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ABSTRACT

Machine learning (ML) models are used for in-situ monitor-
ing in additive manufacturing (AM) for defect detection. However,
sensitive information stored in ML models, such as part designs,
is at risk of data leakage due to unauthorized access. To address
this, differential privacy (DP) introduces noise into ML, outper-
forming cryptography, which is slow, and data anonymization,
which does not guarantee privacy. While DP enhances privacy,
it reduces the precision of defect detection. This paper pro-
poses combining DP with Hyperdimensional Computing (HDC),
a brain-inspired model that memorizes training sample informa-
tionin a large hyperspace, to optimize real-time monitoring in AM
while protecting privacy. Adding DP noise to the HDC model
protects sensitive information without compromising defect de-
tection accuracy. Our studies demonstrate the effectiveness of
this approach in monitoring anomalies, such as overhangs, using
high-speed melt pool data analysis. With a privacy budget set at
1, our model achieved an F-score of 94.30%, surpassing tradi-
tional models like ResNet50, DenseNet201, EfficientNet B2, and
AlexNet, which have performance up to 66%. Thus, the inter-
section of DP and HDC promises accurate defect detection and
protection of sensitive information in AM. The proposed method
can also be extended to other AM processes, such as fused fila-
ment fabrication.

Keywords: Privacy-Preserving Model, Real-time Monitoring,
Additive Manufacturing, Hyperdimensional Computing

1. INTRODUCTION

Additive Manufacturing (AM) fabricates three-dimensional
objects by layering materials as per digital blueprints, which
allows for the creation of intricate designs that traditional manu-
facturing cannot easily achieve [1]. Despite these benefits, AM
encounters significant obstacles, such as slow production speeds,
higher costs, and issues with part quality that lead to defects caus-
ing approximately 10% of part failures [2, 3]. Typical defects
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include porosity, layer misalignment, foreign particle inclusion,
delamination, and incomplete fusion, all of which negatively im-
pact the dimensional accuracy and mechanical strength of the
parts produced [4]. Consequently, many AM-manufactured parts
require additional finishing to meet surface quality standards.
Moreover, AM processes are often lengthy, taking anywhere from
hours to days, and the cost of equipment and materials is high
compared to traditional methods. As a result, in-process defect
detection is required to improve economic and time efficiencies
by enabling immediate adjustments to process parameters or halt-
ing defective production runs [5]. Various sensing technologies
are utilized for defect detection, including ultrasound [6], acous-
tic emission [7], laser scanning [8], electromagnetic [9], radio-
graphic [10], and thermographic methods [11]. Among these,
vision-based strategies are particularly valued for their high de-
gree of automation and effectiveness in detecting and evaluating
defects, thereby playing a crucial role in the in-situ quality control
systems in AM [12, 13].

While various strategies for identifying defects in AM pro-
cesses exist, many are not suitable for in-situ applications due
to limitations such as the inability to detect fine defects or the
lack of validated accuracy metrics. Machine learning (ML)
algorithms offer a promising enhancement for defect detection
precision. These algorithms process and analyze multiple data
features beyond simple point distances, providing more detailed
analysis [14, 15]. The integration leverages the capabilities of
advanced sensing technologies with the robust analytical power
of ML, offering deeper insights into the AM process [16, 17].

The deployment of in-process monitoring systems in AM
requires data analysts to access proprietary organizational data,
which introduces the risk of insider threats. This concern arises
when individuals misuse their authorized access to confidential
information for unauthorized purposes, such as data breaches or
personal gain, as demonstrated by Theoharidou et al. [18]. The
risk is further intensified by insiders’ thorough understanding
of the in-situ sensing data management and operational proto-

Copyright © 2024 by ASME

G20z Ae 1.0 uo Jasn suinl| eluojeD Jo Aussemun Aq ypd 90,1 L-720ze08awi-8/0BE0IZ00A #9892 L/8.L0VE0LZO0N/S0988/2023DFNI/Pd-sBuIpasdoid/303NI/B10 awse: uoyds)|oole)bipawse//:diy wouy papeojumoq



Optical Frames [

e
Bulk Stripe 1
e —
Bulk Stripe 2 —> %

By = N(O'G%asis)
n B3 = (0, G5gsis)
[

=== = 2
Overhang Stripe 4 ( Bp = N (0, Opasis)

Feature Vector )

gy

Encoding

( Query Hypervector ] (Defect Type)

Similarity |, 4

[ Class Hypervector 1 ]

[ Class Hypervector 2 ]
LL1]

Hypervector

[ Class Hypervector S ]

FIGURE 1: HYPERDIMENSIONAL COMPUTING FRAMEWORK: ENCODING, TRAINING, INFERENCE, AND RETRAINING.

cols. Such knowledge could lead to the unauthorized disclosure
of sensitive information by exploiting predictive analytics and
context-specific data [19].

To mitigate privacy concerns, several privacy-preserving
strategies have been devised, including cryptographic techniques,
data anonymization, and differential privacy (DP). Cryptographic
methods are essential for protecting identities and controlling ac-
cess to systems, thereby providing the confidentiality and integrity
of information [20]. Despite their effectiveness, cryptographic
methods require considerable computational resources, poten-
tially slowing down data processing. As an alternative, data
anonymization involves removing sensitive information before
data analysis, reducing the risk of data breaches, especially in
complex, high-dimensional datasets [21]. However, anonymiza-
tion has its limitations, such as the permanent loss of original
data and the inability to provide complete privacy protection [22].
Even with anonymized datasets, re-identification of individuals
is still possible. For instance, an analysis of anonymized Netflix
data released for a competition demonstrated that individual users
could be identified by correlating their reviews with data from
other websites like IMDb, revealing their viewing habits [23].

To address privacy concerns, as introduced by Dwork [24],
integrating noise into data processing algorithms ensures that
databases differing by only one record remain indistinguishable
from the perspective of the same algorithm, thereby significantly
enhancing privacy protection. However, this approach necessi-
tates a careful balance between enhancing privacy and maintain-
ing algorithmic performance. Increasing the noise level strength-
ens privacy protections but may also negatively impact the algo-
rithm’s accuracy and efficiency. Therefore, it is crucial to find
an optimal balance that ensures robust data protection without
compromising utility and effectiveness.

Building upon the goal of simultaneously enhancing privacy
and maintaining performance, this paper introduces the integra-
tion of DP with Hyperdimensional Computing (HDC), an ad-
vanced machine learning framework. HDC’s exceptional speed
in processing queries makes it particularly suitable for scenarios
requiring swift monitoring. By incorporating DP into HDC, we
create a robust framework that enhances privacy while preserv-
ing performance. The unique data manipulation method of HDC,
which utilizes high-dimensional vector spaces for computations,
combined with the privacy guarantees of DP, ensures rapid analy-
sis and maintains an optimal balance between privacy protection
and efficiency.

2. RESEARCH METHODOLOGY
2.1 Hyperdimensional Computing

The HDC architecture is inspired by the human brain, using
high-dimensional vectors to mimic cognitive functions [25, 26].
This technique enables HDC to imitate the brain’s methods of in-
formation processing and memory retention across various cog-
nitive tasks [27, 28]. As shown in Figure 1, the HDC model
is divided into four phases: encoding, training, inference, and
retraining.

Encoding focuses on creating a high-dimensional frame-
work by converting feature vectors into hypervectors. In this
framework, each element of a hypervector equally contributes to
encoding information, ensuring that no single component dispro-
portionately influences the overall data representation. The pro-

cess involves mapping a feature vector F' = { jj-}jjzl, where each

J; belongs to R, into a hypervector H. This mapping is achieved
by computing the dot product between F and a unique, ran-
domly generated vector for each dimension, given by the equation
h; = cos(ﬁ . Ei). Each 1§,~ is a random vector drawn from a Gaus-
sian distribution with a mean of zero and a variance of o-lfam.
These vectors, {B,-}l.D= |» serve as the random basis vectors, are
determined initially, and remain fixed throughout. This approach
efficiently translates continuous feature vectors into continuous-
valued hypervectors, making them suitable for classification tasks
in various fields, such as anomaly detection [29, 30].

When discussing the key elements of the encoding method-
ology, it is essential to consider the impact of the variance, O'bzasis,
in the Gaussian distribution used for generating the random ba-
sis vectors, B;. The selection of variance plays a crucial role,
shaping the encoding strategy to be either exclusive or inclu-
sive. By choosing a larger a'bzasis, an exclusive encoding strategy
is employed, which increases the spread of the basis vectors’
values. This increased dispersion enhances the uniqueness of
each hypervector, aiding in their distinction. Such an approach is
particularly beneficial in scenarios where precise differentiation
between encoded vectors is required, such as in tasks involving
the accurate identification of unique patterns.

Conversely, an inclusive encoding strategy is defined by a
reduced variance, o-lfasis, leading to a more concentrated distri-
bution of the basis vector values. This concentration results in
hypervectors that are more similar to each other, which is advan-
tageous for tasks requiring generalization over similar features.
Adjusting the variance parameter provides nuanced control over
the encoding’s specificity and generalizability, showcasing the
versatility of HDC in addressing a wide range of classification
challenges.
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Training begins with the creation of class-specific hypervec-
tors, denoted as C_')8 for each class s, where s ranges from 1 to S,
representing the total number of classes. Each class hypervector
is formed by summing all the associated hypervectors for that
class, as expressed by the following equation:

Co=) B (1)

where H* represents the hypervectors associated with class s.
This equation illustrates how class hypervectors aggregate the
features of the training samples from their respective classes.

Combining hypervectors from the same class allows for the
merging of shared characteristics and attributes within a high-
dimensional framework. This process ensures that the core as-
pects of each class are integrated into a unified, clear represen-
tation, which is essential for accurate and efficient classification.
By aggregating hypervectors, the HDC framework leverages the
principle of superposition inherent to high-dimensional spaces,
improving its ability to differentiate between classes by examining
their collective features.

The creation of class hypervectors is a crucial step in the HDC
training process, serving as the foundation for the subsequent in-
ference and retraining phases. This step allows HDC to develop a
thorough understanding of each class’s distinct high-dimensional
profile, which is vital for the model’s accurate pattern recognition
and predictive capabilities.

Inference is a critical phase where the class association of
a hypervector is determined by comparing the query hypervector
with the class hypervectors established during training. Cosine
similarity is particularly effective for this comparison, as it mea-
sures the alignment of two vectors within the high-dimensional
space. This similarity is computed as the dot product of two
vectors, normalized by the product of their norms. The formula
for calculating the cosine similarity between a class hypervector
C_‘)S and a query hypervector qu is given by:

- -

C,-H,

Cos(és»ﬁq) =5
Csl - |[Hgll

2)

During the inference process, the HDC model assesses the
query hypervector ﬁq against each class hypervector using co-
sine similarity metrics. The class whose hypervector 55 shows
the highest similarity to Ijlq is identified as the most likely class
affiliation for ﬁq. This method allows the HDC model to classify
new data by leveraging the learned patterns and utilizing the spa-
tial properties unique to high-dimensional spaces to distinguish
between different classes.

The HDC'’s inference, which employs cosine similarity, is
engineered to deliver both high accuracy and computational effi-
ciency, making it highly adaptable for various classification tasks.
Notably, the norm of the query hypervector, ||ﬁq ||, remains con-
sistent across all classes, allowing it to be excluded from detailed
calculations. Similarly, the magnitude of each class hypervector,
||55||, stays constant during the inference stage since these vec-
tors are fixed during training and only need to be calculated once.
Consequently, the core of the inference process is simplified to
computing dot products between the query hypervector and class

hypervectors, a remarkably fast process. This swift processing
makes HDC exceptionally suited for real-time monitoring in AM,
where rapid and accurate data classification is crucial.

Retraining is an essential element of the HDC approach,
greatly improving the model’s accuracy and adaptability. This
phase involves comparing hypervectors of training samples with
the class hypervectors established during the initial training
phase. By identifying and correcting inaccuracies, the retraining
process enhances the overall performance of the model.

If a hypervector, HS, is incorrectly classified into a wrong
class, s , instead of its correct class, s, the HDC model updates
to correct this error. The process adjusts the class hypervectors
according to the magnitude of the misclassification, as shown in
the following equations:

C, =C, +H",

. 3)
Cy=Cy —H*

This recalibration effectively adjusts the class hypervectors
by incorporating the misclassified hypervector, HS, into ts correct
class, s, and removing it from the incorrect class, s . These
modifications bring the correct class’s hypervector closer to HS
and distance it from the hypervector of the incorrect class, thereby
decreasing the chances of future misclassifications.

The retraining process is inherently iterative, enabling the
HDC model to continuously improve its classification accuracy
by correcting errors. Each update incrementally enhances the
model’s ability to capture nuanced variations within the data,
boosting its efficiency and reliability. This ongoing optimization
is particularly valuable in environments where data distributions
shift or new patterns emerge.

Retraining enhances the HDC model into a progressively
more effective classification tool, capable of adapting to evolving
data landscapes without needing to restart the training process.
This adaptability, along with the inherent efficiency of the HDC
method, makes it an excellent solution for real-time data process-
ing and decision-making across various applications.

2.2 Differential Privacy

In our study, we tackle the critical issue of preserving confi-
dentiality in real-time monitoring, with a particular focus on the
risks posed by insiders. Traditional systems often inadvertently
expose sensitive information due to their extensive data acces-
sibility requirements. To address this, we have implemented
DP mechanisms. These mechanisms ensure that only outcomes
modified according to DP standards are accessible, rather than the
original, unmodified data. This approach significantly enhances
security, greatly reducing the risk of privacy violations by insid-
ers. It not only protects sensitive data but also strengthens the
integrity of real-time monitoring against internal security threats.

DP enhances the security infrastructure of real-time monitor-
ing by restricting access to unprocessed data and allowing only
the dissemination of results that have been modified using DP
techniques. DP operates by intentionally adding noise to obscure
the original data, a process governed by key metrics: the privacy
budget (€) and the privacy loss threshold (6). These parameters
are crucial in determining the noise intensity and the level of pri-
vacy protection, significantly reducing the likelihood of inferring
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FIGURE 2: ENHANCING PRIVACY IN HDC TRAINING AND INFERENCE WITH GAUSSIAN NOISE INTEGRATION FOR DIFFERENTIAL PRIVACY.

individual data points. This approach ensures that the privacy of
data subjects is preserved without compromising the utility of the
data for analysis, thereby providing a robust solution to the chal-
lenge of protecting sensitive information in real-time monitoring
in AM from potential insider threats.

In the context of AM, to elucidate the concept of DP, consider
two datasets, /1 and I, which are identical except for a single data
point. A predictive model M is said to exhibit (¢, §)-DP if, for any
such pair of datasets /; and I, the model satisfies the following
inequality:

P[M(I)] < e€ -P[M(L)] +6 4)

This criterion ensures that the presence or absence of a single data
entry does not significantly impact the model’s output, thereby
protecting the confidentiality of individual data points.

In predictive modeling applications, particularly within AM,
the Gaussian mechanism is a key technique for enforcing DP.
This method involves strategically adding noise to the model’s
output to effectively mask the influence of any single data point.
Consider a function g : I — RP responsible for data manipula-
tion or transformation in the model. The Gaussian mechanism,
characterized by the noise level a'zp, is implemented as follows:

M(I) = g(I) + N (0,Ag°0 ) (5)

The term Ag, known as the sensitivity of g, quantifies the maxi-
mum expected difference in g’s output when comparing any two
datasets, I and I, that differ by only one element:

Ag = max llg(11) — g(1)|l (6)

To achieve (e, 6)-DP, the noise level, o-flp, must adhere to the
following condition:

o-§p>21n%-€]—2 (7
In our specific case, we set § to 10~*, based on the previous
studies in the DP field, such as Abadi et al. [31], which suggest
that 6 should be smaller than the inverse of the dataset size.
We determine the optimal o-jp using the above equation, aiming
to balance the trade-off between preserving data privacy and
maintaining the operational performance of our predictive model
in the AM setting.

During the training phase of the HDC model, DP is incor-
porated by making the class hypervectors differentially private
through the addition of Gaussian noise, as shown in Figure 2.
This approach effectively reduces the likelihood that an adver-
sary can infer specific details about the original feature vectors
from the class hypervectors.

The selection of the appropriate noise level, which is critical
for enhancing the model’s security, depends on the sensitivity of
the HDC model. This sensitivity is determined by identifying the
maximum norm among all encoded training samples, as illus-
trated in Eq. (8). Higher sensitivity requires the addition of more
noise, thereby strengthening the model’s security. Consequently,
the highest sensitivity observed across all training samples is
used as a collective sensitivity indicator, ensuring robust privacy
measures throughout the dataset.

Ag = max ||H|| (8)

In AM contexts, ensuring secure data exchange during the
inference phase is crucial. Query hypervectors are enhanced
with an additional layer of security by appending Gaussian noise
before their dissemination, as shown in Figure 2. This is achieved
by applying Gaussian noise with a distribution of W (0, O'qzucry) to
the query hypervectors, thereby maintaining the privacy of the
contained information.

3. EXPERIMENTAL DESIGN AND RESULTS

Addressing privacy concerns in the dissemination and anal-
ysis of sensor data from AM processes is a paramount consid-
eration. The need to protect sensitive manufacturing data, espe-
cially in an era where intellectual property and competitive advan-
tage are closely guarded, necessitates the exploration of privacy-
preserving methodologies. This study, therefore, not only focuses
on the technical aspects of in-situ sensing and defect detection but
also the implementation of DP measures. These measures ensure
that the valuable insights gained from high-speed camera data do
not compromise the confidentiality of the manufacturing process
or the design specifications of the parts being produced. This
introduction sets the stage for a comprehensive investigation into
the experimental designs and methodologies employed in this re-
search. The subsequent sections will delve into the specifics of
sensor integration, data acquisition, and the analytical techniques
used to achieve the dual objectives of enhancing manufacturing
precision and ensuring data privacy in the realm of AM.

3.1 Experimental Setup

This section outlines the instrumentation of sensor equip-
ment on Laser Powder Bed Fusion (LPBF) machine, specifically
the EOS M270 model used at the National Institute of Standards
and Technology (NIST). The equipment includes a visible high-
speed camera aimed at observing the melt pool dynamics and
the dispersion of particles around it. The camera monitors the
formation and behavior of a melt pool created in a sample made
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from nickel alloy 625 (Inconel 625, UNS N06625) for an un-
supported overhang with a 40.5-degree angle. The investigation
focuses on sensor data collected from three different heights of
the build process: 6.06 mm, 7.90 mm, and 9.70 mm, each incor-
porating structures with overhangs. The objective is to uncover
patterns in thermal activity during the process, particularly in the
last segments of scanning before or right after the formation of an
edge, excluding the contour scan, as it involves the final scanning
vectors. Apart from these, all scans are included in the analy-
sis. The scanning procedure involves four passes over each layer
within a 4 mm height increment, rotating the direction of each
layer’s scans by 90 degrees to achieve a vertical striping effect
observable under the thermal camera [32].

Despite its simplicity, the piece’s design used in this study
highlights the technology’s limitations in capturing complex ge-
ometrical features. To facilitate the understanding of thermal
dynamics in overhang constructions, NIST employed a test piece
with a manageable size and shape, avoiding the issues with the
infrared camera’s focus on larger objects. The study indicates that
non-coaxial sensor alignment could lead to less precise thermal
readings due to potential image blurring when observing larger
pieces. Additionally, visible high-speed camera footage is pre-
sented in a 256 x 256 pixel frame, which shot at a rate of 1000
frames per second.

3.1.1 High-Speed Camera Integration and Data
Acquisition. In the pursuit of advancing in-situ monitor-
ing within the LPBF process, our experimental framework
integrates a high-speed visible spectrum video camera, charac-
terized by a frame rate of 1000 frames per second and a 256
X 256 pixel frame. Positioned strategically within the build
chamber, the camera captures detailed thermal patterns as the
laser fuses powder layers, creating a dynamic record of the
melting process. The specificity of the camera’s placement
and settings allows for an unprecedented view into the thermal
dynamics at play, particularly in the formation of overhang
features and the solidification of bulk areas.

The data acquisition phase is meticulously designed to ensure
the capture of high-fidelity images, which are then windowed to
a manageable size for processing. This optimization balances the
need for detailed thermal data against the practical considerations
of data storage and processing speed. The focus on high-speed
camera data, among other sensor inputs, stems from its direct cor-
relation with the thermal phenomena under investigation, offering
a rich dataset for subsequent analysis.

3.1.2 Classification Framework for  Enhanced
Precision. Building on the foundational data captured,
the study introduces a nuanced classification framework that
delineates eight classes based on specific overhang and bulk
characteristics across four distinct strips. This classification
is not merely academic; it has profound implications for
understanding the thermal behavior in AM and the structural
integrity and surface quality of the printed parts. Each class
represents a unique thermal signature, corresponding to different
combinations of overhang features and bulk regions, thereby
enabling a detailed analysis of potential defects and irregularities.
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FIGURE 3: COMPARATIVE OUTCOMES OF EXCLUSIVE AND IN-
CLUSIVE ENCODING IN OPTICAL IMAGING.

3.1.3 Importance of Privacy in Additive Manufacturing.

As we navigate through the complexities of in-situ sensing and
data analysis, the imperative of preserving privacy emerges as a
critical concern. The integration of DP techniques in the pro-
cessing of sensor data addresses this concern head-on, ensuring
that while the data provides invaluable insights into the LPBF
process, it does not expose sensitive information related to part
designs or proprietary manufacturing techniques. This dual fo-
cus on enhancing manufacturing precision while safeguarding
data privacy forms the cornerstone of our approach, setting a new
standard for research and practice in the field of AM.

3.2 Experimental Results

3.2.1 Training Privacy. Within the HDC framework, opti-
cal frames are processed using specialized real-time monitoring
framework to ensure privacy. This procedure involves convert-
ing the training dataset’s feature vectors into hypervectors within
a high-dimensional space. Subsequently, these hypervectors are
combined to create class hypervectors, which form the foundation
of the HDC model. Retraining is conducted to refine these mod-
els further. To augment the model’s robustness, noise is added to
both the class hypervectors and the encoded queries.

Determining the optimal variance, denoted as o-bza“;is, is criti-
cal for encoding efficiency. Figure 3 demonstrates the impact of
variance on the encoding quality for optical images, highlighting
the trade-offs between exclusive and inclusive encoding strate-
gies. A lower o-lfasis results in high similarity across hypervectors
regardless of the actual distance between the corresponding im-
ages. For instance, with O—bzasis = 0.1, hypervectors exhibit a
similarity exceeding 0.7, even for images at maximal separation.
Conversely, increasing O-bzasis gradually aligns hypervector simi-
larity with the physical distance between images. Notably, at a
O-bzasis of 1.5, images spaced more than a certain distance apart
yield virtually zero similarity in their hypervectors. This obser-
vation underscores the necessity of selecting a o-bz£lSiS that neither
overly compresses nor dilutes the feature space, ensuring hyper-
vectors accurately reflect the original feature vectors.

The primary aim of our research is to strike an optimal bal-
ance between safeguarding privacy and maintaining high system
performance. The encoding variance, represented as ofasis, is
pivotal not only in the encoding process but also in achieving

this balance between privacy enhancement and performance op-
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timization. We utilize the F-score to assess our model’s per-
formance. The statistical accuracy is measured in terms of the
statistical F-score, which combines both the type I (false alarm)
and type II (failing to detect) statistical errors. Figure 4 depicts
the HDC model’s effectiveness across varying € levels for both
exclusive and inclusive encoding methods. Our approach in-
volved experimenting with various sizes of training datasets to
delineate regions where the F-score surpasses the 90% threshold.
Based on these findings, a select subset of the training data was
used to develop the HDC model. Additional samples were then

employed for validation to ascertain the optimal 0'132;1 , value.

Our search was geared towards identifying a 0'b2;sis that yields
a high F-score, indicative of enhanced performance, alongside a
low e, signifying robust privacy measures. It became evident that
the ideal o-szsis does not depend on the size of the training dataset.
For instance, at a low ofasis such as 0.1, the F-score invariably
falls below 90%. As (J'b2asis increases, the F-score climbs above
90%, coinciding with smaller € values. Nonetheless, elevating
0'b2Elsis beyond the optimal point results in the need for a higher € to
maintain an F-score above 90%. Particularly, when 0'b2leis reaches
2, achieving an F-score above 90% requires an impractically high
€ or may not even be feasible for certain training dataset sizes.
Conversely, an intermediate U}Jzasis’ neither too low nor too high,
facilitates achieving an F-score above 90% at more acceptable €
levels, such as 0.6 in our evaluation.

Upon identifying the optimal variance for the random ba-
sis vectors, the next step involves evaluating the effects of noise
addition within the HDC model. After aggregating multiple hy-
pervectors to construct a class hypervector, Figure 5 displays a
histogram that elucidates the similarity between individual hy-
pervectors and the aggregated class hypervector, underlining the
influence of incorporating different degrees of noise into the class
hypervector. Based on Eq. (7) and Eq. (5), a lower € indicates the
addition of more noise. The similarity between the class hyper-
vector and any random vectors remains negligible, as the class
hypervector does not retain information from these unrelated vec-
tors. With an € of 10, indicating minimal noise introduction, the
similarity scores between hypervectors and the class hypervec-
tor remain high, suggesting that the class hypervector preserves
the information from the original hypervectors despite the noise.
However, increasing the noise level within the class hypervector
leads to a predominance of noise information over the original
hypervector data, thereby reducing the similarity scores. For in-
stance, at an € of 0.1, signifying the addition of substantial noise,
the similarity drops to levels comparable to those with random
vectors, indicating that the class hypervector no longer effectively
encapsulates the information from the original hypervectors.

TABLE 1: MODEL F-SCORE PERFORMANCE ACROSS DIFFERENT
EPSILON VALUES.

Model e=0.5 e=0.7 e=1
HDC 87.71% | 91.77% | 94.30%
ResNet50 17.05% | 28.90% | 42.59%
AlexNet 20.27% | 43.56% | 48.09%
DenseNet201 14.61% | 43.29% | 65.41%
EfficientNet B2 | 20.27% | 22.48% | 28.11%

To evaluate the robustness of the HDC model against tradi-
tional models under varying levels of privacy, we benchmarked
the HDC model against established models in the image classifi-
cation field, including ResNet50, DenseNet201, EfficientNet B2,
and AlexNet. For implementing DP, we utilized Opacus, an open-
source library designed for PyTorch that facilitates training deep
learning models with DP mechanisms [33]. Opacus is designed
for ease of use, adaptability, and efficiency, ensuring seamless
integration into existing machine learning workflows. It employs
Differential Privacy Stochastic Gradient Descent (DP-SGD), a
variation of the standard SGD algorithm. DP-SGD enhances pri-
vacy by introducing precisely calibrated noise to the gradients
during the training process. This approach minimizes the impact
of individual data entries by clipping gradients and adding noise,
thus masking their specific contributions to the final model pa-
rameters. The features of DP-SGD provide measurable privacy
assurances, which are crucial in fields where data confidentiality
is essential.

Table 1 illustrates the F-score for the image classification task
after applying the DP mechanism. The introduction of DP leads
to varying impacts on the F-score, showing that HDC experiences
a minor performance reduction compared to significant drops in
other models. At a stringent privacy level, represented by an €
value of 0.5, HDC maintains an F-score of 87.71%, while other
models fall below 21%, highlighting HDC’s robustness against
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FIGURE 6: NOISE INFLUENCE ON HYPERVECTOR SIMILARITY
ACROSS IMAGE DISTANCES IN HDC.

high noise levels as it distributes memory evenly across all di-
mensions of the hyperspace. As € increases to 0.7, reducing
the noise, HDC’s F-score rises to 91.77%, significantly surpass-
ing other models, which remain below 44%. When € reaches
1, HDC achieves an F-score of 94.30%, whereas other mod-
els—42.59% for ResNet50, 48.09% for AlexNet, and 28.1% for
EfficientNet B2—show a substantial disparity, with DenseNet201
being the closest yet still 28.89% lower than HDC. This demon-
strates HDC’s superior capability to balance privacy and perfor-
mance compared to other prevalent ML models in the field.

3.2.2 Inference Privacy. Introducing noise to encoded
queries enhances their privacy, yet it tends to shift the focus of
the hypervector elements towards retaining noise rather than the
information from the feature vector queries. Figure 6 illustrates
the relationship between hypervector similarity and the distance
between query images, under the influence of various noise levels
added to the hypervector. When the variance a'qzuery is minimal,
there’s a high similarity among hypervectors, which correlates
with the distance between images, indicating that the hypervec-
tors preserve the image information effectively. For instance, at
O-qzuery = 0.1, the similarity for closely related images exceeds
0.8. Conversely, escalating the noise level diminishes this simi-
larity, and at a significantly high o'qzuery, such as 4, the similarity
drops to zero, irrespective of the distance between images, as the
hypervectors predominantly reflect noise data. Thus, while aug-
menting the noise in encoded queries serves to privatize them, it
inadvertently compels the hypervectors to overlook the essential
query information.

The aim of ensuring privacy during the inference phase is to
strike a balance between query confidentiality and HDC model
efficiency, as depicted in Figure 7. Different levels of noise are
applied to encoded queries, and the F-score is evaluated to assess
HDC performance. Additionally, a neural network, simulating
an adversary, attempts to reconstruct the original query images
from the hypervectors. The effectiveness of this reconstruction
is quantified using the Normalized Mean Square Error (NMSE),
which gauges the neural network’s success in decoding the hy-
pervectors. Without noise addition, the F-score surpasses 96%,
indicating high HDC performance; however, the queries remain
unsecured, as evidenced by a low NMSE of 0.12, indicating that

I 1.00
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T T T T T —-0.00
0.0 0.4 0.8 1.2 1.6 2.0
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FIGURE 7: TRADE OFF BETWEEN INFERENCE DATA PRIVACY
AND HDC PERFORMANCE.

the neural network can effortlessly decode the hypervectors to
retrieve the images. Increasing the noise level enhances query
privacy, as reflected by a rise in NMSE, but concurrently, it com-
promises HDC performance by shifting the hypervectors’ focus
from image data to noise. At a 0'q2uery of 2, the NMSE exceeds
1, suggesting the neural network’s inability to extract any mean-
ingful information from the hypervectors, yet this comes at the
cost of reduced HDC effectiveness, with an F-score of 85%. As-
suming an F-score of 90% is an acceptable threshold for HDC
performance, such a level is attainable with a noise variance of
a'qzuery = 1.5, which corresponds to an NMSE of 0.6. This in-
dicates a feasible noise threshold that maintains queries’ privacy
without significantly impairing HDC performance.

4. CONCLUSION

This study introduces a novel method to improve privacy
and efficiency in additive manufacturing (AM) by integrating in-
process monitoring with differential privacy (DP) and hyperdi-
mensional computing (HDC). Experimental results on in-process
monitoring of the overhang anomaly via high-speed melt pool
data emphasize the success of this approach, demonstrating its
capacity to balance operational efficiency, prediction precision,
and data privacy within AM’s critical framework. The proposed
scalable solution opens new avenues for AM, setting a benchmark
for privacy-preserving, efficient in-process monitoring. Future
directions include broadening this method’s application across
manufacturing processes, underscoring its significance in advanc-
ing manufacturing technologies while ensuring data security.

Future work should focus on applying the proposed method
to other additive manufacturing processes, such as fused filament
fabrication and direct metal deposition, to explore its versatility
and robustness. Additionally, while this paper studied differ-
ent encoding strategies in hyperdimensional computing (HDC),
it would be valuable to develop a method that can automati-
cally determine the best encoding strategy for HDC based on the
dataset’s distribution, enhancing the efficiency and effectiveness
of the proposed approach. Moreover, investigating the scalability
of our framework to handle larger datasets and more complex ge-
ometries will be crucial. Ensuring that the method performs well
under these conditions will validate its practicality for industrial
applications. These future directions underscore the potential of
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our method to advance manufacturing technologies while main-
taining data security.
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