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Abstract—The performance limitations of conventional
software-based Intrusion Detection Systems (IDSs) have paved
the way for the emergence of hardware-oriented approaches.
These approaches harness the power of Machine Learning (ML)
algorithms applied to processors’ hardware-related data, thereby
enhancing the overall system’s security and efficiency. However,
ensuring the dependability of ML models’ decisions is crucial,
yet this aspect has been largely overlooked in previous studies.
In this paper, we delve into the reliability of machine learning
algorithms within hardware-oriented intrusion detection systems,
focusing specifically on malware detection. Our investigation
aims to bridge the existing gap by shedding light on the trade-
offs between performance vs. reliability and robustness levels
exhibited by ML models in intrusion detection systems. We
conduct a thorough evaluation of ML algorithms in hardware-
oriented IDSs, considering factors such as training data size,
number of hardware events used, and internal data separability
(malware stealthiness). Additionally, we incorporate an effective
model observer module to assess prediction probabilities in real-
time; thereby, employing a threshold to determine the ML
model’s confidence for enhanced reliable intrusion detection.

Index Terms—Cybersecurity, Machine Learning, Intrusion
Detection System, Reliability Analysis.

I. INTRODUCTION

Intrusion Detection Systems (IDSs) are critical for safe-

guarding information systems’ security and integrity. Malware

detection is a key focus within IDSs, aiming to identify and

mitigate malicious software that compromises system security

and functionality [1], [2]. With the increasing sophistication

of malware variants, effective malware detection has become

paramount in IDSs. Traditional software-based techniques,

relying on pattern matching, signatures, and heuristics, offer

protection against known malware strains but struggle to detect

emerging threats efficiently [3], [4]. This limitation has driven

the development of hardware-oriented approaches, leveraging

dedicated hardware components like Hardware Performance

Counter (HPC) registers to monitor performance-related data

[5]–[10]. By utilizing Machine Learning (ML) algorithms

with low resource requirements, hardware-oriented IDSs aim

to enhance system efficiency and overall security [11]. The

integration of ML algorithms within these approaches holds

promise for augmenting intrusion detection capabilities.

The capability of ML models to make dependable decisions

is of utmost importance, as they serve as the front-line defense

against constantly evolving cyber-attacks [12], [13]. Failure to

address reliability concerns jeopardizes the effectiveness and

practicality of IDSs. As outlined below, our comprehensive

analysis brings to light significant considerations linked to

ML-based IDSs which have been overlooked in prior research.

1) Unprecedented Run-Time Situations: While ML-based in-

trusion detection systems hold great potential, the ability to

predict unprecedented run-time situations correctly is impera-

tive, particularly in safety-critical applications. ML-based IDSs

struggle to predict and handle unforeseen run-time scenarios

effectively. The reliability of ML models can vary significantly,

leading to uncertainties in their performance when faced with

unseen, stealthy (low malware vs. benign class separability),

and/or out-of-distribution intrusion events [14]–[16] .

2) Handling Misclassified Samples: ML-based IDSs often

lack robust mechanisms to address wrongly predicted samples

[17]. Finding appropriate solutions to handle these samples

and minimize their impact is essential for enhancing system

performance [18]–[20]. The work in [12] highlights that deep

learning models are often fine-tuned within narrow boundaries,

prioritizing certain data they were trained on and neglecting

run-time variations. However, ensuring reliable decisions in

unprecedented conditions in real-time necessitates offering

effective assessments to surpass these limitations.

3) Ensuring Dependability and System-Level Robustness: ML-

based intrusion detection systems deal with the challenge of

achieving run-time dependability and reliability. While current

research primarily focuses on testing models with specific

datasets, the reliability of these models in real-world, dynamic

environments remains uncertain [21]. Additionally, ensuring

system reliability requires designing robust fault tolerance

mechanisms to handle unprecedented data uncertainty during

run-time [22]–[24]. However, existing fault tolerance solutions

mainly address system faults and errors, overlooking the

limitations of the ML models themselves [17], [25].

This paper aims to address the critical challenges surround-

ing the reliability of ML models in hardware-oriented intrusion

detection systems. We present an in-depth analysis of factors

impacting the reliability of ML models from multiple perspec-

tives. Additionally, we propose a novel reliability observing

module that evaluates the prediction confidence of models and

effectively handles unpredictable samples through advanced

detection and safety protection mechanisms. To this aim, we

comprehensively assess the performance and reliability of

widely deployed machine learning algorithms in hardware-

oriented malware detection, considering crucial parameters

such as training data size, number of hardware events, and

malware stealthiness. Furthermore, we introduce a calibration

method for selective prediction to enhance the overall reliabil-

ity of ML algorithms for robust and efficient intrusion detec-
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Fig. 1: Proposed framework: Reliability analysis for ML algorithms in IDSs

tion. By achieving a delicate balance between performance and

reliability, this research represents a significant advancement

toward developing trustworthy and reliable security solutions

to effectively counter emerging cyber-attacks.

II. PROPOSED RELIABILITY ANALYSIS METHODOLOGY

A. Data Acquisition and Threat Model

In the data collection phase, we monitored an extensive set

of both malware and benign instances, capturing HPC events

using the Perf tool on an Intel Xeon X5550 machine [14]. This

process involved running applications within controlled Linux

Containers (LXC) environment with a sampling time of 10ms

[26]. Our dataset consisted of a diverse range of real-world

applications, including MiBench [27], SPEC2006 [28], Linux

system programs, browsers, and text editors, representing

common usage scenarios. For the malware dataset, appli-

cations from VirusShare online repository categorized into

various types, covering a wide spectrum of real-world malware

threats. To organize the data effectively, we partitioned the

malware and benign data into four distinct sets and utilized the

Mahalanobis Distance [29] metric (detailed in Section II-C)

to compute distances among the different malware types. This

allowed us to identify closer-distance sets for more effective

training. Additionally, we generated three out-of-distribution

(OOD) sets comprising zero-day samples not present in the

training dataset, enabling thorough evaluation of model perfor-

mance and generalization on previously unseen data, ensuring

reliability and robustness against emerging attack scenarios.

B. Methodology Overview

Figure 1 presents an overview of our proposed methodol-

ogy for assessing the reliability of ML models in intrusion

detection systems and making informed predictions. The eval-

uation of model reliability is based on our three-fold out-of-

distribution test data, allowing us to find the most effective

models. Subsequently, the selected reliable model is used for

selective prediction.

1) ML Models Implementation: To develop hardware-

oriented IDS via reduced HPC data we train twelve ML

models with default parameter settings in scikit-learn that have

been widely employed in existing research. These algorithms

include Random Forest (RF), Decision Tree, Gaussian Naive

Bayes (GNB), Logistic Regression (LR), Extra Tree Classifier,

Ridge Classifier, K-Nearest Neighbors (KNN), Support Vector

Machine (SVM), Bagged Decision Tree, Gradient Boosting,

Multi-layer Perceptron (MLP), XGBoost, and LightGBM.

2) Reliability Analysis: Our reliability analysis follows a

structured workflow in which we initially explore ML models

developed with varying training data sizes, identifying in-

stances of overfitting on out-of-distribution (OOD) test sets.

To address this, we partition the training data into thirty

independent chunks. Various training data sizes are selected

starting from 800 and ending with more than 25K samples.

The training dataset contains four types of malware including

Trojan, Botnet, Backdoor, and Virus and a set of randomly se-

lected, independent benign samples as the training set. OOD1

contains three types of malware including Worm, Rootkit, and

Ransomware. OOD2 includes three malware types including

Worm, Rootkit, and Adware. OOD3 contains three types of

malware including Worm, Rootkit, and Spyware, and all three

sets include the same amount of randomly sampled benign.

We trained thirty models for each ML algorithm, which are

then evaluated on OOD test sets to determine the model

with the highest detection rate (F1-score). Next, we explore

the influence of the number of HPC events (1, 2, 3, and

4) on the reliability of ML models. This design parameter

is intricately related to the reliability and robustness of the

models in hardware-oriented IDSs. Its choice is influenced by

the available resources within the target processor architecture,

enabling effective run-time detection of attacks [7], [9].

Furthermore, we examine the relationship between the in-

ternal separability (stealthiness) of OOD test sets and the

models’ reliability. The internal data separability is assessed

by calculating the Mahalanobis distance between malware and

benign samples within each OOD test set. By computing the

average distance, we obtain a float number that indicates the

level of separability between malware and benign in each set.

Finally, we utilize the detection rate of the best ML model on

each OOD set as an indicator of reliability score, reflecting the

model’s dependability during online inference in a given run-

time environment. This score serves as an influential factor

in determining the prediction probability threshold (gamma)

during the calibration process.

3) Model Observer: As shown in Figure 1, we implemented

selective prediction to guide predictions into two routes: one

with confident defense, and another to reject the prediction

by referring it to the next level of further investigation.

The best model for each OOD set outputs the predicted

class probabilities for each test data, which serves as the

model observer. Prediction probability lower than an optimized

threshold θ is referred to further investigation while higher

than θ is predicted with confidence. For those data that need

further investigation, a calibration method such as human-in-

the-loop to manually check the incoming data’s intrusiveness,

or a high performance DNN model (on-device or in the

cloud) can be involved. This paper assumes the involvement

of humans-in-the-loop capable of accurately distinguishing

between malware and benign samples. We then evaluate the

overall system performance with the manual calibration and



TABLE I: Internal Mahalanobis Distance for test sets to represent internal
data separability (malware stealthiness)

Test Set Malware Mahalanobis

Distance

Separability

OOD 2 Worm, Rootkit, Adware 0.52 High

OOD 1 Worm, Rootkit, Ransomware 0.40 Medium

OOD 3 Worm, Rootkit, Spyware 0.23 Low

compare it with the original system performance without such

calibration strategy in place.

C. Internal Data Separability
In our proposed reliability analysis, we utilize the Maha-

lanobis distance [29] to model the internal separability of

the data. The Mahalanobis distance is a statistical measure

commonly employed to assess whether a sample dataset

(G1) is drawn from a multivariate normal distribution of

another dataset (G2). It quantifies the distance between G1

and G2 by considering the difference between their mean

vectors, considering the within-group variation. This metric

is computed using the formula shown in Equation 1, where

x represents each data point in the observations X to be

evaluated, µ denotes the mean vector of the same group, and Σ
represents the covariance matrix of the same group. The output

of following equation, denoted as D2 (Mahalanobis distance),

provides a metric for assessing the dissimilarity between the

two groups.
D2 = (x− µ)TΣ−1(x− µ) (1)

We quantify the stealthiness (malware benign

separability) by calculating the Mahalanobis distance

between malware and benign for each OOD test set.

We first normalize the features, then use Scikit Learn’s

sklearn.covariance.robust cov.mahalanobis() function

[30] to output the Mahalanobis distance matrix for malware

and benign. We average all datapoint values to output the

average distance score for malware and benign. The internal

D2 is the absolute difference between the average score for

all malware and the average score for all benign samples.

Table I presents the metrics for the Mahalanobis distance and

corresponding malware benign separability level.

III. EVALUATION RESULTS AND ANALYSIS

In this section, we provide a comprehensive analysis of the

results, focusing on the top ML models for each OOD test.

A. Run-Time Data Separability vs. Model Reliability

Figure 2 depicts the seven top-performing ML models

performance for different levels of malware and benign separa-

bility. Overall, the data/class separability strongly impacts ML

models’ performance. The detection rates for low separability

scenarios (green) are between 0.81 to 0.85, while the high

separability (red) achieves over 90% F1-score, with some

reaching to 0.95-0.96. XGBoost model performs the best

consistently achieving the highest F1-score across all three

OOD test sets. For highly stealthy data with low separability,

LightGBM, Random Forest, and XGBoost demonstrate com-

parable performance (0.85). The observations highlight that

even the best ML models in IDSs can experience significant

performance degradation due to the characteristics and sophis-

tication of the attack. In such cases, trusting the ML model

becomes a concern. To address this, conducting iterative run-

time reliability tests are suggested to select robust models

TABLE II: Optimal training data sizes to reach highest performance (F-score)
for top-performing ML models

Separatability RF LightGBM XGBoost DT

High 24,436 22,751 21,065 24,436

Medium 16,853 24,436 12,640 22,751

Low 5,056 24,436 25,279 24,436

meeting a predefined threshold and incorporating an option for

further investigation if the model’s reliability is questionable.

Fig. 2: Top ML models’ performance for 3 levels of data internal class
separability from low (stealthier) to high

Takeaway 1: High-performance MLs can reliably detect less-

stealthy intrusions (high separability) with distinguishable

characteristics but struggle with stealthy intrusions (low sep-

arability). Intrusion detection systems must accurately assess

the reliability and adapt to the specific attack scenario.

B. Training Data Size vs. Model Reliability

Table II presents the training data sizes to reach highest per-

formance (F-score) for top MLs for malware detection. For the

high-separability OOD test set, Random Forest, LightGBM,

and XGBoost achieve F1-scores of 0.955, 0.957, and 0.961,

respectively, with corresponding best training data sizes of

24,436, 22,751, and 21,065. Similarly, for the low-separability

OOD test set, F1-scores are 0.853, 0.852, and 0.860, with

best training sizes of 5,056, 24,436, and 25,279. In addition,

Figure 3 highlights the optimal training data sizes that avoid

overfitting for medium and low separability data (marked as

circled on the graph). As seen, stealthy intrusions require more

data to train effective ML models, while less stealthy data tend

to overfit with increased data. It is practical to search for the

optimal training size that fits ML models based on different

intrusion characteristics, as fine-tuning the models in IDSs

with the appropriate training size enhances their reliability.

Fig. 3: Training data sizes without over-fitting (circled on the graph)

Takeaway 2: Stealthy intrusions (low internal data separabil-

ity) demand a larger amount of training data for effective ML

models across all algorithms in IDSs.

Takeaway 3: ML algorithms have varying data requirements.

XGBoost is data-hungry, while Random Forest needs the least.

With ample data, XGBoost performs well with a small model

size. In scenarios with moderate data, RF outperforms other

algorithms with a medium-sized model.



Fig. 4: Number of HPC features impact ML Models’ reliability in three levels
of separability OOD sets from low to high

C. Number of Hardware Events vs. Model Reliability

In Figure 4, the impact of the number of HPC events

used for training on the models’ F1-scores is demonstrated

across three OOD sets. It is observed that the number of

features required for training a stable ML model reaches

saturation, typically requiring a maximum of four features in

this case. However, this can vary for different datasets and

ML algorithms, emphasizing the importance of identifying the

optimal number of features for each IDS. The detection rate

shows rapid growth when transitioning from one to two events,

peaking at four events, with marginal improvement observed

when using four events instead of three. This trend holds

across various test sets. Using two events can yield a 92% de-

tection rate in high-separability, 88% in medium-separability,

and 87% in low-separability sets, that can provide a low-cost

solution, especially for resource-constrained applications.

Takeaway 4: ML algorithms exhibit varying hardware feature

requirements to develop reliable IDS based on data charac-

teristics, reaching a saturation point where additional features

offer diminishing returns.

Takeaway 5: While four events yield highest detection rates,

our analysis suggests that a reduced number of events can be

more cost-effective. Using just two HPCs slightly decreases

performance (approximately 5%), but proves advantageous for

resource-constrained platforms such as embedded systems and

biomedical devices with limited hardware support.

Fig. 5: Detection rate comparison of MLs in IDS before and after calibration

D. Calibration Strategy Analysis

We employ an optimized threshold based on ML models’

prediction probabilities to perform selective prediction for

calibration. Incoming events during run-time with prediction

probabilities exceeding the threshold are confidently predicted

by the ML models, while those below the threshold are

referred for further investigation. Figure 5 illustrates the F1-

scores before and after calibration for the top three ML

algorithms (LightGBM, Random Forest, and XGBoost) across

three OOD test sets. After calibration, Random Forest obtains

Fig. 6: t-Distribution of observed data: Reliable vs. unreliable predictions by
three ML models in hardware IDS for low separability (stealthier) OOD set

optimal performance, with a 100% F1-score in the high-

separability set and a 97% score in the medium separability

set. For the high stealthy (low internal data separability) OOD

test set, it demonstrates a 6% improvement, reaching a 91%

detection rate. LightGBM also benefits from calibration using

the prediction probability threshold, while XGBoost performs

strongly even without calibration.

To gain insights into the distribution of data in the low-

separability OOD test set, we examine the data points cor-

rectly and incorrectly predicted by strong ML models (RF,

LightGBM, and XGBoost) and their majority vote count. The

data points, categorized as agreed and disagreed malware

and benign, are visualized using t-SNE visualization method

[31] in Figure 6. The plot depicts the challenges posed by

stealthy intrusions, particularly for disagreed malware and

benign where their data points are intertwined, leading to

model unreliability. Future research should emphasize the

development of automated techniques within ML-based IDSs

to identify and calibrate concealed data points effectively.

Takeaway 6: ML models exhibit varied responses to calibra-

tion methods, resulting in different performance outcomes after

calibration. In IDSs, deploying and evaluating calibration

methods becomes essential to achieve optimal performance.

Takeaway 7: ML models cannot be blindly trusted in intrusion

detection systems. They prove to be unreliable in detecting

more sophisticated attacks. Incorporating a model observer

becomes crucial in assessing the trustworthiness of an ML

model and making informed decisions on its reliability.

IV. CONCLUDING REMARKS

In this work, we addressed important challenges concerning

the reliability of ML models for intrusion detection using low-

level hardware events. We introduced and assessed essential

parameters impacting the reliability of ML algorithms in

hardware-oriented IDSs, demonstrating their impact on model

performance in uncertain run-time conditions. Furthermore,

we proposed a lightweight model observer to evaluate the

confidence level of model predictions, enabling the selection of

effective defenders when the model exhibits high confidence.

Conversely, when ML reliability is compromised, alternative

options such as human intervention or higher-cost detection

methods can be employed. Our analysis demonstrated that the

proposed calibration method enhances the overall reliability

and performance of the ML-based IDS, resulting in a 4% to

6% improvement in recognizing stealthy malware attacks.
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