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ABSTRACT

In machine learning (ML), near-sensor AI is transforming edge com-

puting by reducing response times and data transmission, ultimately

saving energy and bandwidth. Despite challenges like limited com-

putational resources and the need for transparent decision-making,

this approach aims to enhance the intelligence and autonomy of

edge devices. Our research presents a novel framework that adds a

layer of abstract intelligence to sensors, boosting system eociency

and accuracy through transparent, interpretable sub-symbolic AI.

We combine Bayesian algorithms with hyperdimensional comput-

ing (HDC), inspired by the human brain’s operational eociency,

to deliver an energy-eocient solution matching the accuracy of

traditional cloud systems without constant server dependence. This

framework uses a binary classioer with Bayesian insights to choose

the best data processing location—locally or in the cloud—adapting

to data environments. Our method ensures cloud-level performance

while signiocantly reducing energy consumption, improving the

sustainability of sensor-based systems. It also enables continual

adaptation and learning directly at the sensor level, enriching cloud

models with fresh edge insights. Our results have shown to bridge

the gap from around 38% quality loss between the standalone near-

sensor HDC model and the SOTA cloud-based model to improve

the quality loss to only 9% while simultaneously saving 45.34% of

energy by not using the cloud. This framework paves the way for

more sustainable, eocient, and accurate edge computing in the ML

landscape by bridging the gap between simple near-sensor models

and their advanced cloud-based counterparts.

1 INTRODUCTION

As the reach of machine learning (ML) stretches into diverse sec-

tors, embedding AI directly at the point of data collection, known

as near-sensor AI, is gaining traction as a critical driver for ad-

vanced, sustainable edge computing[1] due to its ability in reducing

response times, enhancing immediate data analysis, abstract atten-

tion, and signiocantly lowering the amount of data needing to be

sent over networks, thus conserving bandwidth and energy. Such

integration is seen as a holistic way to boost the capabilities of edge

devices, making them more intelligent and autonomous.

Figure 1: AI Deployment Scenarios in Near-Sensor Envi-

ronments: This ogure compares three models: a basic near-

sensor model ofering low energy and latency with limited

accuracy; an edge server model with high accuracy but in-

creased latency and computational needs; and our frame-

work, which uses a Bayesian-enhanced Hyperdimensional

Computing (HDC) model to balance eociency and accuracy,

reducing cloud reliance by only sending low-conodence data

to the cloud.

However, this endeavor is not without its challenges[2]. Adapt-

ing complex ML models to function eociently right beside the

sensors introduces a range of issues more complex than edge AI,

from the struggle with limited processing power and energy avail-

ability inherent in many edge devices to potential data loss due to

compression techniques like quantization and most notably, con-

cerns about how understandable and transparent the AI’s decisions

are. Lightweight ML models, also known as tinyML, which typ-

ically consist of scaled-down Deep Neural Networks (DNNs) or
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quantized versions of larger models, often sufer from a marked ac-

curacy reduction compared to their full-sized counterparts on cloud

or edge servers due to the dioculty in making them compatible

with eocient and noisy hardware found near the sensor. Amidst

the complexities of integrating AI into edge devices, the appeal of

Hyper-Dimensional Computing (HDC) models is gaining traction

for its promising role in near-sensor AI applications[3]. Inspired

by the human brain’s remarkable eociency and adaptability in

processing information, these models provide a blueprint for devel-

oping interpretable, energy-eocient AI systems requiring minimal

computational power[4–8]. Hyperdimensional computing, which

mirrors the brain’s capacity to function in vast, high-dimensional

spaces, can easily manage intricate patterns[9]. We propose a sys-

tem that employs an HDC-based near-sensor model designed for

real-time data processing, as seen in Figure 1, with whom we ad-

dress the inherent limitations of these compact IoT devices.

Despite the promise these models hold[10–14], they have en-

countered challenges in matching the performance levels of state-

of-the-art deep neural networks, particularly in tasks that demand

detailed data analysis and high accuracy. This shortfall can be re-

mediated by balancing local data inference on the device with HDC

models, which is essential for minimizing latency against using

more powerful, cloud-based models that are more accurate at the

cost of introducing communication overheads, potential delays, and

exponentially higher system energy consumption. This discrepancy

highlights a signiocant trade-of: while situating models close to

data sources reduces latency and can lower some networking costs,

it also necessitates occasional reliance on cloud-based models to

achieve higher system accuracy. Deploying machine learning mod-

els across diverse computing environments involves optimizing

the locations for inference. Recent research has explored using

Reinforcement Learning (RL) for resource allocation and task dis-

tribution. However, these strategies often come with high computa-

tional and energy costs, making them unsuitable for scenarios with

limited power and computational resources, particularly near the

sensor[15]. This presents a unique challenge for these constrained

devices: to design an eocient, low-cost, immediate decision-maker

on whether to run inference tasks on the costly yet accurate server

or by relying on compact models near the sensor that are not as

accurate but eocient.

In response to these inherent challenges, our work introduces a

framework designed to close the gap concerning the performance

of cloud-based processing without constant reliance on server in-

frastructure. Recognizing the higher computational demands of

Bayesian algorithms compared to conventional Deep Neural Net-

work (DNN) models, our framework strategically employs a binary

classioer with Bayesian features, making it a viable solution in

scenarios where DNNs near sensors are impractical due to feasibil-

ity concerns. This classioer, by extracting and analyzing insights

from both near-sensor and cloud models, assesses the reliability

of the near-sensor model’s predictions to decide whether to pro-

cess data locally or transmit it to the cloud for a more accurate

evaluation. Central to our approach is the innovative application

of Bayesian techniques on Hyperdimensional Computing (HDC),

marking a signiocant departure from traditional methods. For the

hardware acceleration of the framework, an Analog Compute-in-

Memory (CiM) architecture is used, with FeFETs as the devices

constituting the memory cells, which have intrinsic conductance

variations, which exhibit process-induced stochastic variations [16].

Typically, for DNNs utilizing in-memory computing on such mem-

ristive crossbars, these variations cause a loss in inference accuracy.

However, using Bayesian inference, which operates on probability

distributions instead of exact values, we can leverage the conduc-

tance variations as the noise, which makes our classiocation robust.

Using HDC-based Bayesian classioers further enhances the robust-

ness of decisions due to their holographic properties and intrinsic

redundancy. Supported by three advanced algorithms, our frame-

work equips the binary classioer with the necessary training data

to navigate ideal (noiseless) and practical (noisy) data streams. This

dual capability underscores our framework’s adaptability to various

data conditions, paving the way for a new foundational mathemati-

cal model that redeones eociency and accuracy in data processing

across constrained computing landscapes. In this paper, we con-

centrate on the healthcare dataset PPG-DaLiA, which exemplioes a

scenario where near-sensor devices— speciocally, a wearable device

with limited computation adjacent to its sensor—allow the Bayesian

model and a compact classioer to coexist. Simultaneously, these

devices have network capabilities to transmit complex samples to

the cloud for selective predictions. Our performance was evaluated

using various heuristics to train the Bayesian binary model, which

resulted in accuracy improvements of up to 29.08% while reducing

power consumption by up to 45.34%.

2 RELATED WORK

2.1 Hyperdimensional Computing

HDC has demonstrated proociency in addressing diverse tasks and

datasets, establishing itself as a robust framework well-suited for ap-

plications requiring lightweight, online learning and highly eocient

training[17–20]. A noteworthy attribute contributing to HDC’s pop-

ularity is its resilience against model weights, precisely the dimen-

sions of its hypervectors, as evidenced in prior works[21–23]. This

adaptability aligns seamlessly with CiM technologies, known for

minimizing energy consumption and reducing delays by mitigating

data movement challenges associated with traditional von Neu-

mann architectures[24, 25]. Furthermore, HDC exhibits resilience

in handling non-idealities coming from CiM hardware, as corrobo-

rated by recent literature[26–30]. In the domain of HDC applica-

tions, a notable domain is time series data and multi-classiocation,

where its eocacy has been particularly impressive[31, 32]. How-

ever, current complexities, energy consumption, and delays are

closely tied to the model’s class count and dimensionality, rendering

computational costs incompatible with simple data-generating sen-

sors. Proposing a binary classioer within the sensor’s architecture,

focused on discerning data signiocance, emerges as a promising

alternative to address these challenges.

2.2 Healthcare Activity Monitoring

In healthcare activity monitoring, our attention is directed towards

the PPG-DaLiA [33] dataset. PPG-DaLiA, designed for PPG-based



Figure 2: Hyperdimensional Computing (HDC) Worknow Simplioed. This ogure outlines HDC’s key phase: encoding, where

input data is transformed into high-dimensional vectors via randomized mapping. Creating robust hyperspace representations

and training involving grouping similar data points into class hypervectors, reoned through validation to improve accuracy.

The worknow highlights HDC’s eociency and simplicity, employing parallelizable mathematical operations for streamlined

processing.

Figure 3: HDC Model Inference for CiM Use. This ogure il-

lustrates optimizing a 32-bit precision HDC model for Com-

puting in Memory (CiM) systems. The model is orst quan-

tized and then undergoes iterative training to reone class

hypervectors, ensuring the retention of crucial information.

Finally, query hypervectors are quantized, and their similar-

ity to class hypervectors is evaluated to determine the most

likely class label, maintaining accurate performance within

CiM’s precision limitations.

heart rate estimation, captures data from subjects engaged in var-

ious activities under real-life conditions. In state-of-the-art ap-

proaches, PPG exhibits optimal performance with a CNN ensem-

ble[33]. We emphasize introducing transparency and interpretabil-

ity into HDC, which sets it apart from the often black-box-like

decision-making processes of deep neural networks. Works such

as [34–36] contribute to reasoning in HDC or Genome Sequence

Detection and advance the concept of Capacity, ofering insights

into model performance using hyperparameters before training or

deployment. This transparency is crucial, especially in sensitive do-

mains like healthcare, where understanding and interpreting model

outputs are essential. By adoptingHDC,we address ethical concerns

associated with black-box models, ensuring that our framework re-

mains accessible and interpretable for healthcare applications. This

approach optimizes resource utilization in sensor-driven scenarios

and aligns with the growing need for responsible and interpretable

AI solutions in critical domains.

2.3 Bayesian Inference on resource-constrained
environments

Bayesian inference techniques can equip models with a means for

uncertainty estimation, which can be crucial for decision-making

in resource-constrained environments, especially in Safety-critical

sensory applications, such as medical diagnosis, which require pre-

cise decisions from limited and noisy data. It adds to the models’

adaptability in dynamic environments like near-sensor computa-

tions and robustness by providing uncertainty and incorporating

new evidence to update beliefs over time, even if the data is limited.

Bayesian neural networks excel by providing accurate predictions

along with uncertainty assessment[37]. Despite their superior ac-

curacy, deep neural networks consume signiocant power, making

them less suitable for edge devices with limited resources[38]. To

improve DNNs on edge, the proposed ways face the problem of

customization of the networks to ot each purpose and diferent

devices, which requires professional knowledge and a lot of ex-

periments. Other approaches use a Bayesian search at the end to

minimize the number of comparisons needed. Another proposed

approach uses support vector machines for their efectiveness in



high-dimensional spaces and their ability to handle non-linear deci-

sion boundaries[39]. Equipping themwith Bayesian inference ofers

robustness to handle noisy or uncertain data, enhanced model inter-

pretability, and the ability to estimate prediction uncertainties[40,

41]. Recent advancements in brain-inspired computing have paved

the way for highly eocient Machine Learning (ML) algorithms

rather than Deep neural networks or SVMs. HyperDimensional

Computing (HDC) research has led to signiocant speedups in ML

model training and inference compared to deep learning methods.

However, existing HDC-based algorithms often lack uncertainty

estimation. However, some models like DiceHD enable uncertainty

estimation on the HDC regression models while being much faster

and using less power than Bayesian neural networks (BNNs) [42].

This can have many applications as they provide eocient dataset

annotation and lower labor costs, unlike other classioers that need

gradient or probabilistic so that they can be easily integrated into

any near sensor computing architecture [43].

2.4 Compute-in-memory-based acceleration of
Bayesian classioers:

Initially, Bayesian classioers were computationally intensive due

to the need for repeated probability calculations, making them

unsuitable for real-time near-sensor applications. The pursuit of

Compute-in-Memory (CiM) technologies to expedite Bayesian infer-

ence has been explored in the literature using multiple approaches,

with Gao et al. [44] addressing the resilience of memristor crossbar

arrays for Bayesian inference, introducing techniques to improve

computational reliability. The work presented in [45] explores a

memristor-based Bayesian machine, demonstrating the potential

speed and energy advantages of using CiM hardware. However,

these designs depended on an LFSR-based random-number genera-

tion block, which incurred extra peripheral circuitry.

Further advancements are seen in Shukla et al. [46], who pro-

pose a CiM architecture with Monte Carlo dropouts for edge-based

Bayesian inference, ingeniously integrating stochasticity with hard-

ware eociency. Despite this, the energy costs of Monte Carlo meth-

ods are prohibitively high for near-sensor integration. Manna et

al. [16] perform extensive device characterization of FeFETs to

leverage the intrinsic noise due to conductance variations for prob-

abilistic deep learning using in-memory computing. However, all

methods above employ BNNs, which are resource-intensive due to

the need for multiple layers of computation. DiceHD [42] presents

the orst exploration of integrating the robustness of Bayesian infer-

ence with the hardware eociency of HDC for uncertainty estima-

tion in HDC-based regression algorithms. However, it is primarily

focused on regression tasks instead of learning tasks. It is ineocient

for hardware implementation as it requires twice the memory over-

head to save the prior distribution and the hypervectors separately.

Thus, the need for a more eocient method of performing classioca-

tion tasks near sensors with minimal area and energy consumption

in resource-constrained environments is imminent.

3 FRAMEWORK

3.0.1 Hyperdimensional Learning. We utilize hyperdimensional

learning for direct encoded data processing. In our framework,

HDC identioes patterns in training data by grouping them accord-

ing to their labels. Instead of simply combining all encoded data,

our approach involves incrementally adding each data point to

the class hypervectors based on the novelty of the information it

introduces. To prevent hypervector saturation, we limit or avoid

adding data to class hypervectors if a data point is already present.

Furthermore, no updates occur to prevent overotting when predic-

tions match expected outputs. This adaptive update strategy gives

greater weight to uncommon patterns, reoning the onal model. Im-

portantly, this technique eliminates the need for time-consuming

iterative training. Let us assume �V as a new training data point.

The model will compute the cosine similarity of �V with both class

hypervectors, in this case, datapoint of interest ( �C1) or not �C0. We

compute similarity of a data point with �Ci as: ÿ( �V , �Ci). Instead of

naively adding a data point to the model, HDC updates the model

based on the ÿ similarity. If the model incorrectly returns the label

1 for an encoded query �H , the model updates as follows:

�C0 ← �C0 + ÿ (1 – ÿ0) × �V (1)

�C1 ← �C1 – ÿ (ÿ1) × �H (2)

whereÿ and ÿ are a learning rates. A large ÿl indicates that the input

is a common data point already existing in the model. Therefore,

our update adds a small portion of the encoded query to the model

to eliminate model saturation (1–ÿl � 0). In inference, HDC checks

the similarity of each encoded test data with the class hypervector

in two steps. The orst step encodes the input (the same encoding

used for training) to produce a query hypervector �V . Then, we

compute the similarity (ÿ) of �V and all class hypervectors. Query

data gets the label of the class with the highest similarity.

3.0.2 Hyperdimensional Uncertainty Estimation. The HDC encoder

generates a random large D–dimensional representation �Hf of

a d–dimensional feature vector �f , such that the similarity of the

hypervectors approximates a kernel k(�x)

ÿ( �Hf , �Hg) = k(�f – �g). (3)

The encoding is generated by sampling a randommatrixMD×d from

a probability distribution p( �ÿ), and then deoning �Hf = exp(iM�f ).

If p( �ÿ) is chosen to be the Fourier transform of the kernel p( �ÿ) =
∫

k(�x)ei �ÿ ·�xd�x, then Bochner’s theorem guarantees that the simi-

larity relation of Eq. 3 holds. Then, the corresponding class vectors

are constructed using Eq. 2.

However, one key problem is choosing the kernel k(�x) appro-

priately. Diferent kernel choices can have small variations in the

model’s accuracy, and as a result, there will be some inherent un-

certainty in the predictions. To estimate the uncertainty, we place a

prior distribution over a subspace of possible kernels spanned by a

set of basis kernels. We do this by orst choosing N basis kernels la-

beled ki(�x), with corresponding probability distributions pi( �ÿ). We

will choose each pi to be a one-dimensional distribution, identical

over each component. We then construct a random kernel, charac-

terized by �w = (w1,w2, ...,wN ) (with
∑

i wi = 1 and wi = 0), deoned

as kw =
∑

i wiki , and the corresponding probability distribution is

given by pw =
∑

i wipi . We deone a prior on �w through a two-stage



Figure 4: Overview of our adaptive framework integrating

Bayesian hyperdimensional computing (HDC). An ensemble

of Bayesian binary classioers decides whether data should

be classioed locally or sent to the cloud. The HDC multi-

classioer provides initial predictions, and a Bayesian regres-

sion model evaluates the conodence range between class

hypervectors, delegating complex cases to the cloud.

process of orst sampling wi from a uniform Uniform(0, 1) distribu-

tion and then normalizing the values to wi ← wi/
∑

i wi . Finally, for

the uncertainty estimation, we construct multiple random models

by sampling diferent values from the prior of �w and characteriz-

ing the distribution of the resulting accuracies of the model. The

sampling of pw can be performed eociently by orst calculating the

corresponding cumulative function cw (z) =
∫ z

–∞
dxpw (x). Then, to

sample from pw , we can instead sample from c–1w (U ), where U is a

Uniform(0, 1) distribution. To characterize the uncertainty of the

model, we perform a simple Bayesian analysis of the results over

the multiple models. Given the training data D, and an input �x, the

probability of a certain class is given by P(Y |�x,D), which can be

written using Bayes Theorem as

P(Y |�x,D) = P(Y |�x,D, �w)P( �w). (4)

For a given set of parameters �w, the probability of predicting a

certain class in the model is simply the indicated function of the

class c with maximum similarity s(c), and so we have

P(Y = i|�x,D, �w) = ÿ
(

i = argmaxcs(c)
)

, (5)

where the ÿ–function is 0 if the condition is false, and 1 otherwise.

Thus, the probability of a class prediction is given by

P(Y |�x,D) = ÿ
(

i = argmaxcs(c)
)

P( �w). (6)

In our work, we estimate the distribution P(Y |�x,D) by sampling

multiple models through samples of �w and then numerically cal-

culating the fraction of times Y = i was predicted. This will give

us a measure of conodence in our prediction through probabilistic

analysis.

3.1 Framework

Our framework employs a novel approach that utilizes hyperdimen-

sional computing (HDC) for eocient binary classiocation, specif-

ically designed for scenarios with limited data. At its core, this

framework integrates a Bayesian HDC binary classioer to make

a strategic decision: whether to classify data locally at the sensor

or send it to the cloud for more reoned processing, as shown in

Figure 4. By emphasizing transparency and mathematical rigor,

we leverage Bayesian principles to improve upon the near-sensor

setup.

HDC Binary Classiocation Model: For the orst conogura-

tion, we use the HDC multi-classioer to generate data predictions,

which are then compared to the cloud model’s outputs to estab-

lish a ground truth baseline. This comparison reveals discrepancies

and helps identify situations where the near-sensor model may

struggle, requiring the cloud model’s intervention. Our approach

enriches the training of the HDC binary classioer by drawing on

three key sources of information. This step is crucial, as the HDC

model’s strength in few-shot learning makes it an excellent option

for handling unbalanced datasets, which are typical in our target

applications. These datasets often contain sparse instances where

the near-sensor model misclassioes.

HDC Bayesian Binary Classiocation Model: Instead of rely-

ing on a standard binary HDC classioer, we employ an ensemble

of Bayesian binary classioers to make predictions, greatly enhanc-

ing reliability and adaptability. The reliability and adaptability of

the Bayesian HDC ensemble are crucial for healthcare near-sensor

AI devices, where accurate interpretation of physiological signals

is vital. Patients’ conditions can change rapidly, so a dependable

classiocation system is essential to avoid misinterpretation and

inappropriate medical actions. The system must also adapt to indi-

vidual diferences in patient data, recognizing unique patterns and

making accurate predictions across varying conditions. With lim-

ited computational resources, near-sensor devices must eociently

classify simple cases locally while sending complex signals to the

cloud for advanced analysis, conserving power and reducing delays.

This ensures swift, accurate decision-making, which is essential for

patient safety and timely intervention.

Distance-based Bayesian Model: In our approach, we imple-

ment a Bayesian regression model using HDC to predict, with a

specioed conodence range, the distance between the two class simi-

larity hypervectors closest to the query. One of these represents the

correct label, while the other indicates an incorrect classiocation.

This analysis helps determine how near the query hypervector is

to each class, allowing us to use Bayesian conodence to evaluate

classiocation risk. A predeoned threshold decides whether the pre-

diction should be made at the sensor or escalated to the cloud, as

depicted by Figure 5. This method ensures that local predictions

are reliable, while more complex or uncertain cases are directed

to the cloud for detailed processing. HDC’s mathematical princi-

ples and transparency are vital in this framework, making it easy

to spot ambiguous situations where a sample is too close to the

neighboring hypervectors. This clear decision-making process is

crucial in healthcare, where understanding the reasoning behind

predictions builds trust and ensures quick, accurate responses. By

leveraging the transparency and analytical strengths of this model,

our Bayesian regression approach ensures accurate classiocations,

reducing computational load near the sensor while prioritizing

patient safety.

In general, our adaptive framework harnesses the strengths of

HDC’s mathematical foundation and Bayesian modeling to achieve

improved accuracy, transparency, and eocient data classiocation.

The seamless integration of near-sensor classiocation and cloud

processing enhances system performance while maintaining low

power consumption and high adaptability.



Figure 5: As the dimensions change, the distances between the two class hypervectors closest to the query (one for the correct

label and one for the incorrect label) follow a predictable pattern. The Bayesian regression model measures this distance, using

a preset threshold to assess whether it’s too risky to classify near the sensor. If the threshold is exceeded, the prediction is sent

to the cloud for further analysis, ensuring accurate and reliable classiocation.

4 HARDWARE ARCHITECTURE

Figure 6: a) Block diagramof BayesianHDCbinary classioers,

and b) CiM architecture showing the corresponding mapping

onto FeFET crossbars.

To tackle the shortcomings of existing works trying to perform

Bayesian inference near-sensor, this section describes the novel

hardware architecture used to implement the ensemble of Bayesian

HDC binary classioers, which perform intelligent sensing and dy-

namically determine the mode of operation between an HDC-based

classiocation model at the edge and cloud-based processing (Fig.

6(a)). Our method leverages the majority voting mechanism among

the classioers, but could be equivalently replaced by a Winner-

Takes-All (WTA) circuit. Each classioer consists of long hypervec-

tors (HVs) that necessitate extensive memory for storage. Typically,

these HVs require a large number of columns in memory crossbars

while only two rows are necessary due to the onal output being

a decision between two classes. However, mapping each classi-

oer on separate memory crossbars results in suboptimal memory

utilization, throughput, and energy eociency.

To address these challenges, we propose a novel scheme for map-

ping these Bayesian HDC binary classioers onto memory crossbars

to utilize the improvements in density, parallelism, and energy eo-

ciency of Computing in Memory (CiM). Given the constraints on

physical dimensions in memory crossbar fabrication, our strategy

involves distributing the dimensions of the HVs along the columns

of multiple crossbars as shown in Fig. 6 (b). The holographic nature

of HDC allows for independent computation along each dimension,

thus enabling a seamless distribution without impacting the accu-

racy of computations. This is in contrast to neural networks, where

inter-layer dependencies necessitate sequential data processing and

prevent such independent distribution of weights. By mapping the

weights corresponding to each classioer onto consecutive rows

within the same crossbar, we signiocantly improve memory uti-

lization, throughput and energy eociency. For Bayesian inference,

the weights include additional noise due to sampling from a prob-

ability distribution, which lends robustness and the capability to

retain accuracy despite uncertainty. In the proposed architecture, in-

stead of having a separate random number generator, we utilize the

stochastic conductance variations in FeFET devices characterized

extensively in [16] as the additional noise on the weights. This ap-

proach is more eocient in terms of energy and area, hence making

the framework well-suited for near-sensor integration.

5 EVALUATION

5.1 Experimental Setup

Our integrated system, which combines a Bayesian approach, an

edge computing model, and cloud analytics, has been efectively

deployed using the PyTorch framework. To gauge the efective-

ness of our approach, we undertook a detailed evaluation using a

renowned dataset for healthcare wearable device applications, such

as PPG-Dalia. The assessment focused on key performance indica-

tors relevant to machine learning, including accuracy and overall

energy usage. The latter considers the sensor’s energy demands, the

Bayesian analysis’s computational cost, and the energy implications

of choosing between local processing and cloud-based computation,

including data transmission costs to the edge. The orst benchmark

of our analysis centers on a standalone Hyperdimensional Com-

puting (HDC) model strategically positioned near the sensor. This

model operates with an 8192 dimensionality, applying a Gaussian

distribution for its randomized encoding. Designed with sensor



Figure 7: Comprehensive summary of system accuracy for

various HDC conogurations at their best-performing dimen-

sion. It highlights the difering performance levels across

multiple conogurations, demonstrating how each model’s

design innuences its efectiveness in handling system total

accuracy.

Figure 8: Performance for Binary HDC and the Bayesian

HDC Models across diferent dimensions.

proximity in mind, the model is one-tuned using a memory-centric

computing architecture alongside advanced quantization and our

novel learning methods to reduce information loss, ensuring op-

timal performance for edge deployments. In contrast, the second

benchmark of our analysis delves into a more conventional setup,

where data is processed remotely on an edge server equipped with

a complex, multi-layered Deep Neural Network (DNN) architecture.

This system is intricately designed to eociently manage and inter-

pret high-dimensional data, employing a strategic combination of

ReLU activation functions, a 0.3 dropout rate, and batch normal-

ization to enhance accuracy and throughput despite the inevitable

increase in computational demand and response time. Through this

comparative analysis, our goal is to highlight the nexibility and

efectiveness of our proposed solution, demonstrating its ability

to merge the immediacy and energy eociency of edge computing

with the analytical depth and accuracy of cloud-based processing.

5.2 System Accuracy

Our study investigates the Bayesian Hyperdimensional Comput-

ing (HDC) model’s capability to predict whether the data points

will be correctly predicted by the HDC multiclassiocation model

or not. A critical aspect of this examination is determining how

efectively the model distinguishes between classes, particularly

when data points are similarly close to multiple class hypervectors,

which could present classiocation challenges which is dependent

on the dimensionality. We conducted experiments across various

dimensions—512, 1024, 2048, 4096, and 8192—to assess how these

dimensionalities impact the model’s accuracy. Figure 7 shows a

comprehensive summary of system accuracy across diferent con-

ogurations and for the best-performing dimension. Notably, the

Distance-based Bayesian HDC model shows exceptional accuracy,

particularly at higher dimensions, peaking at 91.41% at 4096 dimen-

sions and maintaining a high rate at 8192 dimensions. This model’s

design to analyze distance histograms allows it to eociently handle

scenarios where data points are close to multiple hypervectors,

enhancing its discrimination capabilities.

The ondings underscore the signiocant impact of utilizing HDC

classioers near the sensor. By implementing these models, the sys-

tem not only maximizes local processing capabilities but also en-

sures that data requiring more detailed analysis is accurately iden-

tioed and sent to the cloud. This strategic balance optimizes both

computational eociency and accuracy, which is critical for real-

time applications such as in healthcare monitoring, where timely

and precise data classiocation can be crucial. Each conoguration

was tested 10 times to ensure the robustness of our ondings, with

the average accuracy reported to account for variability, conorming

the reliability of the observed trends.

We analyzed near-sensor model usage across various conogura-

tions, revealing distinct patterns of local versus cloud processing

dependency. The Bayesian HDC and Standard Binary HDC models

show moderate near-sensor reliance, with about 60% of process-

ing managed locally, blending eociency with cloud capabilities

for complex decisions. The Distance-based Bayesian HDC model

displays nuctuating near-sensor usage from 51.97% at 512 dimen-

sions to 32.75% at 4096 dimensions, indicating dynamic processing

allocation based on data complexity and the model’s capability

within sensor constraints. Near-sensor and cloud processing trends

signiocantly impact system accuracy. Models with high near-sensor

reliance, like the Multiclassiocation HDC, bypass latency and band-

width issues but may sacrioce analytical depth. Conversely, models

like the Distance Histogram Bayesian HDC, which selectively use

cloud resources, handle more complex challenges with their en-

hanced power, showing variable accuracy. This balance between

local and cloud processing is crucial, particularly in healthcare,

where real-time data processing is vital for patient monitoring and

decision-making.

5.3 Dimensionality exploration for near-sensor
binary model

This subsection examines the Bayesian model’s hyperparameters

directly within the near-sensor environment, aiming to gather data

for the binary classioer to decide whether data points should be pro-

cessed locally or escalated to the cloud. Our primary goal is to assess

the model’s ability to produce meaningful conodence and accuracy

metrics, which are essential inputs for the binary classioer. The

classioer’s role is crucial as it gauges the conodence level of each



Figure 9: Latency and energy distribution with no. of models, dimensionality, and bit-precision

data point and employs a preset threshold to determine whether to

process the data locally or onoad it to the cloud for further analysis.

The evaluation was conducted across various dimensions (512, 1024,

2048, 4096, and 8192) in the Bayesian classioer, and can be found in

Figure 8. This comprehensive analysis reveals how diferent dimen-

sional settings afect the classioer’s performance, helping identify

the most eocient conoguration for processing data. The evaluation

examined the model’s detection capabilities across ove diferent

dimensions: 512, 1024, 2048, 4096, and 8192. In the standard binary

HDC model, performance gradually improved as the dimension-

ality increased, starting at 56.09% accuracy at 512 dimensions and

reaching 63.47% at 8192. However, the base Bayesian HDC model

consistently outperformed the standard binary model across all

dimensional settings. It maintained a relatively stable accuracy rate,

starting at 65.36% for 512 dimensions and varying only slightly to

65.33% at 8192 dimensions. This demonstrates the Bayesian model’s

robustness and reliability, which is crucial in ensuring data points

are classioed correctly and only escalated to the cloud when nec-

essary. The stable performance across dimensions showcases the

adaptability of Bayesian HDC, allowing it to make more informed

and accurate classiocation decisions even with varying amounts of

data.

5.4 Energy and latency comparison

For the hardware evaluation of the proposed framework, Neu-

rosim [47], a tool for modeling analog Compute-in-Memory (CiM)

hardware, is employed to simulate bitwise-dot product operations.

These operations are integral to performing cosine similarity calcu-

lations in the associative search phase of Hyperdimensional Com-

puting (HDC) used for inference. To account for the Bayesian in-

ference overhead, the experimental conductance variation charac-

terization for diferent device sizes and programming voltages on

industry-scale FeFETs is taken from [16], and the device-level vari-

ations are incorporated into the training process for the Bayesian

classioers. Thus, we do not need a separate random number genera-

tor to generate the probability distribution and sample a value each

cycle. The evaluation systematically measures latency and energy

consumption across varyingmodel conogurations—speciocally con-

cerning bit precision and dimensionality of hypervectors, and num-

ber of models used for the ensemble.

From the results in Fig. 9 it is seen that increase in dimension-

ality signiocantly escalates both latency and energy consumption,

evidenced by a jump in latency from 3.71ÿs to 8.80ÿs and energy

consumption from 0.22ÿJ to 3.86ÿJ when dimensionality scales

from 512 to 10k with ten models. Similarly, an increased number

of models raises both latency and energy consumption across all

dimensionalities, albeit in a sub-linear fashion. This trend suggests

that the computational costs associated with more complex model

ensembles increase at a more gradual rate.

Fig. 9 also illustrates the substantial impact that precision has

on both latency and energy consumption. Speciocally, as precision

increases from 1 bit to 8 bits, there is a discernible escalation in

both metrics. For instance, with ten models at a dimensionality of

512, latency climbs from 0.46ÿs to 1.10ÿs, and energy consumption

rises from 0.03ÿJ to 0.48ÿJ. This trend is consistent across all model

conogurations, suggesting that higher precision levels, while po-

tentially improving computational accuracy, do impose a certain

overhead on system resources. However, the latency and energy

consumption for all cases are quite tiny, proving that our framework

is highly suitable for near-sensor integration. This evaluation em-

phasizes the critical tradeof between model accuracy and compute

eociency, highlighting the need for careful setting of hyperparam-

eters for model conoguration in resource-constrained near-sensor

environments with limited power and area budget, while still meet-

ing the latency requirements for real-time data processing.

6 CONCLUSIONS

In conclusion, our research introduces a novel framework that

incorporates a layer of abstract intelligence into sensors using hy-

perdimensional computing (HDC). This allows near-sensor AI de-

ployment to overcome critical challenges by enhancing autonomy,

eociency, and responsiveness. Our framework, which utilizes trans-

parent and interpretable sub-symbolic AI, optimizes data collection

and processing directly at the source, resulting in an eocient sys-

tem structure. This signiocantly improves accuracy while reducing

the need for extensive data transmission, conserving bandwidth,

and minimizing latency. These improvements are crucial in achiev-

ing a more sustainable, eocient, and accurate system, making this

framework an essential development in the rapidly advancing oeld

of near-sensor computing.
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