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Link prediction is a crucial task in network analysis, but it has been shown to

be prone to biased predictions, particularly when links are unfairly predicted

between nodes from di�erent sensitive groups. In this paper, we study the fair

link prediction problem,which aims to ensure that the predicted link probability is

independent of the sensitive attributes of the connected nodes. Existingmethods

typically incorporate debiasing techniques within graph embeddings to mitigate

this issue. However, training on large real-world graphs is already challenging,

and adding fairness constraints can further complicate the process. To overcome

this challenge, we propose FairLink, a method that learns a fairness-enhanced

graph to bypass the need for debiasing during the link predictor9s training.

FairLink maintains link prediction accuracy by ensuring that the enhanced

graph follows a training trajectory similar to that of the original input graph.

Meanwhile, it enhances fairness by minimizing the absolute di�erence in link

probabilities between node pairs within the same sensitive group and those

between node pairs from di�erent sensitive groups. Our extensive experiments

on multiple large-scale graphs demonstrate that FairLink not only promotes

fairness but also often achieves link prediction accuracy comparable to baseline

methods. Most importantly, the enhanced graph exhibits strong generalizability

across di�erent GNN architectures. FairLink is highly scalable, making it

suitable for deployment in real-world large-scale graphs, where maintaining

both fairness and accuracy is critical.

KEYWORDS

fairness, large-scale graphs, link prediction, trustworthy graph neural network, data-

centric machine learning

1 Introduction

The scale of graph-structured data has expanded rapidly across various disciplines,
including social networks (Liben-Nowell and Kleinberg, 2003), citation networks (Yang
et al., 2016), knowledge graphs (Liu et al., 2023; Zhang et al., 2022), and telecommunication
networks (Nanavati et al., 2006; Xie et al., 2022). This growth has spurred the development
of advanced computational techniques aimed at modeling, discovering, and extracting
complex structural patterns hidden within large graph datasets. Consequently, research
has increasingly focused on inference learning to identify potential connections, leading
to the creation of algorithms that enhance the accuracy of link prediction (Mara et al.,
2020; Li et al., 2024). Despite the strong performance of these models in link prediction,
they can exhibit biases in their predictions (Angwin et al., 2022; Bose and Hamilton,
2019). These biases may result in harmful social impacts on historically disadvantaged and
underserved communities, particularly in areas such as ranking (Karimi et al., 2018), social
perception (Lee et al., 2019), and job promotion (Clifton et al., 2019). Given the widespread
application of these models, it is crucial to address the fairness issues in link prediction.

Many existing studies have introduced the concept of fairness in link prediction and
proposed algorithms to achieve it. For instance, FairAdj (Li et al., 2021) introduces
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dyadic fairness, which requires equal treatment in the prediction
of links between two nodes from different sensitive groups,
as well as between two nodes from the same sensitive group.
These approaches are predominantly model-centric, incorporating
debiasing methods during the training process (Rahman et al.,
2019; Masrour et al., 2020; Tsioutsiouliklis et al., 2021; Li et al.,
2021; Current et al., 2022). However, promoting fairness in models
trained on large-scale graphs is particularly challenging. State-of-
the-art link predictors, often deep learning methods like GNNs, are
already difficult to train on large graphs (Zhang S. et al., 2021; Hu
et al., 2021; Ferludin et al., 2022; Han et al., 2022). Introducing
fairness considerations adds another layer of complexity, making
the training process even more demanding. Therefore, model-
centric approaches that attempt to enforce fairness during training
may not be practical, as they introduce additional objectives that
further complicate the already challenging training process (Liu,
2023).

To address this challenge, we propose FairLink, a data-
centric approach that incorporates dyadic fairness regularizer into
the learning of the enhanced graph. This is achieved by optimizing
a fairness loss function jointly with a utility loss. The utility loss
is computed by evaluating the gradient distance (Zhao et al.,
2020; Jin et al., 2023, 2022a), which measures the differences in
gradients between the enhanced and original graphs. This approach
ensures that the task-specific performance is maintained in the
learned graph (Zhao et al., 2020). Additionally, the dyadic fairness
loss directs the learning process toward generating a fair graph
for link prediction, while the utility loss ensures the preservation
of link prediction performance. In contrast to model-centric
approaches (Zha et al., 2023a,b; Jin et al., 2022b), which focus on
designing fairness-aware link predictors, FairLink emphasizes
the creation of a generalizable fair graph specifically for link
prediction tasks. We summarize our contributions as follows:

" This paper addresses the challenge of fair link prediction.
While most existing methods concentrate on developing
fairness-aware link predictors, we propose a novel data-centric
approach. Our method focuses on constructing a fairness-
enhanced graph. This graph can subsequently be used to train
a link predictor without the need for debiasing techniques,
while still ensuring fair link prediction.

" To ensure fairness in the fairness-enhanced graph,
FairLink optimizes a dyadic fairness loss function.
Additionally, to preserve utility, FairLink minimizes
the gradient distance between the fairness-enhanced graph
and the original input graph. To improve the measurement
of gradient distance, we introduce a novel scale-sensitive
distance function.

" The extensive experiments validate that, (1) the link prediction
on the enhanced graph generated from FairLink is
comparable with the link prediction on the input graph, (2)
the fairness-utility trade-off of the enhanced graph is better
than the baselines trained on the input graph, (3) the enhanced
graph demonstrates strong generalizability, meaning it can
achieve good fairness and utility performance on a test GNN
architecture, even when it has been trained on a different GNN
architecture.

2 Preliminaries

In the following section, we will start by introducing the
notations used in our study. Next, we will explore the concept
of fairness within the context of link prediction, which involves
estimating the probability of a connection between two nodes in
a network. We will then extend the principles of fair machine
learning to the fairness of link prediction.

2.1 Notation

Let G = (V , E ,X) as a graph, where V is the set of N nodes,
E ¦ V × V is the edge set, X * R

N×D is the node features with D

dimensions. A * {0, 1}N×N is the adjacency matrix, where Auv = 1
if there is an edge between nodes u and v. (u, v) denotes an edge
between node u and node v. S * R

N×K is the vector containing
sensitive attributes, K is the number of sensitive attributes can take
on, (e.g., Su * {Female, Male, Unkown} for node u). g(·, ·) :RH ×

R
H ³ R is the bivariate link predictor, and g(zu, zv) is the

predicted probability of an edge (u, v) * E in a given graph, where
zu and zv are the node embedding vectors with dimension H for
node u and v. The problem of fair link prediction aims to learn
a synthetic graph Gf = (Vf , Ef ,Xf ), where a link predictor g(·, ·)
trained on Gf will obtain comparable performance with it trained
on the original graph G, and the link predictions are fair. In our
experiemnts, |Vf | = |V| and Xf * R

N×D.

2.2 Fairness in link prediction

Previous research in fair machine learning has typically defined
fairness in the context of binary classification as the condition
where the predicted label is independent of the sensitive attribute.
In the domain of link prediction, which involves estimating the
probability of a link between pairs of nodes in a graph, fairness
can be extended by ensuring that the estimated probability is
independent of the sensitive attributes of the two nodes involved.
In this subsection, we introduce two fairness concepts relevant to
link prediction: demographic parity and equal opportunity.

2.2.1 Demographic parity
Demographic Parity (DP) requires that predictions are

independent of the sensitive attribute. It has been extensively
applied in previous fair machine learning studies, and by replacing
the classification probability with link prediction probability. In the
context of link prediction, DP fairness requires that the predicted
probability of a link’s existence be independent of the sensitive
attributes of both nodes in the link. This concept is also referred to
as dyadic fairness in prior literature (Li et al., 2021), and is defined
as follows:

P
(

g(u, v)|Su = Sv
)

= P
(

g(u, v)|Su 6= Sv
)

. (1)

Ideally, achieving dyadic fairness entails predicting intra- and
inter-link relationships at the same rate from a set of candidate
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FIGURE 1

The overall framework of FairLink aims to learn a fairness-enhanced graph in which both fairness is promoted and utility is preserved. Initially, a

synthetic graph Gf is created with the same size as the input graph G and random link connections. Both the input graph and the synthetic graph are

then fed into a trainable link predictor. The gradient of the cross-entropy loss with respect to the predictor9s parameters is computed for both G and

Gf . The optimization of Gf involves minimizing a fairness loss in conjunction with the gradient distance between G and Gf .

links. The metric used to assess dyadic fairness in link prediction
is as follows:

1DP = |P
(

g(u, v) | Su = Sv
)

2 P
(

g(u, v) | Su 6= Sv
)

|. (2)

2.2.2 Equal opportunity
Compared to Demographic Parity, which requires the

probability of an instance being classified as a positive outcome
to be equal for both sensitive groups, Equal Opportunity (EO)
requires that, among instances from the positive class, the probability
of being assigned a positive outcome is equal for both sensitive
groups. In other words, EO ensures that the true positive rate
is independent of the sensitive attribute. In link prediction, EO
fairness requires that the probability of a link existing between two
nodes be the same for node pairs within the same sensitive group
as well as for node pairs from different sensitive groups. The formal
definition of EO in link prediction is as follows:

P
(

g(u, v) | Su = Sv
)

= P
(

g(u, v) | Su 6= Sv, (u, v) * E
)

. (3)

Specifically, for link prediction, EO requires that the predicted
probability g(u, v) of an existing link (u, v) * E should be equal
for node pairs within the same sensitive group (Su = Sv) and for
node pairs from different sensitive groups (Su 6= Sv). This approach
aims to prevent any group from being unfairly disadvantaged. The
method for assessing distance of EO fairness in link prediction is
defined as follows:

1EO = |P
(

g(u, v) | Su = Sv
)

2 P
(

g(u, v) | Su 6= Sv
)

, (u, v) * E |.
(4)

3 Fairness-enhanced graph learning

In this section, we provide a comprehensive description of
FairLink. Our objectives are twofold: (1) ensuring fairness
within the fairness-enhanced graph and (2) preserving the utility
of the fairness-enhanced graph. Specifically, our approach involves

FIGURE 2

Fair link prediction objective in FairLink: Ensure equal probability

for links between nodes from di�erent sensitive groups and those

from the same group.

constructing a fairness-enhanced graph from the input graph
to improve fairness in link prediction. To achieve the first
objective, FairLink incorporates a dyadic regularization term
that promotes fairness. For the second objective, FairLink
maintains utility by minimizing the gradient distance between the
input graph and the enhanced graph. Additionally, we introduce
a novel scale-sensitive distance function to optimize the learned
graph and measure the gradient distance effectively. To simplify
the notation, we omit the training epoch t when introducing the
loss function at a specific epoch. A framework of FairLink is
provided in Figure 1.

3.1 Fairness enhancement

In this subsection, we describe how to equip the learned graph
with fairness-aware properties. This is achieved by incorporating
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a dyadic fairness regularizer, as specified in Equation 1, into the
learning process of the fairness-enhanced graph. Further details on
this process can be found in Section 2.2. The schematic diagram in
Figure 2 illustrates the fairness objective of the fairness-enhanced
graph learning within FairLink.

The concept of fairness constraint has been investigated
in Zafar et al. (2015, 2017) by minimizing the disparity in fairness
between users’ sensitive attributes and the signed distance from the
users’ features to the decision boundary in fair linear classifiers.
In this paper, we incorporate a fairness regularizer derived from
1DP (Chuang and Mroueh, 2021; Zemel et al., 2013), which
quantifies the difference in the average predictive probability
between various demographic groups. The fairness loss function
Lfair at training epoch t is defined as follows:

Lfair = |Eu,v>V×V [g(u, v)|su = sv]2 Eu,v>V×V [g(u, v)|su 6= sv]|,

(5)

where E is estimated Eu,v>V×V is generated from a link between
any node pair in the graph. where ÆY represents the prediction
probability of the downstream task. The variable N denotes the
total number of instances, whileNs=0/1 refers to the total number of
samples in the group associated with the sensitive attribute values of
0/1 respectively. The fundamental requirement for 1DP is that the
average predictive probability ÆY within the same sensitive attribute
group serves as a reliable approximation of the true conditional
probability P( ÆY = 1|S = 0) or P( ÆY = 1|S = 1).

3.2 Utility preserving

In this section, we address the first objective: determining how
to learn a fairness-enhanced graph such that a link predictor trained
on it exhibits comparable performance to one trained on the
input graph. FairLink first computes the link prediction loss
for the original graph, denoted as L(G), by calculating the cross-
entropy loss between the predicted link distribution (based on the
dot product scores of the node embeddings) and the actual link
distribution. Similarly, the link prediction loss for the synthetic
graph, L(Gf ), is computed in the same manner. The gradients of
both graphs with respect to the link predictors’ weights, denoted as
'»L(G) and '»L(Gf ), are then obtained. We define the utility loss
Lutil as the sum of the distances between these gradients across all
training epochs.

Previous studies have utilized Cosine Distance to measure
the distance between two gradients (Zhao et al., 2020; Jin et al.,
2023; Liu and Shen, 2024b,a). While effective, Cosine Distance is
scale-insensitive, meaning it ignores the magnitude of the vectors.
Since the magnitude of the gradient is critical for optimization,
incorporating it into the distance measurement is important.
To address this limitation, we propose a combined approach
that integrates Cosine Distance with Euclidean Distance, which
accounts for vector magnitudes. Thus, the revised distance function
D is defined as:

D
(

'»tL(G),'»tL(Gf )
)

= Dcos + µDeuc, (6)

where Dcos denotes the Cosine Distance, Deuc denotes the
Euclidean Distance, µ serves as a trade-off hyperparameter, and »t

is the trainable parameters for link predictor at training epoch t.
The definitions of these distances are as follows:

Dcos

(

'»tL(G),'»tL(Gf )
)

=
∑

i

(

12
'»tL(G)i · '»tL(Gf )i

∥

∥'»tL(G)i
∥

∥

∥

∥'»tL(Gf )i
∥

∥

)

,

Deuc

(

'»tL(G),'»tL(Gf )
)

=
∥

∥'»tL(G)i 2'»tL(Gf )i
∥

∥ .

(7)

The utility loss at a specific epoch t, denoted as Lutil, is
computed by summing the gradient distances between G and Gf

across all training epochs. It is formally defined as follows:

Lutil = D
(

'»tL(G),'»tL
(

Gf

))

.

Minimizing the utility loss ensures that the training trajectory
of Gf closely follows that of G, leading to parameters learned on Gf

closely approximating those learned on G. As a result, Gf preserves
the essential information of the input graph G.

3.3 Optimization

Optimizing a fairness-enhanced graph directly is
computationally expensive due to the quadratic complexity
involved in learning Af . To address this challenge, previous
work (Jin et al., 2023) proposed modeling Af as a function of Xf .
We initialize the node feature Xf by randomly selecting original
features from each class. Note that learning a fairness-aware feature
matrix for fair link prediction is important because this matrix will
be used for node embedding when training a new link predictor
on the fairness-enhanced graph. Therefore, it is necessary for the
feature matrix itself to be fairness-aware. We further simplify
this approach by using a multi-layer perceptron parameterized by
Ë with a sigmoid activation function to model the relationship,
thereby reducing the computational burden. Thus, the final loss
function is as follows:

min
Xf ,Ë

E»0>P»0

[

T21
∑

t=0

(

Lutil + ³Lfair + ´‖»t‖
2)
]

, (8)

where T is the total training epochs, ³ and ´ are hyperparameters
that govern the influence of two critical aspects: the gradient
matching loss and the L2 norm regularization, respectively.

Jointly optimizing Xf and Ë is often challenging due to the
interdependence between them. To overcome this, we employ an
alternating optimization strategy. We first update Xf for Ç1 epochs,
then update Ë for Ç2 epochs. This process is repeated alternately
until the stopping criterion is satisfied.

3.4 Fair link prediction

To achieve fair link prediction, we first use the fairness-
enhanced graph Gf to train a link predictor. This link predictor
can differ in architecture from the model that produced Gf and
does not necessarily incorporate fairness considerations. In this
paper, we define the link prediction function g(·, ·) as the inner
product between the embeddings of two nodes u and v, for each
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node pair (u, v) * V × V . Specifically, the function is defined as
g(u, v) = u¦6v, where 6 is a positive-definite matrix that scales
the input vectors directionally. In our implementation, 6 is set to
an identity matrix, simplifying g(·, ·) to the dot product, which is
commonly used in link prediction research (Trouillon et al., 2016;
Kipf and Welling, 2016b).

4 Discussion

In this paper, the fairness-enhanced graph produced by
FairLink retains the same size as the input graph, as discussed
in Section 2.1. To facilitate fairness-aware training on large-scale
graphs, our approach concentrates on learning a fairness-enhanced
graph that can be reused, thereby eliminating the need for repeated
debiasing in future training with different link predictors. Future
work could investigate methods for learning a smaller, fairness-
enhanced graph derived from large-scale real-world graphs.

5 Experiments

In this section, we evaluate the effectiveness of FairLink
on four large-scale real-world graphs. We focus on assessing its
performance in link prediction and fairness, as well as the trade-off
between fairness and utility by comparing FairLink with seven
baseline methods. Additionally, we examine the generalizability of
the graphs generated by FairLink by applying them to various
GNN architectures.

5.1 Experimental setup

5.1.1 Datasets
We consider four large-scale graphs that have been extensively

used in previous studies on fair link prediction. These graphs
span a diverse range of domains, including citation networks,
co-authorship networks, and social networks, each characterized
by different sensitive attributes. We consider the nodes that take
minority as the protected node group (e.g., Female nodesGoogle+
and male nodes in the Facebook). The statistics of the datasets are
in Table 1.

" Pubmed1: Pubmed is a dataset where each node represents
an article, characterized by a bag-of-words feature vector.
An edge between two nodes indicates a citation between the
corresponding articles, regardless of direction. The topic of an
article, i.e., its category, is used as the sensitive attribute in this
dataset.

" DBLP2 (Tang et al., 2008): DBLP is a co-authorship network
constructed from the DBLP computer science bibliography
database. The network comprises nodes representing authors
extracted from papers accepted at eight different conferences.
An edge exists between two nodes if the corresponding
authors have collaborated on at least one paper. The

1 Pubmed: https://linqs.org/datasets/.

2 DBLP: https://dblp.dagstuhl.de/xml/.

sensitive attribute in this dataset is the continent of the
author’s institution.

" Google+3 (Leskovec and Mcauley, 2012): Google+ is a
social network dataset. The data was collected from users
who chose to share their social circles, where they manually
categorized their friends on the Google+ platform.

" Facebook4 (Leskovec and Mcauley, 2012): Facebook is a
dataset that contains anonymized feature vectors for each
node, representing various attributes of a person’s Facebook
profile.

6 Baselines

We compare with two link prediction approaches, VGAE and
Node2vec, and five state-of-the-art fair link prediction methods,
FairPR, Fairwalk, FairAdj, FLIP, and FairEGM.

" Link prediction methods: We consider two popular link
prediction baselines: (1) The Variational Graph Autoencoder
(VGAE) (Kipf and Welling, 2016b), which is based on
the variational autoencoder model. VGAE uses a GNN
as the inference model and employs latent variables to
reconstruct graph connections. (2) Node2vec (Grover
and Leskovec, 2016), a widely-used graph embedding
approach based on random walks. It represents nodes
as low-dimensional vectors that capture proximity
information, enabling link prediction through these
node embeddings.

" Fair link prediction methods: To evaluate fairness in
link prediction, we compare against five state-of-the-art
approaches: (1) FairPR (Tsioutsiouliklis et al., 2021),
which extends the PageRank algorithm by incorporating
group fairness considerations. (2) Fairwalk (Rahman
et al., 2019), built upon Node2vec, modifies transition
probabilities during random walks based on the sensitive
attributes of a node’s neighbors to promote fairness. (3)
FairAdj (Li et al., 2021), a regularization-based link
prediction algorithm, ensures dyadic fairness by maintaining
the utility of link prediction through a VGAE, while enforcing
fairness with a dyadic loss regularizer. (4) FLIP (Masrour
et al., 2020) enhances structural fairness in graphs by reducing
homophily and evaluates fairness by measuring reductions
in modularity. (5) FairEGM (Current et al., 2022),
a collection of three methods, emulates different
types of graph modifications to improve fairness.
In our experiments, we use Constrained Fairness
Optimization (GFO) as the representative method from
this collection.

For a detailed discussion of the fair link prediction baselines,
please refer to Section 10.3.

3 Google+: https://snap.stanford.edu/data/ego-Gplus.html.

4 Facebook: https://snap.stanford.edu/data/ego-Facebook.html.
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7 Metrics

To evaluate the accuracy of link prediction, we use two
metrics: the F1-score and the area under the receiver operating
characteristic curve (AUC) (Current et al., 2022; Li et al.,
2021; Masrour et al., 2020). For assessing group fairness, we
adopt two additional metrics: the difference in demographic
parity (1DP) (Feldman et al., 2015) and the difference in equal
opportunity (1EO) (Hardt et al., 2016), as introduced in Section 2.2.
Lower values of1DP and1EO indicate better fairness, making these
metrics crucial for evaluating the fairness of the model.

8 Protocols

For the implementation of FairLink, we utilize a two-layer
GraphSAGE (Hamilton et al., 2017) as the feature embedding and
inference mechanism. For VGAE and Node2vec, we adhere to
the hyperparameter settings outlined in Masrour et al. (2020),
while for the other baselines, we follow the configurations provided
in their respective original papers. To fine-tune the model, we
perform a grid search over the hyperparameters ³, ´ , and µ

for each dataset. Specifically, ³ and ´ are selected from the
set {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1.0, 1.5, 2, and 2.5}, and µ is
chosen from {0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, and 2.5}.
Each experiment is conducted 10 times, with training set to
200 epochs across all datasets. The learning rate is specifically
tuned for each dataset: 0.005 for Pubmed, and 0.01 for DBLP,
Google+, and Facebook. All losses are optimized using the Adam
optimizer (Kingma and Ba, 2014). We followed the splitting from
previous studies (Gurukar et al., 2019; Current et al., 2022), and
conducted all experiments across 10 runs, employing different
random seeds and train/test splits for each run.

8.1 Link prediction and fairness
performance of FairLink

To evaluate the performance of our proposed method in
both link prediction and fairness, we conducted a comprehensive
comparison with the previously mentioned baselines using four
real-world datasets. The results, which include the mean and
standard deviations for all models across these datasets, are
detailed in Table 1. From these results, we can draw the following
observations:

" Our proposed method, FairLink, consistently
demonstrates superior fairness performance in terms of
both1DP and1EO across all evaluated datasets. For example,
compared to VGAE, FairLink reduces 1DP by 74.0%,
82.2%, 77.9%, and 59.1% on the Pubmed, DBLP, Google+,
and Facebook, respectively.

" Regarding utility, FairLink typically achieves the second-
best performance in terms of F1-score and AUC. For instance,
FairLink retains 97.08%, 99.26%, 96.61%, and 99.95% of
the F1-score of VGAE on the Pubmed,DBLP,Google+, and
Facebook datasets, respectively.

" Fair link prediction baselines, such as FairPR, Fairwalk,
FairAdj, FLIP, and FairEGM, exhibit less predictive bias
compared to standard link prediction models like VGAE and
Node2vec. Among these, fairadj generally performs
second-best after FairLink. Specifically, FairAdj

shows better performance on the Facebook, while FLIP

outperforms the others on theGoogle+.

8.2 Fairness-utility trade-o� comparison

In Figure 3, different colors are employed to distinguish
between FairPR, Fairwalk, FairAdj, FLIP, FairEGM, and
FairLink. Ideally, a debiasing method should be positioned
in the upper-left corner of the plot to achieve the optimal
balance between utility and unbiasedness. As depicted in the
figures, methods based on FairLink generally provide the most
favorable trade-offs between these two competing objectives. In
contrast, while FairAdj usually offers superior debiasing with
minimal utility loss, Fairwalk excels in maintaining high utility
but is less effective in reducing bias. Although FairPR can
achieve reasonable unbiasedness in embeddings, it significantly
compromises utility compared to FairLink, as illustrated in the
DBLP and Google+ datasets. In contrast, FairEGM does not
show a notable debiasing effect.

The ability of FairLink to achieve a superior trade-off
is attributed to its objective design, as outlined in Equation 8.
Previous studies have demonstrated the effectiveness of gradient
matching in generating synthetic data that maintains prediction
accuracy duringmachine learningmodel training (Zhao et al., 2020;
Jin et al., 2023, 2022a; Liu and Shen, 2024a). It is important to
note that the synthetic graph derived fromminimizing the gradient
matching objective is not a singular solution; rather, it is quite
flexible. Inspired by this insight, the proposed FairLink seeks to
promote fairness in the learned data–the fairness-enhanced graph–
by incorporating a fairness constraint into the gradient matching
objective. In essence, FairLink aims to identify a solution that is
close to the optimized graph space, where the gradient matching
loss is zero, while simultaneously minimizing the fairness loss.
A prior study also confirms the favorable fairness-utility trade-
off in the learned graph when utilizing this design for the node
classification task (Liu, 2023).

8.3 Generalizability to other link prediction
models

To validate the generalizability of the fairness-enhanced
graph, we perform a cross-architecture analysis. Initially, we
used GraphSAGE (SAGE) to generate synthetic graphs. These
graphs are then evaluated across various architectures, including
GCN, GAT, and VGAE, as well as on the original GraphSAGE
model. Additionally, we apply FairLinkwith different structures
to all datasets and assess the cross-architecture generalization
performance of the fairness-enhanced graphs. The results of these
experiments are documented in Figures 4A–D.
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TABLE 1 Link prediction and fairness results on large-scale graphs.

Metric VGAE Node2vec FairPR Fairwalk FairAdj FLIP FairEGM FairLink

Pubmed #Nodes: 19, 717 #Edges: 88, 648 Sensitive Attribute: Topic

F1 (±) 93.18 ± 1.07 86.50± 1.48 83.33± 2.79 85.20± 2.53 84.25± 1.21 83.48± 1.79 83.70± 1.68 90.46± 1.67

AUC (±) 96.20 ± 0.85 93.27± 1.23 88.21± 0.62 91.43± 1.11 90.53± 1.03 87.44± 1.36 88.12± 2.33 95.24± 1.65

1DP (³) 20.88± 12.48 19.14± 11.93 17.31± 6.32 18.42± 8.65 14.73± 5.98 15.42± 7.69 17.52± 6.30 5.42 ± 2.65

1EO (³) 18.84± 10.98 20.33± 8.74 15.39± 9.52 20.18± 7.75 16.39± 4.64 19.43± 8.01 19.29± 9.44 4.86 ± 1.34

DBLP #Nodes: 13, 015 #Edges: 79, 972 Sensitive Attribute: Continent

F1 (±) 82.23 ± 1.66 78.15± 1.72 80.05± 1.27 80.88± 2.81 81.62± 1.58 77.62± 1.71 80.45± 0.92 81.69± 1.55

AUC (±) 90.77 ± 1.82 83.21± 2.94 72.43± 1.30 88.39± 1.59 84.51± 2.25 78.14± 3.41 80.43± 2.62 88.72± 1.76

1DP (³) 7.42± 3.95 8.43± 5.25 11.65± 4.33 9.86± 4.04 3.55± 3.37 6.34± 4.22 5.82± 5.33 1.32 ± 0.45

1EO (³) 8.53± 3.60 7.22± 4.37 9.37± 5.24 7.10± 3.57 5.82± 3.91 5.39± 4.37 7.33± 6.32 2.19 ± 1.01

Google+ #Nodes: 4, 938 #Edges: 547, 923 Sensitive Attribute: Gender

F1 (±) 88.33 ± 1.21 81.11± 1.50 76.22± 1.36 82.47± 1.08 84.77± 1.19 78.35± 2.02 80.69± 1.53 85.34± 0.81

AUC (±) 94.85 ± 0.91 88.74± 2.84 67.29± 1.53 93.01± 0.58 93.37± 0.22 81.86± 1.54 80.26± 1.61 94.42± 1.86

1DP (³) 6.42± 2.05 7.88± 4.72 7.14± 1.83 5.61± 4.20 3.79± 1.22 1.19 ± 1.93 4.55± 2.11 1.42± 0.96

1EO (³) 7.92± 4.48 9.35± 3.19 6.35± 3.09 4.42± 1.93 3.76± 1.47 2.21± 1.12 5.37± 3.65 1.01 ± 0.75

Facebook #Nodes: 1, 045 #Edges: 53, 498 Sensitive Attribute: Gender

F1 (±) 82.41 ± 1.23 79.35± 0.95 76.22± 1.30 78.11± 0.78 81.14± 1.23 78.5± 1.42 79.77± 2.92 82.37± 0.41

AUC (±) 94.66 ± 0.55 90.57± 1.24 70.30± 1.09 91.56± 0.63 92.53± 1.49 83.0± 1.51 85.42± 1.45 93.73± 1.72

1DP (³) 2.03± 0.81 1.70± 1.43 2.33± 1.91 1.97± 1.51 1.77± 0.81 1.17± 0.55 2.21± 1.05 0.83 ± 0.36

1EO (³) 3.78± 2.15 2.10± 1.60 2.95± 1.10 1.83± 1.39 1.25 ± 0.74 2.21± 1.52 2.55± 1.34 1.56± 2.21

An upward arrow (±) indicates that a higher value is better, while a downward arrow (³) signifies the opposite. For each metric, the best results are highlighted in bold, and the runner-up results

are underlined.

FIGURE 3

Trade-o� between fairness and link prediction accuracy across four datasets. Results in the upper left corner, which exhibit both lower bias and

higher accuracy, represent the ideal balance.
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A B

C D

FIGURE 4

Cross-architecture performance of FairLink with di�erent test architectures on four datasets. (A) Pubmed. (B) DBLP. (C) Google+. (D) Facebook.

Compared to Table 1, FairLink demonstrates improved
fairness performance over VGAE and Node2vec across most
model-dataset combinations. This indicates that FairLink

is versatile and consistently achieves gains across various
architectures and datasets. Our fairness-enhanced graphs show
generally superior performance in fairness metrics (e.g., 1DP

and 1EO) and utility metrics (e.g., F1-score and AUC) across
all datasets. Specifically, GraphSAGE excels in fairness across all
datasets and achieves the best utility on Pubmed, DBLP, and
Google+.

8.4 Ablation study

To evaluate the necessity of generating a synthetic graph
for fair link prediction in architectures without built-in
fairness considerations, we conducted an ablation study to
compare the performance of the proposed FairLink with two
of its variants: (1) FairLinkm, which is a model-centric
variant of FairLink, excludes the synthetic graph and
directly applies the dyadic fairness loss in Equation 5 to the
training of a link predictor, and (2) FairLinkcos, which only
uses the cosine distance function in the gradient matching
process in Equation 6, by setting µ = 0. We evaluated
both link prediction accuracy and fairness performance
across various architectures that do not explicitly account
for fairness.

For FairLink, we first trained GraphSAGE to obtain
a fairness-enhanced graph. This graph was then used for
training diverse architectures without any fairness design,
including GraphSAGE, GAT, and VGAE, and we tested

on the trained link predictor. In the variant without the
synthetic graph generation, we incorporated the fairness loss
directly into the training of GraphSAGE. However, similar
to FairLink, we excluded fairness loss when training the
other architectures, such as GAT and VGAE, to ensure a
fair comparison.

(1) Data-centric vs. model-centric debiasing: From the
results in the “(GAT)” and “(VGAE)” columns of Table 2,
which correspond to architectures without fairness-aware
designs, we observe that FairLink can generalize fairness
when applied to different architectures, whereas FairLinkm
cannot. Comparing the “(Self)” columns for FairLink and
FairLinkm, it is evident that directly adding fairness loss
during the training of a link predictor significantly degrades
accuracy. This aligns with findings from prior studies,
where applying fairness loss directly during the training of
node classifiers led to a similar drop in performance (Qian
et al., 2024; Dong et al., 2024). However, FairLink, by
utilizing a gradient matching loss to preserve link prediction
accuracy on the fairness-enhanced graph, successfully
alleviates this trade-off. As a result, FairLink achieves
both higher accuracy and better generalization of fairness across
different architectures.

(2) Euclidean & cosine distance vs. cosine distance:

From the results of FairLink and FairLinkcos, we
observe a decline in link prediction performance when the
Euclidean function is excluded from gradient matching.
This finding highlights the importance of minimizing
the gradient magnitude when optimizing the fairness-
enhanced graph. In conclusion, FairLink, which utilizes
both Euclidean and Cosine distance functions, is more
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TABLE 2 An ablation study comparing the proposed FairLinkwith its variants FairLinkm and FairLinkcos.

Method Metric DBLP (Self) DBLP
(GAT)

DBLP
(VGAE)

Google+
(Self)

Facebook
(GAT)

Google+
(VGAE)

FairLink F1 (±) 81.69 79.31 80.28 85.34 83.62 83.94

AUC (±) 88.72 85.22 86.19 94.42 92.20 92.65

1DP (³) 1.32 3.29 7.42 1.42 5.29 3.42

1EO (³) 2.19 4.13 5.16 1.01 4.13 4.16

FairLinkm F1 (±) 78.57 79.90 80.35 83.80 80.04 83.23

AUC (±) 84.32 84.34 86.36 91.05 89.36 91.90

1DP (³) 4.25 7.27 11.31 3.83 7.72 8.71

1EO (³) 5.73 8.14 9.75 3.92 8.10 9.22

FairLinkcos F1 (±) 79.15 78.63 78.06 81.17 79.84 80.85

AUC (±) 86.24 82.25 85.32 89.23 87.48 88.45

1DP (³) 1.41 5.19 8.11 1.31 5.97 4.37

1EO (³) 2.76 4.78 5.73 1.25 5.68 3.28

The columns labeled “(Self)” indicate that both the training and testing architectures are GraphSAGE, with fairness constraints applied during training. In contrast, the columns labeled “(GAT)”

or “(VGAE)” indicate that the test architectures are GAT or VGAE, respectively, and do not incorporate fairness-aware design. An upward arrow (±) indicates that a higher value is better, while

a downward arrow (³) signifies the opposite.

TABLE 3 An ablation study comparing the proposed FairLinkwith its variant FairLinkm.

Metric DBLP (Full, Self) DBLP (Full, GAT) DBLP (75%, Self) DBLP (75%, GAT)

F1 (±) 81.69 79.31 80.67 78.52

AUC (±) 88.72 85.22 88.02 83.29

1DP (³) 1.32 3.29 1.63 4.37

1EO (³) 2.19 4.13 2.75 5.33

The columns labeled “(Self)” indicate that both the training and testing architectures are GraphSAGE, with fairness constraints applied during training. In contrast, the columns labeled “(GAT)”

or “(VGAE)” indicate that the test architectures are GAT or VGAE, respectively, and do not incorporate fairness-aware design. An upward arrow (±) indicates that a higher value is better, while

a downward arrow (³) signifies the opposite.

effective at preserving the original graph’s information in the
learned graph.

9 Further discussions

9.1 Complexity analysis

Let L denote the number of MLP layers used for learning
the adjacency matrix, and let d represent the number of hidden
units. The complexity of FairLink is constituted by several
calculations: (1) Calculation of A2: This step has a complexity
of O(N2d2). (2) Forward Pass of GNN: Computing the forward
pass on the full graph incurs a complexity of O(kLNd2), where
k is the size of the sampled nodes per training instance. (3)
Training on Fairness-Enhanced Graph: The complexity for training
on the fairness-enhanced graph is O(LNd). (4) Gradient Matching
Strategy: Including the calculation of additional matching metrics,
the complexity of the gradient matching strategy is O(2|» | + |A2| +

|X2|). Considering T iterations and M different initializations, the
total complexity is MT times the sum of the aforementioned
complexities. (5) For link prediction tasks, calculating the dot
product of node embeddings adds an extra cost of O(N2D).
Therefore, the overall complexity of FairLink is the sum of all
these components.

9.2 A smaller size of the fairness-enhanced
graph

To evaluate whether it is feasible to learn a smaller fairness-
enhanced graph, we implement method by initializing a synthetic
graph with 75% of the nodes from the input training graph. In this
experiment, we fine-tune all the hyperparameters in FairLink

using the same settings as for the full graph on the DBLP dataset.
We then compare the performance of a link predictor trained on
both the full fairness-enhanced graph and the smaller graph. We
assess the performance on two different architectures: the same
architecture used for generating the graph (labeled as “Self ”) and
a different architecture (labeled as “GAT”).

From the results presented in Table 3, we find that FairLink
is capable of learning a compact and generalizable fairness-
enhanced graph forDBLP dataset. This demonstrates the scalability
of FairLink for large-scale graphs and highlights its potential to
be applied in the wild.

9.3 Choice of FairLink architecture

To identify the optimal architecture for FairLink, we
conduct a cross-architecture experiment using different graph
generation models. Specifically, we use one architecture to generate
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the fairness-enhanced graph and another architecture to train
on the generated graph, followed by performance evaluation
through testing.

From the results in Table 4A, we can find that the highest
link prediction accuracy is achieved when the same architecture
is used for both generation and testing. While GraphSAGE and
VGAE exhibit similar levels of accuracy, a key distinction emerges
when examining generalization performance. Specifically, fairness-
enhanced graphs generated by GraphSAGE demonstrate better
generalizability across different architectures, such as GCN, GAT,
and VGAE. Furthermore, although both GCN and GraphSAGE
show comparable fairness performance as shown in Table 4B,
GraphSAGE exhibits a slight advantage in terms of generalization.

10 Related work

10.1 Fairness in machine learning

In recent years, numerous fairness definitions in machine
learning have been proposed. These definitions generally fall
into three categories. (1) Group fairness, which aims to ensure
that certain statistical measures are approximately equal across
protected groups (e.g., racial or gender groups) (Feldman et al.,
2015; Hardt et al., 2016). (2) Individual fairness (Dwork et al.,
2012; Kang et al., 2020; Dong et al., 2021, 2023) requires that
similar individuals should be treated similarly. Compared with
group fairness, individual fairness does not take sensitive features
into account. Instead, it emphasizes fairness at the individual
level, such as for each node in graph data. (3) Counterfactual

fairness (Kusner et al., 2017; Ma et al., 2022; Zuo et al., 2022)
seeks to ensure fairness by considering how decisions would hold
under alternative scenarios. Counterfactual fairness is achieved
when the prediction results for an individual remain consistent
across their counterfactuals. In this context, “counterfactuals” refer
to different versions of the same individual, where their sensitive
features have been altered to various values. Thus, the prediction
outcomes for the individual and their counterfactuals should be
identical. In our experiments, we adopt two widely used definitions
of group fairness: demographic parity and equal opportunity.
Demographic parity (Feldman et al., 2015) requires that members
of different protected classes are represented in the positive class at
the same rate, meaning the distribution of protected attributes in
the positive class should reflect the overall population distribution.
In contrast, equal opportunity (Hardt et al., 2016) focuses on the
model’s performance rather than just the outcome; it requires that
true positive rates are equal across different protected groups,
ensuring that the model performs consistently for all groups.
Methodologically, existing bias mitigation techniques in machine
learning can be broadly categorized into three approaches: (1) Pre-
processing, where bias is mitigated at the data level before training
begins (Calders et al., 2009; Kamiran and Calders, 2009; Feldman
et al., 2015); (2) In-processing, where the machine learning model
itself is modified by incorporating fairness constraints during
training (Zafar et al., 2017; Goh et al., 2016); and (3) Post-processing,
where the outcomes of a trained model are adjusted to achieve
fairness across different groups (Hardt et al., 2016).

10.2 Link prediction

Link prediction involves inferring new or previously unknown
relationships within a network. It is a well-studied problem in
network analysis, with various algorithms developed over the past
two decades (Liben-Nowell and Kleinberg, 2003; Al Hasan et al.,
2006; Hasan and Zaki, 2011). Specifically, heuristic methods define
a score based on the graph structure to indicate the likelihood of a
link’s existence (Liben-Nowell and Kleinberg, 2003; Newman, 2001;
Zhou et al., 2009). The primary advantage of heuristic methods
is their simplicity, and most of these approaches do not require
any training. Graph embedding methods learn low-dimensional
node embeddings, which are then used to predict the likelihood
of links between node pairs (Grover and Leskovec, 2016; Menon
and Elkan, 2011). These embeddings are typically trained to capture
the structural properties of the graph.Deep neural network methods

have emerged as state-of-the-art for the link prediction task in
recent years (Kipf and Welling, 2016a,b; Hamilton et al., 2017;
Velickovic et al., 2018). This category includes GNNs, which
leverage the multi-hop graph structure through the message-
passing paradigm. Additionally, GNNs augmented with auxiliary
information, such as pairwise information (Zhang M. et al.,
2021), have been proposed to enhance link prediction. These
advancedmethods incorporate additional data to better capture the
relationships between nodes (ZhangM. et al., 2021; Zhu et al., 2021;
Wang et al., 2022).

10.3 Fair link prediction

With the success of GNNs, there has been increasing attention
on fairness in graph representation learning (Dai et al., 2022). Some
works have focused on creating fair node embeddings, which are
subsequently used in link prediction (Bose and Hamilton, 2019;
Buyl and De Bie, 2020; Cui et al., 2018). Others have directly
targeted the task of fair link prediction (Masrour et al., 2020; Li
et al., 2021). Specifically, dyadic fairness has been proposed for
link prediction, which requires the prediction to be independent of
whether the two vertices involved in a link share the same sensitive
attribute (Li et al., 2021). To achieve dyadic fairness, the authors
proposed FairAdj (Li et al., 2021), which leverages a variational
graph auto-encoder (Kipf and Welling, 2016b) for learning
the graph structure and incorporates a dyadic loss regularizer
to enforce fairness. FairPageRank (FairPR) (Tsioutsiouliklis
et al., 2021) is a fairness-sensitive variation of the PageRank
algorithm. It modifies the jump vector to ensure fairness, both
globally and locally. The locally fair PageRank variant specifically
guarantees that each node behaves in a fair manner individually.
DeBayes (Buyl and De Bie, 2020) adopts a Bayesian approach
to model the structural properties of the graph, aiming to learn
debiased embeddings using biased prior conditional network
embeddings. Meanwhile, Fairwalk (Rahman et al., 2019) adapts
Node2vec (Grover and Leskovec, 2016) to enhance fairness
in node embeddings by adjusting the transition probabilities in
random walks, weighing the neighborhood of each node based
on their sensitive attributes. Finally, FLIP (Masrour et al.,
2020) tackles graph structural debiasing by reducing homophily
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TABLE 4 Cross-architecture experiment results on various generation and testing architectures.

(A) DBLP, F1

Gen\Te GCN GAT SAGE VGAE

GCN 79.3 77.4 76.2 78.4

GAT 76.0 79.5 79.3 77.8

SAGE 78.9 79.3 82.3 80.3

VGAE 77.6 78.6 78.2 81.8

(B) DBLP, 1DP

Gen\Te GCN GAT SAGE VGAE

GCN 1.21 3.52 1.79 4.65

GAT 3.19 2.40 2.26 4.15

SAGE 2.12 3.29 1.32 3.87

VGAE 2.71 3.65 3.25 3.09

We report the F1 score and1DP on the DBLP dataset. “SAGE” refers to GraphSAGE, “Gen” refers to generation, and “Te” represents testing. For each metric, the best results are highlighted in

bold.

(the tendency of similar nodes to connect) in the graph. The
fairness is assessed by the reduction in modularity, which
measures the strength of the division of a graph into modules.
FairEGM (Current et al., 2022), a collection of three methods
that emulate the effects of a variety of graph modifications for the
purpose of improving graph fairness.

11 Conclusion

We study fairness in link prediction. Existing methods
primarily focus on integrating debiasing techniques during training
to learn unbiased graph embeddings. However, these methods
complicate the training process, especially when applied to large-
scale graphs. Additionally, they are model-specific, requiring
a redesign of the debiasing approach whenever the model
changes. To address these challenges, we propose a data-
centric debiasing method, FairLink, which aims to enhance
fairness in link prediction without modifying the training of
large-scale graphs. FairLink optimizes both fairness and
utility by learning a fairness-enhanced graph. It minimizes
the difference between the training trajectory of the fairness-
enhanced graph and the input graph, incorporating fairness
loss in the training of the fairness-enhanced graph. Extensive
experiments on benchmark datasets demonstrate the effectiveness
of FairLink, as well as its ability to generalize across different
GNN architectures.
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