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ABSTRACT In wireless networks, dynamic spectrum access is the key to improving spectrum utilization
and increasing channel capacity. Since the channels in wireless networks are highly correlated, they
require intelligent algorithms to dynamically handle multi-channel access. Reinforcement Learning (RL)
algorithms are introduced as effective techniques to optimize network performance. However, current RL
methods heavily rely on a computationally intensive deep neural network (DNN) that is not friendly for
edge devices. In this paper, we propose HD-RL, a dynamic wireless channel-sharing solution that utilizes
brain-inspired lightweight hyperdimensional computing as the learning engine. HD-RL mimics important
brain functionalities towards high-efficiency and noise-tolerant computation. HD-RL naturally encodes and
memorizes prior knowledge to provide the near-optimal policy for channel throughput and ³-fairness in
the wireless network. Our evaluation shows that HD-RL achieves maximum throughput and fairness while
significantly improving efficiency compared to the state-of-the-art DNN-based RL algorithms. In particular,
HD-RL achieves more than 20× speedup for reaching the fairness objective. On average, the speedup of
convergence time is more than 10× compared to the baseline. Our results also indicate that HD-RL has
substantially higher robustness against possible hardware failure, e.g., up to 40%dimension loss in themodel.

INDEX TERMS Brain-inspired computing, hyperdimensional computing, medium access control,
reinforcement learning.

I. INTRODUCTION

With recent advances in wireless networks, such as a wide
application of the Fifth-generation (5G) wireless, we have
seen a clear increasing trend in both network quality and
the number of wireless devices. In addition, applications
such as self-driving cars and IoT-based city infrastructure
significantly increase the density of network devices and
the intensity of network activities. According to data from
Ericsson and GAO [1], mobile data usage was around
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30 billion gigabytes per month in 2019, and the predicted
usage for 2025 is over 150 billion gigabytes per month.
With this fast-growing trend, the current spectrum resource
is still not enough for the increasing spectrum demand.
Recently, many prior works have tried to approach the
resource allocation problem at different levels of wireless
networks, i.e., the physical, network, and medium access
control (MAC) layers.

In this paper, we focus on improving the network
performance with modifications on the MAC layer using
dynamically controlled network nodes, i.e., dynamic MAC
protocols. Prior works in this directionmainly utilizemachine
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learning algorithms to achieve model-free control in the
network or other system optimization problems [2], [3],
[4], [5], [6], [7]. When the dynamics of the system is
known, conventional ML algorithms can reach optimal or
near-optimal results. For example, Markov chain models [8]
can solve a dynamic multi-channel access problem with
uncorrelated channels and known transfer probability. Many
recent studies took advantage of Reinforcement Learning
(RL) algorithms enhanced with Deep Neural Networks
(DNN), called Deep RL, to maximize network performance
without prior knowledge, e.g., unknown MAC protocols [9],
[10], [11].
Although deep RL methods can improve network utiliza-

tion, they often rely on complex DNN models that lead to
inefficient and slow RL training and prediction. This makes
deep RL methods impossible for online learning within
network nodes, especially when the network dynamics is
time-variable. One alternative approach is to offload DNN
training to the cloud server and only update the model
periodically. However, this inevitably causes delay, and the
models in the edge may not have an optimal solution
for current network dynamics. In addition, transmitting
data to the cloud leads to scalability, security, and privacy
concerns.
Instead of using DNN-based RL with heavy computation

like backpropagation, we exploit brain-inspired HyperDi-
mensional Computing (HDC) as an alternative paradigm in
dynamic wireless channel sharing. HDC mimics important
brain functionalities towards highly efficient learning and
noise-tolerant computation [12], [13], [14], [15], [16], [17].
HDC is motivated by the observation that the human brain
operates on high-dimensional data representations. In HDC,
we encode regular input to vectors with high dimensions, i.e.,
hypervectors. HDC has contributed to multiple lightweight
solutions for ML applications, ranging from robotics [18],
[19] to biology [20], [21], [22]. A key advantage of HDC
is its training capability in one or few shots, where object
categories are learned from a few examples as opposed
to many iterations. Besides accuracy, HDC is amazingly
tolerant of errors, as it operates over random hypervectors,
independent and identically distributed. This property is
preserved by the encoding operations; hence, a failure in a
component is not ‘‘contagious’’. These features make HDC a
promising solution for effectively and efficiently learning on
edge devices.
In this paper, we present HD-RL, a self-learning MAC

protocol with faster learning capability that is suitable
for edge devices in the network. We make the following
contributions in this paper:

• To the best of our knowledge, HD-RL is the first
dynamic wireless channel-sharing algorithm based on
hyperdimensional computing. With lightweight HDC
operations in hyperdimensional reinforcement learning,
our channel-sharing algorithm brings higher efficiency
compared to the Deep Q Network (DQN), thereby
enabling online learning in an edge environment.

• We apply our HD-RL algorithm to solve the problem of
time-domain spectrum sharing when the MAC protocol
in a network is unknown. Without prior knowledge,
this dynamic protocol will guide the node in choosing
the best time to send packets. Thus, it avoids channel
collision with limited spectrum resources and achieves
maximum channel throughput. By modifying the objec-
tive function during the training of the HD-RL model,
we can also achieve an optimal ³-fairness that prevents
one node from fully occupying the channel.

• We compare our HD-RL with the DQN-based algorithm
and the theoretically optimized results for spectrum
sharing quality and runtime. HD-RL not only achieves
near-optimal results but also significantly improves
the convergence time of dynamic channel sharing
(Section IV-E). Our experiment on Raspberry Pi shows
that HD-RL is also more efficient in the edge environ-
ment, which is appealing to the practical deployment of
this self-learning dynamic MAC protocol.

• We explore the robustness of HDC against hardware
failures. We also present the effect of the hypervector
dimension on the effectiveness of the HD-RL algorithm.
This feature is crucial for wireless network stability
since the nodes in the network are in different conditions,
and their hardware may not work under the best
conditions. By ensuring high robustness, HD-RL MAC
protocol will function as expected under interference
(Section IV-G).

• Our extensive evaluation shows that HD-RL achieves
maximum throughput and fairness while significantly
improving the efficiency compared to the state-of-the-
art Deep RL algorithms. For example, HD-RL achieves
more than 20× speedup for reaching the fairness
objective. Our algorithm is also efficient on embedded
processors, which achieves more than 10× speedup in
terms of convergence on average. In addition, our results
indicate that HD-RL has substantially higher robustness
against possible hardware failure, e.g., up to 40% bit loss
in the model.

The rest of our paper is organized as follows. Section II
reviews the related works and provides the background
of HDC and RL. Section III describes the proposed
HD-RL algorithm. The experimental results are presented in
Section IV. Finally, we conclude the paper with Section V.

II. RELATED WORKS AND BACKGROUND

A. HYPERDIMENSIONAL COMPUTING

Brain-inspired HDC is a more energy-efficient method
compared to widely utilized neural networks, especially
because neural networks are usually deep in layers for most
learning tasks. As is well-recognized, DNNs are costly during
model training both in terms of runtime and energy costs.
On the other hand, in HDC-based learning algorithms, model
training or learning cost are largely decreased [14], [23], [24].
There are mainly two characteristics of HDC that lead to
efficient learning: (1) mapping the lower dimension input into
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the higher dimension space and representing the information
holistically; (2) the update of the model is carried out with
hardware-friendly and lightweight HDC operations [25].
The latter is the fundamental reason behind the efficiency
of HDC-based algorithms, which we will briefly introduce
below.

In the hyperdimensional space created along with the HDC
encoding process (more details on encoding are provided
in Section III-B), there exist a huge number of different,
nearly orthogonal hypervectors with dimensionality in the
thousands [26]. These hypervectors are holographic and
(pseudo)random with i.i.d. components. This lets us combine
such hypervectors into a new hypervector using well-defined
vector space operations while keeping the information of the
two with high probability.

Here we assume H⃗1, H⃗2 are two random hypervectors
with dimensionalityD. They are generated using the standard
normal distribution, that is, H⃗ ∈ {h}D and h ∼ N (0, 1).
Therefore, it is easy to observe that the dot product between
two hypervectors: ¶(H⃗1, H⃗2) ≈ 0. With these assumptions
made, we define the following HDC mathematics to model
brain functionalities:

• Binding (*) of two hypervectors H⃗1 and H⃗2 is done
by component-wise multiplication (XOR in binary) and
denoted as H⃗1 * H⃗2. The result of the operation is
a new hypervector that is dissimilar to its constituent
vectors i.e., ¶(H⃗1 ∗ H⃗2, H⃗1) ≈ 0; thus, binding is well
suited for associating two hypervectors. Binding is used
for variable-value association and, more generally, for
mapping.

• Bundling (+) operation is done via component-wise
addition of hypervectors, denoted as H⃗1 + H⃗2. The
bundling is a memorization function that keeps the
information of input data into a bundled vector. The bun-
dled hypervectors preserve similarity to its component
hypervectors i.e., ¶(H⃗1 + H⃗2, H⃗1) k 0. Hence, the
majority function is well suited for representing sets.

• Permutation (Ä) operation, Än(H⃗), shuffles compo-
nents of H⃗with n-bit(s) rotation. The intriguing property
of the permutation is that it creates a near-orthogonal and
reversible hypervector to H⃗, i.e., ¶(Än(H⃗), H⃗) ≃ 0 when
n ̸= 0 and Ä−n(Än(H⃗)) = H⃗. Thus, we can use it to
represent sequences and orders.

• Reasoning is done by measuring the similarity of
hypervectors by calculating the dot product. In this
paper, we denote this similarity with ¶(H⃗1, H⃗2).

Prior works have used HDC mainly to solve classification
and cognitive tasks, such as language, text and voice recog-
nition [27], [28], [29], [30], bio-related tasks [20], [22], [24],
[31], [32], [33], [34], [35], [36], latent semantic analysis [37],
and graph reasoning [25], [38], [39]. For instance, the work
in [37] proposes to utilize HDC with random indexing for
text classification instead of the unscalable latent semantic
analysis. The work in [20] uses HDC-based bio-signal
processing to help recognize gestures. In the highlighted
machine learning, HDC has achieved higher accuracy with

fewer training examples compared to state-of-the-art machine
learning solutions, e.g., support vector machines and neural
networks [13], [18], [40], [41]. Recently, researchers in
this field have also introduced brain-inspired computing to
RL algorithms [19], [42], [43], optimizing the cost and
quality of learning. However, their focus is on classic control
tasks and toy video games, where the whole environment is
deterministic and easy to model. Unlike all prior works, this
paper is the first effort to focus on the wireless spectrum
sharing problem in a highly dynamic environment, and
we propose an efficiency-oriented solution utilizing HDC.
Our solution achieves better utilization of the spectrum
while significantly improving the computational cost and
robustness compared to existing deep RL techniques.

B. REINFORCEMENT LEARNING

Reinforcement learning is usually considered the third type
of machine learning method, in addition to supervised and
unsupervised learning [44]. The reasoning behind this is that
training data in RL does not have labels and true values
as in the supervised learning case. However, it is also hard
to categorize RL as unsupervised learning since it relies on
feedback information, such as rewards. RL is also unique
because its model learning process is intertwined with model
inference; in other words, the learning is through trial-and-
error interaction with the environment. The goal of RL is to
acquire the best action policy for an environment that is either
unknown or known to the agent, which corresponds to either a
model-free or model-based setting; RL without environment
models is harder to train and more challenging.
Major categories of RL algorithms include value-based and

policy-basedmethods. The value-basedmethod learns a value
function that evaluates action choices under current obser-
vation of the environment. The optimal policy is a greedy
one that selects the action with the highest value assuming
the value function is also optimal. There are multiple types
of value-based RL algorithms, the most frequently used are
tabular Q-learning [45] and its DNN-based variants such
as DQN [46] and Double-DQN [47]. They all rely on the
Q-value function as a proxy policy, which approximates the
future accumulated rewards based on a certain state-action
pair. For example, with state observation s and action a, the
algorithm learns a Q(s, a) ≃ E[Rt |St = s,At = a]. However,
in policy-based RL, the agent directly learns the optimal
policy that guides its selection of actions under different
conditions. In this paper, we focus on the model-free value-
based RL algorithm to solve the spectrum-sharing problem.
In value-based RL, one of the characteristics is that training
samples can be off-policy and collected from trajectories
of different policies. This leads to better sample efficiency
compared to the value-based RL.
RL algorithms, especially those backed by DNN learning,

have been successfully applied to various fields, e.g., Atari
computer games [46], traffic optimization [48] and robot
control [49], [50].
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FIGURE 1. Multiple access with HD-RL node and other nodes.

FIGURE 2. Overview of HD-RL framework for spectrum sharing.

C. REINFORCEMENT LEARNING FOR WIRELESS

COMMUNICATION AND MAC

Wireless communication is another important area in which
RL has been utilized, e.g., for channel selection problems
and power consumption optimization [51], [52]. In this
paper, we focus mainly on optimizing multiple access
decisions to achieve efficient channel usage. Researchers
in [9] use DNN-based RL to solve multi-channel access
problems with correlated channels and unknown dynamics.
With the help of more powerful Convolutional Neural
Networks (CNN) and Recurrent Neural Networks (RNN),
work in [11] focuses on improving the performance of
the heterogeneous wireless network using an RL algorithm.
Nodes inside that network have different but also unknown
MAC protocols. More recently, researchers have proposed
an RL-guided MAC protocol [53] specifically for imper-
fect channels via a novel feedback recovery mechanism.
Another work in [54] aims to solve the hidden terminal
problem utilizing Bi-LSTM-powered deep RL. However, the
aforementioned works rely on deep RL algorithms, which
are computationally expensive. Network dynamics could
change fairly fast, and the RL models need regular retraining,
so it is not ideal for networks that target real-time and
efficient learning. In contrast, we leverage a brain-inspired
solution for designing dynamic MAC protocols. Our solution
provides fast and energy-efficient computation while also
ensuring substantially higher robustness than existing deep
RL solutions for spectrum sharing.

III. DYNAMIC MULTIPLE ACCESS USING HD-RL

A. OVERVIEW

Fig. 1 is the overview of the spectrum-sharing problem that
we aim to solve using our proposed HD-RL technique. There

are various types of spectrum sharing, and we choose to share
the limited channel in the time domain, i.e., nodes in the
network will be arranged to send packets in different time
frames. We use our proposed HD-RL algorithm to achieve
a dynamic MAC protocol, and the target is to maximize
the utilization of the channel without prior knowledge about
other nodes’ MAC protocol. Here, we provide more detailed
information about the three MAC protocols shown in this
figure:

• TDMA: Node that applies this protocol only transmits
in a few certain slots within each time frame. For
example, a TDMA protocol with X = 5 guides the node
to transmit in the first 5 slots of each 10-slot time frame.

• q-ALOHA: A q-ALOHA node has a fixed probability
q for transmitting in each time slot.

• HD-RL: The HD-RL node is equipped with an
HDC-based self-learning agent that determines when
the node transmits.

More specifically, our system model is a distributed and
heterogeneous network where each node may apply different
kinds of MAC protocols. They all transmit packets to an
access point and share the wireless channel. Therefore, a node
will either be equipped with traditional MAC protocols like
q-Aloha and TDMA, or it will be equipped with the HD-RL
agent and the proposed dynamic MAC protocol. Nodes with
different MAC protocols coexist with each other in the
network.

Fig. 2 shows an overview of our proposed HD-RL
framework. Fig. 2a has a loop that describes the structure of
the HD-RL. The spectrum is the environment that defines
states and gives back rewards to the agent for different
actions. In our spectrum sharing problem, the spectrum states
z are: Idle,Collision, and Success; and the actions a available
for agents are: Transmit and Wait. If two or more nodes
in the network choose to transmit packets, we will have a
Collision in the channel; if all nodes choose to wait, we have
the Idle state. Both states give back zero rewards because
the channel is not well utilized. When there is only one
node sending a message, we have the Success state and a
positive reward with the value 1. Now that we have defined
the environment and the action space in the spectrum sharing
problem, we next describe the observation/state space of this
problem.
Fig. 2b shows the detailed learning process of our proposed

HD-RL algorithm. First, it loads a small number of past states
[s1, s2, . . . , sh] from local memory, and we use h = 10 in
this paper. Within this short history vector, we define each
element si as the pair of past agent-action ai and spectrum-
state zi. For example, if the HD-RL node sent a message
and observed a collision, we recorded this past state as si =
{ai, zi} = {Transmit,Collision}. Unlike conventional RL
tasks that are defined based on the Markov Chain model,
i.e., the decision-making process relies solely on the most
recent state. On the contrary, we define the state space here
as the vector space of the 10 most recent past states, i.e.,
tuples of agent actions and spectrum states. Notice that the
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state si defined above does not include any prior knowledge
such as the TDMA pattern. Our motivation for using several
historical states is that the agent should adjust itself toward
an unknown environment. Therefore, we expect the agent
to discover patterns of other nodes/users without explicitly
acquiring such information. The HD-RL agent listens to the
channel status and observes its transmission results to infer
patterns of other nodes. The channel status and the HD-RL
agent’s past actions together can indicate the transmission
results of other nodes and channel idleness. Using history
states is not unusual; a similar method is also used in solving
Atari games using DQN, where people use frame-stacking to
combine a few past states so that the agent can capture the
necessary information: speed and acceleration of objects.
In the case of spectrum sharing, we consider the inclusion

of multiple past states as necessary for the agent to choose
the optimal action. For example, if we are going to infer
the detailed settings of the TDMA node, which transmits
in X out of every 10 slots, a history state of length 10 can
effectively capture the pattern. For each element in the history
vector, there are 6 different combinations of spectrum states
and agent actions. Therefore, the total size of our defined
state space is 610 for a history vector of length 10, i.e.,
about 60 million combinations. This is a particularly large
state space and challenging for the traditional tabular-based
Q-learning method. In addition, it is also not friendly to the
DQN algorithm, because it requires longer training time and
leads to larger computation/energy costs.
Given the state history and the next possible action,

we develop an HDC Encoder that associates and maps states
and actions to a single holographic hypervector. Notice that
the action a shown in Fig. 3 is the action the agent is planning
to take, which is different from the action ai within the history.
We also developed a hyperdimensional regression technique
that operates over encoded data and predicts the action-
state value, i.e., Q-value, in the case of the DQN method.
The action is chosen by selecting the one with the largest
action-state value. Next, we will introduce the details of our
proposed encoder module and regression algorithm.
In Table 1, we summarize the major mathematical symbols

used in this paper.

B. HYPERDIMENSIONAL ENCODING

The encoding is the first step in our HD-RL algorithm. The
goal of encoding is to map the original input space to a high-
dimensional space. In this section, we propose two encoding
methods that are slightly different in how they define the
difference between data points.

1) GENERATE STATE AND ACTION HYPERVECTORS

As shown in Fig. 3, we first randomly generate hypervectors
for all possible states and actions. S⃗ is the hypervector for
state s and A⃗ is the hypervector for action a. Notice that
there are a finite number of states s = a, z because both
spectrum states z and agent actions a have a finite number
of possibilities. Therefore, we generate random hypervectors

uniquely for each possible state s. Thus, for the same
two states (si and sj), the encoded hypervector (S⃗i and S⃗j)
will be the same. As we mentioned in Section II, these
hypervectors have a high dimensionality with each element
randomly sampled from standard Gaussian distribution, e.g.,
S⃗, A⃗ ∈ {N (0, 1)}D, where D g 2000. As a result,
the state and action hypervectors are nearly orthogonal,
¶(A⃗m, A⃗n) ≃ 0 and ¶(S⃗m, S⃗n) ≃ 0 for m ̸= n. In this paper,
we use real-valued hypervectors (as they are sampled from
Gaussian distribution) for greater memorization capacity and
to enable better learning quality. This means that the binding
operation will be component-wise multiplication instead of
XOR operations. Next, we explain the functionality of both
encoding modules:

FIGURE 3. Encoding past state history with a selected action.

2) SEQUENCE-BASED ENCODING

It is crucial for networks that use the TDMA protocol
to encode different sequences of history state to different
hypervectors to extract TDMA patterns. To generate an
action-state hypervector, we first bundle different state
hypervectors that act as brain-like memorization. We also
include permutations with different indices to preserve
the temporal location of each state in history. For a
given h-step past history Sp, {s1, s2, · · · , sh}, we generate
high-dimensional state hypervector as:

S⃗6 = S⃗1 + ÄS⃗2 + · · · + Än−1
S⃗h (1)

where the bundling operand helps to memorize the informa-
tion of state hypervectors, while the permutation preserves
their order in the sequence. For example, the encoded state
history of {s1, s2, s3} will have a different distribution to the
state history of {s2, s3, s1}:

¶(S⃗61, S⃗62) ≃ 0 where

{

S⃗61 = S⃗1 + ÄS⃗2 + Ä2
S⃗3

S⃗62 = S⃗2 + ÄS⃗3 + Ä2
S⃗1

(2)

Unlike other machine learning algorithms that keep state
and action separate, our encodingmodule naturally associates
them in high dimension. Particularly, our solution binds the
bundled state hypervector with the action hypervector: C⃗ =
S⃗6 ∗ A⃗. This mapping preserves the information of both
state and action while representing it as a distinct and nearly-
orthogonal high-dimensional point, i.e., ¶(C⃗, A⃗) ≃ 0 and
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FIGURE 4. Lightweight hyperdimensional regression.

¶(C⃗, S⃗6) ≃ 0. Since elements in S⃗ and A⃗ follow a zero-mean
Gaussian distribution, the element-wise multiplication of S⃗
and A⃗ will result in a hypervector that gives near-zero dot
product with either A⃗ or S⃗.

3) ACCUMULATIVE ENCODING

Our second encoding method lies in the fact that temporal or
spatial information is not always needed for regression, which
is a crucial learning model in our HD-RL. Depending on the
task, we might only memorize the accumulative state history
without preserving the state sequences. For the spectrum
sharing problem, if the node uses the Q-Aloha protocol
with unknown probability, we can infer the probability from
the percentage of different states within a short history.
Thus, we can remove the permutation step and use only the
addition of state hypervectors. Given the same h-step history
Sp, {s1, s2, · · · , sh}, we generate the high-dimensional state
hypervector as: S⃗6 = S⃗1 + S⃗2 + · · · + S⃗n. Similarly to the
first encoding, the state and actions can be associated using:
C⃗ = S⃗6 ∗ A⃗. The advantage of removing permutation from
the encoding is to reduce the runtime on the CPU and prevent
memory copy overhead. It also reduces the input space and
makes training more stable.

C. HYPERDIMENSIONAL REGRESSION

We develop a hyperdimensional regression model that
operates on the encoded action state, C⃗ = {c}D. Fig. 4
shows the overview of our regression, consisting of a single
model hypervector. The model hypervector is initialized
to all zero elements and has the same dimensionality as
the encoded action-state hypervector i.e., M⃗ ∈ {0}D.
Regression is supervised; thus, we have access to the actual or
ground-truth value approximation. In the context of reinforce-
ment learning, the goal of regression is to approximate the
ideal Q-function given an encoded action-state hypervector.
The ideal Q-function provides a clear expectation of the
future cumulative rewards, i.e., the ideal Q-value. For an
encoded action-state C⃗, our model approximates the Q-value
by performing the dot product operation between the model
and action-state hypervectors: Ypred = C⃗ · M⃗.

During the regression learning process, we expect the
predicted value, i.e., the dot product calculated above, to be
as close to the ground truth as possible. Therefore, the update

TABLE 1. Descriptions of mathematical symbols.

of the hyperdimensional regression model should be guided
by the error between Ypred and Ytrue (ground truth). Our
model hypervector, thanks to its high dimensionality, can be
considered as a memory that returns the predicted value given
an input query hypervector. The model training is lightweight
because we leverage the element-wise addition to update the
hypervector. Our update algorithm for the regression model
hypervector is as follows:

M⃗ = M⃗ + ´ × Error × C⃗,

where Error = Ytrue − Ypred = Ytrue − C⃗ · M⃗ (3)

´ is a learning rate. This equation ensures the model gets
updated with a higher weight for higher prediction error rates
(Ytrue − Ypred k 0). On the other hand, if the prediction
is fairly accurate and the error is small, then the model is
only slightly updated with the encoded hypervector. Through
iterative training and incremental model updates, our model
hypervector memorizes the ground truth value for different
inputs and can predict the action-state value accurately.
By taking advantage of lightweight HDC operations, such
as the dot-product in prediction, our regression accelerates
the reinforcement learning process and reaches the optimized
spectrum in a fast and efficient way. In section IV-B,
we evaluate the efficiency of the HDC-based regression
module in HD-RL via a simple regression task.

D. HD-BASED RL FOR DYNAMIC MAC PROTOCOL

In this section, we present our HD-RL technique for the
spectrum-sharing problem. As shown in Fig. 2, we use
the HDC model to estimate future rewards and then to
decide the next action. In reinforcement learning, methods
relying on reward prediction are called value-based meth-
ods. One of the most commonly used value-based RL is
Q-learning, in which a large table or a DNN is used for
reward prediction. Our HD-RL follows the main structure of
Q-learning.
Due to the limited and discrete action space of this

specific task, Q-learning is a great solution with relatively
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Algorithm 1 HD-RL for Maximizing Channel Throughput
Initialize s0, ϵ, ϵ_decay, ´, µ , Ä
Set the past states length h and the training batch size b
Initialize HDC modelHDRL, delayed modelHDRL′

Initialize local memoryMEM
Generate hypervectors for states and actions
for time step t do

ϵ-greedy algorithm for choosing action at :
if random() f ϵ or len(MEM ) < h then

Randomly choose one action from the action space
else

Encode the action-state hypervector C⃗t
at = argmaxaHDRL(Spt , a)

end if

ϵ = ϵ × ϵ_decay
Get reward rt and new state st+1
Record {st , at , rt , st+1} to MEM
Call function TrainHDRL for HD-RL training

end for

function TrainHDRL(h,b,´,µ ,Ä )
Sample an experience batch E of size b fromMEM

for {S
p
t , at , rt , S

p
t+1} in E do

Encode the action-state hypervector C⃗t
Calculate predicted q-value Yt_pred using (4)
Calculate true q-value Yt_true using (5)
Update HDC modelHDRL with (6)

end for

if step counter reaches Ä then

Reset step counter
CopyHDRL to delayed modelHDRL′

end if

end function

lower computational costs. Actor-critic algorithms, on the
other hand, are more suitable for tasks with continuous
action space; and the two-part design increases the train-
ing/inference cost. The on-policy actor is also slow to learn
and not sample-efficient.
For classic protocols, they are unaware of the environment

(usage pattern of other nodes) and unable to dynamically
adjust themselves to the current supply and demand of
spectrum resources. With reinforcement learning, we enable
a more efficient access protocol for the agent to behave
optimally by inferring the operating protocols of other
coexisting networks. Especially, by leveraging HDC-based
RL, we can achieve a much faster convergence time for the
agent to adjust promptly and in time, leading to a better
reduction of collision and utilization of limited resources.

1) MAXIMIZING CHANNEL THROUGHPUT

We first consider one specific objective of optimized
spectrum sharing, which is to maximize its throughput.
We define throughput as the average number of successfully
transmitted data packets per slot. To achieve this objective,

we need to reinforce every action that leads to a successful
transmission, i.e., every action whose corresponding reward
is positive.

In Q-learning methods, we make decisions for the next
action by comparing the q-value of each possible action
at the current step. In our RL algorithm, we use HDRL

to represent the HDC-based model for action-state value
approximation. Thus, we choose the next step/action with
at = argmaxaHDRL(Spt , a). The ϵ-greedy algorithm is
also included when choosing actions to ensure enough
exploration, in which the action is sometimes randomly
chosen based on the value of ϵ. As described in Fig. 2,
we use multistep past states Spt rather than only the most
recent state st to infer pattern information. With state history
length set to h, we have: Spt = {st , st−1, . . . st−h+1}. For
each action taken, the HD-RL node receives a corresponding
reward rt , depending on whether the packet is successfully
sent. Then, the state is updated from st to st+1. We include
a FIFO local memory to save this information at each
step: {st , at , rt , st+1}, which is also the source for S

p
t .

For simplicity, in the information or experience of step t ,
we replace st and st+1 with Spt and Spt+1 even though they
span a range of time steps.

To train the HD-RL agent, i.e., update the HD-based
regression model, we apply the method called experience
replay. Instead of using the most recent Sp only, we randomly
sample a batch of Sp at different time steps from local mem-
ory. For each past step t and its experience {S

p
t , at , rt , S

p
t+1},

we compare the predicted action-state value from HDC
regression and the true value. Experience replay prevents the
RL agent from forgetting earlier experiences and balances the
distribution of the training sample. Recall Section III-C, C⃗t is
the encoded action-state hypervector, and the predicted value
is defined as:

Yt_pred = HDRL(Spt , at ) = C⃗t · M⃗HDRL (4)

For defining the true action-state value in HD-RL, we utilize
the Bellman Equation to calculate the temporal difference
target, which is widely used in DQN. The Bellman equation
decomposes the true value into two parts: the immediate
reward rt and the predicted value for the next step with
discount µ . This breaks down the more complex problem and
provides an iterative solution.

Yt_true = rt + µHDRL
′(Spt+1, argmaxaHDRL(Spt+1, a))

(5)

In original Q-learning, the prediction for the next step’s value
is easily over-estimated and biased, so we also applied a
similar solution like Double Q-learning [47]. Notice that we
use a different HDC model HDRL′, which is a slow copy
of HDRL. We periodically hardcopy the model parameters
to update this delayed HDC model. More specifically, after
every few steps of model training, we will copy the latest
model parameters to the delayed model HDRL′, i.e., its
update is delayed and slower than the main model HDRL.
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This technique helps us to decouple the selection of the action
from its evaluation and mitigate the overestimation of the
action values due to the max operation used in the state-action
value computation.
After deriving the true and predicted value, we update the

regression model hypervector M⃗HDRL with the prediction
error:

M⃗HDRL = M⃗HDRL + ´(Yt_true − Yt_pred ) × C⃗t (6)

In Algorithm 1, we provide the pseudo-code to maximize
channel throughput using HDC. For each time step t , HD-RL
makes transmission decisions based on past states and records
the reward and the next state in memory. HD-RL training also
occurs at each time step, in which the HD-based regression
model hypervector M⃗ is updated according to the difference
between Yt_true and Yt_pred .

2) OPTIMIZING ³-FAIRNESS

Unlike the last section in which we directly use reinforcement
on positive rewards to achieve maximum throughput, the
objective for ³-fairness is not equivalent to maximizing
rewards. To enable HD-RL for better fairness within the
spectrum sharing problem, we embed the ³-fairness objective
into the update process of a hyperdimensional regression
model.
We first define the objective function for ³-fairness metric

in the network. In this paper, we focus on the condition
of ³ = 1 that aims at proportional fairness [55], [56].
The reason for using proportional fairness is that it is a
good compromise between max-min fairness and maximum
throughput scheduling. For a single node, its ³-fairness is
given by log(T ) with T referring to the throughput. For a N -
node network, the objective is:

maximize
N

∑

i=1

log(Ti) (7)

We now slightly modify the HD-RL training procedure
to consider ³-fairness. From equation (7) as well as the
requirement of achieving fairness, our HD-RL protocol must
monitor the throughput of other nodes. The first modification
is assigning an HD-based regression model for each node
in the network, not only the node equipped with RL-based
dynamic MAC protocol. We use these extra models to predict
future rewards given to other nodes. The reward serves as a
surrogate for the throughput of a node. For example, if there
are two nodes in the network (one HD-RL node and one
TDMA node), we will assign another HDRLTDMA model
to predict the Q-value of the TDMA node at each time step.
However, this model does not affect the operation of the
TDMA node because we do not modify the original TDMA
protocol to a dynamic MAC protocol.
The second modification is for equation (5), in which we

will embed the fairness objective. Currently, this equation
is composed of two parts, the immediate rewards rt and
the maximized future rewards. Notice that this equation

FIGURE 5. Throughput and HD-RL learning runtime with different
hypervector dimensionality ranging from 500 to 7500.

FIGURE 6. HD-RL learning runtime and achieved throughput with
different input history length.

involves only a simple accumulation of rewards for the
HD-RL node, meaning that its natural goal is to maximize
the total throughput. In this case, the HD-RL agent is
reinforced to select actions that maximize its transmission
success and minimize any collision, thereby leading to
maximal throughput. However, the fairness objective requires
maximizing the sum of logarithmic rewards from all nodes,
which requires more than a simple addition of all rewards.
Thus, our modification here is as follows:

For Node i: Y it_true = r it + µHDRL
′i(Spt+1, ã) (8)

To seamlessly embed the fairness objective into the HD-RL
training process, we can modify the way we compute
the target Q-value, i.e., Yt_true. Previously in equation (5),
we chose the action of the next step to maximize the reward of
the HD-RL agent only, which failed to consider the ³-fairness
objective. Therefore, we modify this process to naturally
include such objectives. More specifically, to decide the
action ã, we find the sum of logarithmic rewards for each
action and choose the one that maximizes the sum:

ã = argmaxa{
N

∑

i=1

log(HDRL
i(Spt+1, a))} (9)

Then, for each node i, the HDCmodel is updated by adding
the encoded input hypervector weighted by prediction error
and learning rates:

M⃗
i
HDRL = M⃗

i
HDRL + ´(Y it_true − Y it_pred ) × C⃗t ,

where Y it_pred = HDRL
i(Spt , at ) (10)

To conclude, for optimizing ³-fairness, we use equation (8)
in place of (5) and equation (10) in place of (6). With these
modifications, the reinforcement not only aims for larger
rewards, but also for a better fairness metric.
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FIGURE 7. Regression quality for different training iterations.

TABLE 2. Regression accuracy and runtime comparison for HDC, neural
network, linear regression based algorithms.

IV. EXPERIMENTAL RESULT

A. EXPERIMENT SETTINGS

We implement the proposed HD-RL with Python language
and verify its functionality. The hardware platforms that sup-
port our design in the experiment are AMD Ryzen 5 3600X
desktop CPU and Arm embedded CPU in the Raspberry Pi 4.
To fully test our HD-RL, we choose several networks with
different MAC protocols and parameter settings. We also
set up a heterogeneous network with three nodes inside
and evaluated the performance of the HD-RL node when
coexisting with TDMA and Q-Aloha nodes. For comparison
with our design, we choose a DQN-based dynamic MAC
protocol [11] that uses ResNet as the Q-learning network. The
ResNet in this design has six hidden layers and each layer
has 64 neurons. Using the same hardware platform, the DQN
results are collected by running the available open-source
code. In [57], a benchmark gives the theoretical value of
maximum throughput and optimized fairness under different
network conditions. This benchmark is model-aware, i.e.,
it has knowledge about MAC protocol settings such as q and
X . We also compare the performance of our design with this
benchmark.
Our HDC-based regression model uses hypervectors

with D = 5000 dimensions on the desktop CPU and
2500 dimensions on the embedded CPU. As shown in
Fig. 5, we explore different hypervector dimensionalities
ranging from D = 500 to D = 7500 on both the
desktop CPU and the embedded CPU. To illustrate how
different sizes of the hypervector influence the learning

runtime and quality, we train an HD-RL node that maximizes
throughput when another TDMA node is presented. We run
the RL process for 5000 steps under different dimensionality
settings. We observe that our HD-RL algorithm can achieve
maximum 100% throughput when D g 5000 while setting
D f 1000 will significantly lower the throughput due to
fluctuation in learning. Compared to D = 7500, lowering
the dimensionality to 5k saves nearly 10 seconds in total
runtime without any loss of quality, which is why we select
D = 5000 for our experiments on the desktop CPU. If we
further reduce the dimensionality to 2500, we observe a very
small decrease in throughput: on average, less than 0.005.
This provides nearly 30 seconds of speedup on the embedded
CPU. We believe that this tiny quality loss is acceptable
during our experiment on the embedded CPU, where our aim
is to minimize runtime.
We use sequence-based encoding for networks with

TDMA nodes to ensure our regression model memorizes the
sequence of the TDMA pattern, while for Q-Aloha nodes,
we choose an accumulative encoding for better efficiency
on the CPU. As we mentioned in Section III-A, we set the
length of the HD-RL input history states to h = 10. Due to
our assumption that all TDMA nodes in the system follow a
‘‘transmit X out of 10 slots’’ pattern, we select this particular
history length to guarantee the performance of the HD-RL
agent. In Fig. 6, we present our quantitative results of the
total RL runtime and the throughputs achieved when using
different lengths of history states. Here we run RL on a
network of one HD-RL node and one TDMA node (X=5:
transmits in 5 slots out of 10 with a predefined but unknown
pattern). As shown in the figure, h=10 is the minimum
required length of history in order to achieve the theoretical
maximum throughput of 1. If we use a shorter history, the
runtime decreases with the cost of poor learning quality. For
example, if we follow the classic Markov decision process
model with h=1, then the throughput achieved is just 0.7.

B. EFFICIENCY OF HDC-BASED REGRESSION IN HD-RL

Fig. 7 shows the accuracy of our regression for different
training iterations on a simple sinusoidal dataset. We observe
that a more significant iteration number provides higher
accuracy, i.e., better alignment with the true data. In Table 2,
we compare the accuracy and efficiency of the HDC-based,
DNN-based, andOrdinary Least Squares based (referred to as
Linear Regression—LR in the table) regression algorithms.
We evaluate these algorithms on both sinusoidal data and
the California Housing dataset [58]. The implementation of
DNN and HDC methods are based on optimized numpy
code and the LR is based on scikit-learn functions. We set
the HDC dimensionality to 500 and use a DNN with two
64-neuron hidden layers with the ReLU activation function.
For the sinusoidal dataset, we train algorithms with a training
set of 100 data points and test them with 1000 data points.
We observe that HDC regression is significantly faster than
DNN both in terms of training time and testing time.
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FIGURE 8. Performance comparison between the benchmark and two RL-based MAC protocols for maximizing throughput.

TABLE 3. Maximizing throughput when the RL-based node coexists with a TDMA node.

In addition, it achieves a lower mean absolute error (MAE)

and higher R2 value than DNN within 50 epochs. The

HDC-based method also converges faster than DNN in terms

of epoch number: within 5 epochs, it already achieves lower

MAE compared with the DNN results after 50 epochs. As for

the LR algorithm, it achieves relatively good accuracy on

the toy dataset with the shortest training and testing runtime.

However, it is not suitable for regression problems in practice

such as predicting the housing price.

C. MAXIMIZING CHANNEL THROUGHPUT

Fig. 8(a) shows the results for the two-node network, in which

one node is equipped with the RL-based dynamic MAC

protocol and the other one is a TDMA node. We test our

proposed HD-RL and the DQN method to maximize the

channel throughput, and both of them are compared with the

theoretical value from the benchmark (BM in the figure).

We also provide the results with different TDMA protocol

settings, i.e., changing the number of transmitting slots

X within a 10-slot time frame. Notice that the maximum

possible throughput for the RL+TDMA condition is always

one packet/slot, i.e., the channel is perfectly shared in the

time domain. For the HD-RLmethod, to reach a fully utilized

channel, the HDCmodel has to infer the pattern of the TDMA

node with no knowledge about the X value. In Fig. 8(a) and

Table 3, we show that our HD-RL learns the TDMA pattern

and achieves the theoretical maximum throughput in all five

TDMA settings.

Fig. 8(b) and Table 4 show the performance of our HD-RL

node when sharing the channel with the Q-Aloha node.

We collect the result for multiple protocol settings ranging

from q = 0.2 to q = 0.8. For comparison, we also run the

DQNmethod and the benchmark. When q < 0.5, we observe

the theoretical throughput when the RL node transmits in

every time slot. On the other hand, when q > 0.5, the RL node

should wait in all slots for maximum overall throughput. For

all five settings shown in the figure, our HD-RL is capable of

reaching the theoretical maximum.

We also test networks with the three-node setting, i.e.,

RL node coexisting with Q-Aloha and TDMA nodes.

In Fig. 8(c) and Table 5, we fix the TDMA setting (X = 3)

and explore the Q-Aloha setting from q = 0.1 to q = 0.8.

In Fig. 8(d) and Table 5, we change the TDMA transmitting
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TABLE 4. Maximizing throughput when the RL-based node coexists with a Q-Aloha node.

TABLE 5. Maximizing throughput when the RL-based node coexists with a Q-Aloha node and a fixed TDMA node.

TABLE 6. Maximizing throughput when the RL-based node coexists with a TDMA node and a fixed Q-Aloha node.

pattern while keeping the same Q-Aloha setting (q = 0.2).

We show that our HD-RL achieves near-optimal spectrum

sharing for a heterogeneous network with multiple MAC

protocols without prior information about the protocols and

their settings.

D. α-FAIRNESS OPTIMIZATION

Fig. 9(a)(b) and Table 7 present the result to optimize

the spectrum sharing problem with α-fairness objective.

We include the test results for both HD-RL and the

DQN-based method, which embed the fairness objective into

the Q-learning process. The results, as well as the benchmark,

are for proportional fairness, i.e., α = 1. We test two network

conditions for this task: RL co-exists with the Q-Aloha node

and RL co-exists with the TDMA node.

As shown in the figure, for both conditions, our HD-RL can

optimize the spectrum sharing and achieve near-theoretical

α-fairness. For networks where the RL node coexists with

the TDMA node, since it is possible to share the spectrum

perfectly in the time domain, optimized α-fairness is similar

to maximum throughput. As shown in Fig. 9(b), our HD-RL

generally provides better fairness than DQN-based RL.

In Fig. 9(c) and Table 8, HD-RL follows the proportional

fairness objective when q = 0.2; and unlike the maximum

throughput objective, it ensures the chance for the Q-Aloha

node to transmit even with a low q value. When q gradually

increases, the throughput of the Q-Aloha node increases
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FIGURE 9. Performance comparison between the benchmark and two RL-based MAC protocol for optimizing α-fairness.

TABLE 7. Maximizing fairness when the RL-based node coexists with a TDMA node.

FIGURE 10. Fairness and runtime of network composed of one RL
node(HD-RL or DQN) and one Q-Aloha node (q = 0.3).

accordingly, since the RL node transmits less frequently, but

the fairness metric prevents the Q-Aloha node from fully

occupying the spectrum. We compare our approach with

the DQN-based method (Fig. 9(d) and Table 7). Our results

indicate that HD-RL provides a better α-fairness for q ≥ 0.3.

E. EFFICIENCY COMPARISON WITH STATE-OF-THE-ART

Now that we have shown the near-optimized results of

our HD-RL in the spectrum-sharing problem, we evaluate

FIGURE 11. Throughput and runtime of network composed of one RL
node(HD-RL or DQN) and one TDMA node (X = 3).

the efficiency of our HD-RL and compare it with the

DQN-based design. In Fig. 10, we compare the α-fairness

achieved by both methods. For overall performance, HD-RL

achieves optimized results and is more stable during the first

2000 steps. On the other hand, the DQN-based RL is slow

to stabilize and returns significantly lower fairness at around

1000 steps. More importantly, our HD-RL converges to the

near-optimal in less than 50 steps, which is more than 20 ×

faster than the DQN-based method in terms of step number.

138530 VOLUME 12, 2024



Y. Ni et al.: Dynamic MAC Protocol for Wireless Spectrum Sharing via Hyperdimensional Self-Learning

TABLE 8. Maximizing fairness when the RL-based node coexists with a Q-Aloha node.

FIGURE 12. Embedded environment runtime comparison between DQN
and HD-RL on Raspberry Pi: we test using different settings of Q-Aloha
and TDMA and with both optimization target (max_f for maximizing
fairness and max_t for maximizing throughput).

FIGURE 13. Throughput and runtime for different HDC model dimensions
and hardware error levels.

In Fig. 10(b), we show that theHD-basedmethod is also 2.1×

faster than the DQN-based method in terms of total runtime
for 5000 steps.

As shown in Fig. 11, we also compare two methods to
maximize throughput. The network composition is anHD-RL
node coexisting with one TDMA node that sends packets in
3 out of 10 time slots. The ideal total throughput is 1, and
both methods can achieve it within the test period. However,

HD-RL, which represents the red curve, converges to the
maximum 3.2 × faster than the other method in the number
of steps. As for the total runtime for 5000 steps, we show in
Fig. 11(b) that our method is 2.2 × faster.

F. EFFICIENCY OF HD-RL ON AN EMBEDDED PROCESSOR

Apart from evaluating our design on a relatively pow-
erful CPU, we also deploy our HD-RL algorithm on a
low-power embedded Arm processor using the Raspberry
Pi. As shown in Fig. 12, we run both HD-RL and the
baseline DQN algorithms on spectrum-sharing tasks with
different network settings. In these tasks, we change the
transmitting probability q of theQ-Aloha and also the number
of transmitting slots x in the TDMA. The figure shows that,
even in a power and resource-limited environment, HD-RL
achieves significantly better efficiency compared to DQN.
This indicates that HDC greatly improves the feasibility
of RL-based spectrum-sharing algorithms in the edge.
We observe that the total HD-RL runtime is up to 3.4× faster
than DQN in the Q-Aloha cases. More importantly, when we
focus on the time for convergence to theoretical maximum
throughput or fairness, HD-RL achieves, on average, 10×
faster convergence compared to the DQN baseline. For
example, when maximizing throughput in the Q-Aloha case
and maximizing fairness in the TDMA case, we notice that
it is challenging for the DQN-based algorithm to converge
within 5000 steps. However, the HD-RL algorithm achieves
maximum fairness and throughput in a very short amount
of time.

G. HD-RL ROBUSTNESS

Here, we explore the robustness of HD-RL for the spectrum-
sharing problem. Robustness is one of the advantages
of computing in high dimensions, and it is also crucial
in wireless networks. Meanwhile, HDC algorithms can
be deployed and accelerated on emerging processing-in-
memory devices to achieve even higher power efficiency.
However, these deployment efforts usually suffer from
unreliable memory technology that causes stuck-at-zero error
or loss of data after extensive memory reads and writes during
model training. These errors result in the loss of dimension.
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In addition, these errors occur randomly during the operation
of the HD-RL algorithm. During HD-RL learning inside
network nodes, it is common to have such hardware failures
due to a bad environment and radio interference. For our
exploration, we assume that both the HDC model and
encoded inputs might lose some dimensions/information.
Fortunately, in HD-RL, a hypervector contains all the
information combined and spread across all its components
in a full holistic representation so that no component is more
responsible for storing any piece of information than another.
We choose the network consisting of one RL node, one
Q-Aloha node, and one TDMA node under the settings of
X = 3 and q = 0.2. We ignore the throughput for the
Q-Aloha node in the figure, since it is negligible. We run the
HD-RL for 3000 steps and under different dimensions and
error levels (p refers to the percentage of lost dimensions).
Then, we record the average throughput and runtime for each
case. In Fig. 13, it is easy to observe that larger dimensions
provide better robustness against error. For D ≥ 5000, even
with 40% dimension loss, the throughput is still close to
the optimal value of 0.8. In our test, 20% dimension loss
is acceptable for D ≥ 1000. We also observe the effect of
HDC dimensionality on the quality of the results and the
runtime. When the dimension increases from 1000 to 10000,
the average throughput also increases. However, it comes
at the cost of longer runtime, and thus has a larger energy
cost.

V. CONCLUSION

In this paper, we propose HD-RL, the first RL-based MAC
algorithm using HDC. We present its application in wireless
network spectrum sharing tasks, i.e., an HD-based dynamic
MAC protocol optimizes the network for better throughput
and fairness. Our HD-RL can achieve near-optimal results
in this task and provides significantly better efficiency than
DQN-based RL. HD-RL also has the robustness advantage
of HDC, which makes it suitable for wireless network appli-
cations. As shown in the experiments, HD-RL has proved
itself to be a viable and more efficient substitution to the
conventional DNN-based RL algorithm. However, the open
question is that whether HDC mathematics can be extend to
more advanced RL algorithms with entropy regularization
and stochastic policy, which theoretically should perform
better in the complex dynamics of wireless network systems.
The other future direction is to further extend the environment
and include more types of MAC protocols, and this helps
study the scalability of current discrete action-space RL
algorithms.
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