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Abstract—Radar technology plays a critical role in target
detection, classification, and tracking. However, the computa-
tional demands of training deep neural networks (DNNs) on
radar signals can be overwhelming, posing challenges for edge
devices with limited energy and computing resources. In this arti-
cle, we propose leveraging hyperdimensional computing (HDC),
a brain-inspired computing paradigm, as an efficient alter-
native. HDC utilizes high-dimensional vectors for information
representation and processing, offering robustness and energy
efficiency. We propose a novel HDC classification algorithm
named DynHD, with a dynamic HDC encoder that adapts to
more challenging radar spectrum recognition tasks. We designed
this mechanism to provide great flexibility to the HDC encoder
that is otherwise fixed. Our evaluations demonstrate that HDC-
based approaches achieve comparable accuracy to DNN-based
methods with lower-computational complexity, making them
suitable for resource-constrained devices. We achieve significant
improvements in latency during training and inference phases,
enabling efficient processing of radar signals on edge devices.

Index Terms—Brain-inspired computing, hyperdimensional
computing (HDC), radar spectrum recognition.

I. INTRODUCTION

RADAR technology has become an essential tool for
navigation, surveillance, and communication. With radar

signals as input, neural networks can learn models to per-
form target detection, classification, and tracking [1], [2], [3].
However, learning a deep neural network (DNN) is compu-
tationally intensive and requires high-performance computing
resources.

To address this issue, we turn to brain-inspired hyperdimen-
sional computing (HDC) as a promising alternative framework
for the efficient learning of radar data. HDC relies on high-
dimensional vectors to represent and process information [4].
It has shown significant potential in various applications for
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its robustness and energy efficiency [5], [6]. However, the
complexity of radar data and the limited feature extraction
ability from traditional HDC approaches limit the learning
ability [7].

In this article, we propose DynHD, an HDC classification
model with dynamic encoding, and compare several HDC-
based approaches to perform radar-related classification tasks
over edge devices. Our experimental results show that HDC-
based approaches can achieve accuracy similar to or better than
traditional methods while using significantly fewer resources
and fewer training iterations. Our approach enables the pro-
cessing of radar signals on edge devices with lower latency,
making it suitable for real-world applications. In particular,
DynHD with 1000 dimensions can achieve around 8× faster
training while providing a comparable classification accu-
racy, compared to the DNN-based counterpart. By comparing
different HDC-based methods, we also show that DynHD
with an adjustable encoder can provide up to 6× and 100×
latency improvement during the training and inference phases.
Furthermore, we show that the HDC-based methods are more
robust to model quantization and noise from different sources.

II. RELATED WORKS

Radar-Based Target Recognition: Radar provides all-
weather capability, light independence, and velocity
measurement, which are crucial for advanced driver-assistance
systems (ADAs) [1], [2]. In contrast to LiDAR, radar is
more robust against adverse weather conditions and provides
excellent cost effectiveness [8]. In prior works, researchers
leveraged radar signals to capture stationary and moving
targets [9], [10], [11]. However, previous works are mainly
based on DNNs, leading to high-resource usage, power
consumption, and latency.

HDC for Machine Learning: HDC offers significant advan-
tages in various classification and recognition tasks, including
text classification [12], human activity recognition [7], [13],
and bio-signal processing [14], [15]. Prior works also propose
HDC-based algorithms for genomic sequencing [16], [17],
reinforcement learning [18], [19], [20], and graph reason-
ing [21].

III. HYPERDIMENSIONAL COMPUTING

HDC leverages high-dimensional vectors called hyper-
vectors as representations, which inherit two important
properties [4]: 1) “Hyperdimensionality” and 2) “Holographic
Representation.”

A. HDC Operations

Four operators form the building blocks of HDC algorithms:
bundling ⊕, binding �, permutation ρ, and the similarity
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Fig. 1. OnlineHD and NeuralHD training.

function δ. Let X be the space of variables. For any three
variables x, y, z ∈ X, we assign to each an independently and
randomly sampled hypervector with dimensionality D in the
range of 1k to 10k. Each component of the hypervector Hx, Hy,
and Hz is −1 or 1 with equal probability. Similarity δ is the
normalized dot-product, where the normalization is of l0 norm:
δ(H, H′) = (1/D)HTH′. The similarity between different
hypervectors δ(Hx, Hy) ≈ 0, while the similarity between one
and itself is δ(Hx, Hx) = 1 � 0. Bundling creates a set. For the
set S = {x, y} ∈ X, HS = Hx⊕Hy, where ⊕ is the element-wise
addition. As a result, δ(HS, Hx) = δ(Hx, Hx) + δ(Hy, Hx) �
0 while δ(Hs, Hz) ≈ 0. Binding represents association. To
associate x with y, H(x,y) = Hx � Hy, where � is the element-
wise multiplication. The resulting vector is dissimilar to its
constituents, δ(H(x,y), Hx) ≈ x. Permutation over a hypervector
creates a dissimilar vector and thus implements order and
indexing. In particular, we may represent “y is in the ith slot”

as H
(i)
y = ρiHy for some fixed random permutation ρ [22].

For i 	= j, δ(H
(i)
y , H

(j)
y ) ≈ 0. In practice, the permutation is

implemented by a circular shift.

B. Traditional HDC Encoding and Learning

Record-Based Encoder [23]: For input data of d dimen-
sions, the model generates an address codebook with one
entry for each dimension {A1, . . . , Ad}. And a value codebook
{L1, . . . , Lq} corresponding to the q quantized levels of the
continuous value. These codebooks contain hypervectors of
dimensionality D. The encoder then performs a bundling of
the address-value pair association for a data point x ∈ R

d:

Hx =
∑d

i=1 Ai � Vi, Vi ∈ {L1, . . . , Lq}.
Ngram-Based Encoder [24]: For a feature value in each

position, the model permutes the corresponding value hyper-
vector according to the position of the features: Hx =∑d

i=1 ρi(Vi), Vi ∈ {L1, . . . , Lq}. Learning: An HDC model
will generate a class hypervector for each class by bundling
hypervectors of the data of the class. The inference of a query
hypervector is then done by finding the class hypervector with
the highest similarity.

IV. HDC MODEL DESIGN

We first implement two more recent HDC-based classifica-
tion algorithms (OnlineHD [6] and NeuralHD [5], as shown in
Fig. 1) and then propose DynHD that significantly boosts the
learning quality, all of which leverages nonlinear HDC encod-
ing for a better representation. In summary, we first introduce
the nonlinear HDC encoding used by all three models. Then,
we introduce OnlineHD as a baseline that employs a static
encoder and an adaptive training scheme. NeurlaHD extends
OnlineHD by incorporating dynamic hyperdimension regen-
eration, which can be considered an evolutionary approach
to improving the encoding matrix. Finally, we introduce our
approach, DynHD, which takes a step further with a more
general form of dynamical update.

Fig. 2. Overview of the DynHD architecture and learning process.

Nonlinear HDC Encoding: Our HDC encoder leverages
kernel methods to maintain the property of HDC representa-
tion while preserving the important structure of the radar data.
We encode radar spectrum through their random Fourier fea-
tures (RFFs) under the radial basis function (RBF) kernel [25].
This implies a D-dimensional HDC encoding, where each
component is a RFF: Hx = [ζω1

(x), . . . , ζωD(x)]T , ωi ∼ p, i =

1, . . . , D, where ζω(x) = eiω′x and p is a probability measure.
To avoid storing and computing complex numbers, there exists
an equivalent encoding method. For input x ∈ R

d: Hx =
cos(�x + b), where � ∈ R

D×d is a random matrix with
each entry sampled from N(0, 1) and b ∈ R

D is a random
vector with each entry sampled from U[0, 2π ]. When coupled
with the normalized dot product as the similarity function
(Section III-A), the hypervector similarity approximates the
RBF kernel [25]: δ(Hx, Hy) ≈ exp(−[‖x − y‖2

2]/2).
OnlineHD—HDC With Adaptive and Online Learning: It [6]

is an adaptive training framework for efficient and accurate
HDC learning. Fig. 1 shows the adaptive training routine.
Instead of naively bundling hypervectors of the same class,
OnlineHD adds and subtracts hypervectors in a weighted
manner. For a training data point H, OnlineHD evaluates its
similarity with all class hypervectors Ci (•1 ), and updates the
model as follows (•2 ): Cl ← Cl + η(1 − δl) × H and Cl′ ←
Cl′ − η(1 − δl′) × H, where l is the correct class and l′ the
predicted class, η is a learning rate.

NeuralHD—Dynamic Hyperdimension Regeneration: It [5]
includes a mechanism to dynamically update the encoding.
NeuralHD evaluates the significance of hyperdimension, using
normalized variance (across the classes) as the measure (•3 ,

•4 ). NeuralHD then replaces these dimensions in the encoders
and classifiers by (1) generating new values for corresponding
rows in the encoding codebook � (•5 ), and (2) optionally
zero-out the corresponding dimensions in the class hypervec-
tors (•6 ). The dynamic encoder allows hyperdimension to be
used effectively and improves accuracy.

DynHD—Dynamic, Adaptive, and Trainable Hypervector
Encoding: To meaningfully improve the accuracy of the
model, we leverage kernel theory to enable the specialization
of the encoder for radar tasks. In DynHD, we perform a
more general form dynamical update of the encoder using a
learned transformation to the randomly generated encoding
matrix. Fig. 2 presents the overview of DynHD. We leverage
a differentiable encoder-decoder structure, where the inputs
are randomly generated hypervectors in the encoding matrix
and the outputs are transformed hypervectors of the same
dimensionality. This network has two fully connected layers
that map the input dimensionality from D → 256 → D. The
encoding matrix is then used to encode data into hypervectors.
After every few batches, the transformation network is updated
according to the loss collected by the HDC classifier. The
backpropagation flows through the HDC classifier and the
encoding matrix ω′, and directly guides the update of the trans-
formation network. The encoding matrix ω′ and the classifier
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Fig. 3. Efficiency comparison on different radar datasets: (a) and (b) Training runtime on laptop and embedded CPU and (c) and (d) inference runtime on
both CPUs.

remain frozen during the update. It is enough to update the
transformation network every ten batches of HDC classifier
training (i.e., two types of training interleaves). Once the
update is performed, we resample the random matrix and input
it to the transformation network to generate the new encoding
matrix. The process repeats until the model converges. The
key benefit of the approach is that DynHD encoding does not
require an explicit form of the kernel function, the probability
density, or expensive Fourier transforms. Because of Bochner’s
theorem, learning the transformation is equivalent to learning
a subset of continuous shift-invariant kernels, and this method
thus provides us with a much richer family of distribution
from which we may encode the data, enabling the encoder to
specialize to radar data.

V. EVALUATION

A. Experimental Setup

For hardware platforms, we select a laptop CPU (Intel i7-
12700H with 45W TDP) and a low-power embedded CPU on
Raspberry Pi (with 6W TDP). We verify DynHD on MSTAR
public release database [3] and the CARRADA automotive
radar dataset [11]. The former is captured by a 10-GHz
synthetic aperture radar (SAR), and the latter is based on the
frequency-modulated continuous wave (FMCW) radar. There
are ten classes in the MSTAR dataset and 3 classes in the
CARRADA dataset. We select several traditional ML methods
as a baseline, e.g., decision tree (DT) and support vector
machine (SVM). For the deep learning (DL) baseline, we use a
DNN with three hidden layers with 512, 256, and 128 neurons,
respectively.

B. Accuracy Comparison With Baseline Methods

Table I includes the inference performance comparison
of our models with several widely applied ML algorithms
and traditional HDC approaches. Our evaluation shows that
HDC-based solutions achieve a notably higher accuracy than
SVM and DT while comparable to DNN. DynHD with a
trainable HDC encoder achieves better-learning quality than
other lightweight baselines. For example, DynHD with 4k
dimensionality provides more than 4% higher accuracy than
DNN for the MSTAR dataset. Our evaluation also shows that,
leveraging dynamic encoding and adaptive training, DynHD
significantly outperforms traditional HDC encoding methods.
Comparing with OnlineHD validates the effectiveness of the
dynamic update in DynHD, and comparing with OnlineHD
validates its expressiveness and generality, as DynHD can
generate encoding matrices that achieve better performance.

C. Efficiency Analysis in Training and Inference

Fig. 3 compares the training and inference runtime of
our models with other approaches. We record the training

TABLE I
ACCURACY COMPARISON ACROSS DIFFERENT ML MODELS

TABLE II
TRAINING POWER AND ENERGY COMPARISON ACROSS DIFFERENT

ML MODELS ON CARRADA

TABLE III
LEARNING PERFORMANCE AND EFFICIENCY COMPARISON

time for each algorithm to reach convergence in terms of
training accuracy to ensure a fair comparison both in terms of
runtime and learning quality. As shown in Fig. 3(a) and (b),
compared to DNN, HDC-based solutions, such as OnlineHD-
10k and NeuralHD-1k, show significantly faster training. As
presented in Fig. 3(c) and (d), the efficiency of NeuralHD-
1k and DynHD-1k outperforms other algorithms on average,
including DNN and SVM. Table II presents the training power
and energy consumption of different algorithms. Table III
shows that traditional HDC classification algorithms, including
NgramHD and RecordHD, not only achieve lower accuracy
but also fail in efficiency. In comparison, DynHD uses a
CPU-friendly encoder design and improves the training and
inference efficiency by about 6× and 100×, respectively. By
introducing DynHD, we can further improve the learning
quality at the dimensionality of either 1k or 10k with a small
overhead in training while maintaining fast inference. The
better efficiency of HDC comes from faster convergence in
training and fewer weights to update via backpropagation.
Lightweight updates without backpropagation are more suit-
able for embedded devices.
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Fig. 4. Learning curve comparison across different algorithms for MSTAR.
The accuracy is recorded at the end of each training epoch using the testing
dataset. All HDC-based algorithms have dimensionality D = 10k.

TABLE IV
LEARNING ACCURACY COMPARISON WITH DIFFERENT

MODEL PRECISION

TABLE V
COMPARISON OF MODEL SIZE AND COMPUTATIONAL COST

One-pass or few-pass training significantly reduces the
learning runtime at the cost of quality. The results in Fig. 4
show that DNN only achieves about 50% accuracy with one-
pass training. On the other hand, DynHD shows a notable
improvement in terms of one-pass learning accuracy.

In Table IV, we report classification accuracy under differ-
ent model quantization levels for two radar datasets. We use
post-training quantization for both DNN and HDC models.
For int8 quantization, we use standard Pytorch quantization;
for lower precisions, we use our customized quantization
framework based on Pytorch. DynHD is notably more robust
to DNN when quantization becomes more aggressive to less
than or equal to 4-bit integer precision. We also report the size
of the model and the computational cost in Table V.

VI. CONCLUSION

This work demonstrates the efficacy of HDC in radar
spectrum classification. We propose a dynamic, adaptive, and
trainable encoding method. Our HDC-based radar recognition
algorithm provides comparable or better quality with signifi-
cant speedups in both learning and inference.

REFERENCES

[1] S. Chadwick, W. Maddern, and P. Newman, “Distant vehicle detection
using radar and vision,” in Proc. Int. Conf. Robot. Autom. (ICRA), 2019,
pp. 8311–8317.

[2] K. Qian, S. Zhu, X. Zhang, and L. E. Li, “Robust multimodal vehicle
detection in foggy weather using complementary lidar and radar sig-
nals,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2021,
pp. 444–453.

[3] J. R. Diemunsch and J. Wissinger, “Moving and stationary target
acquisition and recognition (MSTAR) model-based automatic target
recognition: Search technology for a robust ATR,” in Proc. 5th SPIE

Algorithms Synth. Aperture Radar Imagery, 1998, pp. 481–492.

[4] P. Kanerva, “Hyperdimensional computing: An introduction to com-
puting in distributed representation with high-dimensional random
vectors,” Cogn. Comput., vol. 1, pp. 139–159, Jan. 2009.

[5] Z. Zou, Y. Kim, F. Imani, H. Alimohamadi, R. Cammarota, and
M. Imani, “Scalable edge-based hyperdimensional learning system with
brain-like neural adaptation,” in Proc. Int. Conf. High Perform. Comput.,

Netw., Storage Anal., 2021, pp. 1–15.

[6] A. Hernández-Cano, N. Matsumoto, E. Ping, and M. Imani, “Onlinehd:
Robust, efficient, and single-pass online learning using hyperdimensional
system,” in Proc. Design, Autom. Test Europe Conf. Exhibit. (DATE),
2021, pp. 56–61.

[7] M. Imani et al., “Revisiting hyperdimensional learning for FPGA
and low-power architectures,” in Proc. IEEE Int. Symp. High-Perform.

Comput. Archit. (HPCA), 2021, pp. 221–234.

[8] I. Bilik, “Comparative analysis of radar and lidar technologies for
automotive applications,” IEEE Intell. Transp. Syst. Mag., vol. 15, no. 1,
pp. 244–269, Jan./Feb. 2023.

[9] Z. Yue et al., “A novel semi-supervised convolutional neural network
method for synthetic aperture radar image recognition,” Cogn. Comput.,
vol. 13, pp. 795–806, Jul. 2021.

[10] H. Zhu, “Ship classification based on sidelobe elimination of SAR
images supervised by visual model,” in Proc. IEEE Radar Conf.

(RadarConf), 2021, pp. 1–6.

[11] A. Ouaknine, A. Newson, J. Rebut, F. Tupin, and P. Pérez, “Carrada
dataset: Camera and automotive radar with range-angle-Doppler anno-
tations,” in Proc. 25th Int. Conf. Pattern Recognit. (ICPR), 2021,
pp. 5068–5075.

[12] K. Shridhar H. Jain, A. Agarwal, and D. Kleyko, “End to end binarized
neural networks for text classification,” in Proc. SustaiNLP, Workshop

Simple Effic. Nat. Lang. Process., 2020, pp. 29–34.

[13] Y. Ni, Y. Kim, T. Rosing, and M. Imani, “Algorithm-hardware co-design
for efficient brain-inspired hyperdimensional learning on edge,” in Proc.

Design, Autom. Test Europe Conf. Exhibit. (DATE), 2022, pp. 292–297.

[14] Y. Ni, N. Lesica, F.-G. Zeng, and M. Imani, “Neurally-inspired
hyperdimensional classification for efficient and robust biosignal pro-
cessing,” in Proc. 41st IEEE/ACM Int. Conf. Comput.-Aided Design,
2022, pp. 1–9.

[15] U. Pale, T. Teijeiro, and D. Atienza, “Exploration of hyperdimensional
computing strategies for enhanced learning on epileptic seizure detec-
tion,” in Proc. 44th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBC),
2022, pp. 4076–4082.

[16] Z. Zou et al., “BioHD: An efficient genome sequence search platform
using hyperdimensional memorization,” in Proc. 49th Annu. Int. Symp.

Comput. Archit., 2022, pp. 656–669.

[17] H. E. Barkam et al., “HDGIM: Hyperdimensional genome sequence
matching on unreliable highly scaled FeFET,” in Proc. Design, Autom.

Test Europe Conf. Exhibit. (DATE), 2023, pp. 1–6.

[18] Y. Ni, M. Issa, D. Abraham, M. Imani, X. Yin, and M. Imani,
“HDPG: Hyperdimensional policy-based reinforcement learning for
continuous control,” in Proc. 59th ACM/IEEE Design Autom. Conf.,
2022, pp. 1141–1146.

[19] Y. Ni, D. Abraham, M. Issa, Y. Kim, P. Mercati, and M. Imani, “Efficient
off-policy reinforcement learning via brain-inspired computing,” in Proc.

Great Lakes Symp. VLSI, 2023, pp. 449–453.

[20] H. Chen, M. Issa, Y. Ni, and M. Imani, “DARL: Distributed
reconfigurable accelerator for hyperdimensional reinforcement learn-
ing,” in Proc. 41st IEEE/ACM Int. Conf. Comput.-Aided Design, 2022,
pp. 1–9.

[21] P. Poduval et al., “Graphd: Graph-based hyperdimensional memorization
for brain-like cognitive learning,” Front. Neurosci., vol. 16, Feb. 2022,
Art. no. 757125.

[22] D. Kleyko, D. Rachkovskij, E. Osipov, and A. Rahimi, “A survey on
hyperdimensional computing aka vector symbolic architectures, part II:
Applications, cognitive models, and challenges,” ACM Comput. Surv.,
vol. 55, no. 9, pp. 1–52, 2023.

[23] S. Aygun, M. S. Moghadam, M. H. Najafi, and M. Imani,
“Learning from hypervectors: A survey on hypervector encoding,” 2023,
arXiv:2308.00685.

[24] S. Moon, B.-T. Berster, H. Xu, and T. Cohen, “Word sense
disambiguation of clinical abbreviations with hyperdimensional comput-
ing,” in Proc. AMIA Annu. Symp., Nov. 2013, pp. 1007–1016.

[25] A. Rahimi and B. Recht, “Random features for large-scale kernel
machines,” in Proc. 20th Int. Conf. Neural Inf. Process. Syst., 2007,
pp. 1177–1184.


