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Abstract Fresh submarine groundwater discharge (FSGD) can deliver significant fluxes of water and
solutes from land to sea. In the Arctic, which accounts for ∼34% of coastlines globally, direct observations and
knowledge of FSGD are scarce. Through integration of observations and process‐based models, we found that
regardless of ice‐bonded permafrost depth at the shore, summer SGD flow dynamics along portions of the
Beaufort Sea coast of Alaska are similar to those in lower latitudes. Calculated summer FSGD fluxes in the
Arctic are generally higher relative to low latitudes. The FSGD organic carbon and nitrogen fluxes are likely
larger than summer riverine input. The FSGD also has very high CO2 making it a potentially significant source
of inorganic carbon. Thus, the biogeochemistry of Arctic coastal waters is potentially influenced by
groundwater inputs during summer. These water and solute fluxes will likely increase as coastal permafrost
across the Arctic thaws.

Plain Language Summary Groundwater flows from land to sea, transporting freshwater, organic
matter, nutrients, and other solutes that impact coastal ecosystems. However, along coasts of the rapidly‐
warming Arctic, there is limited knowledge regarding how much fresh groundwater enters the ocean. Using
field observations and numerical models, we show that groundwater flowing from tundra in northern coastal
Alaska carries large amounts of freshwater, organic matter, and carbon dioxide to the Arctic lagoons during
summer. These inputs are likely significant to coastal biogeochemical cycling and marine food webs.
Groundwater discharge and the associated transport of dissolved materials are expected to increase due to longer
periods of above‐zero temperatures that thaw frozen soils below the tundra.

1. Introduction
Submarine groundwater discharge (SGD) is important for coastal biogeochemistry and ecosystem health, as it is a
major source of organic matter and nutrients (Santos et al., 2021). The flow and mixing of fresh and saline SGD
creates subterranean estuaries (STEs), hotspots for biogeochemical reactions (Harris et al., 2017; Lecher, 2017;
Moore, 2010; Santos et al., 2008). Fresh submarine groundwater discharge (FSGD) into Arctic coastal waters is
also crucial for coastal water budgets (Harris et al., 2017). Investigations of SGD and STEs have mainly been in
lower‐latitude systems, and knowledge in the Arctic remains limited (Lecher, 2017).

In the Arctic, FSGD originates and flows in the seasonally‐thawed shallow active layer (0.2–1 m thick) (Nelson
et al., 1998; Wales et al., 2020). This layer, also called a supra‐permafrost aquifer, may continue beyond beaches
or coastal bluffs into coastal waters, providing paths for groundwater flow into unfrozen coastal sediment
overlying submarine permafrost (Charkin et al., 2017; Dimova et al., 2015; Lecher, 2017). SGD is controlled by
the ice‐bonded permafrost configuration, which hinders and directs water movement (Lecher, 2017). Coastal
permafrost varies in extent (Angelopoulos et al., 2019; Kasprzak, 2020; Overduin et al., 2012; Pedrazas
et al., 2020; Swarzenski et al., 2016). Ice‐free sediment beneath coastal waters forms primarily due to salt‐induced
freezing point depression (Osterkamp & Harrison, 1977) and heat supplied by the overlying water (van Ever-
dingen, 2005). Thus, while permafrost may be ubiquitous in the Arctic, many factors also favor the existence of
STEs.

Groundwater in the Arctic has high concentrations of dissolved organic carbon and nitrogen (DOC, DON)
(Connolly et al., 2020), and potentially carbon dioxide (CO2) from DOC respiration. When it enters coastal
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waters, CO2‐rich groundwater may make surface waters a CO2 source to the atmosphere (Wang et al., 2018) and
cause acidification (Cardenas et al., 2020; Liu et al., 2023). Moreover, DON from groundwater may enhance
coastal primary production (Bronk et al., 2007). Therefore, quantifying FSGD solute fluxes along the Arctic coast
is crucial.

The few SGD studies from the Beaufort Sea coast of Alaska were limited to total SGD, the sum of fresh and
recirculated saline SGD (TSGD = FSGD + RSGD). These studies utilized an indirect mass balance approach
with radium and radon tracers measured over hours to a few days (Bullock et al., 2024; Connolly et al., 2020;
Dimova et al., 2015; Lecher et al., 2016). Aside from our related efforts (Guimond et al., 2023), there have been
no published direct observations of coastal groundwater flow in the Arctic. Moreover, the rates and fluxes of
DOC, DON, CO2, and DIC in FSGD have not been quantified using direct hydrologic and geochemical mea-
surements and observation‐informed flow and transport mechanistic models. This study aims to: (a) Provide
insights into the summer (July–September) hydraulic, thermal, and geochemical regime of Arctic STEs; and (b)
constrain FSGD fluid and solute fluxes.

2. Methods
During summer in the Arctic, the depth of the coastal ice table can range from decimeters to a few meters (Dimova
et al., 2015; McCann & Hannell, 1971; Owens & Harper, 1977; Pedrazas et al., 2020; Sobota et al., 2018). Depths
to ice‐bonded permafrost of 10–20 m within 500 m from shore are common (Angelopoulos et al., 2019; Overduin
et al., 2012, 2016), but depths of <5 and >20 m are also possible (Overduin et al., 2016; Pedrazas et al., 2020).

We established observational transects at two sites with shallow and deep ice tables. The end‐member STE sites
are at the coast of Kaktovik Lagoon (KL, “Deep‐STE site”) and Simpson Lagoon (SL, “Shallow‐STE site”)
bordered by barrier islands in the Beaufort Sea of Alaska (Figure 1a). The field sites represented the low‐lying
Arctic coast of the Alaskan North Slope, characterized by high‐centered polygonal tundra transitioning into la-
goons with a continuous topographical gradient. Sites with a beach were selected to capture a wider supra‐
permafrost aquifer extent. At both sites, we manually mapped the ice table, installed multi‐depth soil tempera-
ture probes from the beach to the subtidal zone, installed piezometer transects equipped with water level, salinity,
and temperature probes (Figures 1a and 2a), and sampled groundwater. Electrical resistivity imaging (ERI)
surveys indirectly mapped the ice table in three perpendicular directions in SL site A (Figure 1a): (a) Lagoon
bottom, (b) Shore parallel, and (c) Tundra (Survey and inversion details in Text S2, Figures S1, S2, and Table S1
in Supporting Information S1). In KL, areas captured with ERI were similar to that of SL (Pedrazas et al., 2020).
Aquifer saturated hydraulic conductivity (K) was estimated using sediment samples analyzed with laboratory
constant head tests and empirical approaches based on grain size distributions (Text S4 in Supporting
Information S1).

We quantified groundwater fluxes using complementary approaches. Thermal profiles were interpreted with
analytical solutions of the 1‐D steady‐state heat transport equation to calculate vertical groundwater fluxes,
following the methodology of Bredehoeft and Papadopulos (1965) (Figure S3b in Supporting Information S1).
Profiles within the saturated inter‐subtidal areas were selected to validate the vertical‐flow‐only assumption of the
method (Taniguchi et al., 2003) and sensors located >20 cm below seabed were chosen, when available, to avoid
interference of shallower diel signals (Kurylyk et al., 2017) (Figure S4 in Supporting Information S1). Vertical
hydraulic head gradients between lagoon and piezometric groundwater level were used for point calculations via
Darcy's Law (Figure S3a in Supporting Information S1). Curve matching of the above two methods provided K
estimates (Figures S3c, and S4 in Supporting Information S1). Point‐based heat‐tracing‐derived fluxes were
integrated over areas with positive seepage to find in situ estimates of FSGD (Figure S5 in Supporting Infor-
mation S1). The most comprehensive of the approaches is the calculation of FSGD using numerical groundwater
flow and transport model ensembles. The models couple and solve equations for non‐isothermal, density‐driven
saturated groundwater flow, salt, and heat transport (equations and parameters: Tables S2, and S3 in Supporting
Information S1). Electrical resistivity imaging and hydro‐thermal observations constrained the finite‐element
model domains and boundary conditions (Figures 1b and 1c). A steady‐state thermohaline system was
assumed during summer season, neglecting daily changes from atmospheric, oceanic, and terrestrial forces.
Dynamic surface water levels, resulting in RSGD due to salinity gradients, and tidal and wave pumping
(Smith, 2004) were not simulated. Instead, the following steady lagoon boundary conditions were used: (a) The
lowest measured level (representing strong terrestrial forcing), (b) the average level, and (c) the highest measured
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level (representing weak terrestrial forcing). FSGD was calculated by integrating discharge over the top model
boundary where groundwater flux is positive/upward. An ensemble of models was implemented for each aquifer
archetype (the 3 lagoon levels × 100 K cases). This approach enabled understanding of flow and transport
behavior under varying K and tidal stages, and isolation of FSGD from TSGD. To cover a broader range of
possible STE configurations between the two end‐members, ensemble model inputs were varied through random
sampling (Monte Carlo), quantifying uncertainty (mostly representing natural variability) of the observations.
The ensemble model outputs were compared and synthesized with in situ estimates.

Groundwater samples collected along piezometer transects in KL (August 2019, nsamples = 20) and SL (August
2021, nsamples = 30) were analyzed for DOC/N concentrations (CDOC, CDON). The KL DOC/N data set was
merged with that sampled (nsamples = 20) in 2014–15 in KL by Connolly et al. (2020). This combined CDOC/N data
set for KL better approximates the spatial and temporal variability along the lagoon. In addition, in situ measured
pH and partial pressure of CO2 in groundwater from SL (nsamples = 13; Figure S6 in Supporting Information S1)
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Figure 1. (a) Field sites (Simpson Lagoon (SL)‐A/B and Kaktovik Lagoon (KL)) given with piezometer IDs. (b) Inverted Electrical resistivity imaging (ERI) surveys,
conducted in this study for SL, combined with previously reported surveys for KL (Pedrazas et al., 2020). (c) Numerical domains, conceptualized based on ERI
observations, with assigned boundary conditions. Hydraulic head follows the topography until the shoreline, after where it is equal to the lagoon level.
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were incorporated into equilibrium equations to estimate dissolved inorganic carbon concentrations (CCO2(aq),
CDIC) (See Text S6, and Table S4 in Supporting Information S1). We separated the CDOC, CDON, CCO2(aq), and
CDIC data sets of KL and SL into two distributions ‐ fresh (5,000 μS cm−1) and saline (20,000 μS cm−1)
groundwater. FSGD‐driven DOC, DON, CO2(aq), and DIC mass fluxes were quantified by multiplying their fresh
water statistical concentration distributions by the ensemble FSGD distributions (Cabral et al., 2023). Additional
details of our approaches are summarized in Figure S7 in Supporting Information S1.

Figure 2. (a) Probed ice‐bonded permafrost table, temperature profiles during low lagoon level periods, time‐snapshot salinity profiles, and in situ average vertical
groundwater fluxes. (b) Lagoon and groundwater level time series, estimated lateral hydraulic head differences, and in situ daily average vertical groundwater fluxes
(see Figure S3c in Supporting Information S1 for all locations) at the Shallow‐STE and Deep‐STE sites.
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3. Results
3.1. Key Characteristics of the Two End‐Member Coastal Arctic Aquifers

Simpson Lagoon and Kaktovik Lagoon are reasonable shallow and deep end‐members given the very limited
field observations throughout the Arctic. Ice‐bonded permafrost typically appears with resistivity values of 103–
106 Ω‐m in inverted ER tomograms from on‐land surveys and of >30 Ω‐m in underwater surveys (Kaspr-
zak, 2020; Pedrazas et al., 2020). In the Shallow‐STE site (SL), the ice‐bonded permafrost was more prominent
and ERI detected its top (∼103 Ω‐m contour line) at depths of ≤1 m in the tundra and of 1–3 m in the first 15 m in
the beach‐lagoon interface (Figure 1b). The unfrozen sediment reached 7 m in thickness as the frost table
continued and gradually dipped into the seabed further into the lagoon. At the Deep‐STE site (KL), no ice was
detected within the top few meters of the beach or lagoon bed through ground probing (Pedrazas et al., 2020),
except for the abruptly declining ice table present near the tundra along the first few meters of the transect (>1.5 m
drop within the first 4 m; Figure 2a). Previous ERI surveys showed sporadic ice‐bonded permafrost laterally and
vertically along the transect, and an unfrozen aquifer up to 20 m deep at the beach (Pedrazas et al., 2020).

In Shallow and Deep‐STE sites, K varied significantly based on a synthesis of 53 K estimates determined via
various techniques (see Section 4, and Text 4 in Supporting Information S1). An empirical distribution of K
(Median(M):16.1 m day−1; Mean (X):46.6, Standard deviation(σ):126.1; Interquartile range (IQR):9.1–46.8) was
fitted with a lognormal distribution (X:47.51, σ:131.7). Generated random values from fitted distributions were
used as input in numerical models (Figure S8 in Supporting Information S1). In this study, the reported values for
mean (X and μx) and standard deviation (σ and σx) are for lognormal and normal distributions, respectively.

3.2. Coastal Groundwater Dynamics: In Situ Observations

Expectedly, the STEs were cold at both sites (Figure 2a) with temperatures decreasing with depth until the ice
table. The summer subsurface temperatures were generally well above freezing, ranging between 0.9–10.8°C and
4.8–13.6°C at the Shallow‐STE and Deep‐STE sites, respectively. Both aquifers were mostly in stable thermal
stratification (Figure 2a).

Daily average astronomical tidal range was approximately 0.2 m for both sites in August (Figure S9 in Supporting
Information S1). Our observations coincided with surges, with rising and falling phases in SL and KL, respec-
tively. At each site, tidal signal in groundwater decreased landward. In KL, the furthest inland piezometers (Pz1
and 2 in Figure 1a) showed minimal tidal influence due to a wider beach; unlike SL with a narrower beach
(Figure 2). The gradient of decreasing hydraulic head and increasing salinity from tundra to lagoons are direct
evidence for FSGD. The steady positive hydraulic head difference between inland end‐member piezometer (Pz‐2
and B2) and lagoon level, suggesting persistent flow toward lagoons, was higher in KL (μx:0.45 m) compared to
SL (μx:0.12 m).

3.3. Groundwater Fluxes

At both sites, field observations and model outputs showed that fresh terrestrial groundwater meets recirculated
saline groundwater at a nearshore mixing zone. This confirms the presence of STEs in Arctic lagoon coasts
(Figures 2a and 3a for beach‐lagoon salinity profiles). The models suggest a larger freshwater‐saltwater interface
at the Shallow‐STE site than at the Deep‐STE site. An upper‐saline circulation cell was present at the beach of the
Deep‐STE site, possibly due to saline seawater infiltrating‐exfiltrating during a past surge event (Figure 3a and
Figure S9 in Supporting Information S1).

SGD occurred in the vicinity of the shoreline at both sites (Figure 3a). During the highest observed meteorological
tide with surge, the modeled discharge zone (+, upward flux) was 8 m wide at the Shallow‐STE, and 14 m wide at
the Deep‐STE sites. During the lowest observed tide, the discharge zone extended seaward; reaching up to ∼10
and 19 m at the Shallow and Deep‐STE sites, respectively.

The spatially integrated median FSGD flux estimates for the ensemble of models for SL and KL were 1,450 and
5,790 m3 day−1 km−1, respectively (Statistics in Table S5 in Supporting Information S1; Figure 3b). The Deep‐
STE site had higher FSGD than the Shallow‐STE site due to higher mean terrestrial hydraulic head gradient
during the study period. Combining the model ensembles of the Shallow and Deep‐STE sites resulted in an overall
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median of 2,900 m3 day−1 km−1. Extrapolation and integration of the overall FSGD distribution to the Alaskan
Beaufort Sea coast (1,957 km coastal length) gave a median of 5.7 × 106 m3 day−1 in late summer.

In situ techniques revealed daily vertical groundwater flux, manifesting variations in magnitude and direction
within shallow depths along transects and among sites (Figure 2a, and Figure S3c in Supporting Information S1).
Absolute mean vertical flux within the inter‐to‐subtidal zone during the measurement period varied between
0.002 and 0.4 m day−1 in both sites. The flow patterns were mostly consistent with lateral gradient‐driven
discharge, that of seawater recirculation within the inter‐tidal zone indicated by vertical salinity gradients (Ta-
ble S6 in Supporting Information S1), and with flow and transport model outputs (Figure 3a).

Spatial integration of in situ local FSGD estimates over the discharge zone (Figure S5 in Supporting Informa-
tion S1) gave a median of 2,230 m3 day−1 km−1 at the Shallow‐STE site and 320 m3 day−1 km−1 at the Deep‐STE
site (Statistics in Table S7 in Supporting Information S1). The combined distribution resulted in a median FSGD
of 1,700 m3 day−1 km−1.

3.4. Estimation of Dissolved Carbon and Nitrogen Fluxes

At the Deep‐STE site, distributions of fresh groundwater CDOC and CDON had medians of 2.9 and 0.14 mol m−3,
respectively (Statistics in Table S7 in Supporting Information S1; Figure 4a). At the Shallow‐STE site, they were
5.6 and 0.25 mol m−3, respectively. The concentrations at the Shallow‐STE site were almost double of those at the
Deep‐STE site. The combined distribution of saline groundwater CDOC and CDON of both sites had medians of 1.2
and 0.057 mol m−3, respectively (X:2.4 and 0.13; σ:4.2 and 0.29; IQR:0.417–3.75 and 0.02–0.14 mol m−3).

At the Deep‐STE site (KL), the FSGD‐derived mass flux of DOC (FDOC) and DON (FDON) had medians of
1.9 × 104 and 714 mol day−1 km−1 (225 and 10 kg day−1 km−1), respectively. The IQR for mass fluxes on the high
end were up to an order of magnitude higher than the values reported previously for KL, which were 14–71 and 1–
4 kg day−1 km−1 for FDOC and FDON, respectively (Connolly et al., 2020). Therefore, in addition to the FSGD,

Figure 3. (a) Numerical flow and transport model outputs for the Shallow‐STE and Deep‐STE sites (high lagoon level
scenario). (b) Ensemble‐derived fresh submarine groundwater discharge statistical distributions (empirical histograms and/
or fitted distributions) compared with in situ estimates and global estimates from Zhou et al. (2019).
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FDOC and FDON turn out to be higher than previously reported when sources of uncertainty (ensemble results) are
considered. At the Shallow‐STE site, FDOC and FDON had medians of 8.4 × 103 and 360 mol day−1 km−1 (101 and
5 kg day−1 km−1), respectively. We estimated higher FDOC and FDON for the Deep‐STE site due to its higher
FSGD despite higher CDOC/N in the Shallow‐STE site samples. If the combined flux distribution of Shallow‐STE

Figure 4. (a) Fresh submarine groundwater discharge derived DOC/N, (b) CO2, and DIC concentration and mass flux distributions (c) Arctic STE: conceptualization,
summary median fluxes into Beaufort Sea, aerial images (by Nathan Sonderman), August 2019, Kaktovik Lagon; arrows indicate channelized surface flow becoming
submarine groundwater discharge.
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and Deep‐STE sites is representative of the broader region, then the median FDOC and FDON to the Beaufort Sea
are 9.7 × 103 and 430 mol day−1 km−1 (116 and 6 kg day−1 km−1), respectively.

The partial pressure of CO2 (PCO2) in fresh groundwater (<5,000 μS/cm) at 50–70 cm depths at the beach
measured in an additional trip to the Shallow‐STE site in July 2023 had a median of 32,872 μatm (X:38,527;
σ:23,550; IQRs:19,497–52,409 μatm; nsample:10; Table S8 in Supporting Information S1). Calculated CCO2(aq)

and CDIC were M:1.57 mol m−3 and M:7.4 mol m−3, respectively (Figure 4b, Table S7 in Supporting Informa-
tion S1), which includes the uncertainty in pH measurements (Table S9 in Supporting Information S1). Thus,
FSGD delivers a median of 2,400 mol CO2 d−1 km−1 and 11,600 mol DIC d−1 km−1, respectively.

4. Discussion and Conclusions
To independently test and validate our FSGD estimates, we estimated the possible amount of water (PAW)
available for flow using the following simple water balance over a narrow coastal contributing area (150 km2, or
∼200 m wide strip of land from the shore along Beaufort Sea coast, Figure S10a in Supporting Information S1)
throughout the spring and summer:

PAW = ALW + P ‐ ET

where ALW is water stored in the active layer from the previous year assuming full saturation, and P and ET are
total precipitation and evapotranspiration from June to September (See Text 7 for details).

The resulting PAW estimate of 1.7 × 107–1.6 × 108 m3 is similar in magnitude as our total FSGD estimate
(3.4 × 108 m3) for summer (∼60 days). However, the active layer of previous fall may not be fully saturated,
especially in high‐centered polygonal tundra with steep micro‐topographical gradients (Liljedahl, Hinzman, &
Schulla, 2012), leading to lower ALW than estimated. Our modeled FSGD estimates (3.4 × 108 m3 over 60 days)
to the Beaufort Sea (1,957 km) are in the high end likely due to model limitations. Nonetheless, our in situ FSGD
estimates (2 × 108 m3 along Beaufort Sea over 60 days) and those from previous studies (0.5–2.5 × 108 m3 over
60 days and 1,957 km coastline (Connolly et al., 2020)) confirm the order of magnitude of modeled FSGD over
the 60‐day summer period. The similarity in PAW and FSGD estimates suggests that most runoff flowing in the
channelized polygonal tundra within the contributing area likely discharges ultimately as FSGD (Figure 4c).

The September‐to‐end‐of‐June discharge from the largest rivers in the North Slope, the Sagavanirktok (0.9–
2.5 km3 yr−1), Kuparuk (0.6–1.6 km3 yr−1), and Colville Rivers (12.2–27.7 km3 yr−1), are respectively 65%, 63%,
and 62% of the total annual discharge, with the vast majority occurring during the spring (April) freshet. The
remaining 35%, 37%, and 38% occur in summer (McClelland et al., 2014). Based on this, our total FSGD (median)
estimate is 3%–7% of the combined summer river discharge of 8.6–20 × 107 m3 day−1 (July–September,
∼60 days; see Text 7, Table S10 in Supporting Information S1).

The sum of summer (July and August) riverine solute fluxes for the three rivers are 3.12–7.08 × 105 kg DOC
day−1 and 1.43–3.3 × 104 kg DON day−1 (data is from McClelland et al. (2014), See Text S7, Table S10 in
Supporting Information S1). A comparison of our summer FSGD DOC/N mass flux IQR estimates (0.7–
7.9 × 105 kg DOC day−1 and 0.39–4.11 × 104 kg DON day−1, over 1957 km‐long Beaufort Sea coastline) with the
ranges reported for rivers shows that FSGD can deliver as much or even more DOC/N as the major rivers in
summer. Alaskan rivers deliver more water and DOC/N in spring peak discharge period (May–June) compared to
the remaining hydrologic year (McClelland et al., 2014). The comparisons made above are only for the 60‐day
summer. The summer period estimations indicate that FSGD‐derived DOC/N input to the Beaufort Sea
(IQR:4.2–47.4 × 106 kg DOC and 2.3–24.7 × 105 kg DON) can be up to 43% and 63% of the mean combined
annual river DOC and DON inputs, respectively (1.1–1.6 × 108 kg DOC and 3.9–4.6 × 106 kg DON from
(McClelland et al., 2014)). Though Monte Carlo‐based FSGD‐derived solute estimates include spatial variability
at the beach, any DOC/N consumption or production within STEs will modify the final flux into the lagoons.

The PCO2 in fresh beach groundwater in SL was at the high end for unpolluted groundwater globally (Mac-
pherson, 2009). Summertime soil PCO2 in polygonal tundra at a drained lake basin in Utqiaġvik, Alaska was
similarly high (>10,000 μatm at 15–20 cm depths), reaching up to 100,000 μatm during freeze‐up in mid‐
November (Wilkman et al., 2021). Additionally, a geometric mean of 1.5 mol CO2(aq) m−3 was reported for
the same site at a different time (Lipson et al., 2012). These values are similar to our fresh groundwater CO2
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measurements (μx : 1.8 mol m−3, Table S8 in Supporting Information S1), confirming high CO2(aq) delivered via
FSGD to the Arctic coast.

Our study has key limitations. Our flux estimates cannot be extrapolated for the whole year because the active
layer is mostly frozen. We expect lower amounts of FSGD during spring river peak discharge (May–June) and
freeze‐up periods (after September) due to a lack of liquid water in the active layer, and increasing RSGD values
from thawing to open‐water period due to increasing wave energy, frequent wind/storm events, and density
(salinity/temperature) instabilities. We hypothesize that as the thaw season progresses, groundwater inputs
become increasingly significant compared to river inputs.

The gradually deepening shallow aquifer in SL resembles submarine permafrost aquifers along large inlet lagoon
(Overduin et al., 2012) and non‐lagoon (Angelopoulos et al., 2019) low‐lying Arctic coasts. Thus, SL may better
represent the majority of the Alaskan Beaufort Sea coast. The deeper ice‐bonded permafrost table (thicker
aquifer) at KL could be due to its depositional environment (Text S1 in Supporting Information S1) or an inherited
older talik (Pedrazas et al., 2020). While we captured two potential end‐member sites with sloping beaches, other
coastal parts vary, including cliffs, no lagoons, broader flats, and degraded and submerged ice‐wedge polygon
tundra. Future studies are needed to resolve potential uncertainty due to spatial and temporal variability in SGD.

Our modeled (M:2,900 m3 day−1 km−1) and in situ (M:1,700 m3 day−1 km−1) summer estimates indicate that
Arctic coastal aquifers can deliver as much or perhaps even more FSGD as lower latitude coastal aquifers
(M:214 m3 day−1 km−1 by Zhou et al. (2019), and Figure 3b, also see TSGD comparison between Arctic lagoon
(ranging in magnitude of 104–105 m3 day−1 km−1) versus Lower‐latitude seas and lagoons (103–
105 m3 day−1 km−1) in Text S7, Table S11 in Supporting Information S1). The findings emphasize the importance
of SGD in conveying organic matter, inorganic carbon, and potentially other solutes to Arctic lagoons.
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