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Abstract—Pattern search is crucial in numerous analytic ap-
plications for retrieving data entries akin to the query. Content
Addressable Memories (CAMs), an in-memory computing fabric,
directly compare input queries with stored entries through em-
bedded comparison logic, facilitating fast parallel pattern search
in memory. While conventional CAM designs offer exact match
functionality, they are inadequate for meeting the approximate
search needs of emerging data-intensive applications. Some recent
CAM designs propose approximate matching functions, but
they face limitations such as excessively large cell area or the
inability to precisely control the degree of approximation. In this
paper, we propose TAP-CAM, a novel ferroelectric field effect
transistor (FeFET) based ternary CAM (TCAM) capable of both
exact and tunable approximate matching. TAP-CAM employs
a compact 2FeFET-2R cell structure as the entry storage unit,
and similarities in Hamming distances between input queries
and stored entries are measured using an evaluation transistor
associated with the matchline of CAM array. The operation,
robustness and performance of the proposed design at array level
have been discussed and evaluated, respectively. We conduct a
case study of K-nearest neighbor (KNN) search to benchmark
the proposed TAP-CAM at application level. Results demonstrate
that compared to 16T CMOS CAM with exact match functional-
ity, TAP-CAM achieves a 16.95× energy improvement, along with
a 3.06% accuracy enhancement. Compared to 2FeFET TCAM
with approximate match functionality, TAP-CAM achieves a
6.78× energy improvement.

I. INTRODUCTION

In the era of advancing artificial intelligence, the computa-

tional demands on AI models are rapidly increasing. Training

data volumes across various domains like computer vision

(CV) [1], natural language processing (NLP) [2], and speech

recognition [3] have surged, posing significant challenges to

computing hardware and architectures, both at the edge and

in data centers. The traditional von Neumann architecture,

with its constant data movement between memory and pro-

cessing units, exacerbates energy consumption and latency

issues, intensifying the “Memory Wall” problem. To tackle

this challenge, emerging computing paradigms, notably In-

Memory Computing (IMC), have gained attention. IMC di-

rectly employs parallel data operations within the memory,

enhancing core performance and efficiency while alleviating

the “Memory Wall” problem [4]–[9].

Content Addressable Memory (CAM) emerges as a hard-

ware solution of IMC, enabling parallel and efficient search-

ing and similarity measurement within the memory. CAMs

compare input data with all stored data simultaneously, and

output the stored entry that matches with input or has the

highest similarity to the input. Therefore, CAMs are viewed as

a potential solution for accelerating various data-centric work-

loads like bioinformatics [10], [11], machine learning [12]–

[14], and neural language processing [2]. Specifically, CAMs

significantly speed up Hyperdimensional Computing (HDC),

making this brain-inspired computing paradigm efficient for

tasks like image classification and speech recognition [15]–

[17]. This effectiveness arises from CAMs’ ability to transform

sequential pattern matching into highly parallelizable compu-

tational tasks and simplify the complex distance measurements

into Hamming distance [18]. The rapid search and matching

capability of CAMs make them essential components in ap-

plications requiring efficient data access and retrieval.

Conventional CMOS based CAM design consists of 10-16

transistors per cell, which results in large area overhead and

high energy consumption [19]. To tackle the area and energy

challenges, researchers have proposed utilizing emerging non-

volatile memory (NVM) devices to construct more compact

and efficient CAM designs, as these CAMs merge the storage

and logic within the NVM devices, thus offering significant

area and energy saving. CAMs based on 2-terminal NVMs

like resistive RAM (RRAM) [20], [21], magnetic tunneling

junction (MTJ) [22], [23], phase change memory (PCM) [24],

and 3-terminal ferroelectric field effect transistor (FeFET)

[25]–[33] have been explored. Among these devices, FeFETs

stand out in constructing the compact and efficient CAM

designs due to their unique hysteresis I-V characteristics,

high current ON/OFF ratio, high off-state resistance, low

write energy, and compatibility with CMOS technology [34].

While non-volatile storage can achieve high area efficiency

and mitigate the high energy consumption caused by CMOS

technology, these CAMs still encounter limitations for data-
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intensive applications due to their exact search functionality.

In the era of big data, as the amount of data for process-

ing bursts and the chances of exact matching drop down,

these CAMs with limited array size fail to maintain the

hardware utilization efficiency while consuming extra area

and energy overheads. Many applications require approxi-

mate pattern search functions where entries with a similarity

within a certain threshold distance to the search query are

desired. To address the challenge of limited CAM utilization

efficiency, various CAM designs implementing approximate

pattern search have been proposed. These approximate CAMs

improve the utilization and overall energy efficiency by com-

pensating the search accuracy within an acceptable range.

For instance, HD-CAM [35] introduced a 10T CMOS-based

approximate CAM with a matchline (ML) charge redistribution

technique, but it suffers from a large cell area and lacks the

support for wildcard (don’t care) bits. Moreover, the design

is unable to precisely control the degree of approximation,

bit-by-bit. MHCAM [36] presented an approximate CAM

design based on FeFET with programmable thresholds, but

it’s tailored to applications requiring multi-state Hamming

distance. [37] implemented threshold matching by leveraging

voltage scaling and controlling the precharge period, but its

high energy consumption and inability to precisely control the

threshold limit its applications. [12] introduced approximate

matching capabilities using 2FeFET TCAM. It computes the

Hamming distance between search and stored vectors in a

highly parallelized manner by monitoring ML discharge rate.

Despite achieving notable energy efficiency and density in

TCAM, it lacks fine-grained control over approximate search

precision.

To address aforementioned challenges of existing approxi-

mate CAMs, in this work, we propose TAP-CAM, a general

approximate matching engine featuring a bit-by-bit tunable

threshold match function. We consider FeFET as a represen-

tative NVM device, and propose to utilize a novel 2FeFET-

2R ternary CAM (TCAM) cell structure to store ternary

value. An evaluation transistor is employed between the

parallel connected TCAM cells and the CAM array sense

amplifier to control the ML discharge rate, and the tunable

threshold of the approximate matching functionality is set

by the bias voltage of the evaluation transistor. We validate

the bit-wise XNOR logic and the tunable threshold matching

functionality of TAP-CAM design at cell and array levels,

respectively, and conduct extensive Monte Carlo simulations

to examine the robustness against device-to-device variations.

We use the K-nearest neighbor search (KNN) as a representa-

tive application to investigate the benefits of TAP-CAM at

application level. Evaluation results demonstrate that TAP-

CAM achieves a 16.95× energy improvement and 3.06%

accuracy improvement compared to 16T CMOS CAM with

exact match function. Compared to 2FeFET TCAM with

approximate match functionality, TAP-CAM achieves a 6.78×

energy improvement.

The rest of paper is organized as follows: Sec. II reviews

the FeFET device characteristics and existing CAM designs.

Fig. 1. (a) FeFET polarization directions and channel conditions after memory
write operations; (b) The FeFET ID-VG characteristics after positive/negative
gate write; (c) 1FeFET-1R structure and equivalent circuit; (d) The 1FeFET-
1R ID-VG characteristics after positive/negative gate write.

Sec. III introduces the proposed TAP-CAM. Sec. IV presents

the evaluation results and the KNN case study. Finally, Sec. V

summarizes the paper.

II. BACKGROUND

In this section, we discuss the structure and operational

principles of FeFETs, and review existing CAM design works.

A. FeFET Basics

Recent advancements in ferroelectric material, particularly

hafnium oxide (HfO2), have spurred research interest in ferro-

electric transistors and the development of non-volatile circuit

designs compatible with CMOS technology [32]. FeFETs

incorporate a ferroelectric (FE) layer within the gate stack.

These devices exhibit unique electrical hysteresis characteris-

tics, exhibiting reversible polarization states upon an applied

voltage-driven electric field. The FE layer induces a shift in the

threshold voltage of the FeFET depending on the orientation

of FE polarization [38], enabling non-volatile (NV) storage

capabilities. By applying gate voltage pulses, such as -4V/+4V,

to a FeFET device, as depicted in Figure 1(a), it can be

programmed to store low and high VTH states corresponding

to logic ‘0’ and ‘1’, respectively. The associated hysteresis

ID-VG transfer characteristics are shown in Figure 1(b) [39].

FeFETs, being voltage-driven for read and write operations,

exhibit superior energy efficiency compared to two-terminal

current-driven NVMs.

When the FeFET operates as a current source, its ON

current gradually increases with the rise in gate voltage,

as depicted in Figure 1(b). Consequently, there’s a certain

variability in the conduction current regarding the gate read



Fig. 2. Schematics of (a) 16T CMOS TCAM cell; (b) 2T-2ReRAM TCAM
cell; (c) 20T-6MTJ TCAM cell; (d) 2FeFET TCAM cell.

voltage. To ensure stable ON current during operation and

enhance the design robustness, a current limiter is connected

to the source of the FeFET, as shown in the equivalent circuit

of Figure 1(c). Prior studies [27], [29] have shown that a

series resistor on the drain/source of a FeFET can regulate

the ON current, with 1FeFET-1R integration experimentally

demonstrated [40]. Such integration suppresses the ON current

variability, making it independent of the VTH state and gate

voltage when the series resistor is sufficiently large. The

transfer characteristic curve of the 1FeFET-1R structure is

depicted in Figure 1(d). We adopt the 1FeFET-1R structure

using a series resistor as a current limiter in this work. This

approach mitigates the impact of ON current variability on ML

discharging in a CAM array achieving low power consumption

and robust tunable approximate matching functionality.

B. Existing CAM Designs

Various CAM designs have been proposed based on CMOS

technology and NVM devices. A conventional 16T CMOS

TCAM cell is shown in Figure 2(a). CAMs leveraging NVM

typically demonstrate enhanced performance over CMOS-

based counterparts. For example, a 2T-2R TCAM design

based on ReRAM was proposed in [24] for its compact

structure, as shown in Figure 2(b). While it consumes less

area compared with conventional CMOS-based CAM designs,

the low HRS/LRS ratio, low variable resistance and current-

driven write-in mechanism associated with large access tran-

sistors make the write and search energy significant concerns.

[41] proposed a 20T-6MTJ TCAM design as illustrated in

Figure 2(c), greatly enhancing the search speed and search

performance. However, the reduced sense margin caused by

the limited TMR ratio of STT-MRAM necessitates numerous

Fig. 3. (a) Exact match: The stored entry that matches exactly with the
query; (b) Best match: The stored entry that has the smallest distance to the
query; (c) Threshold match: The stored entry whose distance to the query
is below specified thresholds.

transistors to address this issue, thus severely impacting area

and power consumption.

Among NVM based CAM designs, utilizing FeFET stands

out due to its high ON/OFF current ratio, efficient voltage-

driven write mechanisms, low energy consumption, and cost-

effectiveness, enabling significant performance improvements

compared to conventional CMOS designs and other NVM-

based designs. Building upon advanced FeFET models, re-

searchers have proposed various FeFET CAM designs, par-

ticularly designs of TCAM. The 2FeFET TCAM design as

depicted in Figure 2(d) offers a compact alternative than

CMOS counterparts [25]. 2FeFET TCAM features a smaller

cell area, reduced write and search energy consumption, and

search delay. However, it faces limitations such as the lack of

support for approximate matching functionality.

C. Threshold Matching Concepts and Related Works

Most CMOS and NVM based CAM designs discussed

earlier prioritize exact matching, as depicted in Figure 3(a),

limiting their adaptability for data-intensive applications. In

contrast, approximate matching gains favor due to its potential

to enhance hardware utilization while maintaining acceptable

accuracy. As a means to achieve approximate matching, best

match CAMs, as illustrated in Figure 3(b), aim to output the

stored entry with the highest similarity to the search query.

For example, A-HAM [42] evaluates similarities across stored

entries and identifies the closest Hamming distance to the input

query. 4T-2MTJ utilizing STT-MRAM [43] measures similar-

ity between input query and stored entries in terms of ML

current and outputs the entry with the highest similarity. [44]

introduced a CAM design for minimum Hamming distance

search using digital circuits for bit comparison. A Winner-

Take-All (WTA) circuit at the output selects the entry with

the highest degree of matching to the search query. However,

CAMs designed for best matching may fail in applications re-

quiring the output of multiple entries with specific similarities.

Therefore, threshold matching CAMs were devised.

Threshold matching CAMs, as illustrated in Figure 3(c), aim

to provide multiple stored entries with similarity within a pre-

defined Hamming distance (HD) threshold. For instance, the

HD-CAM proposed in [35] utilizes a 10T CMOS-based design

incorporating ML charge redistribution, enabling threshold

matching with large HD tolerance, notably used in virus DNA



Fig. 4. (a) Structure of the proposed 2FeFET-2R TCAM cell; (b) Transient
voltage waveforms of 2FeFET-2R CAM cell storing ‘1’.

classification. However, the SRAM based HD-CAM cell incurs

substantial area and energy overheads. Furthermore, its effec-

tiveness is limited in discerning patterns with substantial HDs

due to the intricate tuning of ML discharge current, making

bit-by-bit tuning of HD thresholds impractical. [36] introduced

MHCAM, a multi-state CAM design encoding multiple CAM

cells into distinct multi-states per dimension to perform both

dimension-wise exact matching and reconfigurable threshold

matching. However, additional transistors introduce fixed bit

precisions (1-bit/2-bit/4-bit/8-bit per dimension), restricting

fine-grained tunability in threshold matching and adaptabil-

ity to applications demanding multi-state HD. The ReRAM-

based CAM proposed in [37] implements threshold matching

by leveraging voltage scaling and controlling the precharge

period. However, the current-driven mechanisms of ReRAMs

result in high power consumption during operation and limited

HD thresholds can be achieved due to the large ML discharge

current and non-trivial threshold-associated period sampling.

[12] implements approximate matching functionality based on

2FeFET TCAM. It calculates the HD between search and

stored vectors in a parallel manner by sensing the discharge

rate of ML. While achieving high energy efficiency and

density in TCAM, it lacks precise control over the degree of

approximate searching.

These threshold search CAMs all face a common issue, that

they cannot precisely control the degree of approximate match-

ing. Therefore, our design will focus on implementing bit-by-

bit tuning of threshold to control the degree of approximate

matching.

III. PROPOSED TAP-CAM DESIGN

In this section, we present the TAP-CAM design with bit-

by-bit tunable HD threshold match functionality, exploiting

the 2FeFET-2R structure and incorporating a threshold-defined

evaluation transistor. We first discuss the structure and oper-

ation principles of the cell, and then elucidate the threshold

approximate match implementation at the array level.

TABLE I
OPERATIONS OF 2FEFET-2R TCAM CELL

Vwrite = 4V Vsearch = 1V BL/SL BL/SL ScL M1 M2

Write‘1’
Step1 Vwrite 0 0 ‘1’ hold
Step2 Vwrite 0 Vwrite hold ‘0’

Write‘0’
Step1 0 Vwrite Vwrite ‘0’ hold
Step2 0 Vwrite 0 hold ‘1’

Write don’t care Vwrite Vwrite 0 ‘1’ ‘1’

A. 2FeFET-2R TCAM Cell

Figure 4(a) shows the structure of the proposed 2FeFET-

2R TCAM Cell. It comprises a pair of parallel 1FeFET-1R

structures, with the FeFET drain connected to the matchline

(ML), and the other end of the structure connected to the

sourceline (ScL), driven by either Vwrite or GND. The FeFET

gate connects to the bitline and searchline (BL/SL and BL/SL).

By adjusting the write gate input, the FeFET threshold aligns

with different storage values. The 2FeFET-2R structure can

store logic ‘1’, ‘0’, and don’t care wildcard state. Table I

outlines the write operations of the 2FeFET-2R cell. Data bits

are written in two steps, storing complementary logic states

in each FeFET. To write logic ‘1’, Vwrite is applied to BL/SL,

while ‘0’ to ScL and BL/SL. This sets VGS of M1 to 4V, writing

logic ‘1’ to M1. In the second step, Vwrite is applied to ScL,

while gate voltage remains the same, writing logic ‘0’ to M2.

Thus, the complementary stored values represents logic ‘1’.

Similarly, to write logic ‘0’ into the cell, ‘0’ is written to M1

and ‘1’ to M2, respectively. To write don’t care state, logic ‘1’

is written to both M1 and M2. This sets both FeFETs to high-

VTH state, matching regardless of the search value, aligning

with the masking function of ‘don’t care’ bits. During writes,

ML is grounded to eliminate static current. Figure 1(b) displays

ID-VG curves for FeFETs under different write pulses.

During search, ML voltage is precharged to high via a

precharge transistor, and the search voltages are applied to

searchlines (SL/SL) according to the query data. For logic ‘1’,

SL set to 1V, and 0 for logic ‘0’, the ML voltage indicates

the matching result. Figure 4(b) validates the function of the

2FeFET-2R cell. ML is first precharged by controlling T1’s gate

voltage CLK, and then left floating upon search phase. When

searching ‘1’, ML voltage stays high with SL = 1V, indicating

a match. Conversely, searching ‘0’ rapidly drops ML voltage

to 0, indicating a mismatch.

B. 2FeFET-2R TCAM Array

Figure 5 demonstrates the schematic of the proposed

2FeFET-2R TAP-CAM array storing a 64-bit word with

corresponding peripheral circuits. PMOS T1 precharges ML

before the search operation, while an evaluation transistor T2

is connected between ML and Vo to enable tunable threshold

matching function. Adjusting the gate voltage of the evaluation

transistor controls the discharge rate of ML, allowing varying

mismatch bits to be sensed by the sense amplifier (SA) as a

match case.

During the precharge, CLK is set to low, turning T1 and T2

ON, and precharging ML to VDD. During the search phase,



Fig. 5. Structure of a 2FeFET-2R TCAM array with wordlength 64.

setting the CLK signal high turns T1 OFF and cutting the

charging path. Pre-defined bias voltages are applied to the

gate of evaluation transistor Veval based on required mismatch

thresholds. A mismatch between the stored entry and the

search query forms a conduction path from Vo to GND,

discharging Vo and decreasing the voltage. The rate of voltage

decrease depends on the number of mismatched cells and T2’s

gate voltage Veval. This rate affect the output of SA SAout

which indicates the time for SAout to transition from high to

low. With constant Veval, more mismatched bits increase the

discharge current from Vo to GND, accelerating SAout voltage

drop. Similarly, with constant mismatched bits, higher Veval

boosts the conduction of T2, hastening SAout voltage drop.

Hence, given the fixed SA sense time, decreasing the Veval

allows for increasing the mismatch threshold.

Without loss of generality, for the TAP-CAM with n bits

mismatch threshold (Th-n), i.e., ≤n mismatch bits are sensed

as a match case, and ≥(n+1) bits mismatch indicates a

mismatch, the sense margin between the n bits mismatch and

(n+1) bits mismatch is determined by the equivalent resistance

and associated ML capacitance of the array CM. The equivalent

resistance for the two mismatch cases can be expressed as

follows:

Rn =
1

n
· (RON + RS) (1)

Rn+1 =
1

n + 1
· (RON + RS) (2)

where Rn represents the approximate equivalent resistance of

array with n bits mismatch, and Rn+1 represents the approxi-

mate equivalent resistance of array with (n+1) bits mismatch.

RON represents the equivalent resistance of an ON FeFET,

and RS represents the series resistance. From charging and

discharging formula of RC circuit, we can approximately

formulate the ML voltage U:

U = U0 · e
−

t
RCM (3)

TABLE II
Veval OF DIFFERENT MISMATCH THRESHOLD

Mismatch
Threshold(bit)

0 1 2 3 4 5

Veval(V) 1 0.75 0.63 0.52 0.43 0.37

dU

dt
= U0 · (−

1

RCM

)e
−

t
RCM (4)

where U0 represents the initial voltage of ML. From Equation 4

we can conclude that the rate of ML voltage drop will be faster

as the equivalent resistance decreases. From Equation 1 and

Equation 2, Rn is larger than Rn+1. Therefore, the voltage of

ML corresponding to (n+1) bits mismatch drops faster than

that of n bits mismatch. Upon the sensing, the sense margin

of Th-n ∆U can be expressed as follows:

∆U = Un − Un+1 = U0 · (e
−

t
RnCM − e

−

t

Rn+1CM ) (5)

where Un represents the ML voltage corresponding to n bits

mismatch, and Un+1 represents the ML voltage corresponding

to (n+1) bits mismatch. From Equation 5, we observe that RS

affects the magnitude of ∆U over time t, thus influencing the

sense margin. Simultaneously, a larger RS value introduces

larger search delay. Therefore, selecting an appropriate RS

value is necessary to ensure that both sense margin and search

delay remain within reasonable limits. We here select RS =

0.3M.

Another factor that affects the sense margin and the search

time is the bias voltage at evaluation transistor gate. To

implement the functionality of bit-by-bit tunable threshold

approximate matching, we determine appropriate evaluation

voltages Veval to distinguish different mismatch thresholds,

taking the threshold ranging 0-6 bits as an example. This

involves adjusting the gate voltage of the evaluation transistor

to differentiate between 0-bit and 1-bit mismatch (Th-0), 1-bit

and 2-bit mismatch (Th-1), and so forth. Increasing the number

of mismatch bits and evaluation transistor gate voltage Veval

lead to faster SAout voltage decrease. Hence, with increasing

mismatch threshold, we decrease Veval to maintain consistent

sense time window across different mismatch thresholds. The

evaluation voltages are therefore experimentally examined and

configured as summarized in Table II to ensure that the sense

time for distinguishing different mismatch thresholds falls

within the same time window. Different evaluation voltages

correspond to different mismatch thresholds. This evaluation

voltage configuration lays the foundation for subsequent per-

formance and latency analysis.

The ML transient waveforms corresponding to different

mismatch thresholds in Figure 6 validate the bit-by-bit tunable

threshold matching function. Solid lines show the ML voltage

waveforms when the number of mismatched bits equals to the

pre-defined mismatch threshold, while dashed lines show the

ML voltages when the number of mismatched bits exceeds

the pre-defined threshold. The sense margin of mismatch

thresholds decreases as the threshold increases. According



Fig. 6. Transient waveforms of ML under different mismatch thresholds. Solid
and Dashed lines represent the match and mismatch cases corresponding to
a certain mismatch threshold, respectively.

Fig. 7. Schematic of m×n TAP-CAM array.

to Figure 6, the search latency for distinguishing adjacent

mismatch threshold ranging from Th-0 to Th-5 is 1 ns.

IV. EVALUATION

In this section, we first evaluate the energy and performance

of the proposed TAP-CAM design. We then benchmark the

proposed TAP-CAM array in the context of K-nearest neighbor

search tasks as tunable approximate matching engine.

A. Evaluation Setup

For the energy and performance evaluations, we conduct our

experiments on a TAP-CAM array with m rows and n columns,

as shown in Figure 7. The cells within the same row share

the ML and ScL, and the cells within the same column share

SLs, enabling parallel search operations. Write/Search buffer

drive stored/search vectors into SLs for search operations,

consistent with Table I. During the search, all rows compare

the same input query with stored entries. If a mismatch

occurs, ML discharges. If ML voltage drops below the sense

amplifier threshold within the pre-defined sense time window,

the corresponding SA output transitions to 0, recognized by

the decoder as mismatch. Conversely, if a match occurs, the

address of the stored entry matching the search query is output.

Fig. 8. 100 Monte Carlo simulations considering device-to-device variations:
(a) The output waveforms under VDD = 0.6V; (b) The output waveforms
under VDD = 1V.

Fig. 9. Energy and latency of the proposed 2FeFET-2R TAP-CAM array
with varying (a) VDD; (b) mismatch thresholds; (c) number of rows and (d)

number of bits per row.

The proposed 2FeFET-2R TAP-CAM array is evaluated

using SPECTRE. The FeFETs are simulated based on the

Preisach FeFET model [39]. All MOSFETs are modeled using

the 45nm PTM model and the 27°C TT process corner [45].

The wordlength is set to 64 cells.

B. Robustness Validation

The robustness of the proposed TAP-CAM design under

varying operating conditions is examined, specifically with

VDD = 0.6V and VDD = 1V, respectively. The FeFETs are

assumed to feature the stored low/high VTH threshold voltage

states with a deviation σ = 54mV, and 8% series resistor

variability is considered [40]. 100 Monte Carlo simulations

have been conducted to distinguish between 5-bits and 6-bits

mismatches when the mismatch threshold is set to 5 bits (Th-

5). Figure 9 consistently reveals that the time windows across

the 100 runs can be identified. This observation suggests that

the proposed design effectively distinguishes between the adja-

cent numbers of mismatched bits by employing the evaluation

transistor. Based on these results, it can be inferred that the

proposed TAP-CAM design demonstrates the robustness, as it

reliably achieves approximate threshold matching functionality

given the variations in operating voltage and device variations.



TABLE III
METRIC COMPARISON SUMMARY OF CAM DESIGNS

Reference [19], [12] [35] [37] [12] Our Work

Technology CMOS CMOS ReRAM FeFET FeFET

Node(nm) 45 65 45 45 45

Transistors/cell 16T 10T 2T-2R 2FeFET 2FeFET-2R

Match Style Exact Threshold Threshold Threshold Threshold

Cell size(µm2) 1.2 5.45 0.41 0.15 0.15∗

Search delay(ps) 582 1000 1450 355 1200

Energy
(fJ/bit/search)

1.00
16.95×

0.76
12.88×

0.56
9.49×

0.4
6.78×

0.059
1×

*: Back-end-of-line resistor incurs no additional area overhead as reported
in [40].

C. CAM Array Evaluation

The search energy consumption of the proposed array

mainly originates from precharging the ML and SA energy

consumption. Precharging the ML, primarily done by T1,

depends heavily on VDD and the associated ML parasitic ca-

pacitance. Figure 9(a) demonstrates the impact of scaling VDD

on the search energy consumption and latency. As VDD scales

up, the precharging energy increases, leading to overall higher

search energy consumption. At the same time, the amplitude

of ML dropping from high to low level when mismatch occurs

increases, thereby increasing the search delay. Figure 9(b)

shows the sense time and sense margin for different mismatch

thresholds at VDD = 1V. The sense margin is the narrowest

at the 5-bit mismatch threshold (Th-5), thus is selected as the

sense margin for the SA sense time. Figure 9(c) demonstrates

how search energy and latency change with varying row

numbers. Increased rows allow parallel search operations,

linearly increasing the energy consumption with negligible

latency change. Finally, Figure 9(d) examines the wordlength’s

effect on the search latency and energy consumption per bit.

Longer wordlengths associate more parasitic capacitance on

the ML, slowing down the discharge speed and thus increasing

the search latency. The increase in capacitance leads to a rise

in precharge energy per word. But increasing wordlength has

minimal impact on the energy consumption of SA, so the

search energy per bit decreases. The increasing latency and

decreasing energy consumption per bit show trade-offs in the

CAM array design optimization.

Table III provides a comprehensive comparison of the

proposed 2FeFET-2R TAP-CAM with other CAM designs,

in terms of device type, technology node, device count per

cell, cell size, performance and normalized search energy. Cell

size estimation is based on a 2×2 layout of the 2FeFET-

2R TAP-CAM array. Compared to the conventional CMOS

CAM designs, our proposed 2FeFET-2R TAP-CAM design

offers a much smaller cell size. The comparisons highlight

the significant advantages of the proposed 2FeFET-2R TAP-

CAM design over other CAM designs in terms of energy

consumption per bit per search. The energy efficiency of

2FeFET-2R TAP-CAM is notably superior, being 16.95×,

12.88×, 9.49×, and 6.78× more efficient compared to 16T

TCAM, 10T CAM, 2T-2R TCAM, and 2FeFET TCAM,

respectively. While some existing designs achieve approximate

search functionality, their energy consumption remains sub-

stantially higher than that of 2FeFET-2R structure. Although

our design incurs relatively high search delay, considering the

search latency and energy trade-offs and the substantial energy

advantages of our proposed design, increased delay is deemed

acceptable.

These findings validate the remarkable energy efficiency

of 2FeFET-2R TAP-CAM array, emphasizing its immense

potential for data-intensive search applications. This suggests

that 2FeFET-2R TAP-CAM architecture is well-positioned

to address the evolving needs of modern computing en-

vironments, particularly those requiring efficient and high-

performance solutions for processing large volumes of data

in search-intensive applications.

D. Case Study: K-Nearest Neighbor Search

To demonstrate the efficiency of the proposed design,

we benchmark the proposed 2FeFET-2R TAP-CAM array in

the context of K-nearest neighbor (KNN) search framework.

KNN, a fundamental algorithm in machine learning, embodies

a non-parametric supervised model, particularly effective when

K = 1, representing the nearest neighbor (NN) classification.

This algorithm finds widespread use across various fields,

including HDC [46], [47], reinforcement learning [48], and

bioinformatics [11], etc.

At the core of the KNN approach lies the calculation

of distances between the query instance, denoted as x, and

the stored vectors, denoted as yi, within the CAM array.

This process utilizes a distance function, typically denoted

as d(x, yi), which quantifies the dissimilarity or similarity

between the data points. When K = 1, i.e. NN classification,

the class label attributed to the query instance x corresponds

to the category of the nearest stored vector yi, identified by

the smallest distance metric. This intuitive method allows

for straightforward classification based on proximity, making

it particularly suitable for scenarios with intricate decision

boundaries or complex dataset patterns. Conversely, when K

exceeds 1 instead of relying on the nearest neighbor, the

algorithm considers the k closest neighbors of the query

instance x. The class label assigned to x is determined by

a majority voting mechanism, where the most frequent class

label among the k nearest neighbors prevails. This adaptive

approach enables KNN to capture more nuanced relationships

within the dataset, thereby enhancing its predictive capability

and robustness in various applications.

In benchmarking our proposed 2FeFET-2R TAP-CAM, for a

given a function d(x, yi), which measures the distance between

the query x and the i-th stored vector yi in the CAM array,

NN assigns the class label with the smallest distance value to

x. Similarly, in KNN, given a query x, it assigns the most

common class label of x’s k nearest neighbors to x [49], as

illustrated in Equation 6.

c(x) = argmax

k∑

i=1

δ(c, c(yi)) (6)
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Fig. 10. (a) KNN clustering accuracy under different TAP-CAM thresholds, ranging from Th-1 to Th-6 (left to right); (b) Computational speedup and (c)

energy efficiency improvement of TAP-CAM with varying wordlengths compared to a GPU implementation. Datasets from left to right are Iris, Wine and
Digits.

TABLE IV
DATASETS (n: TOTAL INSTANCES, f : FEATURES, K : NUMBER OF

CLASSES)

Dataset n f K Description

Iris 150 4 3 Species of Iris [50]
Wine 178 13 3 Chemical analysis of wines [50]
Digits 5620 64 10 Hand-written digits [50]

where c(x) represents the class label of the query x, while

c(yi) represents that of yi. yi with i ranges from 1 to k

represent the k nearest neighbors. We have δ(c, c(yi)) = 1
when the query’s label c equals the label of yi, otherwise

δ(c, c(yi)) = 0.

To comprehensively evaluate the effectiveness and perfor-

mance of the proposed TAP-CAM architecture, KNN clus-

tering analysis is conducted under the three most frequently

referenced datasets in the UCI Machine Learning Repository,

as shown in Table IV. The datasets include Iris, Wine, and Dig-

its, representing a wide range of data types and complexities.

In order to achieve a robust evaluation, we have partitioned

these datasets into training sets and test sets at an 8:2 ratio to

ensure accurate testing and comparison of TAP-CAM model’s

performance.

Figure 10(a) illustrates the effectiveness of the proposed

TAP-CAM architecture across different datasets. Among Iris,

Wine, and Digits, the Wine dataset exhibits the highest suscep-

tibility to hardware device-level variations. This observation

emphasizes the importance of robustness in hardware designs,

particularly in applications where environmental factors in-

troduce variability. Additionally, we have examined the accu-

racy performance of KNN search under different TAP-CAM

thresholds. Interestingly, the results indicate that identifying

the nearest neighbor may not always yield the optimal solution.

For instance, the Iris, Wine, and Digits datasets achieve

their respective maximum clustering accuracies at K = 2,

K = 6, and K = 3, respectively. With the proposed tunable

approximate matching scheme, an average 3.06 % accuracy

improvement is observed compared to existing exact-match

CAM methods.

Power consumption is obtained via the Nvidia-smi toolkit,

with the study conducted on Nvidia 2080ti GPU, and the TAP-

CAM operations are analyzed via the Pytorch profiler. Assum-

ing 256 TAP-CAM rows, feasible in current manufacturing

technology, the KNN clustering benchmark considers different

TAP-CAM wordlengths at the algorithmic level. Idling power

is excluded from the results. Figure 10(b) illustrates that TAP-

CAM exhibits at least 1.95× 103 speedup compared to GPU

implementation. In addition, the energy consumption in TAP-

CAM grows linearly with the number of cells per row, whereas

GPU implementations show little increase with dimensionality

increment. Consequently, as dimensionality increases, energy

efficiency improvement decreases as demonstrated in Fig-

ure 10(c). For the Digits dataset, TAP-CAM energy increases

with the large number of instances and features, resulting

in an average improvement of 3.15× compared to GPU

implementations.

These results illustrate the effectiveness of the proposed

TAP-CAM architecture across multiple datasets and scenarios,

confirming its feasibility and superiority in practical appli-

cations. Through evaluation and comparison with existing

methodologies, we highlight the potential of our design to

advance CAM technology and contribute to machine learning

research and development.

V. CONCLUSION

In this paper, we introduce TAP-CAM, a compact and

energy-efficient TCAM design capable of threshold approxi-

mate matching. We propose a novel 2FeFET-2R TCAM design

which employs an evaluation transistor to adjust the ML

discharge rate and measure the Hamming distance between

the input query and the stored entries. Through gate bias

voltage configuration, TAP-CAM achieves bit-by-bit tunable

HD threshold matching functionality that is a crucial operation

in many data-intensive applications. Evaluation results and ap-

plication benchmarking suggest that our proposed 2FeFET-2R

TAP-CAM array surpasses other advanced CAM technology

in both energy efficiency and performance.
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