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ABSTRACT

This research investigates the vulnerability of machine learning-
enabled Hardware Malware Detection (HMD) methods to adversar-
ial attacks, a pressing concern undermining their efficacy against
malware threats. While prior adversarial learning research primar-
ily centered on image classification and/or overlooked adversarial
attacks in HMDs, we delve into the distinctive challenges posed
by adversarial attacks in the context of tabular data from proces-
sors’ performance counters. This paper introduces a proactive and
robust multi-phased adversarial learning and defense framework
based on Deep Reinforcement Learning (DRL). In the initial phase,
highly effective adversarial attacks are employed to circumvent
ML-based detection mechanisms. Subsequently, an efficient deep
reinforcement learning technique based on Advantage Actor Critic
(A2C) is presented to predict adversarial attack patterns in real-
time. Next, ML models are fortified through adversarial training to
enhance their defense capabilities against both malware and adver-
sarial attacks. To achieve greater efficiency, an RL-based constraint
controller using an Upper Confidence Bounds (UCB) algorithm is
proposed that dynamically assigns adversarial defense responsi-
bilities to specialized RL agents based on different performance
constraints. The results demonstrate the proposed framework’s
effectiveness, indicating up to 86% boost in F1-score for defending
against adversarial attacks across all models, leading to detection
rate of 96.1% for the top-performing adaptive malware detector.
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1 INTRODUCTION

The escalating prevalence of security vulnerabilities within modern
computing systems has rendered them increasingly susceptible to
complex cyberattacks. In this evolving landscape, robust malware
detection has become crucial for preserving user data integrity
and confidentiality. Conventional software-centric detection ap-
proaches have exhibited performance inefficiencies, catalyzing the
emergence of Hardware Malware Detection (HMD) [4, 8, 18].
HMD methods harness low-level microarchitectural features
captured by Hardware Performance Counters (HPCs) and employ
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Machine Learning (ML) techniques to discern between malicious
software and legitimate programs. In this research, we have identi-
fied and addressed five key challenges linked to ML-enabled hard-
ware malware detection methods.

Challenge 1- ML Models’ Susceptibility to Adversarial Attacks: ML
models, despite achieving high accuracy, are susceptible to adversar-
ial attacks where cleverly crafted input data can mislead the model’s
predictions [20]. In hardware malware detection, this vulnerability
can be exploited by attackers to evade detection or compromise the
model’s integrity, posing a significant challenge to security.

Challenge 2- Adaptation of Methods to Tabular Data: While adver-
sarial learning and defense methods have excelled in image clas-
sification, they face challenges when applied to tabular data—an
increasingly vital aspect in emerging fields like cybersecurity [1].
The distinctive characteristics and vulnerabilities of tabular data
pose a unique adaptation hurdle compared to image-based datasets.

Challenge 3- Complex Task of Preserving Original Malware Func-
tionality: In the context of cybersecurity, ensuring that adversarial
attacks do not disrupt the original functionality of malware is a
complex task. Adversarial attacks mask malware as benign while
maintaining its harmful actions, causing a tougher challenge in
altering feature vectors than manipulating visible image pixels.

Challenge 4- Vulnerabilities in Hardware Malware Detectors: HPC-
based malware detectors, while advantageous due to their preva-
lence and hidden nature, are not immune to vulnerabilities [5, 6, 8, 9].
Adversarial attackers can exploit these weaknesses by devising
strategies to manipulate or obfuscate features, potentially evading
detection and posing a threat to the integrity of detection systems.

Challenge 5- Lack of Robust and Adaptive Adversarial Defense: Previ-
ous efforts focused on generating valid adversarial attacks that are
imperceptible to both human observers and well-tuned machine
learning models [6, 16]. To navigate the dynamic cybersecurity
landscape and effectively counter evolving threats, an essential
challenge lies in crafting a resilient and adaptable defense approach.

This work introduces an effective adversarial learning and de-
fense approach tailored for hardware malware detection. To this
aim, we utilize unlabeled data to train a highly discriminative Deep
Reinforcement Learning (DRL) agent for predicting adversarial at-
tacks. Subsequently, we present a multi-phased framework involv-
ing adversarial training to fortify classical ML models’ robustness.
Then, we develop specialized RL-based agents to dynamically select
ML models at run-time, aligning with the preferred performance
requirements (e.g., latency, memory footprint, accuracy, etc.). Table
1 presents a compilation of previous research alongside a compar-
ative analysis of our proposed approach concerning adversarial
attacks and learning techniques. Our proposed adversarial-resilient
malware detection approach excels in detecting adversarial attacks,



Table 1: Comparative analysis of prior adversarial attacks and learning methods with our proposed approach

Research | Perturbed Features Attack Type Attack Success Rate | Adversarial Defense Approach Defense Improvement Evaluation Adaptive Learning
10 pdf files Inference integrity (MA) 90+% X X X
22 'APK/DEX file call graph | Inference integrity (MA) 93% X X x
15 PE header matadata Inference integrity (MA) 98% X X X
14 "API call sequences Inference integrity (MA) 100% X X x
20 APKs Inference integrity (MA) 50% X X X
7 API calls, permissions Inference integrity (MA) 69% Defensive distill adversarial training adversarial training: up to 6% (miscl: rate) X
6 HPCs Inference integrity (M & B) 97% X X X
9! HPCs Inference integrity (MA) X Moving target defense up to 31.5%(accuracy), 22.6%(precision) X
5 HPCs Inference integrity (M & B) 97% Adversarial training up to 63.1%(accuracy), 35.1%(precision), 63.2%(recall), 70.1%(F1-score) X
8 HPCs Inference integrity (MA) 80% Adversarial training, randomized classifier X X

This HPCs Inference integrity (MA) 100% Adversarial training, RL-based up to 86%(F1-score), 47%(accuracy), 63%AUC), 64%(precision), 7

Work dynamic malware defense 87%recall), 87%(TPR)

M & B: malware as benign and benign as malware, MA: malware attack

learning from them, enhancing the resiliency of HMD, and dynam-
ically adapting to counteract evolving threats. It also equips the
research community with a powerful tool to combat adversarial
threats effectively. The main contributions of this work include:

o We present a customized adversarial generation method tailored
to tabular hardware data in HMDs that achieves a remarkable
success rate of 100% in producing adversarial attacks. This ap-
proach underscores the susceptibility of ML-based HMDs, re-
ducing the detection rates by up to 79%.

o To address the challenges posed by the generated adversarial

attacks, we introduce a multi-phased adversarial learning frame-

work that combines deep reinforcement learning with classical

ML models. To this end, first, we train a highly discriminative

DRL-based adversarial predictor using unlabeled data and feed-

back rewards to predict adversarial attacks, which achieves 100%

in identifying adversarial attacks from uncertain streaming data.

Subsequently, we propose a two-stage proactive and performance-

aware approach: the first stage employs adversarial training to

enhance the ML model’s robustness, and the second stage intro-
duces specialized RL-based agents. These agents dynamically
select optimal models at run-time based on predefined perfor-
mance criteria, ensuring robust and adaptive malware detection.

2 PROPOSED ADVERSARIAL-RESILIENT
MALWARE DETECTION FRAMEWORK

2.1 System Configuration and Feature Analysis

- Data Acquisition: We conducted our experiments on a computer
system with an 11th Gen Intel Core i7 processor running Ubuntu
22.04.2 operating system. Data collection was facilitated using the
Perf tool available on Linux, with a sampling time of 10ms. We gath-
ered performance counter features from a diverse range of benign
and malware applications. To create a diverse and representative
dataset, we executed over 3,000 malware and benign applications
encompassing a wide range of domains and functionalities. Leverag-
ing the scripting capabilities of Perf, we automated the performance
monitoring process and seamlessly integrated it into our proposed
methodologies. This allowed us to collect a wide range of hardware
events (+30 events) from diverse applications efficiently. We col-
lected and analyzed malware applications from online repositories
like VirusShare and VirusTotal, encompassing various classes such
as Worms, Viruses, Botnets, Ransomware, and more. To isolate and
gather HPC information, we utilized Linux Containers (LXC) that
provide direct access to hardware counters, setting it apart from
common virtual platforms like VirtualBox, which emulates HPCs.
- Feature Engineering: We further apply an enhanced feature engi-
neering approach, encompassing data cleaning, standard scaling,
and Mutual Information (MI)-based feature selection to extract
relevant hardware features. MI quantifies the mutual dependency

between variables [17], and is employed to select the most informa-
tive HPC features highly relevant to the target label (exhibit a higher
mutual dependency). Regarding each feature set X and label Y, the
MI measure denoted as I(X, Y), is obtained by estimating the mar-
ginal entropies H(X), H(Y), and the joint entropy H(X, Y), which
is equal to I(X,Y) = H(X) + H(Y) — H(X,Y). We use the Scikit
Learn library’s mutual_info_classif algorithm. We then rank the
estimated mutual information values between each feature and the
target label, selecting the top hardware features (LLC-load-misses,
LLC-loads, cache-misses, cpu/cache-misses/). The top four HPCs are
used to create training and testing sub-datasets in an 80:20 ratio,
with further 80:20 splitting for training and validation.

2.2 Threat Model

In our proposed framework, our primary emphasis lies on detect-
ing run-time inference attacks. Potential adversaries can leverage
known malware as a basis for crafting adversarial attacks, exploit-
ing familiar attack vectors and tactics to evade detection. Attackers
gather HPC features data from malware samples, following a pro-
cess similar to training ML defenders. They manipulate the feature
vectors to make them imperceptible to MLs, aiming to trick the
models into classifying the adversarial samples as benign applica-
tions instead of recognizing them as malware. This aids attackers
in launching successful malware attacks. In our threat model, it is
assumed that attackers lack direct access to the ML defense models’
training data and their parameters, ensuring they operate without
privileged information about the defense mechanisms. Nevertheless,
in the event of attackers attempting to steal or alter the ML defense
models, we incorporate periodic ML model validation, described in
Subsection 2.7. This process ensures that the core ML defense mech-
anisms remain unaltered, by malicious actors. Furthermore, during
the inference stage, attackers possess the capability to access the
inference data. These adversarial vectors can be plotted through up-
dating firmware, system reboot with the uploaded malicious image
to the device, and Man-In-The-Middle (MITM) attack. This access
enables them to launch adversarial attacks by introducing modifi-
cations to the underlying HPC data. In this scenario, attackers do
not directly modify the attack executable but instead manipulate
the underlying features that pass through the anti-malware defense
system during inference. The generated adversarial attacks retain
the original malware executable but incorporate crafted values de-
signed to evade detection. While previous research has primarily
concentrated on attacking inference integrity [20, 22], this study
aims to undermine the system’s malware detection capabilities,
thereby increasing the success rate of actual malware attacks.

2.3 Overview of the Proposed Methodology

Figure 1 presents an overview of our proposed adversarial-resilient
framework for hardware malware detection. In Adversarial Attacks,
depicted in the upper-left corner of the Figure, attackers can utilize
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Figure 1: Overview of the proposed adversarial attack detection/prediction and defense framework for hardware malware detection.

diverse methods to present malicious firmware as a genuine update.
Upon installation of this adversarial firmware onto a device, often
without users’ awareness, attackers gain the ability to execute at-
tacks immediately, delay them, or trigger them based on specific
conditions. During such attacks, malicious code is triggered, and
instructions are made to rewrite the malware HPCs with the adver-
sarial vectors contained in the data section of the firmware. Hence,
during the inference stage, incoming HPC data can represent ei-
ther malware, benign, or adversarial malware attacks. Initially, the
system is equipped with legitimate malware and benign HPC data,
and well-trained ML models as its primary defense mechanisms.
However, when a hacker initiates an imperceptible adversarial at-
tack, there is a high likelihood that it will evade detection by the
ML-enabled malware defender, being misclassified as benign.

To effectively counter adversarial attacks, our method incor-

porates an Adversarial Predictor. This predictor assesses whether
incoming data is adversarial, legitimate malware, or benign, leading
to different defense strategies: 1) In the case of legitimate malware
or benign behavior, the system employs pre-trained ML models
to detect and defend against malware and benign data. 2) When
the data is identified as adversarial, the system labels it as such
(noting that adversarial malware exhibits distinct feature charac-
teristics compared to legitimate malware, as explained in Section
2.4). The newly labeled adversarial data is then merged with the
existing malware and benign data, as shown in the adversarial de-
fense module (bottom left) in Figure 1. This merged HPC database

[Malware, Benign, Adversarial] is used to train both ML models

and adversarial-resilient RL agents (constraint-aware controller).
We trained five different ML models (Random Forest, Decision Tree,
Logistic Regression, MLP, LightGBM) and one Neural Network (NN)
(2 CONV and 3 FC layers), each offering distinct characteristics
such as robust detection, speedy inference, and compact size. Fur-
thermore, leveraging the merged adversarial data, we trained three
RL agents using the Upper Confidence Bounds (UCB) algorithm.
These RL agents (described in Section 2.6.1), specialize in various
constraint-aware scenarios to enhance the system’s efficiency.

2.4 Adversarial Attacks Generation

The definition of adversarial attacks sparks debate in the research
community. Perspectives vary on their common properties, yet
coherence, relevance, and imperceptibility compared to the orig-
inal data garner consensus. For instance, the work in [3] defines

adversarial examples as inputs that closely resemble natural in-
puts but are incorrectly classified, while [21] characterizes them as
imperceptible, non-random perturbations. Extending the concept
of imperceptibility to tabular data, [1] introduces the weighted I,
norm of the perturbation, considering feature importance. Notably,
various features contribute differently to predictions, and the most
critical features are subject to closer investigation by algorithms
or human experts. Building upon [1]’s LowProFool method, we
formalize the definition of generating adversarial attacks on tabular
HPCs data for hardware malware detection as described below.
To generate an adversarial attack based on a feature matrix X
containing individual incoming HPC data points (x;), each asso-
ciated with a true label s = f(x), the objective is to introduce a
perturbation r to x; to create an adversarial instance g(r), formu-

lated as follows:
g(r) =Lx+r.t) + Allr 0ol (1)
The generated adversarial sample, denoted as g(r), consists of
two components. The first component, L(x + r, t), represents the
loss value of the model, ensuring that the predicted label of the
adversarial instance matches the intended target label, expressed
as f(x +r) = t. The second component, A||r © v||f,, serves as a
regularizer aimed at minimizing the perturbation r. Here, v is a
vector representing feature importance, which can be computed
using a feature importance algorithm. The parameter A controls the
weight assigned to the feature importance in the adversarial sample.
This is crucial because adding significant perturbation to g(r) can
increase the likelihood of detection by human experts or ML models.
Hence, the ultimate goal of g(r) is to minimize perturbation values,
enabling the generated adversaries to cross label boundaries while
deceiving both human experts and ML models.

Algorithm 1 Adversarial Samples Generation

Input: malware HPCs (X;,4; matrix) and set target label y; is benign
Output: adversarial malware samples X4,
- Clip X341 s min, max value of X, 41
- Train a Logistic Regression model on X,,,,; as imperceptibility evaluator
while steps of generating adversaries do
Fit X;,q1’s feature important 0 = {0y, v, v3, 04}
Calculate I, norm loss and its gradient
Generate perturbation and apply clipped min, max values
Evaluate if y; == benign using LR model
Assign the best imperceptible perturbation at each step
end
- Test X4, by pre-trained LR model, output attack success rate.




Our proposed adversarial generation process is further outlined
in Algorithm 1. We leveraged the Adversarial Robustness Toolbox
(ART) [12], a Python-based machine learning security library. ART
provides tools to assess, defend, certify, and verify machine learning
models against various adversarial threats. We customized ART’s
LowProFool algorithm [1] and enhanced it with an imperceptibility
evaluator using Logistic Regression (LR) from Scikit Learn. Once ad-
versaries are generated, we use the trained LR model (on legitimate
malware and benign data) to evaluate the adversarial success rate
resulted in 100%. Specifically, we focused on modifying malware to
deceive the system into classifying it as a benign application, thus
increasing the likelihood of a successful attack.

2.5 Adversarial Attacks Prediction

2.5.1 RL with Unlabelled Data. Training an RL agent with unla-
beled data addresses various challenges, including imitating learn-
ing and learning a reward function that discriminates specific
data characteristics. In the context of hardware malware detection,
where incoming data can be dynamic, encompassing adversarial at-
tacks, legitimate malware, or benign samples, we focus on training
an RL agent highly proficient in recognizing patterns associated
with adversarial attacks. Previous studies have shown the initial
effectiveness of using unlabeled data to train a discriminating RL
agent. In particular, when unlabeled data exceeds labeled data in
size, it substantially enhances the RL agent’s ability to learn an
effective reward policy for accurate predictions. Evaluation in this
RL learning scenario is based on episode rewards rather than the
conventional accumulated rewards. We developed a reinforcement
learning-based approach applied to tabular-based hardware data
derived from HPC registers of the underlying processor. Given the
RL’s heightened discriminative capacity when one dataset is more
substantial than the other, and considering our limited adversarial
data, we employed the existing limited adversarial data as labeled,
while treating legitimate malware and benign data as unlabeled,
assigning them a "None" label. During RL training, we assigned a
high reward value (100) to labeled adversarial data, while unlabeled
data received a reward of (0). Upon completion of training, the
RL agent effectively learned to provide reward values, distinguish-
ing between adversaries (labeled) and non-adversaries (unlabeled),
aligning with our prediction requirements for incoming data.

2.5.2  Adversarial Predictor Training. We customize our RL environ-
ment using OpenATl’s Gym baseline class [2], with state and action
space defined as follows. We trained the adversarial predictor using
an Advantage Actor Critic (A2C) algorithm [11] in TensorFlow,
with both Actor and Critic using MLP with 4-hidden layers. A2C is
a deep RL technique that combines RL and deep learning. Learning
rates were set to 0.0005 for the Actor and 0.001 for the Critic. The
Actor predicts an action ([1, nan]) after SoftMax activation, while
the Critic assesses the quality (distance) of the predicted action
from the Actor and computes a loss value using the Mean Square
Error function. In our experiments, the adversarial predictor (agent)
strives to classify incoming data as an adversarial attack (actions)
to deceive the ML defender as effectively as possible by rendering
the HPC data imperceptible (environment). We update the episode
reward for each incoming data point, as independent events. This
scenario conforms to a Markov Decision Process (MDP) consisting
of states, actions, rewards, and a discount factor as stated below:

- States: 4-tuple representing the top four HPCs, whether from ad-
versarial attacks, legitimate malware, or benign sources.

- Actions: adversarial attack or nan.

- Rewards: 100 for adversarial attack, 0 for nan.

- Discount Factor: Percentage of past experience (accumulated re-
wards) in the current decision (0.99 in our work).

2.6 Defending against Adversarial Attacks

The adversarial defense module detects malware attacks regard-
less of whether the data is adversarial or not. However, detecting
malware is subject to resource constraints, especially in resource-
limited devices. As depicted in Figure 1, our proposed approach
addresses three primary constraints: accuracy in malware detection,
inference latency, and memory footprint, offering an adversarial
resilient and cost-aware malware detection solution.

2.6.1 Constraint-Aware Controller. To respond to pre-configured
constraint requirements, we incorporate a constraint-aware con-
troller into our proposed approach. The adversarial defense modules
initially employ a merged dataset containing adversarial, malware,
and benign samples to train a diverse set of classical ML models,
each possessing distinct strengths and cost considerations. Some
excel in high detection accuracy, while others prioritize faster in-
ference or smaller model sizes. We develop the constraint-aware
controller as an RL agent, allowing it to adapt dynamically to chang-
ing run-time variables like constraints, metrics, and incoming data
from its environment. We select the Upper Confidence Bound RL
as the learning algorithm due to its lightweight nature, imposing
minimal overhead in terms of parameter size and inference latency
for adaptive scheduling of the ML models at run-time. Furthermore,
we evaluate all ML models on test sets and store their performance
metrics in the Metric Monitor modules. These metrics are then
passed to the reward function in the RL environment to guide in
selecting the ML model that best meets the run-time configured
constraints. Based on the constraint requirements, three types of
RL agents are trained, each of which incorporates five classical ML
models (excluding NN due to its low performance in adversarial
learning) into its environment with the following specializations:

- Agent 1: Faster inference - Trained by a UCB agent to select the
fastest inferring ML while ensuring high detection accuracy.

- Agent 2: Smaller memory footprint - Trained by a UCB agent to
minimize usage while maintaining accurate predictions.

- Agent 3: Efficient malware detection - Trained by a UCB agent for
accurate detection of adversarial and malware attacks, prioritizing
models with low latency and memory usage as rewards.

2.6.2 RL-based Constraint Controller Training. In this RL decision-
making process, each specialized agent aims to select the most
optimized ML model from the five available in its environment. The
goal is to predict whether incoming HPC data represents a malware
attack (action) effectively. The decision criteria for choosing an ML
model consider two factors: first, the model’s ability to correctly de-
tect malware attacks, and second, its ability to meet the configured
constraints. This decision process aligns with the MDP:

- States: 14-tuple for the top four HPC features, the predictions of
the five ML models for malware detection (including adversarial
and regular attacks, and benign), and the passed constraints for the
five ML models. This constraint serves as a run-time variable in the
RL environment’s reward function, forming a reward policy. The



RL agent interacts with these states, selects an action (which ML
model to use), and learns a reward policy for maximum return with
respect to the pre-configured performance constraint.

- Actions: 2-tuple for malware or benign selection.

- Rewards: A reward of 1 is assigned for correct predictions (malware
or benign), while a reward of 0 is given for incorrect predictions.

2.7 ML Model Integrity Validation

Our framework is designed to protect the integrity and security of
the deployed ML models against potential tampering by unautho-
rized entities. To achieve this, we employ offline hashing techniques
to verify the stability of our ML defense models. Once the ML mod-
els are deployed for defense, we periodically generate hash values
using the SHA-256 algorithm for the model path combined with de-
ployment timestamps. These generated hashes are then compared
against stored records to confirm the models’ integrity. Moreover,
we conduct regular assessments using a reserved offline validation
set to evaluate the ongoing performance of our ML defense models.
Metrics including accuracy, F1-score, True Positive Rate (TPR), False
Positive Rate (FPR), True Negative Rate (TNR), and False Negative
Rate (FNR) are systematically monitored. These metrics collectively
provide a comprehensive view of the model’s performance and
serve as indicators of any potential modifications. If metrics deviate
from our established records, indicating possible alterations to the
models, immediate corrective action is taken. We restore the veri-
fied model and conduct a thorough system investigation to rectify
any security breaches or unauthorized modifications.

3 EXPERIMENTAL RESULTS

Non-Adversarial Hardware Malware Detection. To examine the
baseline hardware malware detection, various distinct branches of
classical ML and NN models were implemented using legitimate
malware and benign data captured from HPCs. This evaluation
focuses on the models’ ability to distinguish malware from benign
data, as reflected in the results in Table 2. Notably, Random Forest
and LightGBM models achieved F1-scores of 87% and 88%, respec-
tively, while MLP and NN outperformed them with a 92% and 93%
F1-score, respectively. In this context, MLP and NN stand out as
the top-performing malware detectors. Additionally, it is observed
that RF and LightGBM exhibit a 19% FNR, whereas MLP and NN
boast a significantly lower 6% and 5% FNR. This highlights MLP’s
advantage in maintaining a secure operational environment by
minimizing instances of wrongly classifying malware as benign.
However, there is a trade-off, as MLP also incurs a slightly higher
false positive rate (9%) compared to RF and LightGBM (4%), result-
ing in a marginally increased likelihood of false alarms.

Hardware Malware Detection under Adversarial Attacks. In
this scenario, adversarial attacks are launched by applying imper-
ceptible perturbations to HPC features, allowing malicious func-
tions to masquerade as benign applications undetected by the ML
models. The Adversarial Attack results in Table 2 show a significant
deterioration in the ML models’ detection performance across all
metrics. This enhances the transferability of adversarial samples
across all learning algorithms [13]. Furthermore, the downward
blue arrow lines in Figure 2 illustrate a substantial downgrade in
the system’s malware detection capabilities, with RF decreasing by
71%, MLP by 34%, and LightGBM by 79% due to the impact of these

Table 2: Performance results for three scenarios: a) regular malware detection without
adversarial attacks consideration, b) malware detection under adversarial attacks, and c)
adversarial training, after detecting adversarial attacks.

[ Scenario [ ML [ ACC | F1_| AUC | TPR | FPR | FNR | TNR |

RF 0.88 0.87 0.93 0.81 0.04 0.19 0.96

DT 0.85 0.84 0.89 0.79 0.09 0.21 0.91

malware attack LR 0.87 0.87 0.90 0.88 0.15 0.12 0.85
MLP 0.92 0.92 0.94 0.94 0.09 0.06 0.91

LightGBM 0.89 0.88 0.93 0.81 0.04 0.19 0.96

NN 0.93 0.93 0.94 0.95 0.10 0.05 0.90

RF 0.32 0.16 0.57 0.10 0.25 0.90 0.75

DT 0.52 0.56 0.77 0.45 0.34 0.55 0.66

adversarial attack LR 0.54 0.59 0.78 0.48 0.33 0.52 0.67
MLP 0.53 0.58 0.77 0.49 0.40 0.51 0.60

LightGBM 0.30 0.09 0.51 0.05 0.20 0.95 0.80

NN 0.67 0.80 0.83 1.0 1.0 0.0 0.0

RF 0.92 0.93 0.97 0.90 0.05 0.10 0.95

DT 0.92 0.94 0.96 0.92 0.09 0.08 0.91

adversarial defense LR 0.83 0.88 0.91 0.88 0.26 0.12 0.74
MLP 0.95 0.96 0.97 0.97 0.10 0.03 0.90

LightGBM 0.93 0.95 0.98 0.92 0.05 0.08 0.95

NN 0.33 0.0 0.83 0.0 0.0 1.0 1.0

adversarial attacks in bypassing the detection mechanism. In addi-
tion, RF and LightGBM models exhibit a 90% and 95% false negative
rate, while MLP demonstrates a false negative rate of 51%, mistak-
enly categorizing malware as benign. Conversely, their TPR are
notably low. Depicted in Figure 3-(a) (yellow bars), MLP achieves a
TPR of 49%, indicating a 51% chance of false alarms, while RF and
LightGBM worsen with TPRs of 10% and 5%, respectively losing
credibility as effective and reliable malware defenders. As indicated
in Table 2, the NN trained on legitimate malware data misclassi-
fies all data as suspicious malware, exhibiting an FPR of 100%. It
struggles to distinguish between four numerical HPC values across
malware, adversarial, and benign categories.
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Figure 2: Adversarial attacks downgrade MLs’ F1-score by up to 79%. Through adversarial
training, enhanced MLs increase the F1-score over regular malware detection by up to
10%, and adversarial attacks by up to 86%.

Adversarial Predictor’s Performance. The proposed RL-based
adversarial predictor, acting as the initial line of defense, achieves
a flawless 100% F1-score, accuracy, precision, and recall. Notably,
the detection of adversarial attacks relies on feedback through the
reward value rather than predictions from the DRL agent. The
predictor is trained to discriminate between adversarial and non-
adversarial HPC patterns, even when dealing with imbalanced and
unlabeled data. During inference, it determines whether an input is
adversarial if the feedback reward is positive or non-adversarial if
it receives a zero reward. Figure 3-(b) illustrates the reward values
in inference, where approximately 2,000 adversarial samples are fol-
lowed by around 4,000 non-adversarial (malware, benign) samples.
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Figure 3: (a) True Positive Rate (TPR) drops during adversarial attacks (yellow bars) but
improves with adversarial training (green bars) compared to regular malware attacks
(blue bars), (b) Adversarial learning predictor distinguishes adversarial attack samples
from non-adversarial ones via distinct feedback reward values.
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Figure 4: (a) Specialized RL agents adapt by selecting the best ML as a run-time defender
based on predefined constraint requirements (detection rate (F1-score), Overhead:
latency*memory, Efficiency Metric: F1/latency “memory), (b) Scalability analysis with
varying sizes of adversarial samples in training and inference.

The DRL-based predictor adeptly discerns HPC patterns, assigns
rewards, and offers insights on predicting adversarial attacks.
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Adversarial Learning. As presented in Table 2, our adversarial de-
fense strategy showcases enhanced detection performance through
adversarial learning. Initially, the adversarial data is identified by
the adversarial predictor (DRL agent) and then labeled before be-
ing merged with the existing legitimate malware and benign data.
Using this combined database, various types of ML models are de-
veloped, resulting in an overall performance boost, as illustrated
with the green bars in Figure 2. Notably, MLP shows a 4% increase
in F1-score compared to regular malware detection without adver-
sarial training (purple up-arrow lines on top of blue bars), while
Decision Tree and Random Forest exhibit improvements of 10%
and 6%, respectively. The findings underscore the effectiveness of
adversarial training in enhancing the robustness of ML models.
It is also observed that adversarial learning doesn’t enhance the
performance of NN in varied scenarios, reinforcing the ongoing
debate about NN’s effectiveness with tabular data [19] despite its
excellence in processing images and sequential data.

Constraint Management for Adversarial Defense. Figure 4-(a)
presents a performance and cost analysis of three constraint config-
uration options. Agent 1, optimized for cost-effectiveness, achieves
a fair F1-score of 89% and an AUC of 96%. Agent 2, with relatively
lower latency and memory footprint, serves as a moderate RL agent
compared to agents 1 and 3. Agent 3 excels with an F1-score exceed-
ing 96%, an AUC of 97%, 95% precision, and 97% recall, albeit with
a slightly longer inference time (0.005 ms) and a larger memory
footprint (1.06 MB). In contrast, Agent 1 boasts an extremely fast
inference time of 0.0002 ms and a compact 47 KB memory size.
Depending on the specific application requirements, Agent 1 is
ideal for pre-configurations demanding swift inference and minimal
memory usage while maintaining a dynamic adversarial defense
(with an 89% detection rate). Agent 3’s high detection performance
is appealing for applications where a slightly longer inference time
(around 0.005 ms) and a 1 MB model size are acceptable.

Scalability Analysis. We conducted a comprehensive scalability
analysis of adversarial learning across both training and inference
phases, illustrated in Figure 4-(b). In the training phase, our focus
was on assessing the impact of varying sizes of adversarial attack
data on inference detection performance. As shown in the blue line,
the F1-score drops during adversarial attacks, followed by improved
detection performance through adversarial training as the num-
ber of training samples increases. Initially, we observe improved
detection performance as the number of adversarial samples for
training increased. However, this enhancement plateaued as the at-
tack scale remained fixed despite a growing pool of adversaries. The
impact of adversarial sample size on larger-scale attacks warrants

further investigation. In contrast, during the inference phase, our
robust model, trained adversarially, displayed heightened resilience
against increasing volumes of adversarial attacks (orange line). This
trend not only underscores the effective scalability of our adver-
sarial learning approach with growing data but also highlights its
robustness when confronted with escalating adversarial challenges.

4 CONCLUSION

This study addresses adversarial attack challenges in Hardware Mal-
ware Detection (HMD), focusing on vulnerabilities in tabular data
sourced from performance counter registers. We propose a proac-
tive and multi-phased adversarial learning and defense framework
based on Deep Reinforcement Learning (DRL). This framework
encompasses adversarial attack generation, real-time prediction
of attack patterns, and adversarial training as a defense for ML
models. To ensure adaptability, we integrate a performance-aware
constraint controller for dynamic allocation of defense responsi-
bilities to specialized RL agents based on pre-defined performance
constraints. The experiments highlight the impact of adversarial
attacks causing a 79% decrease in MLs’ F1-score, countered by adver-
sarial training that elevates it by up to 86%. The results confirm the
efficacy of the proposed approach, achieving up to 96.1% detection
performance across various ML-based malware detectors.
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