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ABSTRACT

Machine learning (ML) models are used for in-situ monitor-

ing in additive manufacturing (AM) for defect detection. However,

sensitive information stored in ML models, such as part designs,

is at risk of data leakage due to unauthorized access. To address

this, differential privacy (DP) introduces noise into ML, outper-

forming cryptography, which is slow, and data anonymization,

which does not guarantee privacy. While DP enhances privacy,

it reduces the precision of defect detection. This paper pro-

poses combining DP with Hyperdimensional Computing (HDC),

a brain-inspired model that memorizes training sample informa-

tion in a large hyperspace, to optimize real-time monitoring in AM

while protecting privacy. Adding DP noise to the HDC model

protects sensitive information without compromising defect de-

tection accuracy. Our studies demonstrate the effectiveness of

this approach in monitoring anomalies, such as overhangs, using

high-speed melt pool data analysis. With a privacy budget set at

1, our model achieved an F-score of 94.30%, surpassing tradi-

tional models like ResNet50, DenseNet201, EfficientNet B2, and

AlexNet, which have performance up to 66%. Thus, the inter-

section of DP and HDC promises accurate defect detection and

protection of sensitive information in AM. The proposed method

can also be extended to other AM processes, such as fused fila-

ment fabrication.

Keywords: Privacy-Preserving Model, Real-time Monitoring,

Additive Manufacturing, Hyperdimensional Computing

1. INTRODUCTION

Additive Manufacturing (AM) fabricates three-dimensional

objects by layering materials as per digital blueprints, which

allows for the creation of intricate designs that traditional manu-

facturing cannot easily achieve [1]. Despite these benefits, AM

encounters significant obstacles, such as slow production speeds,

higher costs, and issues with part quality that lead to defects caus-

ing approximately 10% of part failures [2, 3]. Typical defects
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include porosity, layer misalignment, foreign particle inclusion,

delamination, and incomplete fusion, all of which negatively im-

pact the dimensional accuracy and mechanical strength of the

parts produced [4]. Consequently, many AM-manufactured parts

require additional finishing to meet surface quality standards.

Moreover, AM processes are often lengthy, taking anywhere from

hours to days, and the cost of equipment and materials is high

compared to traditional methods. As a result, in-process defect

detection is required to improve economic and time efficiencies

by enabling immediate adjustments to process parameters or halt-

ing defective production runs [5]. Various sensing technologies

are utilized for defect detection, including ultrasound [6], acous-

tic emission [7], laser scanning [8], electromagnetic [9], radio-

graphic [10], and thermographic methods [11]. Among these,

vision-based strategies are particularly valued for their high de-

gree of automation and effectiveness in detecting and evaluating

defects, thereby playing a crucial role in the in-situ quality control

systems in AM [12, 13].

While various strategies for identifying defects in AM pro-

cesses exist, many are not suitable for in-situ applications due

to limitations such as the inability to detect fine defects or the

lack of validated accuracy metrics. Machine learning (ML)

algorithms offer a promising enhancement for defect detection

precision. These algorithms process and analyze multiple data

features beyond simple point distances, providing more detailed

analysis [14, 15]. The integration leverages the capabilities of

advanced sensing technologies with the robust analytical power

of ML, offering deeper insights into the AM process [16, 17].

The deployment of in-process monitoring systems in AM

requires data analysts to access proprietary organizational data,

which introduces the risk of insider threats. This concern arises

when individuals misuse their authorized access to confidential

information for unauthorized purposes, such as data breaches or

personal gain, as demonstrated by Theoharidou et al. [18]. The

risk is further intensified by insiders’ thorough understanding

of the in-situ sensing data management and operational proto-
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FIGURE 1: HYPERDIMENSIONAL COMPUTING FRAMEWORK: ENCODING, TRAINING, INFERENCE, AND RETRAINING.

cols. Such knowledge could lead to the unauthorized disclosure

of sensitive information by exploiting predictive analytics and

context-specific data [19].

To mitigate privacy concerns, several privacy-preserving

strategies have been devised, including cryptographic techniques,

data anonymization, and differential privacy (DP). Cryptographic

methods are essential for protecting identities and controlling ac-

cess to systems, thereby providing the confidentiality and integrity

of information [20]. Despite their effectiveness, cryptographic

methods require considerable computational resources, poten-

tially slowing down data processing. As an alternative, data

anonymization involves removing sensitive information before

data analysis, reducing the risk of data breaches, especially in

complex, high-dimensional datasets [21]. However, anonymiza-

tion has its limitations, such as the permanent loss of original

data and the inability to provide complete privacy protection [22].

Even with anonymized datasets, re-identification of individuals

is still possible. For instance, an analysis of anonymized Netflix

data released for a competition demonstrated that individual users

could be identified by correlating their reviews with data from

other websites like IMDb, revealing their viewing habits [23].

To address privacy concerns, as introduced by Dwork [24],

integrating noise into data processing algorithms ensures that

databases differing by only one record remain indistinguishable

from the perspective of the same algorithm, thereby significantly

enhancing privacy protection. However, this approach necessi-

tates a careful balance between enhancing privacy and maintain-

ing algorithmic performance. Increasing the noise level strength-

ens privacy protections but may also negatively impact the algo-

rithm’s accuracy and efficiency. Therefore, it is crucial to find

an optimal balance that ensures robust data protection without

compromising utility and effectiveness.

Building upon the goal of simultaneously enhancing privacy

and maintaining performance, this paper introduces the integra-

tion of DP with Hyperdimensional Computing (HDC), an ad-

vanced machine learning framework. HDC’s exceptional speed

in processing queries makes it particularly suitable for scenarios

requiring swift monitoring. By incorporating DP into HDC, we

create a robust framework that enhances privacy while preserv-

ing performance. The unique data manipulation method of HDC,

which utilizes high-dimensional vector spaces for computations,

combined with the privacy guarantees of DP, ensures rapid analy-

sis and maintains an optimal balance between privacy protection

and efficiency.

2. RESEARCH METHODOLOGY

2.1 Hyperdimensional Computing

The HDC architecture is inspired by the human brain, using

high-dimensional vectors to mimic cognitive functions [25, 26].

This technique enables HDC to imitate the brain’s methods of in-

formation processing and memory retention across various cog-

nitive tasks [27, 28]. As shown in Figure 1, the HDC model

is divided into four phases: encoding, training, inference, and

retraining.

Encoding focuses on creating a high-dimensional frame-

work by converting feature vectors into hypervectors. In this

framework, each element of a hypervector equally contributes to

encoding information, ensuring that no single component dispro-

portionately influences the overall data representation. The pro-

cess involves mapping a feature vector �⃗ = { 5Ġ }
Ć
Ġ=1

, where each

5Ġ belongs to R, into a hypervector �⃗. This mapping is achieved

by computing the dot product between �⃗ and a unique, ran-

domly generated vector for each dimension, given by the equation

ℎğ = cos(�⃗ · �⃗ğ). Each �⃗ğ is a random vector drawn from a Gaus-

sian distribution with a mean of zero and a variance of f2

Ęėĩğĩ
.

These vectors, {�ğ}
Ā
ğ=1

, serve as the random basis vectors, are

determined initially, and remain fixed throughout. This approach

efficiently translates continuous feature vectors into continuous-

valued hypervectors, making them suitable for classification tasks

in various fields, such as anomaly detection [29, 30].

When discussing the key elements of the encoding method-

ology, it is essential to consider the impact of the variance, f2

basis
,

in the Gaussian distribution used for generating the random ba-

sis vectors, �⃗ğ . The selection of variance plays a crucial role,

shaping the encoding strategy to be either exclusive or inclu-

sive. By choosing a larger f2

basis
, an exclusive encoding strategy

is employed, which increases the spread of the basis vectors’

values. This increased dispersion enhances the uniqueness of

each hypervector, aiding in their distinction. Such an approach is

particularly beneficial in scenarios where precise differentiation

between encoded vectors is required, such as in tasks involving

the accurate identification of unique patterns.

Conversely, an inclusive encoding strategy is defined by a

reduced variance, f2

basis
, leading to a more concentrated distri-

bution of the basis vector values. This concentration results in

hypervectors that are more similar to each other, which is advan-

tageous for tasks requiring generalization over similar features.

Adjusting the variance parameter provides nuanced control over

the encoding’s specificity and generalizability, showcasing the

versatility of HDC in addressing a wide range of classification

challenges.



Training begins with the creation of class-specific hypervec-

tors, denoted as �⃗ĩ , for each class B, where B ranges from 1 to (,

representing the total number of classes. Each class hypervector

is formed by summing all the associated hypervectors for that

class, as expressed by the following equation:

�⃗ĩ =

∑
�⃗ĩ (1)

where �⃗ĩ represents the hypervectors associated with class B.

This equation illustrates how class hypervectors aggregate the

features of the training samples from their respective classes.

Combining hypervectors from the same class allows for the

merging of shared characteristics and attributes within a high-

dimensional framework. This process ensures that the core as-

pects of each class are integrated into a unified, clear represen-

tation, which is essential for accurate and efficient classification.

By aggregating hypervectors, the HDC framework leverages the

principle of superposition inherent to high-dimensional spaces,

improving its ability to differentiate between classes by examining

their collective features.

The creation of class hypervectors is a crucial step in the HDC

training process, serving as the foundation for the subsequent in-

ference and retraining phases. This step allows HDC to develop a

thorough understanding of each class’s distinct high-dimensional

profile, which is vital for the model’s accurate pattern recognition

and predictive capabilities.

Inference is a critical phase where the class association of

a hypervector is determined by comparing the query hypervector

with the class hypervectors established during training. Cosine

similarity is particularly effective for this comparison, as it mea-

sures the alignment of two vectors within the high-dimensional

space. This similarity is computed as the dot product of two

vectors, normalized by the product of their norms. The formula

for calculating the cosine similarity between a class hypervector

�⃗ĩ and a query hypervector �⃗ħ is given by:

Cos(�⃗ĩ , �⃗ħ) =
�⃗ĩ · �⃗ħ

| |�⃗ĩ | | · | |�⃗ħ | |
(2)

During the inference process, the HDC model assesses the

query hypervector �⃗ħ against each class hypervector using co-

sine similarity metrics. The class whose hypervector �⃗ĩ shows

the highest similarity to �⃗ħ is identified as the most likely class

affiliation for �⃗ħ . This method allows the HDC model to classify

new data by leveraging the learned patterns and utilizing the spa-

tial properties unique to high-dimensional spaces to distinguish

between different classes.

The HDC’s inference, which employs cosine similarity, is

engineered to deliver both high accuracy and computational effi-

ciency, making it highly adaptable for various classification tasks.

Notably, the norm of the query hypervector, | |�⃗ħ | |, remains con-

sistent across all classes, allowing it to be excluded from detailed

calculations. Similarly, the magnitude of each class hypervector,

| |�⃗ĩ | |, stays constant during the inference stage since these vec-

tors are fixed during training and only need to be calculated once.

Consequently, the core of the inference process is simplified to

computing dot products between the query hypervector and class

hypervectors, a remarkably fast process. This swift processing

makes HDC exceptionally suited for real-time monitoring in AM,

where rapid and accurate data classification is crucial.

Retraining is an essential element of the HDC approach,

greatly improving the model’s accuracy and adaptability. This

phase involves comparing hypervectors of training samples with

the class hypervectors established during the initial training

phase. By identifying and correcting inaccuracies, the retraining

process enhances the overall performance of the model.

If a hypervector, �⃗ĩ , is incorrectly classified into a wrong

class, B
′
, instead of its correct class, B, the HDC model updates

to correct this error. The process adjusts the class hypervectors

according to the magnitude of the misclassification, as shown in

the following equations:

�⃗ĩ = �⃗ĩ + �⃗ĩ ,

�⃗ĩ
′ = �⃗ĩ

′ − �⃗ĩ
(3)

This recalibration effectively adjusts the class hypervectors

by incorporating the misclassified hypervector, �⃗ĩ , into its correct

class, B, and removing it from the incorrect class, B
′
. These

modifications bring the correct class’s hypervector closer to �⃗ĩ

and distance it from the hypervector of the incorrect class, thereby

decreasing the chances of future misclassifications.

The retraining process is inherently iterative, enabling the

HDC model to continuously improve its classification accuracy

by correcting errors. Each update incrementally enhances the

model’s ability to capture nuanced variations within the data,

boosting its efficiency and reliability. This ongoing optimization

is particularly valuable in environments where data distributions

shift or new patterns emerge.

Retraining enhances the HDC model into a progressively

more effective classification tool, capable of adapting to evolving

data landscapes without needing to restart the training process.

This adaptability, along with the inherent efficiency of the HDC

method, makes it an excellent solution for real-time data process-

ing and decision-making across various applications.

2.2 Differential Privacy

In our study, we tackle the critical issue of preserving confi-

dentiality in real-time monitoring, with a particular focus on the

risks posed by insiders. Traditional systems often inadvertently

expose sensitive information due to their extensive data acces-

sibility requirements. To address this, we have implemented

DP mechanisms. These mechanisms ensure that only outcomes

modified according to DP standards are accessible, rather than the

original, unmodified data. This approach significantly enhances

security, greatly reducing the risk of privacy violations by insid-

ers. It not only protects sensitive data but also strengthens the

integrity of real-time monitoring against internal security threats.

DP enhances the security infrastructure of real-time monitor-

ing by restricting access to unprocessed data and allowing only

the dissemination of results that have been modified using DP

techniques. DP operates by intentionally adding noise to obscure

the original data, a process governed by key metrics: the privacy

budget (n) and the privacy loss threshold (X). These parameters

are crucial in determining the noise intensity and the level of pri-

vacy protection, significantly reducing the likelihood of inferring



FIGURE 2: ENHANCING PRIVACY IN HDC TRAINING AND INFERENCE WITH GAUSSIAN NOISE INTEGRATION FOR DIFFERENTIAL PRIVACY.

individual data points. This approach ensures that the privacy of

data subjects is preserved without compromising the utility of the

data for analysis, thereby providing a robust solution to the chal-

lenge of protecting sensitive information in real-time monitoring

in AM from potential insider threats.

In the context of AM, to elucidate the concept of DP, consider

two datasets, �1 and �2, which are identical except for a single data

point. A predictive model " is said to exhibit (n, X)-DP if, for any

such pair of datasets �1 and �2, the model satisfies the following

inequality:

P[" (�1)] f 4Ċ · P[" (�2)] + X (4)

This criterion ensures that the presence or absence of a single data

entry does not significantly impact the model’s output, thereby

protecting the confidentiality of individual data points.

In predictive modeling applications, particularly within AM,

the Gaussian mechanism is a key technique for enforcing DP.

This method involves strategically adding noise to the model’s

output to effectively mask the influence of any single data point.

Consider a function 6 : � → RĀ responsible for data manipula-

tion or transformation in the model. The Gaussian mechanism,

characterized by the noise level f2

ĚĦ
, is implemented as follows:

" (�) = 6(�) +N(0,�62f2

ĚĦ) (5)

The term �6, known as the sensitivity of 6, quantifies the maxi-

mum expected difference in 6’s output when comparing any two

datasets, �1 and �2, that differ by only one element:

�6 = max
ą1 ,ą2

∥6(�1) − 6(�2)∥ (6)

To achieve (n , X)-DP, the noise level, f2

ĚĦ
, must adhere to the

following condition:

f2

ĚĦ > 2 ln
1.25

X
·

1

n2
(7)

In our specific case, we set X to 10
−4, based on the previous

studies in the DP field, such as Abadi et al. [31], which suggest

that X should be smaller than the inverse of the dataset size.

We determine the optimal f2

ĚĦ
using the above equation, aiming

to balance the trade-off between preserving data privacy and

maintaining the operational performance of our predictive model

in the AM setting.

During the training phase of the HDC model, DP is incor-

porated by making the class hypervectors differentially private

through the addition of Gaussian noise, as shown in Figure 2.

This approach effectively reduces the likelihood that an adver-

sary can infer specific details about the original feature vectors

from the class hypervectors.

The selection of the appropriate noise level, which is critical

for enhancing the model’s security, depends on the sensitivity of

the HDC model. This sensitivity is determined by identifying the

maximum norm among all encoded training samples, as illus-

trated in Eq. (8). Higher sensitivity requires the addition of more

noise, thereby strengthening the model’s security. Consequently,

the highest sensitivity observed across all training samples is

used as a collective sensitivity indicator, ensuring robust privacy

measures throughout the dataset.

�6 = max ∥�⃗∥ (8)

In AM contexts, ensuring secure data exchange during the

inference phase is crucial. Query hypervectors are enhanced

with an additional layer of security by appending Gaussian noise

before their dissemination, as shown in Figure 2. This is achieved

by applying Gaussian noise with a distribution of N(0, f2
query) to

the query hypervectors, thereby maintaining the privacy of the

contained information.

3. EXPERIMENTAL DESIGN AND RESULTS

Addressing privacy concerns in the dissemination and anal-

ysis of sensor data from AM processes is a paramount consid-

eration. The need to protect sensitive manufacturing data, espe-

cially in an era where intellectual property and competitive advan-

tage are closely guarded, necessitates the exploration of privacy-

preserving methodologies. This study, therefore, not only focuses

on the technical aspects of in-situ sensing and defect detection but

also the implementation of DP measures. These measures ensure

that the valuable insights gained from high-speed camera data do

not compromise the confidentiality of the manufacturing process

or the design specifications of the parts being produced. This

introduction sets the stage for a comprehensive investigation into

the experimental designs and methodologies employed in this re-

search. The subsequent sections will delve into the specifics of

sensor integration, data acquisition, and the analytical techniques

used to achieve the dual objectives of enhancing manufacturing

precision and ensuring data privacy in the realm of AM.

3.1 Experimental Setup

This section outlines the instrumentation of sensor equip-

ment on Laser Powder Bed Fusion (LPBF) machine, specifically

the EOS M270 model used at the National Institute of Standards

and Technology (NIST). The equipment includes a visible high-

speed camera aimed at observing the melt pool dynamics and

the dispersion of particles around it. The camera monitors the

formation and behavior of a melt pool created in a sample made



from nickel alloy 625 (Inconel 625, UNS N06625) for an un-

supported overhang with a 40.5-degree angle. The investigation

focuses on sensor data collected from three different heights of

the build process: 6.06 mm, 7.90 mm, and 9.70 mm, each incor-

porating structures with overhangs. The objective is to uncover

patterns in thermal activity during the process, particularly in the

last segments of scanning before or right after the formation of an

edge, excluding the contour scan, as it involves the final scanning

vectors. Apart from these, all scans are included in the analy-

sis. The scanning procedure involves four passes over each layer

within a 4 mm height increment, rotating the direction of each

layer’s scans by 90 degrees to achieve a vertical striping effect

observable under the thermal camera [32].

Despite its simplicity, the piece’s design used in this study

highlights the technology’s limitations in capturing complex ge-

ometrical features. To facilitate the understanding of thermal

dynamics in overhang constructions, NIST employed a test piece

with a manageable size and shape, avoiding the issues with the

infrared camera’s focus on larger objects. The study indicates that

non-coaxial sensor alignment could lead to less precise thermal

readings due to potential image blurring when observing larger

pieces. Additionally, visible high-speed camera footage is pre-

sented in a 256 × 256 pixel frame, which shot at a rate of 1000

frames per second.

3.1.1 High-Speed Camera Integration and Data

Acquisition. In the pursuit of advancing in-situ monitor-

ing within the LPBF process, our experimental framework

integrates a high-speed visible spectrum video camera, charac-

terized by a frame rate of 1000 frames per second and a 256

× 256 pixel frame. Positioned strategically within the build

chamber, the camera captures detailed thermal patterns as the

laser fuses powder layers, creating a dynamic record of the

melting process. The specificity of the camera’s placement

and settings allows for an unprecedented view into the thermal

dynamics at play, particularly in the formation of overhang

features and the solidification of bulk areas.

The data acquisition phase is meticulously designed to ensure

the capture of high-fidelity images, which are then windowed to

a manageable size for processing. This optimization balances the

need for detailed thermal data against the practical considerations

of data storage and processing speed. The focus on high-speed

camera data, among other sensor inputs, stems from its direct cor-

relation with the thermal phenomena under investigation, offering

a rich dataset for subsequent analysis.

3.1.2 Classification Framework for Enhanced

Precision. Building on the foundational data captured,

the study introduces a nuanced classification framework that

delineates eight classes based on specific overhang and bulk

characteristics across four distinct strips. This classification

is not merely academic; it has profound implications for

understanding the thermal behavior in AM and the structural

integrity and surface quality of the printed parts. Each class

represents a unique thermal signature, corresponding to different

combinations of overhang features and bulk regions, thereby

enabling a detailed analysis of potential defects and irregularities.
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FIGURE 3: COMPARATIVE OUTCOMES OF EXCLUSIVE AND IN-

CLUSIVE ENCODING IN OPTICAL IMAGING.

3.1.3 Importance of Privacy in Additive Manufacturing.

As we navigate through the complexities of in-situ sensing and

data analysis, the imperative of preserving privacy emerges as a

critical concern. The integration of DP techniques in the pro-

cessing of sensor data addresses this concern head-on, ensuring

that while the data provides invaluable insights into the LPBF

process, it does not expose sensitive information related to part

designs or proprietary manufacturing techniques. This dual fo-

cus on enhancing manufacturing precision while safeguarding

data privacy forms the cornerstone of our approach, setting a new

standard for research and practice in the field of AM.

3.2 Experimental Results

3.2.1 Training Privacy. Within the HDC framework, opti-

cal frames are processed using specialized real-time monitoring

framework to ensure privacy. This procedure involves convert-

ing the training dataset’s feature vectors into hypervectors within

a high-dimensional space. Subsequently, these hypervectors are

combined to create class hypervectors, which form the foundation

of the HDC model. Retraining is conducted to refine these mod-

els further. To augment the model’s robustness, noise is added to

both the class hypervectors and the encoded queries.

Determining the optimal variance, denoted as f2∗
basis

, is criti-

cal for encoding efficiency. Figure 3 demonstrates the impact of

variance on the encoding quality for optical images, highlighting

the trade-offs between exclusive and inclusive encoding strate-

gies. A lower f2

basis
results in high similarity across hypervectors

regardless of the actual distance between the corresponding im-

ages. For instance, with f2

basis
= 0.1, hypervectors exhibit a

similarity exceeding 0.7, even for images at maximal separation.

Conversely, increasing f2

basis
gradually aligns hypervector simi-

larity with the physical distance between images. Notably, at a

f2

basis
of 1.5, images spaced more than a certain distance apart

yield virtually zero similarity in their hypervectors. This obser-

vation underscores the necessity of selecting a f2

basis
that neither

overly compresses nor dilutes the feature space, ensuring hyper-

vectors accurately reflect the original feature vectors.

The primary aim of our research is to strike an optimal bal-

ance between safeguarding privacy and maintaining high system

performance. The encoding variance, represented as f2

basis
, is

pivotal not only in the encoding process but also in achieving

this balance between privacy enhancement and performance op-
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timization. We utilize the F-score to assess our model’s per-

formance. The statistical accuracy is measured in terms of the

statistical F-score, which combines both the type I (false alarm)

and type II (failing to detect) statistical errors. Figure 4 depicts

the HDC model’s effectiveness across varying n levels for both

exclusive and inclusive encoding methods. Our approach in-

volved experimenting with various sizes of training datasets to

delineate regions where the F-score surpasses the 90% threshold.

Based on these findings, a select subset of the training data was

used to develop the HDC model. Additional samples were then

employed for validation to ascertain the optimal f2∗
basis

value.

Our search was geared towards identifying a f2∗
basis

that yields

a high F-score, indicative of enhanced performance, alongside a

low n , signifying robust privacy measures. It became evident that

the ideal f2∗
basis

does not depend on the size of the training dataset.

For instance, at a low f2

basis
such as 0.1, the F-score invariably

falls below 90%. As f2

basis
increases, the F-score climbs above

90%, coinciding with smaller n values. Nonetheless, elevating

f2

basis
beyond the optimal point results in the need for a higher n to

maintain an F-score above 90%. Particularly, when f2

basis
reaches

2, achieving an F-score above 90% requires an impractically high

n or may not even be feasible for certain training dataset sizes.

Conversely, an intermediate f2

basis
, neither too low nor too high,

facilitates achieving an F-score above 90% at more acceptable n

levels, such as 0.6 in our evaluation.

Upon identifying the optimal variance for the random ba-

sis vectors, the next step involves evaluating the effects of noise

addition within the HDC model. After aggregating multiple hy-

pervectors to construct a class hypervector, Figure 5 displays a

histogram that elucidates the similarity between individual hy-

pervectors and the aggregated class hypervector, underlining the

influence of incorporating different degrees of noise into the class

hypervector. Based on Eq. (7) and Eq. (5), a lower n indicates the

addition of more noise. The similarity between the class hyper-

vector and any random vectors remains negligible, as the class

hypervector does not retain information from these unrelated vec-

tors. With an n of 10, indicating minimal noise introduction, the

similarity scores between hypervectors and the class hypervec-

tor remain high, suggesting that the class hypervector preserves

the information from the original hypervectors despite the noise.

However, increasing the noise level within the class hypervector

leads to a predominance of noise information over the original

hypervector data, thereby reducing the similarity scores. For in-

stance, at an n of 0.1, signifying the addition of substantial noise,

the similarity drops to levels comparable to those with random

vectors, indicating that the class hypervector no longer effectively

encapsulates the information from the original hypervectors.

TABLE 1: MODEL F-SCORE PERFORMANCE ACROSS DIFFERENT

EPSILON VALUES.

Model n = 0.5 n = 0.7 n = 1

HDC 87.71% 91.77% 94.30%

ResNet50 17.05% 28.90% 42.59%

AlexNet 20.27% 43.56% 48.09%

DenseNet201 14.61% 43.29% 65.41%

EfficientNet B2 20.27% 22.48% 28.11%

To evaluate the robustness of the HDC model against tradi-

tional models under varying levels of privacy, we benchmarked

the HDC model against established models in the image classifi-

cation field, including ResNet50, DenseNet201, EfficientNet B2,

and AlexNet. For implementing DP, we utilized Opacus, an open-

source library designed for PyTorch that facilitates training deep

learning models with DP mechanisms [33]. Opacus is designed

for ease of use, adaptability, and efficiency, ensuring seamless

integration into existing machine learning workflows. It employs

Differential Privacy Stochastic Gradient Descent (DP-SGD), a

variation of the standard SGD algorithm. DP-SGD enhances pri-

vacy by introducing precisely calibrated noise to the gradients

during the training process. This approach minimizes the impact

of individual data entries by clipping gradients and adding noise,

thus masking their specific contributions to the final model pa-

rameters. The features of DP-SGD provide measurable privacy

assurances, which are crucial in fields where data confidentiality

is essential.

Table 1 illustrates the F-score for the image classification task

after applying the DP mechanism. The introduction of DP leads

to varying impacts on the F-score, showing that HDC experiences

a minor performance reduction compared to significant drops in

other models. At a stringent privacy level, represented by an n

value of 0.5, HDC maintains an F-score of 87.71%, while other

models fall below 21%, highlighting HDC’s robustness against
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high noise levels as it distributes memory evenly across all di-

mensions of the hyperspace. As n increases to 0.7, reducing

the noise, HDC’s F-score rises to 91.77%, significantly surpass-

ing other models, which remain below 44%. When n reaches

1, HDC achieves an F-score of 94.30%, whereas other mod-

els—42.59% for ResNet50, 48.09% for AlexNet, and 28.1% for

EfficientNet B2—show a substantial disparity, with DenseNet201

being the closest yet still 28.89% lower than HDC. This demon-

strates HDC’s superior capability to balance privacy and perfor-

mance compared to other prevalent ML models in the field.

3.2.2 Inference Privacy. Introducing noise to encoded

queries enhances their privacy, yet it tends to shift the focus of

the hypervector elements towards retaining noise rather than the

information from the feature vector queries. Figure 6 illustrates

the relationship between hypervector similarity and the distance

between query images, under the influence of various noise levels

added to the hypervector. When the variance f2
query is minimal,

there’s a high similarity among hypervectors, which correlates

with the distance between images, indicating that the hypervec-

tors preserve the image information effectively. For instance, at

f2
query = 0.1, the similarity for closely related images exceeds

0.8. Conversely, escalating the noise level diminishes this simi-

larity, and at a significantly high f2
query, such as 4, the similarity

drops to zero, irrespective of the distance between images, as the

hypervectors predominantly reflect noise data. Thus, while aug-

menting the noise in encoded queries serves to privatize them, it

inadvertently compels the hypervectors to overlook the essential

query information.

The aim of ensuring privacy during the inference phase is to

strike a balance between query confidentiality and HDC model

efficiency, as depicted in Figure 7. Different levels of noise are

applied to encoded queries, and the F-score is evaluated to assess

HDC performance. Additionally, a neural network, simulating

an adversary, attempts to reconstruct the original query images

from the hypervectors. The effectiveness of this reconstruction

is quantified using the Normalized Mean Square Error (NMSE),

which gauges the neural network’s success in decoding the hy-

pervectors. Without noise addition, the F-score surpasses 96%,

indicating high HDC performance; however, the queries remain

unsecured, as evidenced by a low NMSE of 0.12, indicating that
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the neural network can effortlessly decode the hypervectors to

retrieve the images. Increasing the noise level enhances query

privacy, as reflected by a rise in NMSE, but concurrently, it com-

promises HDC performance by shifting the hypervectors’ focus

from image data to noise. At a f2
query of 2, the NMSE exceeds

1, suggesting the neural network’s inability to extract any mean-

ingful information from the hypervectors, yet this comes at the

cost of reduced HDC effectiveness, with an F-score of 85%. As-

suming an F-score of 90% is an acceptable threshold for HDC

performance, such a level is attainable with a noise variance of

f2
query = 1.5, which corresponds to an NMSE of 0.6. This in-

dicates a feasible noise threshold that maintains queries’ privacy

without significantly impairing HDC performance.

4. CONCLUSION

This study introduces a novel method to improve privacy

and efficiency in additive manufacturing (AM) by integrating in-

process monitoring with differential privacy (DP) and hyperdi-

mensional computing (HDC). Experimental results on in-process

monitoring of the overhang anomaly via high-speed melt pool

data emphasize the success of this approach, demonstrating its

capacity to balance operational efficiency, prediction precision,

and data privacy within AM’s critical framework. The proposed

scalable solution opens new avenues for AM, setting a benchmark

for privacy-preserving, efficient in-process monitoring. Future

directions include broadening this method’s application across

manufacturing processes, underscoring its significance in advanc-

ing manufacturing technologies while ensuring data security.

Future work should focus on applying the proposed method

to other additive manufacturing processes, such as fused filament

fabrication and direct metal deposition, to explore its versatility

and robustness. Additionally, while this paper studied differ-

ent encoding strategies in hyperdimensional computing (HDC),

it would be valuable to develop a method that can automati-

cally determine the best encoding strategy for HDC based on the

dataset’s distribution, enhancing the efficiency and effectiveness

of the proposed approach. Moreover, investigating the scalability

of our framework to handle larger datasets and more complex ge-

ometries will be crucial. Ensuring that the method performs well

under these conditions will validate its practicality for industrial

applications. These future directions underscore the potential of



our method to advance manufacturing technologies while main-

taining data security.
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