ) + Ą (ĕ ) − Ą (Ĕ,ĕ ). We use the Scikit

Learn library’s mutual_info_classif algorithm. We then rank the

estimated mutual information values between each feature and the

target label, selecting the top hardware features (LLC-load-misses,

LLC-loads, cache-misses, cpu/cache-misses/ ). The top four HPCs are

used to create training and testing sub-datasets in an 80:20 ratio,

with further 80:20 splitting for training and validation.

2.2 Threat Model
In our proposed framework, our primary emphasis lies on detect-

ing run-time inference attacks. Potential adversaries can leverage

known malware as a basis for crafting adversarial attacks, exploit-

ing familiar attack vectors and tactics to evade detection. Attackers

gather HPC features data from malware samples, following a pro-

cess similar to training ML defenders. They manipulate the feature

vectors to make them imperceptible to MLs, aiming to trick the

models into classifying the adversarial samples as benign applica-

tions instead of recognizing them as malware. This aids attackers

in launching successful malware attacks. In our threat model, it is

assumed that attackers lack direct access to the ML defense models’

training data and their parameters, ensuring they operate without

privileged information about the defensemechanisms. Nevertheless,

in the event of attackers attempting to steal or alter the ML defense

models, we incorporate periodic ML model validation, described in

Subsection 2.7. This process ensures that the core ML defense mech-

anisms remain unaltered, by malicious actors. Furthermore, during

the inference stage, attackers possess the capability to access the

inference data. These adversarial vectors can be plotted through up-

dating �rmware, system reboot with the uploaded malicious image

to the device, and Man-In-The-Middle (MITM) attack. This access

enables them to launch adversarial attacks by introducing modi�-

cations to the underlying HPC data. In this scenario, attackers do

not directly modify the attack executable but instead manipulate

the underlying features that pass through the anti-malware defense

system during inference. The generated adversarial attacks retain

the original malware executable but incorporate crafted values de-

signed to evade detection. While previous research has primarily

concentrated on attacking inference integrity [20, 22], this study

aims to undermine the system’s malware detection capabilities,

thereby increasing the success rate of actual malware attacks.

2.3 Overview of the Proposed Methodology
Figure 1 presents an overview of our proposed adversarial-resilient

framework for hardware malware detection. In Adversarial Attacks,

depicted in the upper-left corner of the Figure, attackers can utilize
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Figure 1: Overview of the proposed adversarial attack detection/prediction and defense framework for hardware malware detection.

diverse methods to present malicious �rmware as a genuine update.

Upon installation of this adversarial �rmware onto a device, often

without users’ awareness, attackers gain the ability to execute at-

tacks immediately, delay them, or trigger them based on speci�c

conditions. During such attacks, malicious code is triggered, and

instructions are made to rewrite the malware HPCs with the adver-

sarial vectors contained in the data section of the �rmware. Hence,

during the inference stage, incoming HPC data can represent ei-

ther malware, benign, or adversarial malware attacks. Initially, the

system is equipped with legitimate malware and benign HPC data,

and well-trained ML models as its primary defense mechanisms.

However, when a hacker initiates an imperceptible adversarial at-

tack, there is a high likelihood that it will evade detection by the

ML-enabled malware defender, being misclassi�ed as benign.

To e�ectively counter adversarial attacks, our method incor-

porates an Adversarial Predictor. This predictor assesses whether

incoming data is adversarial, legitimate malware, or benign, leading

to di�erent defense strategies: 1) In the case of legitimate malware

or benign behavior, the system employs pre-trained ML models

to detect and defend against malware and benign data. 2) When

the data is identi�ed as adversarial, the system labels it as such

(noting that adversarial malware exhibits distinct feature charac-

teristics compared to legitimate malware, as explained in Section

2.4). The newly labeled adversarial data is then merged with the

existing malware and benign data, as shown in the adversarial de-

fense module (bottom left) in Figure 1. This merged HPC database

[ĉėĢĭėĨě, þěĤğĝĤ,ýĚĬěĨĩėĨğėĢ] is used to train both ML models

and adversarial-resilient RL agents (constraint-aware controller).

We trained �ve di�erent ML models (Random Forest, Decision Tree,

Logistic Regression, MLP, LightGBM) and one Neural Network (NN)

(2 CONV and 3 FC layers), each o�ering distinct characteristics

such as robust detection, speedy inference, and compact size. Fur-

thermore, leveraging the merged adversarial data, we trained three

RL agents using the Upper Con�dence Bounds (UCB) algorithm.

These RL agents (described in Section 2.6.1), specialize in various

constraint-aware scenarios to enhance the system’s e�ciency.

2.4 Adversarial Attacks Generation
The de�nition of adversarial attacks sparks debate in the research

community. Perspectives vary on their common properties, yet

coherence, relevance, and imperceptibility compared to the orig-

inal data garner consensus. For instance, the work in [3] de�nes

adversarial examples as inputs that closely resemble natural in-

puts but are incorrectly classi�ed, while [21] characterizes them as

imperceptible, non-random perturbations. Extending the concept

of imperceptibility to tabular data, [1] introduces the weighted Ģ?
norm of the perturbation, considering feature importance. Notably,

various features contribute di�erently to predictions, and the most

critical features are subject to closer investigation by algorithms

or human experts. Building upon [1]’s LowProFool method, we

formalize the de�nition of generating adversarial attacks on tabular

HPCs data for hardware malware detection as described below.

To generate an adversarial attack based on a feature matrix Ĕ

containing individual incoming HPC data points (Į8 ), each asso-

ciated with a true label ĩ = Ĝ (Į), the objective is to introduce a

perturbation Ĩ to Į8 to create an adversarial instance ĝ(Ĩ ), formu-

lated as follows:
ĝ(Ĩ ) = Ĉ(Į + Ĩ, Ī) + ą | |Ĩ » Ĭ | |2? (1)

The generated adversarial sample, denoted as ĝ(Ĩ ), consists of

two components. The �rst component, Ĉ(Į + Ĩ, Ī), represents the

loss value of the model, ensuring that the predicted label of the

adversarial instance matches the intended target label, expressed

as Ĝ (Į + Ĩ ) = Ī . The second component, ą | |Ĩ » Ĭ | |2? , serves as a

regularizer aimed at minimizing the perturbation Ĩ . Here, Ĭ is a

vector representing feature importance, which can be computed

using a feature importance algorithm. The parameter ą controls the

weight assigned to the feature importance in the adversarial sample.

This is crucial because adding signi�cant perturbation to ĝ(Ĩ ) can

increase the likelihood of detection by human experts or MLmodels.

Hence, the ultimate goal of ĝ(Ĩ ) is to minimize perturbation values,

enabling the generated adversaries to cross label boundaries while

deceiving both human experts and ML models.

Algorithm 1 Adversarial Samples Generation

Input: malware HPCs (-ģėĢ matrix) and set target label ~Ī is benign
Output: adversarial malware samples -ėĚĬ

- Clip -ģėĢ ’s min, max value of -ģėĢ

- Train a Logistic Regression model on -ģėĢ as imperceptibility evaluator
while steps of generating adversaries do

Fit -ģėĢ ’s feature important E = {E1, E2, E3, E4 }
Calculate ;Ħ norm loss and its gradient
Generate perturbation and apply clipped min, max values
Evaluate if ~Ī == 14=86= using LR model
Assign the best imperceptible perturbation at each step

end
- Test -ėĚĬ by pre-trained LR model, output attack success rate.



Our proposed adversarial generation process is further outlined

in Algorithm 1. We leveraged the Adversarial Robustness Toolbox

(ART) [12], a Python-based machine learning security library. ART

provides tools to assess, defend, certify, and verify machine learning

models against various adversarial threats. We customized ART’s

LowProFool algorithm [1] and enhanced it with an imperceptibility

evaluator using Logistic Regression (LR) from Scikit Learn. Once ad-

versaries are generated, we use the trained LR model (on legitimate

malware and benign data) to evaluate the adversarial success rate

resulted in 100%. Speci�cally, we focused on modifying malware to

deceive the system into classifying it as a benign application, thus

increasing the likelihood of a successful attack.

2.5 Adversarial Attacks Prediction
2.5.1 RL with Unlabelled Data. Training an RL agent with unla-

beled data addresses various challenges, including imitating learn-

ing and learning a reward function that discriminates speci�c

data characteristics. In the context of hardware malware detection,

where incoming data can be dynamic, encompassing adversarial at-

tacks, legitimate malware, or benign samples, we focus on training

an RL agent highly pro�cient in recognizing patterns associated

with adversarial attacks. Previous studies have shown the initial

e�ectiveness of using unlabeled data to train a discriminating RL

agent. In particular, when unlabeled data exceeds labeled data in

size, it substantially enhances the RL agent’s ability to learn an

e�ective reward policy for accurate predictions. Evaluation in this

RL learning scenario is based on episode rewards rather than the

conventional accumulated rewards. We developed a reinforcement

learning-based approach applied to tabular-based hardware data

derived from HPC registers of the underlying processor. Given the

RL’s heightened discriminative capacity when one dataset is more

substantial than the other, and considering our limited adversarial

data, we employed the existing limited adversarial data as labeled,

while treating legitimate malware and benign data as unlabeled,

assigning them a "None" label. During RL training, we assigned a

high reward value (100) to labeled adversarial data, while unlabeled

data received a reward of (0). Upon completion of training, the

RL agent e�ectively learned to provide reward values, distinguish-

ing between adversaries (labeled) and non-adversaries (unlabeled),

aligning with our prediction requirements for incoming data.

2.5.2 Adversarial Predictor Training. We customize our RL environ-

ment using OpenAI’s Gym baseline class [2], with state and action

space de�ned as follows. We trained the adversarial predictor using

an Advantage Actor Critic (A2C) algorithm [11] in TensorFlow,

with both Actor and Critic using MLP with 4-hidden layers. A2C is

a deep RL technique that combines RL and deep learning. Learning

rates were set to 0.0005 for the Actor and 0.001 for the Critic. The

Actor predicts an action ([1, nan]) after SoftMax activation, while

the Critic assesses the quality (distance) of the predicted action

from the Actor and computes a loss value using the Mean Square

Error function. In our experiments, the adversarial predictor (agent)

strives to classify incoming data as an adversarial attack (actions)

to deceive the ML defender as e�ectively as possible by rendering

the HPC data imperceptible (environment). We update the episode

reward for each incoming data point, as independent events. This

scenario conforms to a Markov Decision Process (MDP) consisting

of states, actions, rewards, and a discount factor as stated below:

- States: 4-tuple representing the top four HPCs, whether from ad-

versarial attacks, legitimate malware, or benign sources.

- Actions: adversarial attack or nan.

- Rewards: 100 for adversarial attack, 0 for nan.

- Discount Factor: Percentage of past experience (accumulated re-

wards) in the current decision (0.99 in our work).

2.6 Defending against Adversarial Attacks
The adversarial defense module detects malware attacks regard-

less of whether the data is adversarial or not. However, detecting

malware is subject to resource constraints, especially in resource-

limited devices. As depicted in Figure 1, our proposed approach

addresses three primary constraints: accuracy in malware detection,

inference latency, and memory footprint, o�ering an adversarial

resilient and cost-aware malware detection solution.

2.6.1 Constraint-Aware Controller. To respond to pre-con�gured

constraint requirements, we incorporate a constraint-aware con-

troller into our proposed approach. The adversarial defensemodules

initially employ a merged dataset containing adversarial, malware,

and benign samples to train a diverse set of classical ML models,

each possessing distinct strengths and cost considerations. Some

excel in high detection accuracy, while others prioritize faster in-

ference or smaller model sizes. We develop the constraint-aware

controller as an RL agent, allowing it to adapt dynamically to chang-

ing run-time variables like constraints, metrics, and incoming data

from its environment. We select the Upper Con�dence Bound RL

as the learning algorithm due to its lightweight nature, imposing

minimal overhead in terms of parameter size and inference latency

for adaptive scheduling of the ML models at run-time. Furthermore,

we evaluate all ML models on test sets and store their performance

metrics in the Metric Monitor modules. These metrics are then

passed to the reward function in the RL environment to guide in

selecting the ML model that best meets the run-time con�gured

constraints. Based on the constraint requirements, three types of

RL agents are trained, each of which incorporates �ve classical ML

models (excluding NN due to its low performance in adversarial

learning) into its environment with the following specializations:

- Agent 1: Faster inference - Trained by a UCB agent to select the

fastest inferring ML while ensuring high detection accuracy.

- Agent 2: Smaller memory footprint - Trained by a UCB agent to

minimize usage while maintaining accurate predictions.

- Agent 3: E�cient malware detection - Trained by a UCB agent for

accurate detection of adversarial and malware attacks, prioritizing

models with low latency and memory usage as rewards.

2.6.2 RL-based Constraint Controller Training. In this RL decision-

making process, each specialized agent aims to select the most

optimized ML model from the �ve available in its environment. The

goal is to predict whether incoming HPC data represents a malware

attack (action) e�ectively. The decision criteria for choosing an ML

model consider two factors: �rst, the model’s ability to correctly de-

tect malware attacks, and second, its ability to meet the con�gured

constraints. This decision process aligns with the MDP:

- States: 14-tuple for the top four HPC features, the predictions of

the �ve ML models for malware detection (including adversarial

and regular attacks, and benign), and the passed constraints for the

�ve ML models. This constraint serves as a run-time variable in the

RL environment’s reward function, forming a reward policy. The



RL agent interacts with these states, selects an action (which ML

model to use), and learns a reward policy for maximum return with

respect to the pre-con�gured performance constraint.

- Actions: 2-tuple for malware or benign selection.

- Rewards:A reward of 1 is assigned for correct predictions (malware

or benign), while a reward of 0 is given for incorrect predictions.

2.7 ML Model Integrity Validation
Our framework is designed to protect the integrity and security of

the deployed ML models against potential tampering by unautho-

rized entities. To achieve this, we employ o�ine hashing techniques

to verify the stability of our ML defense models. Once the ML mod-

els are deployed for defense, we periodically generate hash values

using the SHA-256 algorithm for the model path combined with de-

ployment timestamps. These generated hashes are then compared

against stored records to con�rm the models’ integrity. Moreover,

we conduct regular assessments using a reserved o�ine validation

set to evaluate the ongoing performance of our ML defense models.

Metrics including accuracy, F1-score, True Positive Rate (TPR), False

Positive Rate (FPR), True Negative Rate (TNR), and False Negative

Rate (FNR) are systematically monitored. These metrics collectively

provide a comprehensive view of the model’s performance and

serve as indicators of any potential modi�cations. If metrics deviate

from our established records, indicating possible alterations to the

models, immediate corrective action is taken. We restore the veri-

�ed model and conduct a thorough system investigation to rectify

any security breaches or unauthorized modi�cations.

3 EXPERIMENTAL RESULTS

Non-Adversarial Hardware Malware Detection. To examine the

baseline hardware malware detection, various distinct branches of

classical ML and NN models were implemented using legitimate

malware and benign data captured from HPCs. This evaluation

focuses on the models’ ability to distinguish malware from benign

data, as re�ected in the results in Table 2. Notably, Random Forest

and LightGBM models achieved F1-scores of 87% and 88%, respec-

tively, while MLP and NN outperformed them with a 92% and 93%

F1-score, respectively. In this context, MLP and NN stand out as

the top-performing malware detectors. Additionally, it is observed

that RF and LightGBM exhibit a 19% FNR, whereas MLP and NN

boast a signi�cantly lower 6% and 5% FNR. This highlights MLP’s

advantage in maintaining a secure operational environment by

minimizing instances of wrongly classifying malware as benign.

However, there is a trade-o�, as MLP also incurs a slightly higher

false positive rate (9%) compared to RF and LightGBM (4%), result-

ing in a marginally increased likelihood of false alarms.

Hardware Malware Detection under Adversarial A�acks. In

this scenario, adversarial attacks are launched by applying imper-

ceptible perturbations to HPC features, allowing malicious func-

tions to masquerade as benign applications undetected by the ML

models. The Adversarial Attack results in Table 2 show a signi�cant

deterioration in the ML models’ detection performance across all

metrics. This enhances the transferability of adversarial samples

across all learning algorithms [13]. Furthermore, the downward

blue arrow lines in Figure 2 illustrate a substantial downgrade in

the system’s malware detection capabilities, with RF decreasing by

71%, MLP by 34%, and LightGBM by 79% due to the impact of these

Table 2: Performance results for three scenarios: a) regular malware detection without
adversarial attacks consideration, b) malware detection under adversarial attacks, and c)
adversarial training, after detecting adversarial attacks.

Scenario ML ACC F1 AUC TPR FPR FNR TNR

malware attack

RF 0.88 0.87 0.93 0.81 0.04 0.19 0.96

DT 0.85 0.84 0.89 0.79 0.09 0.21 0.91

LR 0.87 0.87 0.90 0.88 0.15 0.12 0.85

MLP 0.92 0.92 0.94 0.94 0.09 0.06 0.91

LightGBM 0.89 0.88 0.93 0.81 0.04 0.19 0.96

NN 0.93 0.93 0.94 0.95 0.10 0.05 0.90

adversarial attack

RF 0.32 0.16 0.57 0.10 0.25 0.90 0.75

DT 0.52 0.56 0.77 0.45 0.34 0.55 0.66

LR 0.54 0.59 0.78 0.48 0.33 0.52 0.67

MLP 0.53 0.58 0.77 0.49 0.40 0.51 0.60

LightGBM 0.30 0.09 0.51 0.05 0.20 0.95 0.80

NN 0.67 0.80 0.83 1.0 1.0 0.0 0.0

adversarial defense

RF 0.92 0.93 0.97 0.90 0.05 0.10 0.95

DT 0.92 0.94 0.96 0.92 0.09 0.08 0.91

LR 0.83 0.88 0.91 0.88 0.26 0.12 0.74

MLP 0.95 0.96 0.97 0.97 0.10 0.03 0.90

LightGBM 0.93 0.95 0.98 0.92 0.05 0.08 0.95

NN 0.33 0.0 0.83 0.0 0.0 1.0 1.0

adversarial attacks in bypassing the detection mechanism. In addi-

tion, RF and LightGBM models exhibit a 90% and 95% false negative

rate, while MLP demonstrates a false negative rate of 51%, mistak-

enly categorizing malware as benign. Conversely, their TPR are

notably low. Depicted in Figure 3-(a) (yellow bars), MLP achieves a

TPR of 49%, indicating a 51% chance of false alarms, while RF and

LightGBM worsen with TPRs of 10% and 5%, respectively losing

credibility as e�ective and reliable malware defenders. As indicated

in Table 2, the NN trained on legitimate malware data misclassi-

�es all data as suspicious malware, exhibiting an FPR of 100%. It

struggles to distinguish between four numerical HPC values across

malware, adversarial, and benign categories.

Figure 2: Adversarial attacks downgrade MLs’ F1-score by up to 79%. Through adversarial
training, enhanced MLs increase the F1-score over regular malware detection by up to
10%, and adversarial attacks by up to 86%.

Adversarial Predictor’s Performance. The proposed RL-based

adversarial predictor, acting as the initial line of defense, achieves

a �awless 100% F1-score, accuracy, precision, and recall. Notably,

the detection of adversarial attacks relies on feedback through the

reward value rather than predictions from the DRL agent. The

predictor is trained to discriminate between adversarial and non-

adversarial HPC patterns, even when dealing with imbalanced and

unlabeled data. During inference, it determines whether an input is

adversarial if the feedback reward is positive or non-adversarial if

it receives a zero reward. Figure 3-(b) illustrates the reward values

in inference, where approximately 2,000 adversarial samples are fol-

lowed by around 4,000 non-adversarial (malware, benign) samples.

Figure 3: (a) True Positive Rate (TPR) drops during adversarial attacks (yellow bars) but
improves with adversarial training (green bars) compared to regular malware attacks
(blue bars), (b) Adversarial learning predictor distinguishes adversarial attack samples
from non-adversarial ones via distinct feedback reward values.



Figure 4: (a) Specialized RL agents adapt by selecting the best ML as a run-time defender
based on prede�ned constraint requirements (detection rate (F1-score), Overhead:
latency*memory, E�ciency Metric: F1/latency*memory), (b) Scalability analysis with
varying sizes of adversarial samples in training and inference.

The DRL-based predictor adeptly discerns HPC patterns, assigns

rewards, and o�ers insights on predicting adversarial attacks.

Adversarial Learning. As presented in Table 2, our adversarial de-

fense strategy showcases enhanced detection performance through

adversarial learning. Initially, the adversarial data is identi�ed by

the adversarial predictor (DRL agent) and then labeled before be-

ing merged with the existing legitimate malware and benign data.

Using this combined database, various types of ML models are de-

veloped, resulting in an overall performance boost, as illustrated

with the green bars in Figure 2. Notably, MLP shows a 4% increase

in F1-score compared to regular malware detection without adver-

sarial training (purple up-arrow lines on top of blue bars), while

Decision Tree and Random Forest exhibit improvements of 10%

and 6%, respectively. The �ndings underscore the e�ectiveness of

adversarial training in enhancing the robustness of ML models.

It is also observed that adversarial learning doesn’t enhance the

performance of NN in varied scenarios, reinforcing the ongoing

debate about NN’s e�ectiveness with tabular data [19] despite its

excellence in processing images and sequential data.

Constraint Management for Adversarial Defense. Figure 4-(a)

presents a performance and cost analysis of three constraint con�g-

uration options. Agent 1, optimized for cost-e�ectiveness, achieves

a fair F1-score of 89% and an AUC of 96%. Agent 2, with relatively

lower latency and memory footprint, serves as a moderate RL agent

compared to agents 1 and 3. Agent 3 excels with an F1-score exceed-

ing 96%, an AUC of 97%, 95% precision, and 97% recall, albeit with

a slightly longer inference time (0.005 ms) and a larger memory

footprint (1.06 MB). In contrast, Agent 1 boasts an extremely fast

inference time of 0.0002 ms and a compact 47 KB memory size.

Depending on the speci�c application requirements, Agent 1 is

ideal for pre-con�gurations demanding swift inference andminimal

memory usage while maintaining a dynamic adversarial defense

(with an 89% detection rate). Agent 3’s high detection performance

is appealing for applications where a slightly longer inference time

(around 0.005 ms) and a 1 MB model size are acceptable.

Scalability Analysis.We conducted a comprehensive scalability

analysis of adversarial learning across both training and inference

phases, illustrated in Figure 4-(b). In the training phase, our focus

was on assessing the impact of varying sizes of adversarial attack

data on inference detection performance. As shown in the blue line,

the F1-score drops during adversarial attacks, followed by improved

detection performance through adversarial training as the num-

ber of training samples increases. Initially, we observe improved

detection performance as the number of adversarial samples for

training increased. However, this enhancement plateaued as the at-

tack scale remained �xed despite a growing pool of adversaries. The

impact of adversarial sample size on larger-scale attacks warrants

further investigation. In contrast, during the inference phase, our

robust model, trained adversarially, displayed heightened resilience

against increasing volumes of adversarial attacks (orange line). This

trend not only underscores the e�ective scalability of our adver-

sarial learning approach with growing data but also highlights its

robustness when confronted with escalating adversarial challenges.

4 CONCLUSION
This study addresses adversarial attack challenges in Hardware Mal-

ware Detection (HMD), focusing on vulnerabilities in tabular data

sourced from performance counter registers. We propose a proac-

tive and multi-phased adversarial learning and defense framework

based on Deep Reinforcement Learning (DRL). This framework

encompasses adversarial attack generation, real-time prediction

of attack patterns, and adversarial training as a defense for ML

models. To ensure adaptability, we integrate a performance-aware

constraint controller for dynamic allocation of defense responsi-

bilities to specialized RL agents based on pre-de�ned performance

constraints. The experiments highlight the impact of adversarial

attacks causing a 79% decrease inMLs’ F1-score, countered by adver-

sarial training that elevates it by up to 86%. The results con�rm the

e�cacy of the proposed approach, achieving up to 96.1% detection

performance across various ML-based malware detectors.
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