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ABSTRACT

In machine learning (ML), near-sensor Al is transforming edge com-
puting by reducing response times and data transmission, ultimately
saving energy and bandwidth. Despite challenges like limited com-
putational resources and the need for transparent decision-making,
this approach aims to enhance the intelligence and autonomy of
edge devices. Our research presents a novel framework that adds a
layer of abstract intelligence to sensors, boosting system efficiency
and accuracy through transparent, interpretable sub-symbolic AL
We combine Bayesian algorithms with hyperdimensional comput-
ing (HDC), inspired by the human brain’s operational efficiency,
to deliver an energy-efficient solution matching the accuracy of
traditional cloud systems without constant server dependence. This
framework uses a binary classifier with Bayesian insights to choose
the best data processing location—locally or in the cloud—adapting
to data environments. Our method ensures cloud-level performance
while significantly reducing energy consumption, improving the
sustainability of sensor-based systems. It also enables continual
adaptation and learning directly at the sensor level, enriching cloud
models with fresh edge insights. Our results have shown to bridge
the gap from around 38% quality loss between the standalone near-
sensor HDC model and the SOTA cloud-based model to improve
the quality loss to only 9% while simultaneously saving 45.34% of
energy by not using the cloud. This framework paves the way for
more sustainable, efficient, and accurate edge computing in the ML
landscape by bridging the gap between simple near-sensor models
and their advanced cloud-based counterparts.

1 INTRODUCTION

As the reach of machine learning (ML) stretches into diverse sec-
tors, embedding AI directly at the point of data collection, known
as near-sensor Al, is gaining traction as a critical driver for ad-
vanced, sustainable edge computing[1] due to its ability in reducing
response times, enhancing immediate data analysis, abstract atten-
tion, and significantly lowering the amount of data needing to be
sent over networks, thus conserving bandwidth and energy. Such
integration is seen as a holistic way to boost the capabilities of edge
devices, making them more intelligent and autonomous.
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Figure 1: AI Deployment Scenarios in Near-Sensor Envi-
ronments: This figure compares three models: a basic near-
sensor model offering low energy and latency with limited
accuracy; an edge server model with high accuracy but in-
creased latency and computational needs; and our frame-
work, which uses a Bayesian-enhanced Hyperdimensional
Computing (HDC) model to balance efficiency and accuracy,
reducing cloud reliance by only sending low-confidence data
to the cloud.

However, this endeavor is not without its challenges[2]. Adapt-
ing complex ML models to function efficiently right beside the
sensors introduces a range of issues more complex than edge Al,
from the struggle with limited processing power and energy avail-
ability inherent in many edge devices to potential data loss due to
compression techniques like quantization and most notably, con-
cerns about how understandable and transparent the Al’s decisions
are. Lightweight ML models, also known as tinyML, which typ-
ically consist of scaled-down Deep Neural Networks (DNNs) or



quantized versions of larger models, often suffer from a marked ac-
curacy reduction compared to their full-sized counterparts on cloud
or edge servers due to the difficulty in making them compatible
with efficient and noisy hardware found near the sensor. Amidst
the complexities of integrating Al into edge devices, the appeal of
Hyper-Dimensional Computing (HDC) models is gaining traction
for its promising role in near-sensor Al applications[3]. Inspired
by the human brain’s remarkable efficiency and adaptability in
processing information, these models provide a blueprint for devel-
oping interpretable, energy-efficient Al systems requiring minimal
computational power[4-8]. Hyperdimensional computing, which
mirrors the brain’s capacity to function in vast, high-dimensional
spaces, can easily manage intricate patterns[9]. We propose a sys-
tem that employs an HDC-based near-sensor model designed for
real-time data processing, as seen in Figure 1, with whom we ad-
dress the inherent limitations of these compact IoT devices.

Despite the promise these models hold[10-14], they have en-
countered challenges in matching the performance levels of state-
of-the-art deep neural networks, particularly in tasks that demand
detailed data analysis and high accuracy. This shortfall can be re-
mediated by balancing local data inference on the device with HDC
models, which is essential for minimizing latency against using
more powerful, cloud-based models that are more accurate at the
cost of introducing communication overheads, potential delays, and
exponentially higher system energy consumption. This discrepancy
highlights a significant trade-off: while situating models close to
data sources reduces latency and can lower some networking costs,
it also necessitates occasional reliance on cloud-based models to
achieve higher system accuracy. Deploying machine learning mod-
els across diverse computing environments involves optimizing
the locations for inference. Recent research has explored using
Reinforcement Learning (RL) for resource allocation and task dis-
tribution. However, these strategies often come with high computa-
tional and energy costs, making them unsuitable for scenarios with
limited power and computational resources, particularly near the
sensor[15]. This presents a unique challenge for these constrained
devices: to design an efficient, low-cost, immediate decision-maker
on whether to run inference tasks on the costly yet accurate server
or by relying on compact models near the sensor that are not as
accurate but efficient.

In response to these inherent challenges, our work introduces a
framework designed to close the gap concerning the performance
of cloud-based processing without constant reliance on server in-
frastructure. Recognizing the higher computational demands of
Bayesian algorithms compared to conventional Deep Neural Net-
work (DNN) models, our framework strategically employs a binary
classifier with Bayesian features, making it a viable solution in
scenarios where DNNs near sensors are impractical due to feasibil-
ity concerns. This classifier, by extracting and analyzing insights
from both near-sensor and cloud models, assesses the reliability
of the near-sensor model’s predictions to decide whether to pro-
cess data locally or transmit it to the cloud for a more accurate
evaluation. Central to our approach is the innovative application
of Bayesian techniques on Hyperdimensional Computing (HDC),
marking a significant departure from traditional methods. For the
hardware acceleration of the framework, an Analog Compute-in-
Memory (CiM) architecture is used, with FeFETs as the devices

constituting the memory cells, which have intrinsic conductance
variations, which exhibit process-induced stochastic variations [16].
Typically, for DNNs utilizing in-memory computing on such mem-
ristive crossbars, these variations cause a loss in inference accuracy.
However, using Bayesian inference, which operates on probability
distributions instead of exact values, we can leverage the conduc-
tance variations as the noise, which makes our classification robust.
Using HDC-based Bayesian classifiers further enhances the robust-
ness of decisions due to their holographic properties and intrinsic
redundancy. Supported by three advanced algorithms, our frame-
work equips the binary classifier with the necessary training data
to navigate ideal (noiseless) and practical (noisy) data streams. This
dual capability underscores our framework’s adaptability to various
data conditions, paving the way for a new foundational mathemati-
cal model that redefines efficiency and accuracy in data processing
across constrained computing landscapes. In this paper, we con-
centrate on the healthcare dataset PPG-DaLiA, which exemplifies a
scenario where near-sensor devices— specifically, a wearable device
with limited computation adjacent to its sensor—allow the Bayesian
model and a compact classifier to coexist. Simultaneously, these
devices have network capabilities to transmit complex samples to
the cloud for selective predictions. Our performance was evaluated
using various heuristics to train the Bayesian binary model, which
resulted in accuracy improvements of up to 29.08% while reducing
power consumption by up to 45.34%.

2 RELATED WORK
2.1 Hyperdimensional Computing

HDC has demonstrated proficiency in addressing diverse tasks and
datasets, establishing itself as a robust framework well-suited for ap-
plications requiring lightweight, online learning and highly efficient
training[17-20]. A noteworthy attribute contributing to HDC’s pop-
ularity is its resilience against model weights, precisely the dimen-
sions of its hypervectors, as evidenced in prior works[21-23]. This
adaptability aligns seamlessly with CiM technologies, known for
minimizing energy consumption and reducing delays by mitigating
data movement challenges associated with traditional von Neu-
mann architectures[24, 25]. Furthermore, HDC exhibits resilience
in handling non-idealities coming from CiM hardware, as corrobo-
rated by recent literature[26—-30]. In the domain of HDC applica-
tions, a notable domain is time series data and multi-classification,
where its efficacy has been particularly impressive[31, 32]. How-
ever, current complexities, energy consumption, and delays are
closely tied to the model’s class count and dimensionality, rendering
computational costs incompatible with simple data-generating sen-
sors. Proposing a binary classifier within the sensor’s architecture,
focused on discerning data significance, emerges as a promising
alternative to address these challenges.

2.2 Healthcare Activity Monitoring

In healthcare activity monitoring, our attention is directed towards
the PPG-DaLiA [33] dataset. PPG-DaLiA, designed for PPG-based
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Figure 2: Hyperdimensional Computing (HDC) Workflow Simplified. This figure outlines HDC’s key phase: encoding, where
input data is transformed into high-dimensional vectors via randomized mapping. Creating robust hyperspace representations
and training involving grouping similar data points into class hypervectors, refined through validation to improve accuracy.
The workflow highlights HDC’s efficiency and simplicity, employing parallelizable mathematical operations for streamlined

processing.
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Figure 3: HDC Model Inference for CiM Use. This figure il-
lustrates optimizing a 32-bit precision HDC model for Com-
puting in Memory (CiM) systems. The model is first quan-
tized and then undergoes iterative training to refine class
hypervectors, ensuring the retention of crucial information.
Finally, query hypervectors are quantized, and their similar-
ity to class hypervectors is evaluated to determine the most
likely class label, maintaining accurate performance within
CiM’s precision limitations.

heart rate estimation, captures data from subjects engaged in var-
ious activities under real-life conditions. In state-of-the-art ap-
proaches, PPG exhibits optimal performance with a CNN ensem-
ble[33]. We emphasize introducing transparency and interpretabil-
ity into HDC, which sets it apart from the often black-box-like
decision-making processes of deep neural networks. Works such
as [34-36] contribute to reasoning in HDC or Genome Sequence
Detection and advance the concept of Capacity, offering insights
into model performance using hyperparameters before training or

deployment. This transparency is crucial, especially in sensitive do-
mains like healthcare, where understanding and interpreting model
outputs are essential. By adopting HDC, we address ethical concerns
associated with black-box models, ensuring that our framework re-
mains accessible and interpretable for healthcare applications. This
approach optimizes resource utilization in sensor-driven scenarios
and aligns with the growing need for responsible and interpretable
Al solutions in critical domains.

2.3 Bayesian Inference on resource-constrained
environments

Bayesian inference techniques can equip models with a means for
uncertainty estimation, which can be crucial for decision-making
in resource-constrained environments, especially in Safety-critical
sensory applications, such as medical diagnosis, which require pre-
cise decisions from limited and noisy data. It adds to the models’
adaptability in dynamic environments like near-sensor computa-
tions and robustness by providing uncertainty and incorporating
new evidence to update beliefs over time, even if the data is limited.
Bayesian neural networks excel by providing accurate predictions
along with uncertainty assessment[37]. Despite their superior ac-
curacy, deep neural networks consume significant power, making
them less suitable for edge devices with limited resources[38]. To
improve DNNs on edge, the proposed ways face the problem of
customization of the networks to fit each purpose and different
devices, which requires professional knowledge and a lot of ex-
periments. Other approaches use a Bayesian search at the end to
minimize the number of comparisons needed. Another proposed
approach uses support vector machines for their effectiveness in



high-dimensional spaces and their ability to handle non-linear deci-
sion boundaries[39]. Equipping them with Bayesian inference offers
robustness to handle noisy or uncertain data, enhanced model inter-
pretability, and the ability to estimate prediction uncertainties[40,
41]. Recent advancements in brain-inspired computing have paved
the way for highly efficient Machine Learning (ML) algorithms
rather than Deep neural networks or SVMs. HyperDimensional
Computing (HDC) research has led to significant speedups in ML
model training and inference compared to deep learning methods.
However, existing HDC-based algorithms often lack uncertainty
estimation. However, some models like DiceHD enable uncertainty
estimation on the HDC regression models while being much faster
and using less power than Bayesian neural networks (BNNs) [42].
This can have many applications as they provide efficient dataset
annotation and lower labor costs, unlike other classifiers that need
gradient or probabilistic so that they can be easily integrated into
any near sensor computing architecture [43].

2.4 Compute-in-memory-based acceleration of
Bayesian classifiers:

Initially, Bayesian classifiers were computationally intensive due
to the need for repeated probability calculations, making them
unsuitable for real-time near-sensor applications. The pursuit of
Compute-in-Memory (CiM) technologies to expedite Bayesian infer-
ence has been explored in the literature using multiple approaches,
with Gao et al. [44] addressing the resilience of memristor crossbar
arrays for Bayesian inference, introducing techniques to improve
computational reliability. The work presented in [45] explores a
memristor-based Bayesian machine, demonstrating the potential
speed and energy advantages of using CiM hardware. However,
these designs depended on an LFSR-based random-number genera-
tion block, which incurred extra peripheral circuitry.

Further advancements are seen in Shukla et al. [46], who pro-
pose a CiM architecture with Monte Carlo dropouts for edge-based
Bayesian inference, ingeniously integrating stochasticity with hard-
ware efficiency. Despite this, the energy costs of Monte Carlo meth-
ods are prohibitively high for near-sensor integration. Manna et
al. [16] perform extensive device characterization of FeFETs to
leverage the intrinsic noise due to conductance variations for prob-
abilistic deep learning using in-memory computing. However, all
methods above employ BNNs, which are resource-intensive due to
the need for multiple layers of computation. DiceHD [42] presents
the first exploration of integrating the robustness of Bayesian infer-
ence with the hardware efficiency of HDC for uncertainty estima-
tion in HDC-based regression algorithms. However, it is primarily
focused on regression tasks instead of learning tasks. It is inefficient
for hardware implementation as it requires twice the memory over-
head to save the prior distribution and the hypervectors separately.
Thus, the need for a more efficient method of performing classifica-
tion tasks near sensors with minimal area and energy consumption
in resource-constrained environments is imminent.

3 FRAMEWORK

3.0.1 Hyperdimensional Learning. We utilize hyperdimensional
learning for direct encoded data processing. In our framework,

HDC identifies patterns in training data by grouping them accord-
ing to their labels. Instead of simply combining all encoded data,
our approach involves incrementally adding each data point to
the class hypervectors based on the novelty of the information it
introduces. To prevent hypervector saturation, we limit or avoid
adding data to class hypervectors if a data point is already present.
Furthermore, no updates occur to prevent overfitting when predic-
tions match expected outputs. This adaptive update strategy gives
greater weight to uncommon patterns, refining the final model. Im-
portantly, this technique eliminates the need for time-consuming
iterative training. Let us assume V as a new training data point.
The model will compute the cosine similarity of V with both class
hypervectors, in this case, datapoint of interest (51) or not 50. We
compute similarity of a data point with C; as: 5(‘17, éi). Instead of
naively adding a data point to the model, HDC updates the model
based on the § similarity. If the model incorrectly returns the label
1 for an encoded query H, the model updates as follows:

C~0<—Cﬂo+y(1—5o)><(l7 (1)

Ci—Ci-nd)xH @)

where y and 1y are a learning rates. A large §; indicates that the input
is a common data point already existing in the model. Therefore,
our update adds a small portion of the encoded query to the model
to eliminate model saturation (1 - §; =~ 0). In inference, HDC checks
the similarity of each encoded test data with the class hypervector
in two steps. The first step encodes the input (the same encoding
used for training) to produce a query hypervector V. Then, we
compute the similarity () of V and all class hypervectors. Query
data gets the label of the class with the highest similarity.

3.0.2  Hyperdimensional Uncertainty Estimation. The HDC encoder
generates a random large D-dimensional representation H of

a d-dimensional feature vector j? such that the similarity of the
hypervectors approximates a kernel k(x)

S(Hp, Hy) = k(f - ). (3)

The encoding is generated by sampling a random matrix Mpy 4 from
a probability distribution p(¢), and then defining ‘]?(f = exp(iMf”).
If p(®) is chosen to be the Fourier transform of the kernel p(®) =
f k(#)e® X d%, then Bochner’s theorem guarantees that the simi-
larity relation of Eq. 3 holds. Then, the corresponding class vectors
are constructed using Eq. 2.

However, one key problem is choosing the kernel k(X) appro-
priately. Different kernel choices can have small variations in the
model’s accuracy, and as a result, there will be some inherent un-
certainty in the predictions. To estimate the uncertainty, we place a
prior distribution over a subspace of possible kernels spanned by a
set of basis kernels. We do this by first choosing N basis kernels la-
beled k;(X), with corresponding probability distributions p;(@). We
will choose each p; to be a one-dimensional distribution, identical
over each component. We then construct a random kernel, charac-
terized by w = (wy, w, ..., wy) (with Y; w; = 1 and w; = 0), defined
as ky, = ),; wik;, and the corresponding probability distribution is
given by p,, = 3,; wip;. We define a prior on w through a two-stage
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Figure 4: Overview of our adaptive framework integrating
Bayesian hyperdimensional computing (HDC). An ensemble
of Bayesian binary classifiers decides whether data should
be classified locally or sent to the cloud. The HDC multi-
classifier provides initial predictions, and a Bayesian regres-
sion model evaluates the confidence range between class
hypervectors, delegating complex cases to the cloud.

process of first sampling w; from a uniform Uniform(0, 1) distribu-
tion and then normalizing the values to w; <= w;/ }}; w;. Finally, for
the uncertainty estimation, we construct multiple random models
by sampling different values from the prior of w and characteriz-
ing the distribution of the resulting accuracies of the model. The
sampling of p,, can be performed efficiently by first calculating the
corresponding cumulative function c,(z) = f_ ZDG dxpw(x). Then, to
sample from p,,, we can instead sample from c;} (U), where U is a
Uniform(0, 1) distribution. To characterize the uncertainty of the
model, we perform a simple Bayesian analysis of the results over
the multiple models. Given the training data 9, and an input ¥, the
probability of a certain class is given by P(Y|x, D), which can be
written using Bayes Theorem as

P(Y|%, D) = P(Y|%, D, w)P(W). (4)

For a given set of parameters w, the probability of predicting a
certain class in the model is simply the indicated function of the
class ¢ with maximum similarity s(c), and so we have

P(Y = ilx, D, w) = § (i = argmax,s(c)) , (5)

where the §—function is 0 if the condition is false, and 1 otherwise.
Thus, the probability of a class prediction is given by

P(Y|%, D) = § (i = argmax,s(c)) P(w). (6)

In our work, we estimate the distribution P(Y|x, D) by sampling
multiple models through samples of W and then numerically cal-
culating the fraction of times Y = i was predicted. This will give
us a measure of confidence in our prediction through probabilistic
analysis.

3.1 Framework

Our framework employs a novel approach that utilizes hyperdimen-
sional computing (HDC) for efficient binary classification, specif-
ically designed for scenarios with limited data. At its core, this
framework integrates a Bayesian HDC binary classifier to make
a strategic decision: whether to classify data locally at the sensor
or send it to the cloud for more refined processing, as shown in
Figure 4. By emphasizing transparency and mathematical rigor,
we leverage Bayesian principles to improve upon the near-sensor
setup.

HDC Binary Classification Model: For the first configura-
tion, we use the HDC multi-classifier to generate data predictions,
which are then compared to the cloud model’s outputs to estab-
lish a ground truth baseline. This comparison reveals discrepancies
and helps identify situations where the near-sensor model may
struggle, requiring the cloud model’s intervention. Our approach
enriches the training of the HDC binary classifier by drawing on
three key sources of information. This step is crucial, as the HDC
model’s strength in few-shot learning makes it an excellent option
for handling unbalanced datasets, which are typical in our target
applications. These datasets often contain sparse instances where
the near-sensor model misclassifies.

HDC Bayesian Binary Classification Model: Instead of rely-
ing on a standard binary HDC classifier, we employ an ensemble
of Bayesian binary classifiers to make predictions, greatly enhanc-
ing reliability and adaptability. The reliability and adaptability of
the Bayesian HDC ensemble are crucial for healthcare near-sensor
Al devices, where accurate interpretation of physiological signals
is vital. Patients’ conditions can change rapidly, so a dependable
classification system is essential to avoid misinterpretation and
inappropriate medical actions. The system must also adapt to indi-
vidual differences in patient data, recognizing unique patterns and
making accurate predictions across varying conditions. With lim-
ited computational resources, near-sensor devices must efficiently
classify simple cases locally while sending complex signals to the
cloud for advanced analysis, conserving power and reducing delays.
This ensures swift, accurate decision-making, which is essential for
patient safety and timely intervention.

Distance-based Bayesian Model: In our approach, we imple-
ment a Bayesian regression model using HDC to predict, with a
specified confidence range, the distance between the two class simi-
larity hypervectors closest to the query. One of these represents the
correct label, while the other indicates an incorrect classification.
This analysis helps determine how near the query hypervector is
to each class, allowing us to use Bayesian confidence to evaluate
classification risk. A predefined threshold decides whether the pre-
diction should be made at the sensor or escalated to the cloud, as
depicted by Figure 5. This method ensures that local predictions
are reliable, while more complex or uncertain cases are directed
to the cloud for detailed processing. HDC’s mathematical princi-
ples and transparency are vital in this framework, making it easy
to spot ambiguous situations where a sample is too close to the
neighboring hypervectors. This clear decision-making process is
crucial in healthcare, where understanding the reasoning behind
predictions builds trust and ensures quick, accurate responses. By
leveraging the transparency and analytical strengths of this model,
our Bayesian regression approach ensures accurate classifications,
reducing computational load near the sensor while prioritizing
patient safety.

In general, our adaptive framework harnesses the strengths of
HDC’s mathematical foundation and Bayesian modeling to achieve
improved accuracy, transparency, and efficient data classification.
The seamless integration of near-sensor classification and cloud
processing enhances system performance while maintaining low
power consumption and high adaptability.
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Figure 6: a) Block diagram of Bayesian HDC binary classifiers,
and b) CiM architecture showing the corresponding mapping
onto FeFET crossbars.

To tackle the shortcomings of existing works trying to perform
Bayesian inference near-sensor, this section describes the novel
hardware architecture used to implement the ensemble of Bayesian
HDC binary classifiers, which perform intelligent sensing and dy-
namically determine the mode of operation between an HDC-based
classification model at the edge and cloud-based processing (Fig.
6(a)). Our method leverages the majority voting mechanism among
the classifiers, but could be equivalently replaced by a Winner-
Takes-All (WTA) circuit. Each classifier consists of long hypervec-
tors (HVs) that necessitate extensive memory for storage. Typically,
these HVs require a large number of columns in memory crossbars
while only two rows are necessary due to the final output being

a decision between two classes. However, mapping each classi-
fier on separate memory crossbars results in suboptimal memory
utilization, throughput, and energy efficiency.

To address these challenges, we propose a novel scheme for map-
ping these Bayesian HDC binary classifiers onto memory crossbars
to utilize the improvements in density, parallelism, and energy effi-
ciency of Computing in Memory (CiM). Given the constraints on
physical dimensions in memory crossbar fabrication, our strategy
involves distributing the dimensions of the HVs along the columns
of multiple crossbars as shown in Fig. 6 (b). The holographic nature
of HDC allows for independent computation along each dimension,
thus enabling a seamless distribution without impacting the accu-
racy of computations. This is in contrast to neural networks, where
inter-layer dependencies necessitate sequential data processing and
prevent such independent distribution of weights. By mapping the
weights corresponding to each classifier onto consecutive rows
within the same crossbar, we significantly improve memory uti-
lization, throughput and energy efficiency. For Bayesian inference,
the weights include additional noise due to sampling from a prob-
ability distribution, which lends robustness and the capability to
retain accuracy despite uncertainty. In the proposed architecture, in-
stead of having a separate random number generator, we utilize the
stochastic conductance variations in FeFET devices characterized
extensively in [16] as the additional noise on the weights. This ap-
proach is more efficient in terms of energy and area, hence making
the framework well-suited for near-sensor integration.

5 EVALUATION
5.1 Experimental Setup

Our integrated system, which combines a Bayesian approach, an
edge computing model, and cloud analytics, has been effectively
deployed using the PyTorch framework. To gauge the effective-
ness of our approach, we undertook a detailed evaluation using a
renowned dataset for healthcare wearable device applications, such
as PPG-Dalia. The assessment focused on key performance indica-
tors relevant to machine learning, including accuracy and overall
energy usage. The latter considers the sensor’s energy demands, the
Bayesian analysis’s computational cost, and the energy implications
of choosing between local processing and cloud-based computation,
including data transmission costs to the edge. The first benchmark
of our analysis centers on a standalone Hyperdimensional Com-
puting (HDC) model strategically positioned near the sensor. This
model operates with an 8192 dimensionality, applying a Gaussian
distribution for its randomized encoding. Designed with sensor
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proximity in mind, the model is fine-tuned using a memory-centric
computing architecture alongside advanced quantization and our
novel learning methods to reduce information loss, ensuring op-
timal performance for edge deployments. In contrast, the second
benchmark of our analysis delves into a more conventional setup,
where data is processed remotely on an edge server equipped with
a complex, multi-layered Deep Neural Network (DNN) architecture.
This system is intricately designed to efficiently manage and inter-
pret high-dimensional data, employing a strategic combination of
ReLU activation functions, a 0.3 dropout rate, and batch normal-
ization to enhance accuracy and throughput despite the inevitable
increase in computational demand and response time. Through this
comparative analysis, our goal is to highlight the flexibility and
effectiveness of our proposed solution, demonstrating its ability
to merge the immediacy and energy efficiency of edge computing
with the analytical depth and accuracy of cloud-based processing.

5.2 System Accuracy

Our study investigates the Bayesian Hyperdimensional Comput-
ing (HDC) model’s capability to predict whether the data points

will be correctly predicted by the HDC multiclassification model
or not. A critical aspect of this examination is determining how
effectively the model distinguishes between classes, particularly
when data points are similarly close to multiple class hypervectors,
which could present classification challenges which is dependent
on the dimensionality. We conducted experiments across various
dimensions—512, 1024, 2048, 4096, and 8192—to assess how these
dimensionalities impact the model’s accuracy. Figure 7 shows a
comprehensive summary of system accuracy across different con-
figurations and for the best-performing dimension. Notably, the
Distance-based Bayesian HDC model shows exceptional accuracy,
particularly at higher dimensions, peaking at 91.41% at 4096 dimen-
sions and maintaining a high rate at 8192 dimensions. This model’s
design to analyze distance histograms allows it to efficiently handle
scenarios where data points are close to multiple hypervectors,
enhancing its discrimination capabilities.

The findings underscore the significant impact of utilizing HDC
classifiers near the sensor. By implementing these models, the sys-
tem not only maximizes local processing capabilities but also en-
sures that data requiring more detailed analysis is accurately iden-
tified and sent to the cloud. This strategic balance optimizes both
computational efficiency and accuracy, which is critical for real-
time applications such as in healthcare monitoring, where timely
and precise data classification can be crucial. Each configuration
was tested 10 times to ensure the robustness of our findings, with
the average accuracy reported to account for variability, confirming
the reliability of the observed trends.

We analyzed near-sensor model usage across various configura-
tions, revealing distinct patterns of local versus cloud processing
dependency. The Bayesian HDC and Standard Binary HDC models
show moderate near-sensor reliance, with about 60% of process-
ing managed locally, blending efficiency with cloud capabilities
for complex decisions. The Distance-based Bayesian HDC model
displays fluctuating near-sensor usage from 51.97% at 512 dimen-
sions to 32.75% at 4096 dimensions, indicating dynamic processing
allocation based on data complexity and the model’s capability
within sensor constraints. Near-sensor and cloud processing trends
significantly impact system accuracy. Models with high near-sensor
reliance, like the Multiclassification HDC, bypass latency and band-
width issues but may sacrifice analytical depth. Conversely, models
like the Distance Histogram Bayesian HDC, which selectively use
cloud resources, handle more complex challenges with their en-
hanced power, showing variable accuracy. This balance between
local and cloud processing is crucial, particularly in healthcare,
where real-time data processing is vital for patient monitoring and
decision-making.

5.3 Dimensionality exploration for near-sensor
binary model

This subsection examines the Bayesian model’s hyperparameters
directly within the near-sensor environment, aiming to gather data
for the binary classifier to decide whether data points should be pro-
cessed locally or escalated to the cloud. Our primary goal is to assess
the model’s ability to produce meaningful confidence and accuracy
metrics, which are essential inputs for the binary classifier. The
classifier’s role is crucial as it gauges the confidence level of each
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data point and employs a preset threshold to determine whether to
process the data locally or offload it to the cloud for further analysis.
The evaluation was conducted across various dimensions (512, 1024,
2048, 4096, and 8192) in the Bayesian classifier, and can be found in
Figure 8. This comprehensive analysis reveals how different dimen-
sional settings affect the classifier’s performance, helping identify
the most efficient configuration for processing data. The evaluation
examined the model’s detection capabilities across five different
dimensions: 512, 1024, 2048, 4096, and 8192. In the standard binary
HDC model, performance gradually improved as the dimension-
ality increased, starting at 56.09% accuracy at 512 dimensions and
reaching 63.47% at 8192. However, the base Bayesian HDC model
consistently outperformed the standard binary model across all
dimensional settings. It maintained a relatively stable accuracy rate,
starting at 65.36% for 512 dimensions and varying only slightly to
65.33% at 8192 dimensions. This demonstrates the Bayesian model’s
robustness and reliability, which is crucial in ensuring data points
are classified correctly and only escalated to the cloud when nec-
essary. The stable performance across dimensions showcases the
adaptability of Bayesian HDC, allowing it to make more informed
and accurate classification decisions even with varying amounts of
data.

5.4 Energy and latency comparison

For the hardware evaluation of the proposed framework, Neu-
rosim [47], a tool for modeling analog Compute-in-Memory (CiM)
hardware, is employed to simulate bitwise-dot product operations.
These operations are integral to performing cosine similarity calcu-
lations in the associative search phase of Hyperdimensional Com-
puting (HDC) used for inference. To account for the Bayesian in-
ference overhead, the experimental conductance variation charac-
terization for different device sizes and programming voltages on
industry-scale FeFETs is taken from [16], and the device-level vari-
ations are incorporated into the training process for the Bayesian
classifiers. Thus, we do not need a separate random number genera-
tor to generate the probability distribution and sample a value each
cycle. The evaluation systematically measures latency and energy
consumption across varying model configurations—specifically con-
cerning bit precision and dimensionality of hypervectors, and num-
ber of models used for the ensemble.

From the results in Fig. 9 it is seen that increase in dimension-
ality significantly escalates both latency and energy consumption,

evidenced by a jump in latency from 3.71yus to 8.80us and energy
consumption from 0.22y] to 3.86u] when dimensionality scales
from 512 to 10k with ten models. Similarly, an increased number
of models raises both latency and energy consumption across all
dimensionalities, albeit in a sub-linear fashion. This trend suggests
that the computational costs associated with more complex model
ensembles increase at a more gradual rate.

Fig. 9 also illustrates the substantial impact that precision has
on both latency and energy consumption. Specifically, as precision
increases from 1 bit to 8 bits, there is a discernible escalation in
both metrics. For instance, with ten models at a dimensionality of
512, latency climbs from 0.46us to 1.10us, and energy consumption
rises from 0.03yJ to 0.48y]. This trend is consistent across all model
configurations, suggesting that higher precision levels, while po-
tentially improving computational accuracy, do impose a certain
overhead on system resources. However, the latency and energy
consumption for all cases are quite tiny, proving that our framework
is highly suitable for near-sensor integration. This evaluation em-
phasizes the critical tradeoff between model accuracy and compute
efficiency, highlighting the need for careful setting of hyperparam-
eters for model configuration in resource-constrained near-sensor
environments with limited power and area budget, while still meet-
ing the latency requirements for real-time data processing.

6 CONCLUSIONS

In conclusion, our research introduces a novel framework that
incorporates a layer of abstract intelligence into sensors using hy-
perdimensional computing (HDC). This allows near-sensor Al de-
ployment to overcome critical challenges by enhancing autonomy;,
efficiency, and responsiveness. Our framework, which utilizes trans-
parent and interpretable sub-symbolic Al, optimizes data collection
and processing directly at the source, resulting in an efficient sys-
tem structure. This significantly improves accuracy while reducing
the need for extensive data transmission, conserving bandwidth,
and minimizing latency. These improvements are crucial in achiev-
ing a more sustainable, efficient, and accurate system, making this
framework an essential development in the rapidly advancing field
of near-sensor computing.
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