
ObfusGate: Representation Learning-Based Gatekeeper for

Hardware-Level Obfuscated Malware Detection
Zhangying He, Chelsea William Fernandes, and Hossein Sayadi

Department of Computer Engineering and Computer Science, California State University, Long Beach, CA, USA

Abstract—In this paper, we explore the interplay between
code obfuscation techniques and performance counter traces to
undermine Hardware Malware Detectors (HMDs) that rely on
Machine Learning (ML) models. By crafting various obfuscated
malware categories and analyzing a wide range of ML models, we
demonstrate a notable detection performance reduction, showcas-
ing the evasive impact of obfuscated malware in HMD methods.
To counter these threats, we propose ObfusGate, an intelligent
and robust defense mechanism based on feature representation
learning that significantly enhances machine learning models
against both obfuscated and unobfuscated malware attacks. The
results indicate the effectiveness of ObfusGate, attaining up to
24% detection rate increase across diverse ML models assessed
for hardware-level obfuscated malware detection at run-time.

Index Terms—Code Obfuscation, Cybersecurity, Hardware Per-
formance Counters, Machine Learning, Malware Detection.

I. INTRODUCTION AND BACKGROUND

Emerging cybersecurity challenges have led to advanced

defense strategies combining traditional signature-based meth-

ods with machine learning-based detectors. However, attackers

employing diverse obfuscation methods present a challenge

to these defenses. The inefficiencies in software-based tech-

niques have spurred the development of Hardware Malware

Detection (HMD) [1]–[3]. Utilizing microarchitectural features

from Hardware Performance Counters (HPCs) alongside ML,

HMDs excel in distinguishing between malicious and legitimate

programs, surpassing traditional software-based solutions.

Previous HMD methods have overlooked the intricate chal-

lenge presented by malware obfuscation techniques, ignoring

their evasion potential and the need for specialized malware de-

tection mechanisms. Meanwhile, prior research on obfuscated

malware detection mainly concentrates on generic malware

identification in Android apps [4]–[6] and IoT side-channel

obfuscation attack [7], with limited hardware-level exploration.

These studies often focus narrowly on specific malware ob-

fuscation types, neglecting hackers’ use of varied obfuscation

methods combined with regular malware.

In response, in this work we develop various code obfus-

cation techniques within HMD systems, revealing their abil-

ity to circumvent ML-based hardware malware detectors via

malware obfuscation. Subsequently, we introduce ObfusGate,

an intelligent and robust defense mechanism based on feature

representation learning specialized in securing systems against

blended attacks, including diverse obfuscated and unobfuscated

malware. The considered threat model in ObfusGate addresses

the real-world threat landscape encountered by contemporary

security systems. Furthermore, within ObfusGate, our investiga-

tion assesses the viability of employing a unified defense model

for various malware types. We integrate a feature representation

learner uniquely trained on unobfuscated malware HPC data

which is capable of effectively discerning significant mali-

cious patterns from noises embodied in obfuscated malware’s

HPCs. This approach demonstrates consistent effectiveness in

strengthening ML-based malware detectors, showcasing adapt-

ability and versatility across various real-world attacks.
II. PROPOSED METHODOLOGY

a) Framework Overview: Fig. 1 depicts the integrated deploy-

ment of ObfusGate, involving hardware-level attacks moni-

toring, feature engineering, representation learning, and ML

defense. This comprehensive defense mechanism effectively

handles both obfuscated and regular malware attacks. An

extensive range of hardware-level features are collected from

both benign and malware applications using the Perf tool on

an Intel Core i7 processor running Ubuntu 22.04.2. Dataset is

divided into an 80:20 ratio for training and testing ML models.

b) Malware Obfuscation: We analyzed the robustness of Ob-

fusGate against four common code obfuscation techniques:

null code insertion, code splitting, code shuffling, and vari-

able substitution. Null code insertion adds non-functional code

blocks, complicating malware code. Code splitting fragments

the code into modules across multiple files, impeding code

analysis. Code shuffling rearranges code structure to obscure

the program’s logic. Variable substitution replaces variable

names with meaningless ones, impeding automated analysis.

These techniques increase the code complexity, hindering re-

verse engineering. We rigorously analyzed their effectiveness

in circumventing ML models within HMD methods.

c) Representation Learning: The system first operates with ML

models trained on regular malware attacks. As attack scenarios

diversify due to various obfuscation techniques, ObfusGate

adapts by incorporating a new training and inference process. It

employs a denoising model, a neural network using a denoising

autoencoder. This autoencoder is trained on unobfuscated mal-

ware features intentionally augmented with noise, enabling the

model to learn a representation that maps corrupted data back

to its original, uncorrupted state in an unsupervised manner.

During inference, this model reconstructs vital features, filtering

out noise from inputs affected by obfuscated malware. Unlike

prevalent methods training on obfuscated malware data, Obfus-

Gate uniquely relies on unobfuscated malware features, using

known patterns to counter evolving obfuscation techniques.

HPC

Feature Engineering

Data Cleaning

Normalization

Feature Denoising

Top four HPC 

Features

Input X Noised X

Encoder

Lower-

dimension 

representation
Decoder

Reconstructed 

Input X

Denoising 

Model

Representation Learner to Remove Noises

Denoised 

X

Malware

Benign

null-obfuscated 

malware

benign

Hardware-Level Attacks Monitoring

shuffle-obfuscated 

malware

split-obfuscated 

malware

var-obfuscated 

malware

malware

Applications profiling 

at the processor9s 

hardware level

Random Forest

LightGBM

MLP

Gradient Boost.

XGBoost

Decision Tree

Logistic Reg.

ML Defense Models

Denoised HPCs used as inputs of MLs for 

Run-time Malware Detection (Inference)

HPC Features Collected

During training, only 

malware (unobfuscated), 

and benign data are used 

Correlation Analysis

Feature Selection

Feature Extraction

Training | Inference

Fig. 1: Overview of ObfusGate for detecting obfuscated malware at run-time.



TABLE I: 1) Performance (F1-score) and downgrade (%) of obfuscated malware detection, 2) Performance (F1-score) and boost-up rate (%) of ObfusGate, with overhead results.

1) Unobfuscated & Obfuscated Malware Attacks 2) ObfusGate: Unobfuscated & Obfuscated Malware Defense

F1-score F1-score Boost-up RateML-based Detector

unobf null shuf split var

latency

(ms)

memory

(KB) unobf null shuf split var unobf ↑ null ↑ shuf ↑ split ↑ var ↑

latency

(ms)

memory

(KB)

Random Forest 0.93 0.81 0.82 0.79 0.84 0.037 606 0.96 0.92 0.91 0.91 0.92 3% 11% 9% 12% 8% 0.078 1,742

Decision Tree 0.9 0.78 0.8 0.75 0.81 0.002 9 0.96 0.90 0.86 0.88 0.91 6% 12% 6% 13% 10% 0.048 158

Logistic Regression 0.88 0.75 0.76 0.67 0.74 0.003 1 0.94 0.92 0.91 0.90 0.91 6% 17% 15% 23% 17% 0.053 144

MLP 0.84 0.7 0.7 0.68 0.67 0.006 1,050 0.95 0.91 0.91 0.91 0.91 11% 21% 21% 23% 24% 0.058 1,742

XGBoost 0.94 0.81 0.83 0.79 0.84 0.010 162 0.96 0.92 0.92 0.90 0.91 2% 11% 9% 11% 7% 0.057 300

LightGBM 0.94 0.81 0.83 0.8 0.84 0.006 327 0.96 0.91 0.92 0.91 0.91 2% 10% 9% 11% 7% 0.063 501

Gradient Boosting 0.93 0.8 0.83 0.77 0.84 0.003 163 0.96 0.91 0.91 0.90 0.91 3% 11% 8% 13% 17% 0.050 307

d) Training Phase: Exclusively relying on unobfuscated input

for training, we introduced Gaussian noise to the training

data. This corrupted data was utilized to train the denoising

model, enabling it to encode vital feature representations and

reconstruct the original, uncorrupted input. Subsequently, these

reconstructed features were employed to train the ML models,

which were then deployed during the inference phase.

e) Inference Phase: As shown in Fig. 1, the system processes

diverse attack scenarios. HPC features undergo monitoring and

preprocessing before entering the denoising model. This model

reconstructs the feature space by preserving crucial features

(clean features) while eliminating noise from obfuscated data

(and noise from unobfuscated input in regular malware attacks).

The refined features then feed into various range of ML models

trained on unobfuscated data, enabling accurate and robust

malware detection, adaptable to different attack scenarios.

III. EXPERIMENTAL RESULTS AND EVALUATION

a) Obfuscated Malware Attacks: Table I (part 1) showcases the

results of top ML models for unobfuscated and four types of

obfuscated malware attacks (in red). The results clearly show

how all four obfuscation techniques diminish the system’s F1-

score, indicating their success in bypassing the ML defense

model. Split obfuscation notably undermines system security

by an average of 16% (max 21%). Despite XGBoost and

LightGBM exhibiting strong defense (both at 94% F1-score),

obfuscated attacks notably reduce their True Positive Rates

(TPR) (not shown due to space limitation) from 89.4% to 66.7%

for XGBoost and from 88.9% to 67.6% for LightGBM.

b) Defending against Obfuscated Malware Attacks: Table I

(part 2) presents ObfusGate’s F1-scores (in green) and boost-up

rates for leading ML models. On average, ObfusGate increases

the detection rate against all four types of obfuscated attacks

by 13%. Notably, for the highly concealed split obfuscation, it

elevates all ML models’ average F1-scores by 16%. It further

augments LightGBM and XGBoost, elevating their F1-scores

from 80% to 91% and 79% to 90%, respectively. A key aspect

is ObfusGate’s consistent performance across unobfuscated and

various obfuscated attacks, allowing one ML model deployment

for defending diverse attack scenarios. Moreover, it improves

defense against regular malware attacks by an average of 5%.

Remarkably, MLP improved by 11% in F1-score for regular

malware and 23% for split obfuscated attacks detection.

c) Efficiency Trade-off Analysis: Fig. 2 illustrates the detec-

tion rate (F1-score) vs. overhead (latency*memory footprint)

efficiency analysis before and after ObfusGate against split

obfuscated malware attacks during run-time inference. The

inference latency and memory overhead results are reported

in Table I. Logistic Regression (LR), XGBoost, LightGBM,

and Gradient Boosting (GB) distinguish themselves as efficient

defenders. LR model proves most cost-efficient with 0.05ms

inference time and 144KB model size while offering a sig-

nificant detection rate. Additionally, XGBoost and LightGBM

show stability and speed with relatively compact models.

Fig. 2: Detection Rate (F1-score) vs. Cost Efficiency (Latency*Memory Footprint)

analysis for the most effective obfuscated malware attack (split obfuscation).

d) Adaptability Analysis across Attack Scenarios: To assess Ob-

fusGate’s adaptability to evolving attack scenarios, we designed

six distinct attacks encompassing unobfuscated malware, split,

null, shuffle, and var attacks. Table II presents the results for

XGBoost, one of the top-performing models. ObfusGate con-

sistently achieves an F1-score and accuracy of 90% or higher

in all attack scenarios. Moreover, in detecting unobfuscated

malware attacks, it obtains a 100% TPR and recall, showcasing

its effectiveness in adapting to diverse malware attacks.
TABLE II: XGBoost’s detection rate (F1-score) in ObfusGate across various attacks.
Scenario Accuracy F1-score AUC TPR FPR FNR TNR Precision Recall

attack1 0.95 0.96 0.96 1.00 0.09 0.00 0.91 0.92 1.00

attack2 0.90 0.90 0.93 0.89 0.09 0.11 0.91 0.91 0.89

attach3 0.93 0.93 0.95 0.95 0.09 0.05 0.91 0.92 0.95

attack4 0.93 0.93 0.94 0.94 0.09 0.06 0.91 0.91 0.94

attack5 0.92 0.92 0.94 0.94 0.10 0.06 0.90 0.90 0.94

attack6 0.92 0.92 0.94 0.94 0.10 0.06 0.90 0.90 0.94

attack1: unobfuscated malware attack; attack2: split attack; attack3: unobfuscated and split malware attacks; attack4:

unobfuscated, split, and null attacks; attack5: unobfuscated, split, null, and shuf attacks; attack6: unobfuscated, split, null,

shuf, and var attacks.

IV. CONCLUSION

In this work, we demonstrated the efficacy of code ob-

fuscation in circumventing machine learning-based hardware

malware detectors, leading to a significant decrease of (9-21)%

in detection rate across different models. We further introduced

ObfusGate, a representation learning-based gatekeeper to boost

up the performance of detectors against both obfuscated and un-

obfuscated malware attacks. ObfusGate focused on distinguish-

ing crucial patterns of malicious behavior from noise, reducing

reliance on the unpredictability of obfuscated malware.

V. ACKNOWLEDGMENT

This work is supported by the National Science Foundation

under Award No. 2139034.

REFERENCES

[1] J. Demme et al., “On the feasibility of online malware detection with
performance counters,” in ISCA. ACM, 2013, pp. 559–570.

[2] M. Ozsoy et al., “Malware-aware processors: A framework for efficient
online malware detection,” in HPCA, 2015, pp. 651–661.

[3] H. Sayadi et al., “Ensemble learning for effective run-time hardware-based
malware detection: A comprehensive analysis and classification,” in Design

Automation Conference (DAC), 2018, pp. 1–6.
[4] L. Onwuzurike et al., “Mamadroid: Detecting android malware by building

markov chains of behavioral models (extended version),” ACM Trans. Priv.

Secur., vol. 22, no. 2, apr 2019.
[5] M. Ikram et al., “Dadidroid: An obfuscation resilient tool for detecting

android malware via weighted directed call graph modelling,” arXiv, 2019.
[6] Z. Li et al., “Obfusifier: Obfuscation-resistant android malware detection

system,” in SecureComm. Springer, 2019, pp. 214–234.
[7] D.-P. Pham et al., “Obfuscation revealed: Leveraging electromagnetic

signals for obfuscated malware classification,” in ACSAC’21, pp. 706–719.


