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Abstract—The performance limitations of conventional
software-based Intrusion Detection Systems (IDSs) have paved
the way for the emergence of hardware-oriented approaches.
These approaches harness the power of Machine Learning (ML)
algorithms applied to processors’ hardware-related data, thereby
enhancing the overall system’s security and efficiency. However,
ensuring the dependability of ML models’ decisions is crucial,
yet this aspect has been largely overlooked in previous studies.
In this paper, we delve into the reliability of machine learning
algorithms within hardware-oriented intrusion detection systems,
focusing specifically on malware detection. Our investigation
aims to bridge the existing gap by shedding light on the trade-
offs between performance vs. reliability and robustness levels
exhibited by ML models in intrusion detection systems. We
conduct a thorough evaluation of ML algorithms in hardware-
oriented IDSs, considering factors such as training data size,
number of hardware events used, and internal data separability
(malware stealthiness). Additionally, we incorporate an effective
model observer module to assess prediction probabilities in real-
time; thereby, employing a threshold to determine the ML
model’s confidence for enhanced reliable intrusion detection.

Index Terms—Cybersecurity, Machine Learning, Intrusion
Detection System, Reliability Analysis.

I. INTRODUCTION

Intrusion Detection Systems (IDSs) are critical for safe-
guarding information systems’ security and integrity. Malware
detection is a key focus within IDSs, aiming to identify and
mitigate malicious software that compromises system security
and functionality [1], [2]. With the increasing sophistication
of malware variants, effective malware detection has become
paramount in IDSs. Traditional software-based techniques,
relying on pattern matching, signatures, and heuristics, offer
protection against known malware strains but struggle to detect
emerging threats efficiently [3], [4]. This limitation has driven
the development of hardware-oriented approaches, leveraging
dedicated hardware components like Hardware Performance
Counter (HPC) registers to monitor performance-related data
[5]-[10]. By utilizing Machine Learning (ML) algorithms
with low resource requirements, hardware-oriented IDSs aim
to enhance system efficiency and overall security [11]. The
integration of ML algorithms within these approaches holds
promise for augmenting intrusion detection capabilities.

The capability of ML models to make dependable decisions
is of utmost importance, as they serve as the front-line defense
against constantly evolving cyber-attacks [12], [13]. Failure to
address reliability concerns jeopardizes the effectiveness and
practicality of IDSs. As outlined below, our comprehensive
analysis brings to light significant considerations linked to
ML-based IDSs which have been overlooked in prior research.

1) Unprecedented Run-Time Situations: While ML-based in-
trusion detection systems hold great potential, the ability to
predict unprecedented run-time situations correctly is impera-
tive, particularly in safety-critical applications. ML-based IDSs
struggle to predict and handle unforeseen run-time scenarios
effectively. The reliability of ML models can vary significantly,
leading to uncertainties in their performance when faced with
unseen, stealthy (low malware vs. benign class separability),
and/or out-of-distribution intrusion events [14]-[16] .

2) Handling Misclassified Samples: ML-based IDSs often
lack robust mechanisms to address wrongly predicted samples
[17]. Finding appropriate solutions to handle these samples
and minimize their impact is essential for enhancing system
performance [18]-[20]. The work in [12] highlights that deep
learning models are often fine-tuned within narrow boundaries,
prioritizing certain data they were trained on and neglecting
run-time variations. However, ensuring reliable decisions in
unprecedented conditions in real-time necessitates offering
effective assessments to surpass these limitations.

3) Ensuring Dependability and System-Level Robustness: ML-
based intrusion detection systems deal with the challenge of
achieving run-time dependability and reliability. While current
research primarily focuses on testing models with specific
datasets, the reliability of these models in real-world, dynamic
environments remains uncertain [21]. Additionally, ensuring
system reliability requires designing robust fault tolerance
mechanisms to handle unprecedented data uncertainty during
run-time [22]-[24]. However, existing fault tolerance solutions
mainly address system faults and errors, overlooking the
limitations of the ML models themselves [17], [25].

This paper aims to address the critical challenges surround-
ing the reliability of ML models in hardware-oriented intrusion
detection systems. We present an in-depth analysis of factors
impacting the reliability of ML models from multiple perspec-
tives. Additionally, we propose a novel reliability observing
module that evaluates the prediction confidence of models and
effectively handles unpredictable samples through advanced
detection and safety protection mechanisms. To this aim, we
comprehensively assess the performance and reliability of
widely deployed machine learning algorithms in hardware-
oriented malware detection, considering crucial parameters
such as training data size, number of hardware events, and
malware stealthiness. Furthermore, we introduce a calibration
method for selective prediction to enhance the overall reliabil-
ity of ML algorithms for robust and efficient intrusion detec-
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Fig. 1: Proposed framework: Reliability analysis for ML algorithms in IDSs

tion. By achieving a delicate balance between performance and
reliability, this research represents a significant advancement
toward developing trustworthy and reliable security solutions
to effectively counter emerging cyber-attacks.

II. PROPOSED RELIABILITY ANALYSIS METHODOLOGY
A. Data Acquisition and Threat Model

In the data collection phase, we monitored an extensive set
of both malware and benign instances, capturing HPC events
using the Perf tool on an Intel Xeon X5550 machine [14]. This
process involved running applications within controlled Linux
Containers (LXC) environment with a sampling time of 10ms
[26]. Our dataset consisted of a diverse range of real-world
applications, including MiBench [27], SPEC2006 [28], Linux
system programs, browsers, and text editors, representing
common usage scenarios. For the malware dataset, appli-
cations from VirusShare online repository categorized into
various types, covering a wide spectrum of real-world malware
threats. To organize the data effectively, we partitioned the
malware and benign data into four distinct sets and utilized the
Mahalanobis Distance [29] metric (detailed in Section II-C)
to compute distances among the different malware types. This
allowed us to identify closer-distance sets for more effective
training. Additionally, we generated three out-of-distribution
(OOD) sets comprising zero-day samples not present in the
training dataset, enabling thorough evaluation of model perfor-
mance and generalization on previously unseen data, ensuring
reliability and robustness against emerging attack scenarios.
B. Methodology Overview

Figure 1 presents an overview of our proposed methodol-
ogy for assessing the reliability of ML models in intrusion
detection systems and making informed predictions. The eval-
uation of model reliability is based on our three-fold out-of-
distribution test data, allowing us to find the most effective
models. Subsequently, the selected reliable model is used for
selective prediction.

1) ML Models Implementation: To develop hardware-
oriented IDS via reduced HPC data we train twelve ML
models with default parameter settings in scikit-learn that have
been widely employed in existing research. These algorithms
include Random Forest (RF), Decision Tree, Gaussian Naive
Bayes (GNB), Logistic Regression (LR), Extra Tree Classifier,

Ridge Classifier, K-Nearest Neighbors (KNN), Support Vector
Machine (SVM), Bagged Decision Tree, Gradient Boosting,
Multi-layer Perceptron (MLP), XGBoost, and LightGBM.

2) Reliability Analysis: Our reliability analysis follows a
structured workflow in which we initially explore ML models
developed with varying training data sizes, identifying in-
stances of overfitting on out-of-distribution (OOD) test sets.
To address this, we partition the training data into thirty
independent chunks. Various training data sizes are selected
starting from 800 and ending with more than 25K samples.
The training dataset contains four types of malware including
Trojan, Botnet, Backdoor, and Virus and a set of randomly se-
lected, independent benign samples as the training set. OOD1
contains three types of malware including Worm, Rootkit, and
Ransomware. OOD?2 includes three malware types including
Worm, Rootkit, and Adware. OOD3 contains three types of
malware including Worm, Rootkit, and Spyware, and all three
sets include the same amount of randomly sampled benign.
We trained thirty models for each ML algorithm, which are
then evaluated on OOD test sets to determine the model
with the highest detection rate (F1-score). Next, we explore
the influence of the number of HPC events (1, 2, 3, and
4) on the reliability of ML models. This design parameter
is intricately related to the reliability and robustness of the
models in hardware-oriented IDSs. Its choice is influenced by
the available resources within the target processor architecture,
enabling effective run-time detection of attacks [7], [9].

Furthermore, we examine the relationship between the in-
ternal separability (stealthiness) of OOD test sets and the
models’ reliability. The internal data separability is assessed
by calculating the Mahalanobis distance between malware and
benign samples within each OOD test set. By computing the
average distance, we obtain a float number that indicates the
level of separability between malware and benign in each set.
Finally, we utilize the detection rate of the best ML model on
each OOD set as an indicator of reliability score, reflecting the
model’s dependability during online inference in a given run-
time environment. This score serves as an influential factor
in determining the prediction probability threshold (gamma)
during the calibration process.

3) Model Observer: As shown in Figure 1, we implemented
selective prediction to guide predictions into two routes: one
with confident defense, and another to reject the prediction
by referring it to the next level of further investigation.
The best model for each OOD set outputs the predicted
class probabilities for each test data, which serves as the
model observer. Prediction probability lower than an optimized
threshold 6 is referred to further investigation while higher
than 6 is predicted with confidence. For those data that need
further investigation, a calibration method such as human-in-
the-loop to manually check the incoming data’s intrusiveness,
or a high performance DNN model (on-device or in the
cloud) can be involved. This paper assumes the involvement
of humans-in-the-loop capable of accurately distinguishing
between malware and benign samples. We then evaluate the
overall system performance with the manual calibration and



TABLE I: Internal Mahalanobis Distance for test sets to represent internal
data separability (malware stealthiness)

Test Set | Malware Mahalanobis Separability
Distance

00D 2 ‘Worm, Rootkit, Adware 0.52 High

00D 1 Worm, Rootkit, Ransomware 0.40 Medium

00D 3 Worm, Rootkit, Spyware 0.23 Low

compare it with the original system performance without such
calibration strategy in place.
C. Internal Data Separability

In our proposed reliability analysis, we utilize the Maha-
lanobis distance [29] to model the internal separability of
the data. The Mahalanobis distance is a statistical measure
commonly employed to assess whether a sample dataset
(Gl) is drawn from a multivariate normal distribution of
another dataset (G2). It quantifies the distance between G1
and G2 by considering the difference between their mean
vectors, considering the within-group variation. This metric
is computed using the formula shown in Equation 1, where
x represents each data point in the observations X to be
evaluated, i denotes the mean vector of the same group, and X
represents the covariance matrix of the same group. The output
of following equation, denoted as D? (Mahalanobis distance),
provides a metric for assessing the dissimilarity between the
two groups. D? = (z— TS (5 — p) 0

We quantify the stealthiness (malware benign
separability) by calculating the Mahalanobis distance
between malware and benign for each OOD test set.
We first normalize the features, then use Scikit Learn’s
sklearn.covariance.robust_cov.mahalanobis() function
[30] to output the Mahalanobis distance matrix for malware
and benign. We average all datapoint values to output the
average distance score for malware and benign. The internal
D? is the absolute difference between the average score for
all malware and the average score for all benign samples.
Table I presents the metrics for the Mahalanobis distance and
corresponding malware benign separability level.

ITI. EVALUATION RESULTS AND ANALYSIS

In this section, we provide a comprehensive analysis of the

results, focusing on the top ML models for each OOD test.

A. Run-Time Data Separability vs. Model Reliability

Figure 2 depicts the seven top-performing ML models
performance for different levels of malware and benign separa-
bility. Overall, the data/class separability strongly impacts ML
models’ performance. The detection rates for low separability
scenarios (green) are between 0.81 to 0.85, while the high
separability (red) achieves over 90% Fl-score, with some
reaching to 0.95-0.96. XGBoost model performs the best
consistently achieving the highest Fl-score across all three
OOD test sets. For highly stealthy data with low separability,
LightGBM, Random Forest, and XGBoost demonstrate com-
parable performance (0.85). The observations highlight that
even the best ML models in IDSs can experience significant
performance degradation due to the characteristics and sophis-
tication of the attack. In such cases, trusting the ML model
becomes a concern. To address this, conducting iterative run-
time reliability tests are suggested to select robust models

TABLE II: Optimal training data sizes to reach highest performance (F-score)
for top-performing ML models

Separatability | RF LightGBM | XGBoost | DT

High 24,436 | 22,751 21,065 24,436
Medium 16,853 | 24,436 12,640 22,751
Low 5,056 24,436 25,279 24,436

meeting a predefined threshold and incorporating an option for
further investigation if the model’s reliability is questionable.
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Fig. 2: Top ML models’ performance form; T:\jz;: o?ghdata internal class
separability from low (stealthier) to high

Takeaway 1: High-performance MLs can reliably detect less-
stealthy intrusions (high separability) with distinguishable
characteristics but struggle with stealthy intrusions (low sep-
arability). Intrusion detection systems must accurately assess
the reliability and adapt to the specific attack scenario.

B. Training Data Size vs. Model Reliability

Table II presents the training data sizes to reach highest per-
formance (F-score) for top MLs for malware detection. For the
high-separability OOD test set, Random Forest, LightGBM,
and XGBoost achieve Fl-scores of 0.955, 0.957, and 0.961,
respectively, with corresponding best training data sizes of
24,436, 22,751, and 21,065. Similarly, for the low-separability
OOD test set, Fl-scores are 0.853, 0.852, and 0.860, with
best training sizes of 5,056, 24,436, and 25,279. In addition,
Figure 3 highlights the optimal training data sizes that avoid
overfitting for medium and low separability data (marked as
circled on the graph). As seen, stealthy intrusions require more
data to train effective ML models, while less stealthy data tend
to overfit with increased data. It is practical to search for the
optimal training size that fits ML models based on different
intrusion characteristics, as fine-tuning the models in IDSs
with the appropriate training size enhances their reliability.

Sample Size

medium separability

Fig. 3: Training data sizes without over-fitting (circled on the graph)

low separability

Takeaway 2: Stealthy intrusions (low internal data separabil-
ity) demand a larger amount of training data for effective ML
models across all algorithms in IDSs.

Takeaway 3: ML algorithms have varying data requirements.
XGBoost is data-hungry, while Random Forest needs the least.
With ample data, XGBoost performs well with a small model
size. In scenarios with moderate data, RF outperforms other
algorithms with a medium-sized model.
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C. Number of Hardware Events vs. Model Reliability

In Figure 4, the impact of the number of HPC events
used for training on the models’ Fl-scores is demonstrated
across three OOD sets. It is observed that the number of
features required for training a stable ML model reaches
saturation, typically requiring a maximum of four features in
this case. However, this can vary for different datasets and
ML algorithms, emphasizing the importance of identifying the
optimal number of features for each IDS. The detection rate
shows rapid growth when transitioning from one to two events,
peaking at four events, with marginal improvement observed
when using four events instead of three. This trend holds
across various test sets. Using two events can yield a 92% de-
tection rate in high-separability, 88% in medium-separability,
and 87% in low-separability sets, that can provide a low-cost
solution, especially for resource-constrained applications.
Takeaway 4: ML algorithms exhibit varying hardware feature
requirements to develop reliable IDS based on data charac-
teristics, reaching a saturation point where additional features
offer diminishing returns.
Takeaway 5: While four events yield highest detection rates,
our analysis suggests that a reduced number of events can be
more cost-effective. Using just two HPCs slightly decreases
performance (approximately 5%), but proves advantageous for
resource-constrained platforms such as embedded systems and
biomedical devices with limited hardware support.
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Fig. 5: Detection rate comparison of MLs in IDS before and after calibration
D. Calibration Strategy Analysis

We employ an optimized threshold based on ML models’
prediction probabilities to perform selective prediction for
calibration. Incoming events during run-time with prediction
probabilities exceeding the threshold are confidently predicted
by the ML models, while those below the threshold are
referred for further investigation. Figure 5 illustrates the F1-
scores before and after calibration for the top three ML
algorithms (LightGBM, Random Forest, and XGBoost) across
three OOD test sets. After calibration, Random Forest obtains

4] o agreed-malware

-60

-40 -20 0 20 a0
Benign

Fig. 6: t-Distribution of observed data: Reliable vs. unreliable predictions by
three ML models in hardware IDS for low separability (stealthier) OOD set
optimal performance, with a 100% Fl-score in the high-
separability set and a 97% score in the medium separability
set. For the high stealthy (low internal data separability) OOD
test set, it demonstrates a 6% improvement, reaching a 91%
detection rate. LightGBM also benefits from calibration using
the prediction probability threshold, while XGBoost performs
strongly even without calibration.

To gain insights into the distribution of data in the low-
separability OOD test set, we examine the data points cor-
rectly and incorrectly predicted by strong ML models (RF,
LightGBM, and XGBoost) and their majority vote count. The
data points, categorized as agreed and disagreed malware
and benign, are visualized using t-SNE visualization method
[31] in Figure 6. The plot depicts the challenges posed by
stealthy intrusions, particularly for disagreed malware and
benign where their data points are intertwined, leading to
model unreliability. Future research should emphasize the
development of automated techniques within ML-based IDSs
to identify and calibrate concealed data points effectively.
Takeaway 6: ML models exhibit varied responses to calibra-
tion methods, resulting in different performance outcomes after
calibration. In IDSs, deploying and evaluating calibration
methods becomes essential to achieve optimal performance.
Takeaway 7: ML models cannot be blindly trusted in intrusion
detection systems. They prove to be unreliable in detecting
more sophisticated attacks. Incorporating a model observer
becomes crucial in assessing the trustworthiness of an ML
model and making informed decisions on its reliability.

IV. CONCLUDING REMARKS

In this work, we addressed important challenges concerning
the reliability of ML models for intrusion detection using low-
level hardware events. We introduced and assessed essential
parameters impacting the reliability of ML algorithms in
hardware-oriented IDSs, demonstrating their impact on model
performance in uncertain run-time conditions. Furthermore,
we proposed a lightweight model observer to evaluate the
confidence level of model predictions, enabling the selection of
effective defenders when the model exhibits high confidence.
Conversely, when ML reliability is compromised, alternative
options such as human intervention or higher-cost detection
methods can be employed. Our analysis demonstrated that the
proposed calibration method enhances the overall reliability
and performance of the ML-based IDS, resulting in a 4% to
6% improvement in recognizing stealthy malware attacks.
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