ObfusGate: Representation Learning-Based Gatekeeper for
Hardware-Level Obfuscated Malware Detection

Zhangying He, Chelsea William Fernandes, and Hossein Sayadi
Department of Computer Engineering and Computer Science, California State University, Long Beach, CA, USA

Abstract—In this paper, we explore the interplay between
code obfuscation techniques and performance counter traces to
undermine Hardware Malware Detectors (HMDs) that rely on
Machine Learning (ML) models. By crafting various obfuscated
malware categories and analyzing a wide range of ML models, we
demonstrate a notable detection performance reduction, showcas-
ing the evasive impact of obfuscated malware in HMD methods.
To counter these threats, we propose ObfusGate, an intelligent
and robust defense mechanism based on feature representation
learning that significantly enhances machine learning models
against both obfuscated and unobfuscated malware attacks. The
results indicate the effectiveness of ObfusGate, attaining up to
24% detection rate increase across diverse ML models assessed
for hardware-level obfuscated malware detection at run-time.

Index Terms—Code Obfuscation, Cybersecurity, Hardware Per-
formance Counters, Machine Learning, Malware Detection.

I. INTRODUCTION AND BACKGROUND

Emerging cybersecurity challenges have led to advanced
defense strategies combining traditional signature-based meth-
ods with machine learning-based detectors. However, attackers
employing diverse obfuscation methods present a challenge
to these defenses. The inefficiencies in software-based tech-
niques have spurred the development of Hardware Malware
Detection (HMD) [1]-[3]. Utilizing microarchitectural features
from Hardware Performance Counters (HPCs) alongside ML,
HMDs excel in distinguishing between malicious and legitimate
programs, surpassing traditional software-based solutions.

Previous HMD methods have overlooked the intricate chal-
lenge presented by malware obfuscation techniques, ignoring
their evasion potential and the need for specialized malware de-
tection mechanisms. Meanwhile, prior research on obfuscated
malware detection mainly concentrates on generic malware
identification in Android apps [4]-[6] and IoT side-channel
obfuscation attack [7], with limited hardware-level exploration.
These studies often focus narrowly on specific malware ob-
fuscation types, neglecting hackers’ use of varied obfuscation
methods combined with regular malware.

In response, in this work we develop various code obfus-
cation techniques within HMD systems, revealing their abil-
ity to circumvent ML-based hardware malware detectors via
malware obfuscation. Subsequently, we introduce ObfusGate,
an intelligent and robust defense mechanism based on feature
representation learning specialized in securing systems against
blended attacks, including diverse obfuscated and unobfuscated
malware. The considered threat model in ObfusGate addresses
the real-world threat landscape encountered by contemporary
security systems. Furthermore, within ObfusGate, our investiga-
tion assesses the viability of employing a unified defense model
for various malware types. We integrate a feature representation
learner uniquely trained on unobfuscated malware HPC data
which is capable of effectively discerning significant mali-
cious patterns from noises embodied in obfuscated malware’s

HPCs. This approach demonstrates consistent effectiveness in
strengthening ML-based malware detectors, showcasing adapt-
ability and versatility across various real-world attacks.

II. PROPOSED METHODOLOGY
a) Framework Overview: Fig. 1 depicts the integrated deploy-
ment of ObfusGate, involving hardware-level attacks moni-
toring, feature engineering, representation learning, and ML
defense. This comprehensive defense mechanism effectively
handles both obfuscated and regular malware attacks. An
extensive range of hardware-level features are collected from
both benign and malware applications using the Perf tool on
an Intel Core i7 processor running Ubuntu 22.04.2. Dataset is
divided into an 80:20 ratio for training and testing ML models.
b) Malware Obfuscation: We analyzed the robustness of Ob-
JfusGate against four common code obfuscation techniques:
null code insertion, code splitting, code shuffling, and vari-
able substitution. Null code insertion adds non-functional code
blocks, complicating malware code. Code splitting fragments
the code into modules across multiple files, impeding code
analysis. Code shuffling rearranges code structure to obscure
the program’s logic. Variable substitution replaces variable
names with meaningless ones, impeding automated analysis.
These techniques increase the code complexity, hindering re-
verse engineering. We rigorously analyzed their effectiveness
in circumventing ML models within HMD methods.
¢) Representation Learning: The system first operates with ML
models trained on regular malware attacks. As attack scenarios
diversify due to various obfuscation techniques, ObfusGate
adapts by incorporating a new training and inference process. It
employs a denoising model, a neural network using a denoising
autoencoder. This autoencoder is trained on unobfuscated mal-
ware features intentionally augmented with noise, enabling the
model to learn a representation that maps corrupted data back
to its original, uncorrupted state in an unsupervised manner.
During inference, this model reconstructs vital features, filtering
out noise from inputs affected by obfuscated malware. Unlike
prevalent methods training on obfuscated malware data, Obfus-
Gate uniquely relies on unobfuscated malware features, using
known patterns to counter evolving obfuscation techniques.

Feature Denoising

Hardware-Level Attacks Monitoring

Reconstructed
Input X

IEILEE Top four HPC | Input X Noised X

Features

= Lower-
dimension
representation

L__mwae 1| |, s
HPC Features Collected
Feature Engineering l

null-obfuscated

Representation Learner to Remove Noises

Training | ML Defense Models
v v Data Cleaning I LightGBM I Malware
v v Normalization ey — Random Forest 0
enoising || Denoised {3 XGBoost
voox Correlation Analysis Model X — =
Decision Tree i @

voox Feature Selection

- Logistic Reg. ; Benign
v v Feature Extraction Denoised HPCs used as inputs of MLs for w Gradient Boost. 9

Run-time Malware Detection (Inference)

Fig. 1: Overview of ObfusGate for detecting obfuscated malware at run-time.

TABLE I: 1) Performance (F1-score) and downgrade (%) of obfuscated malware detection, 2) Performance (Fl-score) and boost-up rate (%) of ObfusGate, with overhead results.

U & Ol Malware Attacks 2) ObfusGate: U &0 Defense

ML-based Detector Fl-score latency memory Fl-score Boost-up Rate latency | memory

unobf | null shuf | split var (ms) (KB) unobf | null shuf | split var unobf | null £ | shuf £ | splitt | var t (ms) (KB)
Random Forest 0.93 081 082 | 079 | 084 | 0037 606 0.96 092 | 091 091 092 | 3% 1% 9% 12% 3% 0.078 1,742
Decision Tree 09 078 | 08 075 | 081 0.002 9 0.96 090 | 086 | 088 | 091 6% 2% 6% 3% 10% 0.043 158
Logistic Regression 0.88 075 | 076 | 067 | 074 | 0003 1 0.94 092 | 091 090 | 001 6% 7% 15% 23% 17% 0.053 144
MLP 0.84 0.7 0.7 068 | 067 | 0.006 1,050 095 091 091 091 091 1% 21% 21% 23% 24% 0.058 1,742
XGBoost 0.94 081 083 | 079 | 084 | 0010 162 0.96 092 | 092 | 090 | 091 2% 1% 9% 1% 7% 0.057 300
LightGBM 0.94 081 083 | 08 084 | 0.006 327 0.96 091 092 | 091 091 2% 10% 9% 1% 7% 0.063 501
Gradient Boosting 0.93 0.8 0.83 0.77 0.84 0.003 163 0.96 0.91 0.91 0.90 0.91 3% 11% 8% 13% 17% 0.050 307

d) Training Phase: Exclusively relying on unobfuscated input
for training, we introduced Gaussian noise to the training
data. This corrupted data was utilized to train the denoising
model, enabling it to encode vital feature representations and
reconstruct the original, uncorrupted input. Subsequently, these
reconstructed features were employed to train the ML models,
which were then deployed during the inference phase.
e) Inference Phase: As shown in Fig. 1, the system processes
diverse attack scenarios. HPC features undergo monitoring and
preprocessing before entering the denoising model. This model
reconstructs the feature space by preserving crucial features
(clean features) while eliminating noise from obfuscated data
(and noise from unobfuscated input in regular malware attacks).
The refined features then feed into various range of ML models
trained on unobfuscated data, enabling accurate and robust
malware detection, adaptable to different attack scenarios.

III. EXPERIMENTAL RESULTS AND EVALUATION
a) Obfuscated Malware Attacks: Table I (part 1) showcases the
results of top ML models for unobfuscated and four types of
obfuscated malware attacks (in red). The results clearly show
how all four obfuscation techniques diminish the system’s F1-
score, indicating their success in bypassing the ML defense
model. Split obfuscation notably undermines system security
by an average of 16% (max 21%). Despite XGBoost and
LightGBM exhibiting strong defense (both at 94% F1-score),
obfuscated attacks notably reduce their True Positive Rates
(TPR) (not shown due to space limitation) from 89.4% to 66.7%
for XGBoost and from 88.9% to 67.6% for LightGBM.
b) Defending against Obfuscated Malware Attacks: Table 1
(part 2) presents ObfusGate’s Fl-scores (in green) and boost-up
rates for leading ML models. On average, ObfusGate increases
the detection rate against all four types of obfuscated attacks
by 13%. Notably, for the highly concealed split obfuscation, it
elevates all ML models’ average Fl-scores by 16%. It further
augments LightGBM and XGBoost, elevating their F1-scores
from 80% to 91% and 79% to 90%, respectively. A key aspect
is ObfusGate’s consistent performance across unobfuscated and
various obfuscated attacks, allowing one ML model deployment
for defending diverse attack scenarios. Moreover, it improves
defense against regular malware attacks by an average of 5%.
Remarkably, MLP improved by 11% in Fl-score for regular
malware and 23% for split obfuscated attacks detection.
c) Efficiency Trade-off Analysis: Fig. 2 illustrates the detec-
tion rate (Fl-score) vs. overhead (latency*memory footprint)
efficiency analysis before and after ObfusGate against split
obfuscated malware attacks during run-time inference. The
inference latency and memory overhead results are reported
in Table I. Logistic Regression (LR), XGBoost, LightGBM,
and Gradient Boosting (GB) distinguish themselves as efficient
defenders. LR model proves most cost-efficient with 0.05ms
inference time and 144KB model size while offering a sig-

nificant detection rate. Additionally, XGBoost and LightGBM
show stability and speed with relatively compact models.

160

+ Before ObfusGate « After ObfusGate RF °
>
‘é 20 MLP
9>
2 RF
£ 80
z XGBoost 7
g S LightGBM LgRtGEN)
3
& a0 mLP DT B XGBoost
DT L)
R GB ° ¢
0 54 >0 90 > >
0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Fl-score
Fig. 2: Detection Rate (F1-score) vs. Cost Efficiency (Latency*Memory Footprint)
analysis for the most effective obfuscated malware attack (split obfuscation).

d) Adaptability Analysis across Attack Scenarios: To assess Ob-
fusGate’s adaptability to evolving attack scenarios, we designed
six distinct attacks encompassing unobfuscated malware, split,
null, shuffle, and var attacks. Table II presents the results for
XGBoost, one of the top-performing models. ObfusGate con-
sistently achieves an Fl-score and accuracy of 90% or higher
in all attack scenarios. Moreover, in detecting unobfuscated
malware attacks, it obtains a 100% TPR and recall, showcasing

its effectiveness in adapting to diverse malware attacks.
TABLE II: XGBoost’s detection rate (Fl-score) in ObfusGate across various attacks.

Scenario Accuracy F1-score AUC TPR FPR FNR TNR Precision Recall

attack1 0.95 0.96 0.96 1.00 0.09 0.00 0.91 0.92 1.00
attack2 0.90 0.90 0.93 0.89 0.09 0.11 0.91 0.91 0.89

attach3 0.93 0.93 0.95 0.95 0.09 0.05 0.91 0.92 0.95

attack4 0.93 0.93 0.94 0.94 0.09 0.06 0.91 0.91 0.94

attackS 0.92 0.92 0.94 0.94 0.10 0.06 0.90 0.90 0.94

attack6 0.92 0.92 0.94 0.94 0.10 0.06 0.90 0.90 0.94

attackl: unobfuscated malware attack; attack2: split attack; attack3: unobfuscated and split malware attacks; attackd:
unobfuscated, split, and null attacks; attack5: unobfuscated, split, null, and shuf attacks; attack6: unobfuscated, split, null,

ks IV. CONCLUSION

In this work, we demonstrated the efficacy of code ob-
fuscation in circumventing machine learning-based hardware
malware detectors, leading to a significant decrease of (9-21)%
in detection rate across different models. We further introduced
ObfusGate, a representation learning-based gatekeeper to boost
up the performance of detectors against both obfuscated and un-
obfuscated malware attacks. ObfusGate focused on distinguish-
ing crucial patterns of malicious behavior from noise, reducing
reliance on the unpredictability of obfuscated malware.

V. ACKNOWLEDGMENT

This work is supported by the National Science Foundation

under Award No. 2139034.
REFERENCES

[1] J. Demme et al., “On the feasibility of online malware detection with
performance counters,” in ISCA. ACM, 2013, pp. 559-570.

M. Ozsoy et al., “Malware-aware processors: A framework for efficient
online malware detection,” in HPCA, 2015, pp. 651-661.

H. Sayadi et al., “Ensemble learning for effective run-time hardware-based
malware detection: A comprehensive analysis and classification,” in Design
Automation Conference (DAC), 2018, pp. 1-6.

L. Onwuzurike et al., “Mamadroid: Detecting android malware by building
markov chains of behavioral models (extended version),” ACM Trans. Priv.
Secur., vol. 22, no. 2, apr 2019.

M. Ikram et al., “Dadidroid: An obfuscation resilient tool for detecting
android malware via weighted directed call graph modelling,” arXiv, 2019.
Z. Li et al., “Obfusifier: Obfuscation-resistant android malware detection
system,” in SecureComm. Springer, 2019, pp. 214-234.

D.-P. Pham et al., “Obfuscation revealed: Leveraging electromagnetic
signals for obfuscated malware classification,” in ACSAC’21, pp. 706-719.

[2]
(3]

[4]

[3]
[6

[

(71

