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Abstract

Premise: Endophytic plant-microbe interactions range from mutualistic relationships
that confer important ecological and agricultural traits to neutral or quasi-parasitic
relationships. In contrast to root-associated endophytes, the role of environmental
and host-related factors in the acquisition of leaf endophyte communities at broad
spatial and phylogenetic scales remains sparsely studied. We assessed endofoliar
diversity to test the hypothesis that membership in these microbial communities is
driven primarily by abiotic environment and host phylogeny.

Methods: We used a broad geographic coverage of North America in the genus
Heuchera L. (Saxifragaceae), representing 32 species and varieties across 161 popu-
lations. Bacterial and fungal communities were characterized using 16S and
ITS amplicon sequencing, respectively, and standard diversity metrics were calculated.
We assembled environmental predictors for microbial diversity at collection sites,
including latitude, elevation, temperature, precipitation, and soil parameters.
Results: Assembly patterns differed between bacterial and fungal endophytes. Host
phylogeny was significantly associated with bacteria, while geographic distance was
the best predictor of fungal community composition. Species richness and phyloge-
netic diversity were consistent across sites and species, with only fungi showing a
response to aridity and precipitation for some metrics. Unlike what has been observed
with root-associated microbial communities, in this system microbes show no
relationship with pH or other soil factors.

Conclusions: Overall, this work improves our understanding of the large-scale
patterns of diversity and community composition in leaf endophytes and highlights
the relative significance of environmental and host-related factors in driving different
microbial communities within the leaf microbiome.
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Plants are hosts to a wide variety of microbial assemblages,
including those that spend all or a portion of their lifetime
within plant tissues, known as endophytes (Hardoim
et al., 2015). Endophytic plant-microbe associations, probably
universal across the land plants, confer such positive func-
tional capacities as abiotic stress response, growth promotion,
beneficial life history traits, and pathogen or herbivore
defense, as well as the potential for negative interactions that
can approach pathogenic relationships (Hardoim et al., 2008;

Khare et al., 2018; Dini-Andreote, 2020; Trivedi et al., 2020;
O'Brien et al.,, 2021). Endophytic relationships are relatively
well characterized in several economically important species
such as major pasture grasses (Clay, 1990; Leuchtmann, 1992;
Schardl and Tsai, 1992) and crop plants (Fisher and
Petrini, 1992; Fisher et al., 1992; Larran et al., 2002; Comby
et al., 2016; Correa-Galeote et al., 2018), particularly under
regulated experimental conditions. In natural environments,
endophyte diversity surveys have been conducted at broad
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phylogenetic (Yeoh et al, 2017) and geographic (Yang
et al., 2019) scales but have mainly been focused on root-
associated microbiomes. These natural surveys show broadly
that soil properties are the most important drivers of plant-
associated microbiome diversity, much as in free-living soil
microbiomes (Thompson et al., 2017; Bahram et al.,, 2018).

The leaf is a vast ecosystem that supports a diverse range
of microbial communities and has been a subject of rapidly
rising interest in endophyte research in the past two decades
(Harrison and Griffin, 2020). Several studies investigating
foliar endophyte communities have documented the roles of
host identity, environment, and geographic distance in
shaping patterns of leaf endophyte community diversity and
assembly (e.g., Zimmerman and Vitousek, 2012; Ding and
Melcher, 2016; Huang, 2020; Mina et al, 2020; Luo
et al., 2024). However, unlike research on root-associated
communities, very few of these studies have investigated
these factors within a broad spatial and phylogenetic context,
especially in natural systems (Harrison and Griffin, 2020).
Hence, our current understanding of the factors that drive
patterns of leaf endophyte diversity is primarily based on
surveys with a narrow geographic and taxonomic range or a
focus on agricultural systems in controlled environments. In
addition, most of these studies focus on either fungal or
bacterial endophyte communities, limiting our knowledge of
the relative influence of host and environmental factors on
both microbial communities inside plants.

Host plant phylogeny plays an important and incom-
pletely characterized subsidiary role for both bacterial and
fungal communities, a role possibly rooted in shared evo-
lutionary history or conserved plant host traits (Yeoh
et al., 2017; Yang et al., 2019). An evolutionary host effect
on endophytes may indicate either (1) functional selection
of associated microbes by the plant (or vice versa) or (2)
shared coevolutionary history between plants and their
endophytes. Particularly, a strong case exists for potential
host phylogenetic constraints on leaf endophyte commu-
nities operating through phylogenetically conserved differ-
ences in leaf tissue traits across taxa (Tellez et al., 2022). In
addition, there is potential for vertical transmission (par-
ticularly well characterized in grasses; Schardl, 2001; Bright
and Bulgheresi, 2010) and semi-vertical transmission within
hosts through primarily within-population sources of
infection (Frank et al., 2017; Kandel et al., 2017).

Abiotic variables have also been linked to differences in
patterns of endophyte community diversity and membership,
including latitude, elevation, climatic factors, soil properties,
and geographic distance. For example, the classic latitudinal
diversity gradient pattern has been observed in foliar fungal
endophytes, demonstrating increased species richness at
lower latitudes (Arnold and Lutzoni, 2007). However,
whether bacteria and other microbial communities follow the
same pattern is still uncertain, due to the relatively few
studies that simultaneously examine both and the differing
results among studies. At a local scale, variation in endophyte
community structure along elevation has been documented
in several host plant species (e.g, Zimmerman and

Vitousek, 2012; Cai et al., 2020; Fu et al.,, 2022) and has been
suggested to be connected to differences in vegetation type
and, wultimately, climatic factors across the gradient
(Huang, 2020). Temperature and precipitation are likewise
known to be strongly correlated with endophyte community
structure and diversity (Herrera et al., 2011; Giauque and
Hawkes, 2013; Glynou et al., 2016), although their influence
has been shown to vary between fungal and bacterial com-
munities. For instance, Huang (2020) found mean annual
temperature and annual precipitation to be strongly corre-
lated with foliar fungal endophyte community structures in
several gymnosperms and Rhododendron spp. across forests
in Taiwan. By contrast, temperature and precipitation had
limited effect on endophytic bacterial communities in ex-
aminations of aboveground tissues of several tree species
(Firrincieli et al., 2020; Wang et al,, 2023).

Soil environment has also been previously suggested as a
primary driver of root-associated microbial communities
(Yeoh et al, 2017; Barraza et al., 2020; but see Glynou
etal., 2016), but the role of edaphic factors for assembling leaf
endophyte microbiomes is still sparsely studied. Leaf en-
dophyte communities could be more insulated from the ef-
fects of soil physico-chemical properties because of the more
controlled environment of internal leaf tissues across varying
soil substrates, especially in contrast to rhizosphere com-
munities. The composition of foliar endophyte communities
should correspondingly have a stronger response to climatic
abiotic factors than to soil substrate properties. Nevertheless,
these responses may differ in relation to varying endophyte
recruitment processes and contrasting dispersal ecologies of
fungal and bacterial endophytes. Indeed, geographic distance
has repeatedly been reported as a major determinant of
fungal, but not bacterial, endophyte community composition,
with dispersal limitation being invoked as a mechanism to
explain variation across space (Collado et al, 1999
Langenfeld et al., 2013; Fang et al., 2019).

Host phylogeny, climate, soil, and geographic distance
are all compelling explanatory factors for endophytes, and
each has prior evidence in different systems. However, in
addition to disagreement among studies (e.g., Langenfeld
et al., 2013; Kembel and Mueller, 2014; Glynou et al., 2016;
Yeoh et al,, 2017; Kivlin et al., 2022; Wang et al., 2023), how
associations of plant-associated microbial communities with
these factors might change across a wider spatial and phy-
logenetic scale remains underexplored. For instance, a study
system linking population-level and phylogenetic scales
(Graham et al., 2018) would provide insight into the phy-
logenetic level at which host specificity is relevant—are
endophyte interactions species-specific, different between
major clades, or shared across flowering or even land
plants? A multi-scale view would be needed to ask these
questions and would also make progress toward linking the
incongruent results from phylogenetically broad and single-
species surveys performed to date. As advocated by Jung
et al. (2021), multi-scale research is also important for
generating genotype x environment viewpoints on plant
microbiomes and giving researchers additional power to
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dissect factors that promote different microbiome
assemblages.

Here, we take a novel approach that uses broad geo-
graphic coverage of North America within the restricted
phylogenetic scope of a recent radiation. Using the host
system Heuchera L., a cliff-dwelling genus of flowering
plants in the family Saxifragaceae with well-characterized
phylogenetic relationships and habitat specialization pat-
terns across the genus (Folk et al.,, 2017, 2018a, 2023), we
leverage strong phylogenetic and population sampling to
explicitly assess diversity trends at multiple evolutionary
levels, from phylogenetic to within-population diversity. We
assembled a series of predictors via global environmental
layers, including elevation, temperature, precipitation, soil
parameters, and latitude. We then used multiple assess-
ments of leaf endophyte diversity to test the hypothesis that
these communities, in contrast to root-associated micro-
biomes, are defined primarily (1) by non-edaphic abiotic
environmental variables and (2) by host phylogeny. Finally,
we assessed both bacterial and fungal endophyte compo-
nents to ask whether these communities are shaped (3) by
distinct environmental factors.

MATERIALS AND METHODS
Host organism

Heuchera is a genus of ~45 species of flowering plants in
Saxifragaceae that is endemic to rock outcrops and montane
areas in North America. It occurs from sea level to ~4000 m
of elevation across broad temperate environmental gradients
including temperate deciduous and evergreen woodland,
plains, high alpine scree, and chaparral. Edaphic variation is
also high and ranges from strong calciphile taxa (e.g., H.
longiflora) to some of the most acidic substrates in North
America (H. parviflora var. saurensis), with many narrow
endemics particular to specific rock substrates. Hence, this
genus forms a robust system for evaluating plant-microbe
interactions across strong, continent-level environmental
gradients. Aside from small numbers of taxa included in
broad surveys (e.g., Jumpponen and Trappe, 1998; Zhang
and Yao, 2015), characterizations of arbuscular mycorrhizae
(Anneberg and Segraves, 2019), and pharmacognostical
evaluations (Wawrosch et al., 2023), endophytic microbial
associates are currently unknown for Saxifragaceae.

Sampling

We began with broad species-level sampling across the
study group, including 32 of the 64 currently recognized
specific and subspecific taxa (50%). Taxa covered are geo-
graphically representative of the range of the genus north of
Mexico (Figure 1) and include all recognized sections
(Folk, 2015). In addition to this broad phylogenetic-aware
sampling of the host plant genus, we leveraged population-level

sampling from two previous studies on host plant phylo-
geography in the Heuchera parviflora species complex (Folk
and Freudenstein, 2015) and the H. longiflora complex
(Folk et al., 2018b), as well as new sampling performed for
this study in the H. americana x H. richardsonii hybrid
zone (see Wells, 1984). The newly sampled taxa were in
the H. americana group (H. americana var. americana,
H. americana var. hirsuticaulis, and H. richardsonii),
the H. longiflora group (H. longiflora var. aceroides and
H. longiflora var. longiflora), and the H. parviflora group
(H. missouriensis, H. parviflora var. parviflora, H. parviflora
var. saurensis, and H. puberula). Samples were taken from
newly expanded leaves collected during peak green season
in late spring (May-June). In total, we collected 178 leaf
samples, one from each host individual, representing
32 species and varieties of Heuchera as well as four closely
related outgroup species, with each replicate representing a
single leaf. Among the samples, 142 were subjected to
bacterial sequencing (a mean of five replicates per host
taxon) and 150 to fungal sequencing (a mean of five
replicates per host taxon). Sampling is summarized in
Figure 1 and Appendices S1 and S2.

DNA extraction

Plant materials were either rapidly frozen at —80°C and sub-
sequently dehydrated or primarily dried in silica-gel prior to
extraction. For each DNA extraction, we chose 20-30 mg of
tissue from a leaf from a single plant without visible lesions or
other obvious disease symptoms. The tissues were incubated
for 1 min each in 70% molecular-grade ethanol and 5% bleach
to disrupt and eliminate DNA of potential epiphytic microbes,
respectively. Tissues were then washed twice in molecular-
grade water to remove residual bleach and homogenized with
metal beads in a Fisherbrand Bead Mill 24 homogenizer
(Thermo Fisher Scientific, Waltham, Massachusetts, USA).
We extracted DNA with a standard CTAB protocol (Doyle
and Doyle, 1987) with the addition of 90 mg ascorbic acid and
100 mg polyvinylpyrrolidone-40 (PVP-40) per extraction to
eliminate plant secondary compounds, per previous optimi-
zations on this plant material (Folk and Freudenstein, 2014).
Finally, all extractions were cleaned using a silica column
(GeneJET PCR purification kit, Thermo Fisher Scientific) per
manufacturer instructions, and extractions were quantified
with an Invitrogen Qubit 4 Fluorometer using Qubit Broad
Range assay reagents (Thermo Fisher Scientific).

Amplification methods

We used two different amplicon sequencing approaches to
characterize both bacterial and fungal communities. Bacterial
sequencing was validated in house using primers 515 f and 806r
from the Earth Microbiome Project (Thompson et al., 2017)
targeting the V4 region of 16S ribosomal DNA and the fol-
lowing thermocycler protocol: initial denaturation at 95°C for
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FIGURE 1 Map of Heuchera sample locations (pink circles) against genus range (purple shading) based on species distribution modeling data from
Folk et al. (2023). Map generated using QGIS version 3.24 (QGIS Development Team, 2021). For sampling data, see Appendices S1 and S2.

3 min, then 35 cycles of 95°C for 45s, annealing at 52°C for
1 min, and 72°C for 1.5min, then a final elongation step of
72°C for 10 min. For successful amplicons (see Appendix S1),
total DNAs were concentration-normalized and sent to the
Michigan State University RTSF Genomics Core (East Lansing,
Michigan, USA) for sequencing of 250 bp paired-end reads on
a MiSeq System (Illumina, San Diego, California, USA) using a
one-step amplification protocol (Kozich et al, 2013). All
amplification steps used DreamTAQ Mastermix (Thermo
Fisher Scientific), with primer concentrations of 0.5 pM except
as noted below, and were performed with filter pipette tips
under a dedicated PCR hood that was bleach- and UV-
sterilized before each use to minimize contamination.

Fungal characterization used the ITSI region and the
primers ITS1FI2 and ITS2 from Schmidt et al. (2013). To
verify the presence of amplifiable DNA, we first validated
the presence of the desired product using the primers
directly and the following thermocycler protocol: initial
denaturation at 95°C for 3 min, then 35 cycles of 95°C for
45 s, annealing at 50°C for 1 min, and 72°C for 1 min, then a
final elongation step of 72°C for 10 min. We then ream-
plified successful samples from total DNA using ITS1FI2

and ITS2 primers that were tagged with 5’ end overhangs
specified by the sequencing center using the following
thermocycler protocol: initial denaturation at 95°C for
5 min; then 30 cycles of 95°C for 30 s, annealing at 52°C for
30, and 72°C for 30s; then a final elongation step of 72°C
for 5min. Primers for this reaction were at 0.1 pM. Suc-
cessful amplicons were submitted to the Michigan State
University RTSF Genomics Core for a second barcoding
amplification and sequencing. Sequencing instrumentation
and wet lab precautions followed those for 16S (above).

Sequence processing

We performed sequence analyses in the “QIIME 2” package
version 2020.8 (Caporaso et al., 2010; Bolyen et al., 2019).
Reads were first denoised via Dada2 (Callahan et al., 2016)
in order to error-correct and merge paired-end reads and
remove sequence chimeras. As part of this step, primers
were trimmed from the 5’ end and, based on Phred quality
plots in FastQC (Andrews, 2015), 50 bp were trimmed from
the 3’ end of the R2 reads.

d 11 °vT0T L6ITLEST
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For taxonomic classification, we used the Greengenes
database (McDonald et al., 2012) for bacterial 16S reads,
and the UNITE database (Nilsson et al., 2019) for fungal ITS
reads, following recommendations in the QIIME 2 docu-
mentation for preparing the taxonomic classifier via a naive
Bayesian approach (QIIME 2 module fit-classifier-naive-
bayes). We clustered the Greengenes database at 97% and
UNITE at 99% identity. We then performed taxonomic
classifications of the merged reads against these databases
using QIIME 2 module “sklearn” (Pedregosa et al., 2011).
For endophyte tissues, 16S and ITS amplicon sequencing
approaches were expected to generate host plant DNA
sequences due to off-target amplification of organellar 16S
rDNA and nuclear ITS, respectively. Based on extensive
optimizations, we implemented separate strategies for effi-
ciently removing host DNA from each of these genetic loci.
For 16S, we removed host DNA using annotated chloroplast
and mitochondrial operational taxonomic unit (OTU)
classifications from the Greengenes taxonomy—level 3
(class) and level 5 (family), respectively. For ITS, we cus-
tomized the UNITE database by adding host plant ITS
sequences we have previously generated (Folk and
Freudenstein, 2014), and removed host sequences based on
level 6 (genus) OTU classifications.

We also performed taxonomic classification for bacterial
16S reads wusing the updated Greengenes2 database
(McDonald et al., 2023) with similar methods to those
described above. However, Greengenes2 lacks representa-
tion of eukaryotic mitochondrial and chloroplast sequences,
which generated very high proportions of unidentified
sequences and likely spurious Bacteroidota identifications
(see Appendix S3). Both of these most likely reflect incorrect
identifications of the organellar genome of the host. Thus,
determinations from the original Greengenes database were
used for downstream analysis.

Environmental predictor assembly

We used globally interpolated datasets to infer environmental
factors at each collection locality. The variables used and their
sources were as follows: mean annual temperature (measured
in °C) and annual precipitation (in millimeters) (BIOCLIM;
Hijmans et al., 2005); aridity (see below); elevation (in meters)
(GTOPO30, https://www.usgs.gov/centers/eros/science/usgs-
eros-archive-digital-elevation-global-30-arc-second-elevation-
gtopo30); and soil pH, sand percent, and carbon content (the
last measured in permilles) (SoilGrids; Hengl et al., 2017). An
aridity index was calculated as precipitation/potential evapo-
transpiration (see Middleton et al, 1992) using data from
WorldClim2 and Envirem (Fick and Hijmans, 2017; Title and
Bemmels, 2018). Note that this aridity index decreases with
increasing aridity; arid conditions are generally those
with index values < 0.5. Environmental values were associated
with geolocated sampling localities using scripts published
previously (https://github.com/ryanafolk/Saxifragales_spatial
scripts/tree/master/Extract_point_values). Finally, given that

varying latitudinal gradients in diversity have been docu-
mented for soil (Bahram et al., 2018) and marine microbes
(Ibarbalz et al., 2019), we also directly used the latitude of our
collecting localities as a predictor.

Community diversity

We used QIIME 2 to generate two primary descriptors of
community diversity. First, we characterized measures of
overall diversity using Shannon entropy, a diversity measure
that includes both taxon presence-absence information and
abundance. We then calculated Faith's phylogenetic diver-
sity (PD), which represents the sum of phylogenetic branch
lengths connecting a microbial community. We applied
these diversity metrics to only the three species groups with
strong population sampling to enable comparisons among
host taxa with replicate sampling. Given the presence of
high levels of host DNA and relatively low endophyte
diversity per sample (see Bulgarelli et al., 2013; Kivlin
et al., 2022), and despite a high sequencing effort in many
samples (Appendix S4), sequence rarefaction was set to 50
for diversity statistics. This number was based on rarefac-
tion analyses conducted at up to 50, 150, 500, and 1000
sequences, respectively, to test the rarefaction that best
captures diversity while still including as many samples as
possible. For bacterial endophytes, these analyses indicated
that 50 non-host sequences (i.e., ~5000 total sequencing
reads) sample most of the diversity in the community, as
suggested by the rarefaction curves for Shannon diversity
reaching a saturation plateau at 50 sequences (see Appen-
dix S5). We also evaluated the impact of sequence rarefac-
tion by repeating downstream analyses with varying
sequence cutoffs (no rarefaction and 350 for ITS; 350 and
500 for 16S; see Appendix S6) and found that most results
were insensitive to rarefaction. We observed only one dif-
ference in terms of significance in fungal Shannon diversity
(recovery of a significant effect of latitude at the 350 cutoff),
a result that may be due to sampling bias from dropped
samples. For fungal endophytes, a cutoff of 50 non-host
sequences was relatively substantial and still accounted for
variations in sequencing depth between samples (compared
to analyses based on non-rarefied data; Appendix S6).

We used both a linear modeling (LM) and a linear
mixed-modeling (LMM) framework in R package “lme4”
version 1.1.33 (Bates et al., 2015) to understand how these
diversity statistics relate separately to environmental drivers
and host identity. We constructed models using both the
“lm” function in R package “stats” version 4.1.2 (R Core
Team, 2021) for LM and the “Imer function” in R package
“Ime4” version 1.1.33 (Bates et al.,, 2015) for LMM. For
model comparison and selection, we used both manual and
automated modeling approaches. For the manual modeling
approach, we constructed univariate linear models with
each environmental predictor, a null model (in R notation,
diversity ~ 1) and a multivariate linear model that included
all the predictors. We then performed model selection via

ASUAIIT SUOWWO)) 9ATRAIY) dqeoridde ay) £q PaIdAOS a1k SAONIR YO (SN JO SN 10§ A1RIQIT SUIUQ KI[IAL UO (SUOHIPUOI-PUR-SULIdY/WOY K3[1Mv ATeaqrourjuoy/:sdiy) SUONIPUOY) Pur SWIAL, Ay S *[SZ0Z/S0/10] U0 Areaqry autuQ Ay ‘Ansioatun e ddississtiyl £q 82491 7ale/z001°01/10p/wod Ko Kreaquaurjuorsqndesqy/:sdny woy papeojumod ‘11 “t20T ‘L61ZLEST


https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-global-30-arc-second-elevation-gtopo30
https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-global-30-arc-second-elevation-gtopo30
https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-global-30-arc-second-elevation-gtopo30
https://github.com/ryanafolk/Saxifragales_spatial_scripts/tree/master/Extract_point_values
https://github.com/ryanafolk/Saxifragales_spatial_scripts/tree/master/Extract_point_values

6 of 15 |

DRIVERS OF LEAF ENDOPHYTE DIVERSITY AND COMPOSITION IN HEUCHERA

the Akaike information criterion (AIC) using the “aicw”
function in the R package “geiger” version 2.0.11 (Pennell
et al, 2014) and assessed predictor statistical significance
with the “summary.lm” function in R package “stats.” For
the automated approach, we constructed a linear mixed
model with all environmental predictors included as fixed
model terms. Host plant species taxonomy was also
included as a random term in LMM to separately partition
variation attributable to host taxon. We then used the “step”
function in R package “lmerTest” version 3.1.3 (Kuznetsova
et al., 2017) to perform model selection via AIC and cal-
culate predictor significance using an automated backwards
approach. Analyses were performed using R version 4.1.2.

Community composition

In order to characterize differences among microbial com-
munities in terms of taxon composition, we used the UniFrac
distance metric, which accounts both for shared taxon pres-
ence/absence and for phylogenetic branch length, here
including all samples. We used a Mantel testing approach in R
package “vegan” version 2.6.4 (Oksanen et al., 2022) to ask
whether matrices of UniFrac distance were associated with
each of either geographic distance, environment, or host
phylogenetic distance. Environment distances were Euclidean
distances on the environmental predictors, where two matrices
were prepared segregating the environmental predictors into
soil (pH, sand percent, and organic carbon content) and non-
soil factors (latitude, temperature, precipitation, elevation, and
aridity index). Geographic distances were geodesic distances
(converted from objects containing longitude and latitude
coordinates), calculated using the geodist vec function in R
package “geodist” version 0.0.8 (Padgham, 2021). Since geo-
graphic and environmental distances were strongly correlated,
we additionally used a partial Mantel approach in R package
“vegan” to attempt to control environmental factors for
geography. Host phylogenetic distances were patristic distances
calculated from the host plant phylogeny of Folk et al. (2017);
this was a phylogenetic estimate based on phylogenomic
data with complete species-level sampling of the host plants
used here. Since that previous phylogeny did not include
population-level sampling, population samples were imputed
by placing them within the phylogeny based on taxonomic
identifications and assuming zero within-taxon branch lengths.
Analyses were performed using R version 4.1.2.

RESULTS
Sequencing

For 16S sequencing, we recovered a mean of 236,938 reads
per sample across 139 successful samples, with 1737 total
bacterial OTUs across all samples and a mean of 97% host
DNA prevalence. For ITS sequencing, we recovered a mean
of 185,997 reads per sample across 133 successful samples,

with a total of 1082 fungal OTUs and a mean of 99% host
DNA prevalence; lower fungal diversity compared to bac-
terial diversity has been documented in leaf endophytes
(Bulgarelli et al., 2013).

Taxonomic composition

The five most dominant bacterial phyla by decreasing order
of prevalence were Proteobacteria (6-100% per sample),
Bacteroidetes (0-83%), Actinobacteria (0-38%), Verrucomi-
crobia (0-13%), and Cyanobacteria (0-48%) (Figure 2A), as
previously reported in other host species (Zarraonaindia
et al., 2015; Coleman-Derr et al., 2016; de Souza et al., 2016;
Ding and Melcher, 2016; Aydogan et al., 2018; Wemheuer
et al,, 2019; Mina et al,, 2020; Yang et al., 2023). Finer-level
classifications of recovered OTUs largely corresponded to
typical endophytes documented elsewhere (Hallmann
etal,, 1997; Rosenblueth and Martinez-Romero, 2006; Miliute
et al, 2015; Ding and Melcher, 2016; Afzal et al., 2019
Christian et al., 2021), such as (in decreasing order of overall
prevalence for 16S) Sphingomonas (which reached highest
prevalence at <100%), Comamonadaceae, Chitinophagaceae,
Methylobacterium, Blastomonas, Hymenobacter, Pseudomo-
nas, and Opitutaceae. Similar to other surveys in natural
populations (Yeoh et al., 2017), potential diazotrophs (genera
Rhizobium, Bradyrhizobium, Mesorhizobium, Frankia) were
observed at low frequencies (<8% of total 16S reads) in
almost all samples (Appendix S7).

For fungi, by far the most dominant phylum was
Ascomycota (only missing in a single sample; otherwise,
5-100%), with Basidiomycota (0-44%, absent in a slight
majority of samples), Olpidiomycota (0-77%, absent in
most samples), and Mucoromycota (<1%) as minor com-
munity members (Figure 2B), similar to close relative Sax-
ifraga (Zhang and Yao, 2015) and other plants (Zimmerman
and Vitousek, 2012; Jin et al., 2013; Fan et al., 2020; Pang
et al., 2022). As with bacteria, fungal fine-level OTU des-
ignations generally contain previously documented en-
dophytes (Fisher et al., 1992; Aradjo et al., 2001; Gamboa
and Bayman, 2001; Romero et al., 2001; Zimmerman and
Vitousek, 2012; Douanla-Meli et al., 2013; Jin et al., 2013;
Matsumura and Fukuda, 2013; Zhang and Yao, 2015; Fang
et al,, 2019; Fan et al., 2020; Pang et al., 2022); in order of
decreasing abundance the most prevalent were Penicillium,
Pleosporaceae, Septoria, and Alternaria (all four <100%
abundance), Mycosphaerella, Tetracladium, Ramularia, and
Colletotrichum (Appendix S8).

Drivers of leaf endophyte diversity

Using both linear-model and mixed-model frameworks, we
tested for a role of climate, soil environment, latitude, ele-
vation, and species identity on leaf endophyte diversity as
measured by Shannon entropy and Faith's PD. For bacteria,
we found the null model was favored for both diversity
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FIGURE 2 Foliar (A) bacterial and (B) fungal endophyte phylum-level diversity and relative frequency (%) across host (Heuchera) plant taxa.

metrics in either modeling framework, meaning that bac-
terial leaf endophyte diversity metrics were insensitive to the
predictors we measured (Appendix S6). However, for fungi,
manual modeling indicated that precipitation and aridity
were significant predictors of Shannon diversity for fungal
endophytes (P=0.0106 and 0.0108, respectively; Table 1
and Figure 3), while aridity index was marginally significant
for Faith's PD (P =0.05; Table 1). Automated model selec-
tion likewise favored a model with only precipitation as the
predictor (Shannon diversity ~ precipitation; P =0.0106);
aridity was not identified in the best model, perhaps due to
collinearity with precipitation or due to the random host
term (Appendix S6). The null model was favored for Faith's
PD (Faith's PD ~ 1; Appendix S6). Considering potential
host effects, based on examination of endophyte diversity vs.
host identity boxplots (Figure 4), the only species group that
showed distinctness in Shannon diversity or Faith's PD was
the H. parviflora group, although this difference was not
significant (16S: ANOVA, F;,5=1.60 and 1.80, P=0.212
and 0.173, respectively; ITS: F, 4, =1.53 and 0.74, P=0.25
and 0.50, respectively; Figure 4); taxa in the other two
species groups had near-identical means.

Drivers of leaf endophyte community
composition

Using microbial UniFrac distances as a characterization of
leaf endophyte community composition, we asked whether
communities were associated with any of three potential
drivers: geography (that is, isolation-by-distance), soil (pH,
sand percent, and organic carbon content) or non-soil

environment (latitude, temperature, precipitation, elevation,
and aridity index), and host phylogeny. For bacteria, we
found that only host phylogeny was significant (Mantel test,
P =0.002; Table 2 and Figure 5A). For fungi, we found that
geography (Mantel test, P <0.001; Table 2 and Figure 5B)
and both soil and non-soil environment (Mantel test,
P=0.03 and 0.01, respectively; Appendix S6) were signifi-
cantly associated with UniFrac distance. Given that we
found spatial autocorrelation among both sets of environ-
mental predictors (Mantel test, both P < 0.05), we controlled
for geography using a partial Mantel approach. We found
after this correction that both soil and non-soil environment
were no longer significant (P =0.36 and 0.43, respectively;
Table 2) for fungi, indicating that geography was the best
predictor of fungal community composition and the effect
of environment independent of geography was negligible.

DISCUSSION

Here, to address a need for broad-scale spatial and phylo-
genetic studies investigating patterns of leaf endophyte
diversity, we assessed the role of environmental and host-
related factors in acquiring foliar endophyte microbiomes
across a widely sampled geographic distribution and host
phylogeny in the flowering plant genus Heuchera across
North America. We found that fungal endophyte diversity
was significantly greater in wetter sites, but bacterial en-
dophyte diversity was consistent across environmental
gradients and host species. Fungal and bacterial community
structures were therefore independently predicted by dis-
tinct factors. Dissimilarity between fungal communities
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TABLE 1

Results from manual modeling approach with Akaike information criterion (AIC) weights, AAIC, R% and P-values of linear models

describing relationships between predictors and foliar fungal endophyte diversity metrics. Significance codes: *** 0, ** 0.001, * 0.01, 1 0.05, (none) 0.1.

Faith's PD Shannon diversity
Model AIC AAIC R P Model AIC AAIC R P
Aridity index 190.30 0.00 0.06 0.05+ Precipitation 184.58 0.00 0.10 0.01*
Precipitation 190.74 0.44 0.05 0.07 Aridity index 184.63 0.05 0.10 0.01*
Null 192.14 1.84 0.00 0.36 Soil pH 188.63 4.04 0.04 0.10
Latitude 192.94 2.64 0.02 0.28 Latitude 188.69 4.11 0.04 0.11
Elevation 193.17 2.86 0.02 0.33 Soil sand % 188.91 4.32 0.03 0.12
Soil sand % 193.26 2.95 0.01 0.36 Null 189.39 4.80 0.00 0.35
Soil pH 193.50 3.20 0.01 0.43 Elevation 189.65 5.07 0.03 0.20
Soil carbon 193.74 3.44 0.01 0.54 Temperature 190.96 6.38 0.007 0.52
Temperature 193.89 3.58 0.004 0.62 Soil carbon 191.13 6.55 0.004 0.62
Host species 202.44 12.14 0.06 0.85 Host species 192.69 8.11 0.15 0.20
All predictors 207.41 17.11 -0.04 0.64 All predictors 196.01 11.43 0.09 0.18
A s/ Bs
R?=0.1009 ¢ R?=0.1002 °
p =0.0106 ° p =0.0108 °
°
0
B B o*
£ £ 4
2 2 .
5 &S] d
5 5 C
j c
c c
IS 5]
< <
) %)

500 1000 1500 2000
Annual precipitation (mm)

05 10 15
Aridity index

FIGURE 3 Foliar fungal endophyte Shannon diversity with respect to (A) annual precipitation (mm) and (B) aridity index. Gray shading around the

regression line indicates 95% confidence interval.

increased as geographic distance between hosts increased,
whereas bacterial communities were not related to distance
or environment but were more similar in more closely
related host taxa. Neither fungal nor bacterial endophyte
communities exhibited a significant relationship with soil
pH or other soil environmental factors.

Our finding that host phylogeny significantly influences
bacterial (but not fungal) community structure suggests a
level of host control over bacterial community colonization
of internal leaf tissues that is not evident in fungal commu-
nities. Similar patterns have been reported in smaller-scale
studies, demonstrating that leaf endophytic bacterial com-
munities are chiefly controlled by host identity (Ding
et al., 2013; Mina et al., 2020), as well as showing that host
biogeography and other abiotic factors play a minor role in

bacterial community assembly (Coleman-Derr et al., 2016).
Bacterial diversity, on the other hand, was remarkably con-
sistent across host species and all environmental variables
measured. This pattern is consistent with previous work
across host plants in which abiotic factors have little or no
influence on leaf bacterial richness and abundance. For ex-
ample, several studies have shown that precipitation, tem-
perature, and elevation generally does not exert a significant
effect on bacterial diversity (Hirano et al., 1996; Copeland
et al, 2015 Wemheuer et al, 2020; Stone and
Jackson, 2019, 2021). Additionally, there is very limited
knowledge about bacterial endophyte diversity patterns along
latitudinal gradients. While a latitudinal diversity gradient pat-
tern has been observed previously in leaf fungal endophytes (see
Arnold and Lutzoni, 2007), this was not a significant predictor
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FIGURE 4 Boxplots of foliar microbial endophyte Faith's phylogenetic diversity and Shannon diversity with relative frequency (%) across strongly

sampled host (Heuchera) taxa.

TABLE 2 Results of Mantel correlation tests between microbial
endophyte community UniFrac distances and predictor distances (values
for soil and non-soil environment for fungal endophytes are based on
partial Mantel test results). Soil environment = soil pH, sand percent, and
organic carbon content. Non-soil environment = latitude, temperature,
precipitation, elevation, and aridity index. Mantel statistic r-values are
based on Pearson's product-moment correlation. Significance codes: *** 0,
**0.001, * 0.01, t 0.05, (none) 0.1.

Fungal endophytes Bacterial endophytes

r P r P
Geographic 0.150 0.0003*** -0.037 0.715
distance
Host phylogeny 0.024 0.221 0.141 0.002**
Soil environment 0.014 0.359 —-0.096 0.934
Non-soil 0.007 0.425 -0.028 0.651
environment

of endofoliar fungal diversity in this study. Thus, our study,
while limited to North America, serves as initial evidence that
leaf bacterial endophyte species and phylogenetic diversity do
not follow a latitudinal diversity gradient.

The observed relationship of host phylogeny with bacteria
may be indicative of a deliberate choice of beneficial microbes
by the host plant (or vice versa) or a mutual evolutionary

relationship between host plants and their bacterial endophytes.
Processes such as vertical transmission of bacterial endophytes
from parent to progeny via seed (Bergna et al, 2018; Zhang
et al,, 2022) demonstrate an intimate association between en-
dophytes and host plant species. In particularly intimate en-
dophyte relationships, the external environment may be less
important than host-specific recruitment and maintenance of
bacterial communities in shaping patterns of community
composition and diversity across host plant taxa. Our results
reveal a microbial community for the host genus Heuchera
consisting of a set of bacterial endophytes that form a stable and
close relationship with the host and are less affected by spatial
processes and external environmental factors. These results are
therefore consistent with the model of a core bacterial micro-
biome (i.e., a set of bacterial taxa that may be exclusively and
consistently recruited to confer positive host functional traits, as
well as ecological and evolutionary advantages; Risely, 2020).
Identifying which underlying recruitment processes explain the
relationship of bacterial endophytes to the host should be sub-
ject to further investigation.

Our observation that isolation-by-distance was significant
for fungi and not bacteria is a remarkable parallel to recent
global-scale work on soil microbiomes (Bahram et al,, 2018),
where both environmental parameters and geographic distance
significantly determined fungal diversity. This contrasting
pattern has also been revealed previously by small-scale
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comparative investigations that reported distinct drivers of
microbial community composition between bacteria and fungi,
the latter influenced by geographic distance more than bacteria
(Shakya et al., 2013; Coleman-Derr et al., 2016; Wei et al., 2022).
For example, foliar fungal endophyte community structure was
found to be strongly correlated with geographic distance in
several oak species (and other plant hosts; see Langenfeld
et al,, 2013; Coleman-Derr et al., 2016); the similarity of spatially
adjacent sites was independent of host habitat and phylogeny, as
well as changes in climatic and environmental conditions
(Collado et al., 1999; Lau et al., 2013; Koide et al., 2017). This
repeatedly observed pattern may reflect distinct dispersal ecol-
ogies of fungal and bacterial endophytes in Heuchera. Foliar
fungal endophytes are usually horizontally transmitted as spores
or small pieces of hyphae via air (Rodriguez et al., 2009), which
suggests that geographic location plays a significant role in en-
dophytic community recruitment. Dispersal limitation, in par-
ticular, may be one of the possible explanations for spatial effects
in fungi; Zhang and colleagues (2021) found strong evidence
supporting the “size-dispersal” hypothesis, which states that
larger fungi are more dispersal constrained than smaller bac-
terial microorganisms. This can lead to greater geographic
heterogeneity of fungal endophyte communities and, as a result,
community similarity declines with growing geographic dis-
tance. As previously noted, we used a partial Mantel approach
to attempt to control environmental factors for geography given
the spatial autocorrelation we observed. Collinearity of en-
vironmental and geographic predictors is challenging to tease
apart regardless of the modeling framework, but the tests pro-
vided valuable insights into the roles of these predictors in
community recruitment.

In addition to spatial and host-related factors, previous
studies have documented the significant role that environ-
mental factors play in driving patterns of microbial diversity

(Zimmerman and Vitousek, 2012; Giauque and
Hawkes, 2016). Leaf endophytes, by contrast, may be rela-
tively buffered from the external environment by host pro-
tection and internal physiology (Wang et al., 2023), but foliar
endophyte diversity data at broader spatial and phylogenetic
scales are needed to further test this hypothesis. The results of
our continental sampling across the host plant genus Heu-
chera show that precipitation factors were the most impor-
tant environmental predictors of leaf fungal endophyte
diversity (see also Zimmerman and Vitousek, 2012; Penner
and Sapir, 2021), whereas bacterial communities were
unrelated to the environmental factors tested here (see also
Hirano et al, 1996; Copeland et al, 2015; Stone and
Jackson, 2019, 2021; Wembheuer et al., 2020). This suggests an
important role of climate, particularly water availability, in
shaping broad patterns of fungal diversity within leaf tissues.
Water availability may impact fungal species richness and
abundance in terms of influencing organismal metabolism,
growth and survival, and resource availability, as reported in
several investigations (Hirano and Upper, 2000; Williams and
Rice, 2007; Manzoni et al., 2012). In addition, for fungal
endophytes that are primarily horizontally transmitted
through spores from the environment (Rodriguez
et al,, 2009), precipitation may also be directly involved in the
dispersal and successful recruitment of these endophytes.
Rainfall may release and disperse tiny fungal spores from the
environment and surrounding plants toward other plants,
particularly on leaf tissues with small wounds that facilitate
easier entry. Increased moisture in the air also causes stomata
to open, providing access points for dispersed fungal spores
to infiltrate the leaf internal tissues. Furthermore, small
droplets of water on leaf surfaces may be a prerequisite for
some fungal spores to initiate germination and subsequent
infection of leaf tissues (Bald, 1952).
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We also demonstrate here that the Heuchera leaf endophyte
microbiome shows no relationship with the soil environment, a
contrast to what has been observed in rhizosphere and root
endophyte communities (Fierer and Jackson, 2006; Baker
et al., 2009; Afzal et al,, 2011; Bokati et al., 2016). Van Bael et al.
(2017) similarly suggest that soil environment gradients do not
significantly influence foliar endophyte diversity and commu-
nity assembly. This may be due to host buffering against
edaphic conditions in the more insulated internal leaf en-
vironments that microbial communities inhabit. Indeed, in a
recent work by Zhou et al. (2023b), soil salinity was found to
determine endophytic bacterial communities in roots but not in
leaves, where host leaf metabolism is thought to have more
control over community assembly.

Our work also derives substantially from silica-dried
collections, an approach used previously to characterize
legume nodule microbiomes (Johnson, 2019). That we re-
covered, as major community components, numerous
bacterial and fungal genera previously known to be typical
plant endophytes indicates that useful insights can be
derived from diverse preservation strategies, although we
did not compare tissue preservation effects in our analyses.
Easy-to-use preservation approaches are especially suitable
for widely spread and inaccessible field sites for broad
geographic surveys. Herbarium materials prepared under
less controlled conditions than those used here have been
the subject of several studies. Daru et al. (2018) and Bieker
et al. (2020) were able to obtain useful endophyte micro-
biome data from herbarium specimens, although with
higher quantities of exogenous DNA due to inconsistent
mounting and storage procedures. However, materials from
herbaria may prove useful in future studies to track how
endophytic communities might change through time. In
addition to herbaria, large, preserved tissue resources exist
in several museums and other institutions as well as indi-
vidual labs that would, together with a similar approach to
ecological predictor assembly via georeferences, enable
broad-scale surveys of endophyte diversity potentially
beyond the scale of purpose-collected microbial materials.
In terms of challenges, our results were consistent with
earlier research reporting remarkably low endophyte
abundance in leaf samples, as well as reduced diversity
compared to root tissue (Kivlin et al, 2022; Zhou
et al.,, 2023a). Endophyte abundance in leaves may just be
inherently too low to prevent nonspecific amplification even
when specific primers are used, because the host over-
whelms the PCR reaction. These findings point to the
possibility that leaves naturally have far fewer microbial
endophytes, in terms of both quantity and diversity, than
other tissues of the plant body.

CONCLUSIONS

The roles of host, climate, and soil factors in driving the
assembly of leaf endophyte communities have been rela-
tively less studied at broad scales, yet a broader scope is

needed to resolve disagreement among studies performed at
narrower scales. Overall, this work improves our under-
standing of the large-scale patterns of diversity and com-
munity composition in leaf endophytes using an evolu-
tionary framework, and highlights differences in how
environmental and host-related factors shape bacterial and
fungal communities within the leaf microbiome. Our results
for bacteria suggest a core microbiome primarily shaped by
host phylogeny, whereas for fungi our data highlighted
geographic distance and precipitation factors as the best
predictors of community composition. Host-mediated
selection of core microbiomes and dispersal limitation
may respectively underlie these differences, although further
study is needed to identify specific mechanisms. The present
study also introduces silica-dried collection as an effective
and efficient preservation approach for broad-scale leaf
microbiome studies. Our findings highlight the value of
in-depth clade-based microbiome research and the intricacy
of microbiome assembly within certain plant organs.
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Additional supporting information can be found online in
the Supporting Information section at the end of this article.

Appendix S1. Sampling location and host taxonomy.

Appendix S2. (A) Number of samples per host taxon and
per sequencing type investigated in this study; (B) sampling
summary of host taxonomy and populations with mean
number of replicates per host taxon and population.

Appendix S3. Bacterial phylum-level diversity and relative
frequency across samples using the updated Greengenes2
database.
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Appendix S5. Shannon diversity alpha rarefaction curves
for (A) bacterial 16S and (B) fungal ITS sequences.

Appendix S6. Results of downstream diversity analysis,
including no rarefaction and varying sequence cutofs.
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Appendix S8. Fungal genus-level diversity and relative
frequency across samples.

How to cite this article: Pantinople, D. J., R. Conner,
S. Sutton-Dauber, K. Broussard, C. M. Siniscalchi, N.
J. Engle-Wrye, H. R. Jordan, and R. A. Folk. 2024.
Continental sampling reveals core bacterial and
environmentally driven fungal leaf endophytes in
Heuchera. American Journal of Botany 111(11):
e16428. https://doi.org/10.1002/ajb2.16428

ASUAIIT SUOWWO)) 9ATRAIY) dqeoridde ay) £q PaIdAOS a1k SAONIR YO (SN JO SN 10§ A1RIQIT SUIUQ KI[IAL UO (SUOHIPUOI-PUR-SULIdY/WOY K3[1Mv ATeaqrourjuoy/:sdiy) SUONIPUOY) Pur SWIAL, Ay S *[SZ0Z/S0/10] U0 Areaqry autuQ Ay ‘Ansioatun e ddississtiyl £q 82491 7ale/z001°01/10p/wod Ko Kreaquaurjuorsqndesqy/:sdny woy papeojumod ‘11 “t20T ‘L61ZLEST


https://doi.org/10.1002/ajb2.16428

	Continental sampling reveals core bacterial and environmentally driven fungal leaf endophytes in Heuchera
	MATERIALS AND METHODS
	Host organism
	Sampling
	DNA extraction
	Amplification methods
	Sequence processing
	Environmental predictor assembly
	Community diversity
	Community composition

	RESULTS
	Sequencing
	Taxonomic composition
	Drivers of leaf endophyte diversity
	Drivers of leaf endophyte community composition

	DISCUSSION
	CONCLUSIONS
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGMENTS
	DATA AVAILABILITY STATEMENT
	ORCID
	REFERENCES
	SUPPORTING INFORMATION


