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Abstract—Hyperdimensional (HD) computing is an emerg-
ing paradigm inspired by human cognition, utilizing high-
dimensional vectors to represent and learn information in a
lightweight manner based on its simple and efficient operations.
In HD-based learning frameworks, the encoding of the high
dimensional representations is the most contributing procedure
to accuracy and efficiency. However, throughout HD computing’s
history, the encoder has largely remained static, which leads to
sub-optimal hypervector representations and excessive dimen-
sionality requirements. In this paper, we propose novel forward-
only training methods for HD encoders, Stochastic Error Projec-
tion (SEP) and Input Modulated Projection (IMP), which dynam-
ically adjust the encoding process during training. Our methods
achieve accuracies comparable to state-of-the-art HD-based tech-
niques, with SEP and IMP outperforming existing methods by
5.49% on average at a reduced dimensionality of D = 3, 000. This
reduction in dimensionality results in a 3.32× faster inference.

Index Terms—Hyperdimensional Computing, Data Represen-
tation, HDC encoding

I. INTRODUCTION

Hyperdimensional (HD) computing, also known as Vector
Symbolic Architectures (VSAs), is a computing paradigm
modeled after human long-term memory [1]. HD comput-
ing has recently been gaining recognition as an attractive
alternative to traditional deep learning techniques primarily
because of its lightweight computations. HD computing is a
symbolic representation system that maps data points to high-
dimension random vectors of distributed representation, called
hypervectors; that is, hypervectors are extremely wide words
with bit-widths in the thousands that represent data holistically
over the entire word [2]. As efforts to push the process-
ing of information closer to the application source continue
to increase, HD computing is becoming a more promising
solution for lightweight learning. The holistic nature of the
HD representation system means elements in a hypervector
are dimension-independent, allowing for implementations of
efficient and highly parallel hardware accelerators, including
GPGPU [3], FPGA [4], and ASIC designs [5].

HD learning models for classification tasks first map input
data to hypervectors. Various encoding methods have been
proposed [6], [7], but the overarching idea has been to
generate vectors or matrices of random elements such that
the outer product between it and input data would project
the data to high-dimension holistic vectors. In many HD-
based learning algorithms [6], [4], [8], hypervectors of the
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Fig. 1: Accuracies of Popular Encoders as Dimensions In-
crease. HDC Requires High Dimensions to Perform.

same class are then aggregated into a single hypervector,
called class hypervectors, that represents the class through a
universal pattern. The simplest form of an HD model takes
inference data and compares its hypervector representation to
the class hypervectors. The class hypervector that yields the
highest similarity becomes the predicted label. The similarity
of hypervectors is measured through metrics such as dot
product and cosine similarity. Finally, further refinement of
the HD model is achieved through a retraining procedure [9]
that fine-tunes class hypervectors to increase their similarity
to correct labels while decreasing similarity to incorrect ones.

In our examination of current retraining procedures within
HD learning models, we observe a significant limitation: the
sole focus on fine-tuning class hypervectors. This approach
operates under the assumption that the encoding process will
yield sufficiently distinct hypervectors for data associated
with different labels. However, this overlooks a critical
aspect of HD computing, the role of hypervector encoding

in determining the overall accuracy of the trained model.
The projection matrices generated during the encoding
phase remain static throughout both the initial training
and subsequent retraining procedures, and, as a result, the
resulting hypervector representations for any given data set
are immutable. To address the limitations associated with
static encoders in HD learning models, prior work has focused
on either preprocessing the data [10] or integrating neural
networks as inputs to the HD framework [11], [12]. While
these approaches can improve performance, they introduce
considerable computational overhead, and more critically, they
fail to resolve the inherent static nature of the HD encoder.

This rigidity can lead to two critical issues: (i) sub-optimal
hypervector representations, especially in scenarios involving
complex data, which culminates in ineffective learning, and
(ii) the use of excessive dimensions, e.g., D = 10, 000, to
compensate for the error incurred through ineffective projec-
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Fig. 2: Typical HD-Based Learning Procedure

tions of the raw data into high-dimensional space, resulting in
a high computational burden to perform HD computing. We
demonstrate in Figure 1 on a face recognition dataset (FACEA,
see Table I) that the three most common encoding methods all
require high dimensions for the best performance.

In this paper, we introduce two novel frameworks for HD
encoder training designed to generate accurate hypervector
representations learned during the training process. Adhering
to the core philosophy of brain-inspired HD computing, we
draw inspiration from forward-only training methods proposed
in deep learning, a body of work that considers the biological
plausibility of weight updates. Our proposed methods train
hypervector representations with a significant reduction in
dimensions while maintaining high accuracy.

We summarize our contributions as follows:

• We present Stochastic Error Projection (SEP), which pro-
vides implicit feedback to the encoder at each retraining
iteration. Though it exhibits a slightly slower convergence
rate, it maintains high efficiency and outperforms existing
HD-based algorithms.

• We also introduce Input Modulated Projection (IMP).
This algorithm first computes per-class error through the
standard HD learning procedure and subsequently performs
a second pass, modulating the input with the error to
update the encoder. We observe that, despite requiring
additional computational resources due to the encoding of
two separate hypervectors, this method converges rapidly
and shows high accuracy.

• We additionally include in this work analysis that explores
the implications of our proposed algorithms on acceleration
designs. Our experimental results show that training the HD
encoder dynamically can significantly increase accuracy.
The proposed algorithms outperform the state-of-the-art
HD encoder training method based on backpropagation
even at a lower dimension, e.g., 5.49% for D = 3, 000,
resulting in a 3.32× faster inference on average.

II. BACKGROUND AND RELATED WORK

A. Hyperdimensional Computing

1) Hyperdimensional Representation: Hyperdimensional
(HD) computing is a computing paradigm inspired by sparse
distributed memory (SDM) [1], a model of human long-term
memory. The concept and mathematical foundations of the HD
representation system are introduced in [2]. The key concept of
HD representation is to represent data symbolically as hyper-

vectors. Hypervectors are 1) high in dimensions, 2) holistic in
representation, and 3) randomly generated. These properties
of hypervectors allow orthogonality between unrelated data
points and similarity between related ones. The relation of

hypervectors is measured through a similarity metric; dot
product similarity is a popular metric used in HD models and
is the metric we will be using throughout this paper.

2) Manipulating Hypervectors: There are two operations
for manipulating hypervectors. Binding ⊗ is implemented as
an element-wise multiplication. The binding operation asso-
ciates hypervectors and the resulting vector is orthogonal to its
inputs. Bundling ⊕ is an element-wise addition. This operation
combines hypervectors into a single hypervector representing
the set of inputs. This hypervector is similar to its inputs.

3) HD-based Learning: The learning procedure using HD-
based representation systems (shown in Figure 2) first encodes

data into hypervectors,
−→
H . For training, all hypervectors with

the same label are bound together to form a single hypervector
representing the label. These hypervectors are called the class

hypervectors. The set of k class hypervectors is denoted as

C = {
−→
C 1,

−→
C 2, · · · ,

−→
C k} where a class hypervector for the

ith label is computed as
−→
C i =

−→
H i

1
⊕

−→
H i

2
⊕ · · · ⊕

−→
H i

j ,
where j is the number of data samples for a given label.
This simple accumulation of hypervectors of the same label
is called single-pass training and is very fast and efficient but
shows limited accuracy.

Therefore, a retraining procedure is further employed. Re-
training is an iterative procedure where encoded hypervectors,
−→
H , are measured for similarity against the set of class hyper-
vectors, C. If the similarity is closest to its true label, we leave
the model as is. Otherwise, we adjust both the true label and
misclassified class hypervectors by the encoded hypervector or
its complement to make the correct class more similar while
making the misclassified class more dissimilar.

−→
C miss =

−→
C miss ⊕−

−→
H ;

−→
C true =

−→
C true ⊕

−→
H (1)

Finally, inference is done by encoding inference data
through the same encoding procedure used during training.

We call these query hypervectors,
−→
Q , and they are compared

for similarity with each class hypervectors. The class with the

highest similarity is our inferred label, i.e., argmax(δ(C,
−→
H )),

where k is the number of classes and δ is our similarity metric.

B. Encoders in HDC

Encoding is the method in which data are converted to
hypervectors. The encoding phase of the HD classification
workflow is the most important as it is the most contributing
factor to accuracy.

1) Static Encoders: Virtually all encoding algorithms (ex-
cept [13] discussed later) proposed in the literature use static
encoders. ID-level encoding [6], [14] generates binary/bipolar
hypervectors for data feature values and positions. Random

projection encoding [15], [16] generates a projection hyperma-
trix of binary/bipolar elements. This encoding method directly
binds feature values to the projection matrix, removing the
need for separate value hypervectors. Nonlinear encoding [7],
[17], [9] is cited as the best performing encoding algorithm. It
is algorithmically identical to random projection. It differs only
in that it draws its projection matrix elements from Gaussian
distribution N (μ, σ2).

Note that these methods do not utilize knowledge
obtainable from training samples. Once generated, there is
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nothing in the learning framework that enhances the quality
of representations. As a result, these algorithms require
hypervectors of much higher dimensions.

2) TrainableHD [13]: Recently, TrainableHD was pro-
posed as an HD learning framework with a dynamic encoder.
It is based on the nonlinear encoding method using MASS
retraining [9] that updates each class hypervector based on
class-wise similarity differences. TrainableHD updates the
projection matrix using per-feature error hypervectors and is
theoretically based on backpropagation used in deep learning.
The base algorithm, however, is computationally expensive,
and backpropagation requires the transport of synaptic weight
information, making it biologically implausible [18].

C. Biologically Inspired Alternatives to Backpropagation

In the domain of neural networks, several training
paradigms have been proposed to address the biologically
implausible elements associated with traditional backpropaga-
tion. In this context, we offer a brief summary of research
initiatives, with a particular focus on frameworks that can
be classified as forward-only algorithms. Feedback alignment

(FA) [19] propagates random fixed connections. The random
matrices deliver useful modulatory information as the forward
connections are driven to align with the feedback. Direct

feedback alignment (DFA) [20] extends the FA algorithm
by propagating random connectivity matrices to each hidden
layer. Finally, Present the Error to Perturb the Input to

modulate Activity (PEPITA) [21] perturbs input data based on
error-related information. The backward pass is replaced with
a second forward pass with the perturbed input. In this work,
we take these ideas, carefully modify and integrate them into
the HD learning process such that HD computing can learn
from dynamic representations.

III. FORWARD-ONLY HD ENCODER TRAINING

A. Overview

In this paper, we explore the training of the projection
matrices, or base hypervectors, through methods inspired by
forward-only algorithms. This approach contrasts with much
of the existing literature [6], [15], [7], where projection
matrices are static, as well as a recent work [13] employ-
ing a backpropagation-based HD encoder training technique.
Figure 3 shows an overview of the HD learning process,
including the proposed forward-only HD encoder training
procedures. Our algorithm initiates the training workflow
with the conventional class hypervector retraining procedure,
specifically adhering to the nonlinear encoding method [7]
and the MASS retraining algorithm [9], which fine-tunes
class hypervectors based on their calculated errors based on
hypervector similarity measurements.

After updating the class hypervector with a sample or a
mini batch of samples, we proceed to update the projection
matrices. To this end, we introduce two forward-only training
methods, SEP and IMP. In SEP, we focus solely on the ob-
served error in the class hypervectors without considering the
properties of the raw input data or the encoded hypervectors.
This error is quantified using the similarity values between
the class hypervectors and the encoded hypervectors; if the
current model produces highly undesirable results in terms of

Fig. 3: High-level Comparison of Proposed Methods with
Conventional HDC

Fig. 4: Overview of the SEP Procedure

the class-wise similarity, it is reflected in a higher error value
that elicits more updates to the projection matrices. In contrast,
IMP explicitly incorporates the encoded hypervector with the
projection matrices. We modulate the encoded samples with
the degree of measured error to compute the magnitude of
updates applied to the projection matrices. The two method-
ologies each come with their own advantages and drawbacks,
resulting in distinct learning trajectories which we cover in the
following sections.

B. Stochastic Error Projection

1) Stochastic Error Projection (SEP): We aim to develop
dynamic encoders for HD computing that bring out the full
potential of HD training while maintaining HD computing’s
biological fidelity. In this section, we propose Stochastic Error

Projection (SEP). The fundamental intuition behind SEP is
premised on the idea that substantial updates to the base

hypervectors are needed when the current model displays a
high classification error.

Figure 4 shows an overview of the training procedure. Un-
like existing methods such as the MASS training algorithm [9],
which focuses on the classification errors that originate from
inaccuracies in the class hypervectors, we further consider
the contribution to inaccuracies caused by erroneous base
hypervectors. In SEP, the magnitude of adjustments to each
element of the base hypervectors is stochastically determined;
that is, elements are perturbed with a higher degree of
randomness when elevated errors are observed for current
samples. In contrast, minimal adjustments are made to the
base hypervectors when the overall classification error is low.
This is done under the assumption that they are adequately
accurate. While the SEP approach bears similarities to the
DFA [20] method proposed for deep learning, we introduce
a modification to address a critical shortcoming of DFA,
i.e., its tendency to overfit, thereby optimizing its efficiency
with higher robustness within the domain of HD computing.
Algorithm 1 details the SEP procedure.
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Algorithm 1 Stochastic Error Projection (SEP)

1: for data x in a training dataset do
2: // •A Encoding

3:
−→
H ← sign(cos(P⊗ x))

4: // •B Update class hypervectors C

5: �s ← softmax(δ(C,
−→
H ))

6: �e ← y − �s

7: C ← C⊕ λ
−→
H�e

8: // •C Update projection matrix P

9: updates ← mean(�e) · λ · B

10: P ← P⊕ updates
11: end for

Given a data sample x = {v1, v2, · · · , vF }, where F is the
number of feature values, the projection matrix is generated

as P = {
−→
P 1,

−→
P 2, · · · ,

−→
P F }

D, where D is dimensions and

each
−→
P i is drawn from Gaussian distribution. Encoding (•A )

is computed as
−→
H = sign(cos(v1×

−→
P 1+v2×

−→
P 2+ · · ·+vF ×

−→
P F ). For the retraining procedure (•B ), encoded hypervectors,
−→
H , are compared for similarity with class hypervectors, C,
and normalized with the softmax function. We can then obtain
the per-class error, �e, with the ground truth one hot encoding,
y, and normalized similarities, �s. The class hypervectors are
updated by binding the encoded hypervector scaled with the
per-class errors and a learning rate, λ. This so far aligns to
the widely used nonlinear encoding [7].

To update our projection matrix (•C ), we generate an
additional hypermatrix, B, with the same dimensions as P. The
B hypermatrix is initialized with He uniform distribution [22],

B ∼ U(−
√

6

F
,+

√

6

F
), where F is the number of features.

This random B matrix can be fixed for subsequent iterations
of retraining. To update the encoder, we simply bind to P the
B hypermatrix scaled with the per-class errors averaged and
λ, the learning rate.

2) Error Projection: Fixed vs. Variable: In the
backpropagation-based TrainableHD [13], the projection
matrix is given explicit feedback through class errors.
However, in SEP, the random hypermatrix B presents implicit
feedback to the encoder with only an approximate update
direction and angle through averaged errors, �e. A fixed

B matrix pushes updates to be guided by changes in the
projection matrix P. Although convergence, especially during
earlier iterations of training, may be slower than giving
explicit feedback, the updates quickly improve to be on par
with explicit updates.

Another method of implementing the B hypermatrix is
newly generating the random matrix at every iteration, unlike
DFA [20]. Because the matrix is not fixed, it is slightly less
sensitive to changes in the projection matrix and, therefore,
is slower to converge. However, with enough iterations, this
method is more robust and still manages to reach the same
performance as the fixed variant of SEP at the end of training.

C. Input Modulated Projection

In this section, we present Input Modulated Projection

(IMP). The guiding intuition behind IMP is the understanding
that there are two sources of errors during the training process:
first, the inaccuracies in the representation of the projection
matrices, a focus also shared by the previously discussed SEP
algorithm; and second, the resulting inaccuracies in the high-
dimension representations of the input samples themselves.

Fig. 5: Overview of the IMP Procedure

IMP incorporates in its learning procedure the training of a
dynamic encoder by utilizing the two sources of errors. It is
worth noting that the IMP algorithm can be construed as a
specialized variant of the PEPITA algorithm with the extension
of its applicability into the context of HD computing.

Algorithm 2 shows IMP’s training procedure. IMP first

encodes input data into hypervectors (
−→
H ), then calculates

and normalizes similarities (�s), and finally produces per-class
errors (�e) that are used to update the class hypervectors (C).
The procedure up until this point is identical to that of SEP.

Algorithm 2 Input Modulated Projection (IMP)

1: for data x in a training dataset do
2: //•A first pass

3:
−→
H ← sign(cos(P⊗ x))

4: �s ← softmax(δ(C,
−→
H ))

5: �e ← y − �s

6: C ← C⊕ λ
−→
H�e

7: // second pass
8: // •B Modulate x

9: xmod ← x+ (�e× B)

10: // •C Encode modulated
−→
H

11:
−→
Hmod ← P⊗ xmod

12: // •D Update projection matrix P

13: updates ← x⊗ (
−→
H −

−→
Hmod)

14: P ← P⊕ (updates × λ)
15: end for

Instead of sending feedback to the projection matrix P,
IMP performs a second pass to update the encoder. Fig-
ure 5 illustrates IMP’s procedure at its second pass. The first
pass (•A ) exists to compute the error and update the class
hypervectors. The goal in (•B ) is to modulate the input x

with the per-class errors, �e, computed in the first pass. To
this end, we generate a fixed random matrix B of k × F
dimensions, where k is the number of classes (labels) and F is
data features. This matrix samples elements from He uniform
distribution [22] and is designed to project �e to match the input
x’s dimensions, through which we can construct the modulated
input xmod ← x+ (�e× B). To update our projection matrix,
we first encode (•C ) the modulated input through the same
encoding process to obtain the error-modulated hypervector,
−→
Hmod. We can now update the projection matrix (•D ) by
binding the original input with a hypervector that is given by
the difference in activation of the hypervector encoded from

raw data,
−→
H , and the error modulated hypervector,

−→
Hmod.

IV. ACCELERATOR IMPLEMENTATION

A. Acceleration Strategy of Forward-Only Encoder Training

In HD computing, data are represented through vectors of
high dimensions, requiring operations such as matrix multipli-
cation and element-wise operations. The data-independent na-
ture between elements allows for operations that are inherently
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suited for parallel processing architectures, such as FPGAs and
GPUs, which can significantly enhance throughput and reduce
latency. For instance, as illustrated in Figure 6a, our FPGA
implementation utilizes a processing engine (PE)-based design
where the host communication occurs via the AXI4 stream
to initiate operations while resulting hypervectors are stored
in DRAM. Each PE performs highly parallel HD operations
using state-of-the-art implementation strategies, such as matrix
multiplication for forward-path encoding and similarity search,
and vector additions for class hypervector updates, input
modulations in IMP, etc.

Here, the challenge is not in the complexity of the operations
themselves but in optimizing data transfer and computational
efficiency to leverage the full potential of these architectures.
One of the primary challenges in accelerating HD operations
is the memory-bound nature of these tasks. As the dimen-
sion of the data increases, the volume of data that must be
transferred between memory and processors can become a
significant bottleneck. To address this, we optimize memory
access patterns and enhance parallel execution capabilities for
specific HD operations introduced in our work. SEP, for exam-
ple, incorporates stochastic elements into its training process,
requiring sophisticated memory management to handle the
random elements efficiently during computation. Our design
reduces the frequency and volume of global memory accesses
required during computation by effectively using shared mem-
ory on GPUs. Similarly, FPGA leverages configurable logic
blocks and dedicated on-chip memory resources to streamline
the execution of repetitive and parallelizable tasks. In the
following sections, we discuss the details of our accelerator
designs for the proposed encoder training methods.

B. Optimization Strategies for SEP

The SEP algorithm introduces a unique computational
challenge in Hyperdimensional computing: the integration of
stochastic elements into the projection matrix during training.
This process requires not just basic operations but the addition
of a dynamic component, which is the random variable scaled
by the mean error and learning rate, expressed as mean(�e) ·
λ ·r. Such operations are inherently data-intensive and require
efficient memory management and computational strategies. In
naive implementations of the SEP algorithm, a large random
matrix, matching the size of the projection matrix, would be
pre-generated and stored. During each training iteration, both
the projection matrix and this random matrix need to be read,
which doubles the memory bandwidth requirements and can
quickly become a bottleneck in systems where memory access
speeds are a limiting factor. We address this issue both on the
FPGA and GPU using specialized operations for the variable
SEP algorithm discussed in Section III-B2.
FPGA Implementation For the SEP algorithm’s implementa-
tion on FPGA platforms, an advanced approach is utilized to
manage the stochastic component of the algorithm efficiently.
This approach centers around the use of Block RAM (BRAM)
for dynamically managing random vectors that are crucial for
the stochastic updates to the projection matrix.

Figure 6b describes this implementation strategy, which is
implemented in the randomized vector addition logic. Here,
BRAM is configured to store a set of random vectors, config-
ured as an N × W array, where N represents the number

Fig. 6: FPGA Acceleration Implementation

of rows and W the width of each row. Each row in the
BRAM is aligned with the width of data chunks read from the
DRAM at each cycle. This alignment ensures that data fetched
from DRAM and the corresponding random vectors from
BRAM can be processed in parallel. The process begins by
fetching a random vector from the BRAM (•1 ). Concurrently,
a segment of the projection matrix is retrieved from the DRAM
(•2 ). These two vectors are then added together in a parallel
processing step by multiplying the scaling scalar factor (i.e.,
mean(�e)·λ) to the fetched random values (•3 ). The computed
results, i.e., the updated segment of the projection matrix, are
then stored back to the DRAM (•4 ).

At the same time, the random vector fetched from BRAM
undergoes a circular (rotation) shift, and it is written back
into the same BRAM row (•5 ). This shift alters the vector,
ensuring that when the next time it is accessed, it appears as
a newly sampled random vector since each random element
is independently sampled. It allows us to reuse the stored
random vector up to N ×W times to obtain different random
vectors, guaranteeing that the random vectors remain varied
while adhering to the stochastic nature required by the SEP
algorithm. Once we reach the end of the reusing cycles,
we reload a new set of random vectors from the off-chip
DRAM, but this occurs infrequently, making it a minor part
of the overall execution timeline as it can be amortized over
many cycles of computations. This strategic use of BRAM
reduces the memory bandwidth requirements for updating the
projection matrix by approximately half – since we do not
need to load the random hypervector from DRAM with the
projection matrix of the same size every time.

GPU Implementation For GPU implementations, we utilize
the random number generation library, cuRAND, to generate
random numbers directly within the GPU’s processing units on
the fly. In SEP’s GPU adaptation, the focus is on integrating
the generation of random numbers into the computational
kernels. This integration allows for a reduction in memory
transfers between the GPU streaming cores and the global
DRAM memory in a similar fashion to the FPGA. To this end,
we implement a customized CUDA kernel, which is integrated
as an operation in the PyTorch library.
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Fig. 7: Accuracy Comparison

TABLE I: Evalution Datasets

Name Description Ntrain Ntest k f
EMOTION Emotion recognition from ECG signal 1705 427 3 1500
FACEA Face recognition 22441 2494 2 512
FACE Face recognition 22441 2494 2 608
HACT Human activity recognition 7352 2947 6 1152
HEART MIT-BIH Arrhythmia dataset 119560 4000 5 187
ISOLET Voice recognition 6238 1559 26 617
MAR Plant classification 1440 160 100 64
MNIST Hand-written digit classification 60000 10000 10 784
PAMAP2 Physical activity monitoring dataset 16384 16384 5 27
SA12 Smartphone-based activity recognition 6213 1554 12 561
TEX Plant classification 1439 160 100 64
UCIHAR Human activity recognition 7352 2947 6 561

C. Optimization Strategies for IMP

While the IMP method incorporates an additional layer of
complexity compared to SEP, the FPGA and GPU platforms
also parallelize the extra operational demands efficiently. For
example, the encoding procedure of the modulated input x can
also be carried by the matrix multiplication in the parallelized
FPGA, in our case, using a systolic array structure.

However, since IMP requires the manipulation of both the

original encoded hypervector, �H , and its modulated vari-

ant, �Hmod, the computational demands increase, particularly
during the phase where x + �e × B is encoded to produce
�Hmod. An effective strategy employed in both FPGA and

GPU implementations involves temporarily storing �H after its
initial computation and reusing it for subsequent operations.
This approach minimizes the redundant recomputation of
�H , thereby conserving computational resources and reducing
execution times. On FPGAs, this can be achieved by utilizing

the on-chip memory to store �H , while GPUs can keep �H in
the high-bandwidth GDDR memory.

Although IMP inherently places greater demands on com-
putational and memory resources, the advanced capabilities of
FPGA and GPU architectures help in effectively managing
these challenges. It is also worth noting that despite its
higher initial resource usage, IMP’s sophisticated approach
to error estimation—taking into account the current input
samples—can lead to faster convergence in the training phase,
potentially offsetting the additional costs with more rapid
improvements in learning accuracy.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

For the experimental setup of our study running on GPUs,
we implement all HD learning procedures on NVIDIA

Fig. 8: Accuracies at Various Dimensions in ISOLET

GeForce RTX 2080 SUPER GPU with an Intel Core i9-
10900K CPU using the PyTorch 1.12 framework. We also
implemented a custom CUDA kernel designed specifically for
the SEP operations, which enables memory-efficient parallel
processing, and integrated it as an extension to PyTorch.
To implement the FPGA-based accelerator, we utilized Vitis
HLS 2023.2 and extended the Vitis BLAS L2/L3 library to
support other parallel element-wise operations and optimized
HD operations discussed in Section IV. These computations
were then deployed and tested on a Xilinx U200 FPGA card
under a four PE setting, which operated at a 200 MHz clock
frequency.

We evaluate IMP and two versions of the SEP algorithm,
one with a fixed B (SEP fixed) and another with a newly
generated B at each iteration (SEP var). For comparison, we
chose static encoding techniques: nonlinear encoding [7] as
it is widely used for its high accuracy and ManiHD [23] a
framework that implements manifold projections before the
static HD encoder. We chose ManiHD for accuracy compar-
isons as we feel it represents the efforts in HD research to
increase accuracy while limited by static encoders. In addition,
we compare our work with TrainableHD [13], which uses a
backpropagation-like method to implement a dynamic encoder.
Each model is evaluated based on 50 retraining iterations. The
datasets used to assess the models are listed in Table I.

B. Classification Accuracy

Figure 7 compares the accuracies of various training al-
gorithms. In this evaluation, the results for the Baseline [7]
and TrainableHD [13] are shown at both 3K and 10K di-
mensions, while our proposed methods—SEP var, SEP fixed,
and IMP—are evaluated at 3K dimensions. Remarkably, all
three methods achieve performances comparable to Train-
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Fig. 9: Training Speed over Different Datasets on GPU

Fig. 10: Training Speed over Different Datasets on FPGA

ableHD at 10K dimensions and consistently outperform Base-
line, ManiHD [23], and TrainableHD at 3K dimensions. The
accuracy is 5.49% higher on average, and the enhanced
performance of our methods can primarily be attributed to
their handling of errors during the training process. The SEP
and IMP algorithms can recognize and adjust not only class-
specific errors but also broader errors resulting from subopti-
mal hypervector encoding. This dual awareness allows for a
more refined tuning of the encoder, leading to the generation
of more accurate and compact hypervector representations.

Furthermore, as demonstrated in Figure 8 for the ISO-
LET dataset, we observe that the hypervector representations
produced through the proposed methods not only allow for
compact storage but also maintain a consistent accuracy across
varying dimensions. This property directly influences the ef-
ficiency and accuracy of the learning model, making the pro-
posed methods particularly advantageous for practical applica-
tions where computational resources and memory are limited.

C. Computational Efficiency

Figure 9 and Figure 10 show training times for a single
mini-batch (32) of data on the NVIDIA GeForce RTX 2080
SUPER GPU and the Xilinx U200 FPGA, respectively. The
computation timings shown are the averaged times of all
batches throughout all training epochs. In the two Figures,
Encoding, Similarity Search, and Model Update are virtually
identical for the four models as they all follow the same
procedure. The timings reported for Figure 9 and 10 will,
therefore, only be the time taken to compute encoder updates.

Fig. 11: GPU Inference Time (s) for 3K and 10K Dimensions

Fig. 12: SEP Accuracy Changes over Iterations

Fig. 13: IMP Accuracy Changes over Iterations

Both SEP fixed and SEP var have fewer computations than
TrainableHD [13] and show a relatively lightweight training
process. Across all datasets, in our GPU implementation,
SEP var was up to 2.04× faster than TrainableHD and was
2.18× faster on average. In our FPGA implementation SEP
var was 9.54× faster on average and, on the MAR dataset,
was 13.33× faster. SEP fixed performed up to 2.03× and
5.56× faster on the GPU and FPGA, respectively. The higher
efficiency stems from the characteristics of the SEP algorithm,
which does not need the complex re-encoding procedure for
a given input feature vector like the IMP procedure. Also,
SEP var pushes optimization beyond the fixed variation as it
reduces the significant overhead from memory communication
by generating the random values spontaneously on GPUs or
reusing the stored data in on-chip FPGA BRAMs.

IMP, however, uses a second pass with the modulated input
during training and needs to encode a second hypervector.
This, unfortunately, adds extra computation to the procedure.
Nevertheless, even with significantly more computations, IMP
was 52.15% slower than TrainableHD on the GPU and, at its
best, was only 12.27% slower on the FPGA.

In practice, however, our proposed models are much more
efficient than existing techniques for inference because they
achieve similar accuracy to that of TrainableHD 10K at
much lower dimensions. Figure 11 shows the timings of the
inference procedure for 3K and 10K dimensions. Like Train-
ableHD, our proposed methods use the identical inference
procedure as a standard HD model. In our measurements, an
HD model using D = 3, 000 on GPUs is on average 3.32×
faster than a model with D = 10, 000.

D. Learning Performance and Convergence

SEP Fixed / Variable Here, we present how SEP learns
through implicit feedback. Figure 12 shows accuracy changes
during training and inference for each retraining epoch. As
expected, both fixed and variable versions of SEP start off with
seemingly random updates, and in the very initial iterations,
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this is even more so with SEP var. This behavior can be
attributed to the stochastic nature of the updates in SEP, where
the projection matrix is perturbed using a random matrix
scaled by the mean error. In the early stages of training,
the model has not yet learned meaningful representations,
leading to high errors and, consequently, larger, more random
perturbations to the projection matrix.

However, as iterations pass, both SEP models quickly find
representations that best-fit data features and show perfor-
mance comparable to that of TrainableHD 10K. This rapid
improvement in accuracy indicates that the implicit feedback
provided by the error-projected matrix effectively guides the
model toward learning more suitable representations. The
stochastic perturbations allow the model to explore the rep-
resentation space and converge to a solution that minimizes
the classification error.

SEP var and SEP fixed show final inference accuracies
of 96.99% and 96.87% while TrainableHD 3K and 10K
results in 94.91% and 97.02% accuracy, respectively. These
results demonstrate that SEP is able to achieve competitive
performance with TrainableHD 10K by learning effective
representations through implicit feedback, despite using a
simpler and more computationally efficient approach. The
key advantage of SEP lies in its ability to train the encoder
using only forward passes and stochastic updates, eliminating
the need for explicit backpropagation-like updates while still
achieving high accuracy.

IMP Figure 13 shows the results during learning with the
IMP algorithm. This model has a comparable number of
computations to TrainableHD and, therefore, is not as efficient
as SEP. However, it converges much faster than both SEP
algorithms and performs just as well (96.97%), meaning IMP
requires fewer training iterations than SEP.

The faster convergence of IMP can be explained by its
explicit incorporation of the encoded hypervector in the up-
date process. By modulating the input with the error and
performing a second pass to update the projection matrix,
IMP directly adjusts the encoder based on the discrepancy
between the original and error-modulated hypervectors. This
targeted update mechanism allows IMP to rapidly improve the
representation quality and minimize classification errors.

The results show that both SEP and IMP are able to
continually find better representations throughout their training
procedures, while TrainableHD quickly converges but remains
at worse representations. TrainableHD’s explicit feedback
based on training errors may lead to overfitting, as the model
becomes too specialized to the training data and fails to gen-
eralize well. In contrast, SEP and IMP’s forward-only training
approach, with implicit and modulated feedback, allows them
to learn more robust and generalizable representations.

VI. CONCLUSION

In this paper, we proposed two frameworks, Stochastic Error
Projection (SEP) and Input Modulated Projection (IMP), to
extend HD computing’s learning framework to encompass the
training of the encoder. SEP leverages observed training errors
to provide implicit feedback, optimizing encoder performance
without direct error gradients. IMP utilizes a second pass that
utilizes error-projected hypervectors for dynamic adjustments

to the encoding matrix. Our evaluations show that both meth-
ods successfully yield better representations and, thus, are
able to achieve state-of-the-art accuracies at significantly lower
dimensions. In addition, hardware implementations of SEP
Variable and Fixed on FPGAs showed an average of 9.54×
and 4.38× faster training time to that of existing techniques
at equal dimensions.
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