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Abstract—Applications in the Internet of Things (loT) uti-
lize machine learning (ML) to analyze sensor-generated data.
However, a major challenge lies in the lack of targeted intel-
ligence in current sensing systems, leading to vast data
generation and increased computational and communication
costs. To address this challenge, we propose a novel sensing
framework to equip sensing systems with intelligent data
transmission capabilities by integrating a highly efficient ML
model placed near the sensor. This model provides prompt
feedback for the sensing system to transmit only valuable
data while discarding irrelevant information by regulating
the frequency of data transmission. The near-sensor model
is quantized and optimized for real-time sensor control.
To enhance the framework’s performance, the training pro-
cess is customized, and a “lazy” sensor deactivation strategy
utilizing temporal information is introduced. The suggested
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framework is orthogonal to other loT frameworks and can be considered as a plug-in for selective data transmission.
The framework is implemented, encompassing both software and hardware components. The experiments demonstrate
that the framework utilizing the suggested module achieves over 85% system efficiency in terms of energy consumption
and storage, with negligible impact on performance. This framework has the potential to significantly reduce data output

from sensors, benefiting a wide range of loT applications.

Index Terms— Energy efficiency, intelligent sensing, Internet of Things (loT), machine learning (ML), near-sensor

computing.

. INTRODUCTION
HE prevalence of ubiquitous sensors is currently expe-

Triencing an exponential surge, both in terms of their
quantity and the vast amount of data they generate. Despite
the rapid growth, existing approaches to sensor data processing
and transmission cannot keep pace due to their algorithmic and
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architectural limitations [1]. In numerous Internet of Things
(IoT) applications, data collected by sensors are analyzed using
machine learning (ML) models [2], [3], [4], [5]. As the volume
of data continues to grow, many applications opt to send the
data to more computationally powerful nodes, such as edge
or cloud computing nodes, to execute the learning algorithms.
In either scenario, a large volume of data is transmitted at
a high rate to ensure that all necessary information is cap-
tured and processed for various tasks. The significant amount
of data conveyed in both scenarios places high demands
on energy and storage resources, resulting in considerable
resource pressure and wastage [6]. This is especially prob-
lematic for applications that require a relatively complex and
expensive ML model. Fig. 1 depicts a typical IoT system for
video monitoring systems, where dense data generated by the
camera is continuously analyzed using complex ML models.
In the system, visual signals captured by surveillance cameras
are transmitted continuously to a costly ML model, which
may be hosted on a central server, such as a cloud or edge
computing node. Depending on the intended purposes, the ML
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Fig. 1. Application scenarios of an intelligent system.
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model performs various tasks, including but not limited to
classification, object detection, and segmentation [7], [8].

Many studies attempted to alleviate the energy and storage
pressures in IoT applications from multiple perspectives, e.g.,
computing offloading, resource allocation, and so on. Tradi-
tional methods have shown substantial progress in tackling
these issues. Certain research efforts leveraged the Lyapunov
optimization algorithm [9] to identify the optimal deci-
sion [10]. Others framed resource allocation and computing
offloading as optimization challenges [11], [12], [13], [14],
[15]. However, these approaches exhibit certain limitations.
First, they require knowledge of the underlying model, which
proves challenging due to the intricate and dynamic nature
of IoT systems. Second, they are vulnerable to being stuck
at local optima. Some research [16], [17], [18], [19], [20]
have introduced intelligent offloading strategies grounded in
deep learning (DL). Furthermore, some research have placed
emphasis on the optimization of hardware structures, thereby
enhancing the efficiency of edge computing [21], [22], [23].

Different from the work above, which uses ML/DL algo-
rithms to automate offloading and resource allocation, some
research proposes solutions to reduce data generated by
the sensor. For example, in the realm of computer vision,
analyze-then-compress (ATC) approaches present an alterna-
tive strategy in which front-end devices extract and transmit
features to a central server. Depending on the specific sce-
nario in which it is being applied, ATC approaches utilize
a variety of traditional feature extraction algorithms, ranging
from handcrafted methods (e.g., [24], [25], [26]) to infor-
mation theory-based methods [27], [28]. In recent years,
more advanced deep learning-based methods have garnered
significant attention. Several early layers of DNN are deployed
on the front-end devices for extracting highly compact and rep-
resentative features. In the face recognition task, for example,
the face of an individual can be represented by features with
several hundred dimensions [29], [30], [31]. By representing
data in such features, the amount of data that needs to be
transmitted can be significantly decreased. In addition, only
a few lightweight operations are required to be performed on
the central server.

However, a notable limitation of DNN-based ATC methods
is their restricted capacity for generalization. Given the metic-
ulous design of DNN architectures, the features they extract
and transmit to the central server are often highly abstract
and tailored specifically to the intended task. However, visual
signal carrying pertinent information typically undergoes a
sequence of downstream tasks for comprehensive analysis.

Consequently, the inherent challenge arises from the deficiency
in generalization, rendering it difficult to design a backbone
network capable of extracting features suitable for all such
tasks. Moreover, in numerous scenarios, it becomes useful
to retain visual signals for subsequent analysis or future
reference. The transmission of excessively abstract features
significantly complicates the process of reconstructing the
original visual signal on the server side. Although front-end
devices possess the capability to store the original signals, their
constrained storage capacity poses a challenge.

In addition, all the efforts mentioned above, whether from
an IoT or ML perspective, still need to process all the data
generated from the sensor, neglecting the fact that in many
IoT applications (e.g., fire alarm, wildlife monitoring, crime
surveillance [32], and healthcare [33]), only a small fraction of
sensor activity typically contains valuable information. Hence,
it is unnecessary to run a costly service, such as a large-scale
DNN model, that handles a continuous and complete stream
of sensor data, whether on the edge or in the cloud. This is
because the service specifically targets only that small fraction
of valuable data, yet it still requires processing substantial
amounts of irrelevant information.

Spiking neural networks (SNNs) and event cameras, on the
other hand, generate data only when there is a change in the
scene, reducing the amount of data needed for transmission.
However, in a static scene, an event camera would barely
generate any data, effectively rendering it blind to stationary
information. This limitation restricts its applicability, partic-
ularly for tasks involving slowly moving objects. Moreover,
the spatial resolution of event cameras is generally lower
compared to high-resolution frame-based cameras, which can
be a limiting factor for applications that require detailed spatial
information. Event cameras can also be sensitive to noise,
especially in low-light conditions, resulting in spurious events
that add complexity to the data processing. Last but not least,
the price of event cameras is generally higher than that of
traditional RGB cameras, which can limit their applicability
for widespread deployment.

Observing the limitations of the approaches previously
discussed, in this article, we rethink and redesign the sensing
system, proposing a new framework that is orthogonal to
previous research directions. Rather than reducing the data
representation or determining where and how data should be
relocated for service execution, our framework focuses on
reducing the amount of data sent out from the sensor side by
identifying valuable information. Our framework, acting as a
“filter,” can be applied before any aforementioned approaches,
and easily be integrated into any system as a plug-in.

Our proposed framework consists of a few components.
First, we deploy a lightweight model near the sensor to detect
whether a frame contains useful information, which we refer to
as a frame of interest (FOI) and only send out those FOIs. The
model helps mitigate the huge amount of unnecessary analysis
of costly ML models over the central server. Although this
process can also be deployed before the costly ML models
at the same place, our near-sensor model offers substantial
savings in transmission costs, encompassing energy, band-
width, and more. To enable intelligent sensing, the near-sensor
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Fig. 2. Motivation and design of our proposed intelligent sensing module. (a) General system framework of conventional systems and our system.
(b) Visualization of the data transmission in our system. (c) lllustration of minimum data transmission frequency (denoted by fyin) in our system. f,
denotes the camera’s refresh rate. (d) lllustration of lazy sensor deactivation scheme in our system, N is the number for deactivation count.

model should be fast enough to process frames in real-time
and provide feedback. With the help of this feedback, our
framework produces selective and sparse data. Furthermore,
we enhance the overall performance of the framework by
introducing several effective schemes to mitigate potential
misdetections of the lightweight model, which we explore in
Section II.

In this work, we describe the following contributions.

1) We propose a new framework that improves [oT system
energy and storage efficiency orthogonal to the previous
approaches. It can be readily inserted into any existing
system, serving as an intelligent data generation “filter.”
We call the sensor exploiting this framework an “intel-
ligent sensor” in the rest of the article.

2) To illustrate our framework, we design a modified DNN
model tailored to near-sensor computing.

3) We introduce schemes for alleviating possible misde-
tections of the near-sensor model, including nonzero
minimum transmission frequency and lazy deactivation.
We also conduct a thorough investigation into their
impact on overall system performance.

4) We implement the framework encompassing both
software and hardware components. Our experiments
demonstrate that utilizing our intelligent framework
leads to a substantial reduction in energy and storage
consumption in sensing systems.

II. METHODS
A. Framework Overview

Fig. 2(a) illustrates the framework of a conventional system
and our framework. In Fig. 2(a-1), the conventional sensor
captures and transmits all the frames to the costly models,

regardless of the presence of useful information in the frames.
On the contrary, the intelligent sensor equipped with our
framework, as shown in Fig. 2(a-2), utilizes a lightweight
model near the sensor to detect and control the FOI trans-
mission. The model is deployed on an edge computing device
integrated into the camera, connecting to the image sensor.
Specifically, the camera captures a continuous stream of
frames, which are then fed to the lightweight model for real-
time predictions. With the presence of FOI, the camera raises
the data transmission frequency, and the frames are transmitted
to the central server for more sophisticated operations; if the
frame is detected as background (with no interest), the camera
will turn off the data transmission. Fig. 2(b) provides a visu-
alized example, where the transmitted frames are presented in
color while the discarded frames are shaded in gray. The sys-
tem adopting our framework, as demonstrated in Fig. 2(b-2),
outperforms conventional systems depicted in Fig. 2(b-1) by
exclusively transmitting frames containing a zebra, resulting
in a reduction of storage and energy consumption by half in
this particular instance.

This is because transmitting only the necessary FOIs to the
central server reduces the number of inferences needed by the
complex ML model on the central server, which is the primary
source of energy consumption. This reduction is achieved
while introducing only a negligible energy overhead associated
with the near-sensor model. This is in contrast to previous
approaches that would transmit all frames to the server based
on the camera’s refresh rate, resulting in significant energy
waste due to performing inference on numerous unnecessary
frames.

In this work, we concentrate on the effect of our pro-
posed framework on energy consumption reduction. Each
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element in the framework is elaborated on in the following
sections.

B. Near-Sensor Model

The near-sensor model is tasked with distinguishing FOIs
from all other frames. One way to tackle this problem is
by using a classifier. However, the frames captured by a
sensor may contain multiple objects of interest with varying
scales and positions, while classifiers are typically trained on
images that contain a single, centered object (such as those
found in CIFAR-10, CIFAR-100 [34], and ImageNet [35]).
These classifiers have limitations in detecting multiple objects
with varying scales and positions. As a result, a deep object
detection model is often employed instead. Among different
object detection models, YOLO [36], a single-stage detector,
is selected. Compared with two-shot detectors (e.g., R-CNN,
Fast R-CNN, Faster R-CNN, and R-FCN [37], [38], [39],
[40]), YOLO is lightweight, faster, and with comparable
accuracy in a suitable scenario [41], [42]. These features make
YOLO a good candidate for being embedded into the sensor.

The output layer of YOLO contains bounding box pre-
dictions concatenated to the class prediction and objectness
confidence. However, the goal of our intelligent sensor is
to detect the existence of objects of interest, regardless
of their position in the frame. Therefore, we can only
keep the objectness confidence in the output, which can be
used further to determine FOI. We set a threshold for the
objectness confidence, and only the frames with confidence
exceeding this threshold are transmitted. As increasing the
threshold, the detection becomes stricter, resulting in fewer
frames being considered FOI. Our framework’s definition
allows us to customize the YOLO model in the following
ways.

1) Model Optimization: The architectures of the YOLO
series contain several repetitive blocks. Although these blocks
contribute to the model capacity, they make the model
power-hungry and slower during inference. For example, the
YOLOvVS model family has five variations: x-large, large,
medium, small, and nano. While each model shares the same
structure, they differ in the network’s depth and the number
of filters in different layers (width). Since our model does not
predict bounding boxes, we can modify its depth and width to
create a more lightweight model that still achieves comparable
performance on our task. In other words, in contrast to the
YOLO model, which predicts both the class and location of
an object, our proposed near-sensor model requires only class
prediction. This simplification allows us to reduce the number
of model parameters without compromising the accuracy of
the class prediction task.

In our experiments, we utilized three YOLO-based models,
namely, YOLOv5n, YOLOv5nm, and YOLOv5ns. YOLOv5n
stands for Yolov5 nano, which is the smallest intro-
duced YOLOVS model. By modifying the depth and width
of the YOLOv5n, we achieved more lightweight models,
which we called nano-medium (YOLOv5nm) and nano-small
(YOLOv5ns). In YOLOvSnm, the depth and width are half of
the depth and width of the YOLOvVS5n, and in YOLOv5ns, this
ratio is one-third for depth and one-fourth for width.

As mentioned earlier, the output of the YOLO model not
only contains confidence but also concatenates the bound-
ing box information, which is not required in our proposed
module. Consequently, we can remove the part of the model
associated with the bounding box during the inference to
reduce the model size.

2) Inference Simplification: YOLO utilizes a nonmax sup-
pression (NMS) algorithm as the final step to pick the most
appropriate bounding box for the object among all of the
predicted boxes for that specific object. The NMS algorithm
starts with selecting the box with the highest objectness
score among all, removing all the boxes with high overlap
with the selected box, and repeating these steps iteratively.
However, since the sensing scenario does not require bounding
boxes, we can simplify this step. Instead of running the NMS
algorithm, we only keep the highest objectness confidence.
If there is one confidence value greater than the threshold,
it indicates the presence of at least one object in the prediction.
Therefore, by solely comparing the highest confidence value
with the threshold, we can achieve comparable performance,
resulting in reduced inference time.

3) Model Quantization and Loss Function Customization:
Model quantization is another well-known approach to accel-
erating model inference. It involves using fewer bits to store
model parameters while maintaining nearly the same level
of accuracy [43], [44], [45], [46]. Aggressive quantization
leads to a highly lightweight model, but at the cost of
reduced accuracy compared to the original model. On the other
hand, less aggressive quantized models experience minimal
accuracy loss, but they are not as lightweight as aggressively
quantized models [47]. The amount of tolerable accuracy
loss varies across different tasks. For this work, we utilized
the kmeans-lut quantization which is a Look-up-table (LUT)
based quantization [48], where LUT is generated by k-means
clustering.

Moreover, refining the loss function can enhance the perfor-
mance of the model when subjected to intensive quantization.
The conventional YOLOVS has three loss terms

L= lobj + lets + lobox (D

where lobj, lcis, and lppox are objectness confidence loss,
classification loss, and bounding box loss, respectively. Among
the loss terms, reducing the [op; and Icjs loss terms contributes
to accurate object detection and classification, resulting in
improved performance of our model. In contrast, the Ilppox
loss term, which corresponds to the precise bounding box
position, has a negative impact on our model. This is because
it forces the model to make a compromise during the gradient
descent search, making it more difficult for the model to
converge to the optimal. By removing the lypox term, our
near-sensor model can prioritize the detection of FOIs without
considering the bounding box generation, enabling the model
to achieve a higher degree of quantization while maintaining
a comparable level of accuracy. Therefore, the following loss
function was adapted for training the near-sensor model with
a faster convergence to improve accuracy in our task

L= lobj + Les. (2)
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C. Data Transmission Frequency

The prediction of the near-sensor model regulates the fre-
quency of data transmission, thereby reducing the volume of
data transmitted to the central server. If the camera records
FOlIs, it should be configured to transmit all FOIs to the
server, with a frequency equivalent to the camera’s refresh rate.
Conversely, when the camera captures background frames,
it should lower the data transmission rate to save energy. This
reduced frequency is referred to as the minimum transmission
frequency. The minimum transmission frequency can vary
between zero and the camera’s refresh rate. If the mini-
mum transmission frequency is set to match the camera’s
refresh rate, all frames captured by the camera are forwarded
to the server, indicating that the transmission is unaffected
by the predictions of the lightweight model. In this scenario,
the volume of data transmitted to the server is identical to
that of conventional systems. Conversely, when the minimum
transmission frequency is set to zero, any frames identi-
fied as background frames would not be transmitted to the
server. Fig. 2(c-1) demonstrates the data transmission of our
framework. The blue frames represent the background and
the yellow frames with an elephant depict FOIs. A positive
or negative sign is used to present the near-sensor model
predictions. The frames that are marked with a positive sign
represent the prediction of FOIs. The frames being transmitted
to the server are indicated by the Wi-Fi icon. Only the frames
that are recognized as FOI (frames 2, 3, 13, and 14), are
transmitted.

However, even though the lightweight model displays a
high level of accuracy, it is still inevitable to misdetect some
FOIs as background frames, and these misdetected frames are
all discarded when the minimum transmission frequency is
zero since the data transmission is completely halted. This
wrong discard can be alleviated by increasing the minimum
transmission frequency, which means that even if the frames
are detected as background frames, they are still transmitted to
the server regularly at a lower nonzero frequency. An example
demonstrating the effect of increasing the minimum transmis-
sion frequency is shown in Fig. 2(c-2). When the minimum
transmission frequency equals zero [see Fig. 2(c-1)], all the
frames detected as background are discarded by the intelligent
sensor. This significantly reduces the amount of data transmit-
ted while also losing some useful information (e.g., frames
9-12). To reduce the number of missing FOIs, we increased
the transmission frequency in Fig. 2(c-2). In the figure, the
camera’s refresh rate f, = 30 Hz, and the minimum trans-
mission frequency fii, is set to f/2 (i.e., 15 Hz). Under this
setting, even if the transmission frequency is tuned down, the
sensor would also send one frame every two frames. From
the figure, we can observe that although the prediction of the
lightweight model maintains the same, we transmit more FOIs
to the server (frames 9 and 12).

D. Lazy Sensor Deactivation

Since FOIs contain valuable information, in this work, the
priority is given to transmitting all FOIs rather than mistakenly
transmitting a background frame. Therefore, we define misde-
tections as the FOIs which are not transmitted. Considering

the fact that the frames in a video have temporal correlation,
we assume that if the camera captures an FOI, the following
frame is likely to be an FOI as well. Thus, in order to
reduce the misdetection of FOlIs, inspired by [49], we pro-
posed a scheme for lazy sensor deactivation, which considers
the detection results of neighboring frames. However, unlike
the work in [49] which schedules observation points over the
target execution, our scheme entails monitoring the number
of consecutive background frames detected by the near-sensor
model. The camera maintains a high transmission frequency
until the count (Cp) of consecutive background detection
reaches a predefined number (N). Once the number is met, the
camera tunes down the transmission frequency and resets the
count. The count is reset to zero whenever an FOI is identified.
The adoption of our lazy sensor deactivation scheme enables
the detector to rectify the misdetection of a single frame
by utilizing the adjacent frame’s information. In comparison
to the detector without the lazy sensor deactivation scheme,
utilizing our approach preserves more FOIs since an occa-
sional misdetection cannot affect the transmission frequency.
Decisions for tuning the transmission frequency are made
based on a few adjacent frames. Fig. 2(d) provides an example
that demonstrates the advantages of implementing lazy sensor
deactivation. In this example, the value of N is set to 3. When
compared to the system that does not utilize lazy deactivation
[shown in Fig. 2(d-1)], the implementation of lazy deactivation
[see Fig. 2(d-2)] also transmits the FOIs that are misdetected
by the near-sensor model, as demonstrated by the transmission
of frames 2, 4, and 5.

The utilization of the lazy sensor deactivation scheme incurs
two costs from a storage perspective. The first cost arises when
a negative sample is mistakenly identified as an FOI, leading to
the reset and restart of the count. In the worst case scenario,
a single negative sample misdetection results in storing 2N
additional frames. Nonetheless, this cost is acceptable as our
primary concern lies in preserving the completeness of FOlIs.
The inclusion of a few extra negative samples following FOIs
does not influence the pertinent information we aim to retain.
Moreover, given that N is not an excessively large value, our
storage capacity can handle these rare occurrences.

The second cost inherent in the lazy sensor deactiva-
tion scheme manifests in the recovery of the transmission
frequency to a high level and the subsequent repetition
of counting following each period of frequency decrease.
Given that, a large proportion of frames comprise background
and such frames often appear in the form of segments,
the frames following a low transmission frequency period
are more likely to be background as well. As a result,
in a long sequence of background frames, the detector
stores N more frames after each low transmission frequency
period. To mitigate the redundancy following each period,
we introduced one more count (C») to monitor the num-
ber of consecutive low transmission frequency periods. This
count is used to calculate Nyew for consecutive background
frames

N
Npew = max (1, 272) . 3)
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Upon tuning down the transmission frequency, C» increments
by 1. However, the detection of an FOI interrupts the consec-
utive low transmission frequency periods, resetting the count
Cy to zero. At the start of each period, (3) determines the
number (Npew) for that particular period. Using the count
C, for consecutive low transmission frequency periods grad-
ually decreases the threshold from N to 1 in the long run,
leading to greater storage and energy savings than the vanilla
scheme.

Algorithm 1 outlines the pseudocode of the proposed
scheme, which incorporates minimum transmission frequency
and lazy sensor deactivation. The pseudocodes 6—12 indicate
the code for lazy sensor deactivation and 14-20 indicate the
code for minimum transmission frequency, where f. is the
camera’s refresh rate, fpin is the minimum transmission fre-
quency, and C3 is a count used to determine whether a frame
should be transmitted in a minimum transmission frequency
period.

E. Dual-Camera Collaboration

Recording and analyzing valuable information necessitate
the utilization of high-resolution images, thereby engendering
a predilection for high-resolution cameras. Nevertheless, the
sustained operation of such cameras for near-sensor computing
proves to be energy burdensome, given their elevated power
consumption. Our objective is to furnish dependable perfor-
mance while concurrently minimizing energy consumption.
Therefore, we integrated an additional low-resolution, and
power-efficient, camera into the sensor configuration.

During periods devoid of FOIs, the high-resolution camera
remains inactive to conserve power, while the low-resolution
camera is engaged in executing the near-sensor model, as elu-
cidated in Section II-B. When an FOI is detected by the
near-sensor model utilizing the low-resolution camera, the
high-resolution camera is activated, capturing and subse-
quently transmitting the pertinent frames. During this phase,
the low-resolution camera is deactivated, given the supe-
rior quality of the frames obtained by the high-resolution
camera.

The power consumption breakdown of using dual-camera
collaboration on the sensor side is depicted in Fig. 3.
The incorporation of a power-efficient low-resolution camera
results in significant power savings (highlighted in shadow),
even compared to using our module with a single high-
resolution camera. Given the infrequent occurrence of FOlIs,
our dual-camera collaboration scheme proves to be highly
effective in mitigating energy consumption at the sensor side
over an extended duration.

Note that our dual-camera collaboration requires an addi-
tional low-resolution camera, which increases the cost per
device. The price of an image sensor depends on several
factors, such as resolution, sensor size, technology, dynamic
range, and noise suppression. While a basic CMOS sensor
might cost a few dollars, high-end specialized sensors can be
significantly more expensive, potentially reaching thousands
of dollars. In our system, a basic sensor is sufficient for Fol
detection, resulting in an increase of only 1/1000 to 1/100 over
the original expenses. On the other hand, these basic sensors

Phigh resolution
camera

Piow resolution t
mer:

Pnear sensor
model

Time

No FOI " Fol

No FOI

Energy saving of dual camera collaboration compared to single high-resolution camera

Fig. 3. Energy consumption breakdown on the sensor for the framework
utilizing dual-camera collaboration.

support at least 30 frames per second (frames/s), which is
sufficient for our task and does not impact efficiency.

I1l. EXPERIMENTS

A. Experimental Setup

In this work, we trained and evaluated our framework in
the context of animal detection using the Microsoft Com-
mon Objects in Context (MS COCO) dataset [50], which
is widely used for object detection tasks. In this context,
the images in the dataset were selected and relabeled. The
images containing at least one object belonging to the animal
category are considered FOI and are labeled 1. The remaining
frames are considered background and labeled as 0. The near-
sensor lightweight model detects and transmits FOIs while
filtering out the background frames. The detected frames are
transmitted to a more sophisticated model, in our case a
well-trained Fast R-CNN model, to perform advanced oper-
ations. The framework is implemented using PyTorch [51].
In accordance with the scenario, we ordered the data in the
testset with a specific logic: FOIs and background frames are
presented in a fragmented manner, appearing consecutively
and alternating with each other. The frames in fragments are
ordered randomly.

B. Parameter Evaluation Metrics

The goal of the framework is to detect the animals in all
FOIs while minimizing the system’s energy consumption and
occupying minimal storage. In essence, our module aims to
minimize the misdetection rate, defined as the fraction of FOIs
that are not detected by our near-sensor model

Nmiss
Pryiss = (4)
NFoI1

where npnjgs is the number of missed FOIs by the near-sensor
model and ngog is the total number of FOIs in the stream.
In addition, we prioritized the percentage of transmission
reduction achieved by our module in comparison to send-
ing all frames captured by the camera, which is defined

as
Ntrans

Pirans = (5)

Nframes
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Energy consumption comparison across different platforms
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Fig. 4. Energy consumption of the baselines and the system adopting
our framework. The experiments are conducted with M = 20 (the total
number of the frames nypg = 21336, Ppigs = 3% + 0.6%). The
conventional system implements Fast R-CNN on the server.

where nans is the number of transmitted frames and 7 frames
is the total number of frames in the testset. The energy con-
sumption of the system, including transmission and inference
energy of the Fast R-CNN model, is closely related to the
number of transmitted FOIs; thus the percentage of transmis-
sion reduction serves as a key indicator of the effectiveness of
our framework. In addition to impacting energy consumption,
Puans also reflects the amount of storage that can be saved on
the server.

It is worth emphasizing that our framework involves trade-
offs among its various parameters. Altering the values of
these parameters can lead to different performances with
respect to missed detection frames and the percentage of
transmission reduction. For instance, the most extreme sce-
nario is to maintain the transmission frequency equal to the
camera’s refresh rate and transmit all frames to the server.
Although this setting would result in zero missed detection
frames, it would also lead to the highest possible energy
consumption. In the following, we analyze the influence of
each parameter on the performance of our framework utilizing
the proposed module and discuss the tradeoffs between these
parameters.

This study explores the impact of four key parameters on
our system’s performance.

1) The confidence threshold (7)) of YOLO.

2) The ratio (M) of the number of background frames to
the number of FOlIs.

3) Minimum transmission frequency ( fiin)-

4) The count (N) at which the sensor deactivates.

C. Results

The comparison of the conventional system, the ATC
method, and the system with our framework are shown in
Fig. 4 (the x-axis is illustrated in log scale). For the system
with our framework, we implemented two models (i.e., Mask
R-CNN [52] and Faster R-CNN) on the server, sorted in
descending order of model complexity. For the conventional
system, we used the least complex model, i.e., Fast R-CNN.

Normalized energy consumption breakdown

(a) (b)

94.7%

I server

camera

[ near-sensor model

[l transmission

Fig. 5. Normalized energy consumption breakdown. (a) Conventional
system. (b) ATC method. (c) System with our framework.

For the ATC method, we implemented Mask R-CNN by
adopting the approach described in [53]. This is because,
in ATC methods, all downstream tasks rely on the same
abstract features, requiring the complex server-side model to
perform inference for all tasks. The energy consumptions are
measured on three platforms: GeForce RTX 4090, GeForce
RTX 3090, and AMD Threadripper 5955.

The energy consumption of conventional systems comprises
three components: energy consumption by the sensor, trans-
mission energy, and inference energy consumed at the server.
Both the ATC method and the system with our framework
introduce an additional component: near-sensor model energy
consumption. Despite this additional energy consumption, both
the ATC method and our framework reduce the overall sys-
tem energy consumption. This reduction is achieved because
both methods perform preliminary processing on low-power
devices, which facilitates subsequent inference. As shown
in the figure, our proposed framework helps consume less
than 18% energy in all settings compared to the conventional
system, and less than 25% energy compared to the ATC
method.

Although the ATC method also employs a near-sensor
model as a feature extractor, it transmits the features of
all frames to the server for inference. In contrast to the
ATC approaches, our framework does not transmit abstract
features of frames but only transmits the original frames
containing useful information, therefore, significantly reducing
the number of frames sent to the server. While the size of
data transmitted per frame may be larger compared to the
ATC approaches, our framework involves the transmission
of fewer frames, ultimately resulting in a reduction in the
overall amount of data transmitted. In addition, the complex
ML model on the server in the ATC method only has access
to abstract features, therefore, the downstream tasks, such as
object detection and segmentation, rely on a single model.
However, our near-sensor model sends the original Fols to
the server, allowing for the deployment of complex models

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on May 01,2025 at 12:16:05 UTC from IEEE Xplore. Restrictions apply.



HUANG et al.: INTELLIGENT SENSING FRAMEWORK: NEAR-SENSOR ML FOR EFFICIENT DATA TRANSMISSION

35865

(@)

5 I 53.0% | 81.8%

—

il 0.0% ENSTMIAR:Y 56.6% | 81.9%

3 EA 62.5% | 81.7%

N

68.3% | 82.1%

-

8.7%

15.4% 74.9% | 81.9%

Lazy sensor deactivation (N

Minimum transmission frequency (f

[0} 21.6% 86.1% |90.0%

01 02 03 04 05 06 0.7 08 09
Threshold (T)
(b)
50 8.4 9.9% 26.6% 30.19 51.0% | 67.3%
s
O 30 R % 20.9% 27.4% 30.99 51.6% | 67.7%
[V
5 -
: =
o . . o o Iooks o ~
E 15 G b 17.8% 23.0% b 52.9% | 68.6% =
2 -
. e
= 10 EXEEL 0.1% 54.2% | 69.4% <
2 [
[8]
®©
O
"5 5 6 6 0 57.6% | 71.6%
o
z
3 8% 28.2% 8% 53.6% | 61.3% | 74.1%

o 1 2 3 4 5 6 7 8 1
Minimum transmission frequency (f_, )

Fig. 6.

min)

o o o o o o o
w N o o ~ o ©

o
(N

—1 100%

11.7% 18.5%  28.2%

190%
26.5% 50.1%
180%

60.0%

10.1% 66.8%

71.2%

15.7% 63.0% | 75.3%

40%

15.5%  24.0% 68.5% | 81.9%

30%

17.3% 23.8% 72.7% | 87.3%

20%

24.1% 77.4% | 93.5%

10%

17.5%

24.5% 78.9% | 100.0%

0%

03 04 05 06

Threshold (T)

0.7 08 0.9

—1 100%
50.0% | 66.7%
190%

50.7% | 67.2%
180%

52.1% | 68.1%

52.9% | 68.6% 1 60%

53.4% | 69.0%

53.9% | 69.2%

54.1% | 69.4%

20%

54.5% | 69.6%

10%

55.0% | 69.9%

0%
o 1 2 3 4 5 6 7 8 11
Minimum transmission frequency (fmin)

Performance evaluation. (a) Heatmaps that display the miss rate Ppjgs With different parameter combinations (threshold (7), the ratio

(M) of the number of background frames to the number of FOls, minimum transmission frequency (fnin), and the count (N) at which the sensor
deactivates). (b) Heatmaps that display the percentage of transmission Pyang With different parameter combinations.

specifically tailored to each task. This results in superior
performance for each individual task.

The normalized energy consumption breakdown is depicted
in Fig. 5. The conventional system, which consumes the most
energy, is normalized as 1, with the others adjusted accord-
ingly. Despite our framework introducing a negligible energy
portion to the system (near-sensor model), it reduces the need
for server-side inferences, resulting in a substantial decrease in
overall system energy consumption compared to both the con-
ventional system and the ATC method. It is capable of saving
87% on the energy consumption of the conventional system
and keeps valuable information. While the ATC method eases
server-side inferences, the number of inferences remains high,
leading to a higher server energy consumption compared with

our system. On the other hand, our dual-camera collaboration
reduces camera energy consumption compared to both the
conventional system and the ATC method.

D. Parameter Impact Analysis

Fig. 6(a) and (b) presents heatmaps illustrating the impact
of the key parameters on Ppjss and Pyans. For both metrics,
a lower value indicates better performance. Regarding Ppiss,
a higher value of T leads to a notable increase in the number
of missed FOIs. However, incorporating a lazier deactivation
scheme and increasing the minimum transmission frequency
can mitigate the adverse effects associated with a higher value
of T. When examining the left panel in Fig. 6, N exerts
a dominant influence on Ppjis. As N increases, accuracy
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Energy consumption comparison across different values of M
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Fig. 7. Energy consumption comparison across different values of M.
All servers are equipped with GeForce RTX 3090.
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Fig. 8. Spearman coefficient of the parameters. The magnitude of the
coefficient reflects the strength of the association between Ppigs. Pirans
and the variables (T: the confidence threshold of the model, M: the ratio
of the number of background frames to the number of FOls, f: minimum
transmission frequency, and N: The count at which sensor deactivates).

improves significantly, leading to a decrease in the percentage
of misdetections. Conversely, raising the minimum transmis-
sion frequency has a predominantly negative impact on Piang.
However, adopting a high value of T can reduce the amount
of data transmission.

We also examined the relationship between M and Pians
and found that our framework exhibits a clear advantage as
M increases, in Fig. 7. Specifically, as M increases from
5 to 50, our approach can save energy ranging from 65% to
92% compared to the conventional system. In contrast, the
energy consumption of both the conventional method and the
ATC method increases proportionally as the amount of data
Srows.

The Spearman correlation coefficients [54] of the parameters
are presented in Fig. 8. In the figure, a positive coefficient
indicates a positive correlation between two variables, while
a negative coefficient indicates a negative correlation. The
magnitude of the coefficient reflects the strength of the associ-
ation between the variables. Specifically, T shows a significant
positive correlation with Prjg, indicating that as T increases,
Pniss also increases. Conversely, N exhibits a significant
negative correlation with P, indicating that higher values of
N are associated with lower values of Ppjss. On the other hand,

TABLE |
MODEL PARAMETERS
Model Name | No. of Parameters GFLOPS
YOLOVS n 1,765,270 (100%) 4.2
YOLOV5 nm 433,190 (24.5%) 1.1
YOLOVS5 ns 108,806 (6.2%) 04

the coefficient between N and Pyqpg is only 0.044, suggesting
that changes in N have little influence on the percentage of
data transmission. This observation aligns with our analysis
in Section II-D. Moreover, as the near-sensor model operates
continuously, the energy reduction in our framework primarily
stems from the decrease in data transmission and the resulting
reduction in server-side inference. Given that N has a negli-
gible effect on Py, it also has minimal impact on overall
energy consumption. In addition, an increase in f corresponds
to an increase in Pyqpns, demonstrating a strong direct positive
correlation.

E. Model Customization Analysis

We compared the performance of various lightweight
near-sensor models mentioned in Section II-B1. We evaluated
the tradeoff between the sensitivity and specificity of these
models using receiver operating characteristic (ROC) curves
and area under the curve (AUC), as illustrated in Fig. 9(a).
In addition, Table I displays the number of parameters and
GFLOPS of each model. While the AUC of YOLOvS5ns is
only slightly lower than that of YOLOv5n, the reduction
in model size is significant, with the number of parame-
ters decreasing to only 6.2% of the latter. Furthermore, the
detrimental effect resulting from the reduction in model size
can be alleviated by incorporating the lazy sensor deac-
tivation scheme and elevating the minimum transmission
frequency.

We also investigated the influence of quantization on the
model performance. YOLOvSn trained on the original loss
is quantized into different bit precisions, i.e., 16-bit float
point (fp16), 8-bit integer (int§), 5-bit integer (int5), and 4-bit
integer (int4). The performance of both the fpl6 and int8
quantized models remains unaffected. However, as illustrated
by Fig. 9(b), when we further reduce bit precision to int5,
a slight degradation in AUC is observed (from 0.97 to 0.96),
and a degradation in performance is noticeable when the model
is quantized to int4 (from 0.97 to 0.93).

As discussed in Section II-B3, the simplified loss function
reduces task difficulty, allowing the model to become more
lightweight or be more aggressively quantized. Fig. 9(c) illus-
trates the impact assessment of our tailored loss function,
demonstrating that with the tailored loss, the model can
achieve intensive quantization while maintaining comparable
performance levels. The model trained on the adapted loss
achieves a higher AUC score under the same level of aggres-
sive quantization (int4 quantization) compared to the model
trained on the original loss. It achieves the same AUC as the
model training on the original loss with the precision float

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on May 01,2025 at 12:16:05 UTC from IEEE Xplore. Restrictions apply.



HUANG et al.: INTELLIGENT SENSING FRAMEWORK: NEAR-SENSOR ML FOR EFFICIENT DATA TRANSMISSION

35867

(@) (b) (c)
1 A e e =m === - T e e — L ————
-=-=z===ZC°C= I i e P Ser
PSR R PPl AP
0.8 1 = et v,” 1,7
. : o I I/ 7] :
~ I
& 4 I /]
Eosi W/
2 ] I I
B [} 1 1
2041 I I
2 1 I |
ol | = = YOLOV5 n, AUC=0.97 I = = {p32 original loss, AUC=0.97 1
’ = = YOLOVS nm, AUC=0.94 int5 original loss, AUC=0.96 = = int4 original loss, AUC=0.93
1 = = YOLOVS ns, AUC=0.89 1 = = int4 original loss, AUC=0.93 1 = = int4 adapted loss, AUC=0.97
0 ! ‘ : ‘ : ‘ ! ‘ ‘ ‘ ‘ 1 ‘ ‘ ‘ . ‘
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

1 - Specificity (FPR)

1 - Specificity (FPR)

1 - Specificity (FPR)
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TABLE Il
DESIGN ACCELERATION ON AMD-XILINX ZCU104
\ LUT FF BRAM URAM DSP
Total 84.9K 146.5K 224 40 844
Available 230.4K  460.8K 312 96 1728
Utilization | 36.87% 31.80% 71.79% 41.67% 48.84%
(a) ey

® FPGA

@ Wi-Fi adaptor

® Low resolution camera
@ High resolution camera

Fig. 10.  Experiment setup. (a) Sensor side setup. (b) Accelerator
placement layout on AMD Xilinx ZCU104 FPGA.

fp32. Since fp32 requires 32 bits (4 bytes) per parameter,
while int4 only requires 4 bits (0.5 bytes) per parameter, jointly
adopting the quantization and the customized loss can make
the model 8x smaller without losing performance.

F. Hardware Implementation

The setup on the sensor side is depicted in Fig. 10(a).
A high-resolution camera (@), a low-resolution camera (@),
and a Wi-Fi adaptor (@) are connected to the FPGA board
(D) via cable to capture and transmit the frames to the server.
In addition, a screen is utilized for visualizing the information
captured by the camera.

To meet the requirements of the proposed scenario, the
near-sensor model is deployed on a resource-limited low-
power edge-level FPGA: AMD-Xilinx Zynq UltraScale+
MPSoC ZCU104 (ZCU104) [55]. FPGAs are semiconductor
devices that are based on a matrix of configurable logic
blocks (CLBs) connected via programmable interconnects.

Through hardware programming (such as Verilog or HLS),
we can implement an ML accelerator on FPGA. The host
program, executed on the ARM Cortex-AS53 processor on the
ZCU104’s processing system (PS), was developed in Python.
The communication between the PS and the programmable
logic (PL) is established through the AMBA Advanced eXten-
sible Interface (AXI). Here, the PS side is a host ARM
processor and the PL side is a reconfigurable logic. Our archi-
tecture design is implemented on the top of PL (reconfigurable
logic).

To leverage hardware acceleration, we utilized the
AMD-Xilinx deep learning unit (DPU) intellectual property
(IP) as our hardware accelerator on the ZCU104’s PL side.
Our model was integrated into the DPU using the Vitis Al
framework [56]. Vitis Al is an ML compiler framework devel-
oped by AMD-Xilinx that automatically maps ML operations
(such as convolution and fully connected layers) into Xilinx
hardware IP. The Vitis Al version that we choose is 2.0.
Furthermore, the cameras are connected to the host ARM
CPU, which facilitates communication with the cloud server.
TCP protocol is used as the communication protocol. Table II,
we present the FPGA resource utilization result. In Fig. 10(b),
we present the accelerator placement layout on AMD Xilinx
ZCU104 FPGA. The overview of our hardware platform is
shown in Fig. 11.

Considering the constraints of resources such as power
and space, we sometimes need to reduce the acceleration
performance of deep processing units (DPU) [57], [58]. For
instance, in Table II, we select the parallelism for input,
output, and pixel processing of convolution operations to
be 16, 16, and 8, respectively. If the goal is to reduce
power consumption and resource utilization, one strategy is to
decrease computation parallelism. Another strategy involves
employing knowledge distillation and quantization to mini-
mize model size, thereby reducing the computational overhead
of edge hardware accelerators [5], [59]. In this work, we con-
centrate on accelerating the near-sensor framework on edge
FPGAs. However, we may also consider other Al computing
platforms such as Google Edge TPU and NVIDIA Jetson
Nano [60]. These chips facilitate easier programming of ML
models but compromise the capability for hardware resource
reconfiguration.
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G. Other Applications

In addition to visual monitoring, our proposed framework
can be readily applied for multiple other tasks, such as audio
processing and radar monitoring.

For the audio processing task, we used the UrbanSound8K
dataset [61], a public audio dataset for urban sound classifi-
cation applications. It contains ten classes, including car horn,
gunshot, and dog bark. We focused on the gunshot and siren
classes as the audio of interest. The dataset was reorganized
and relabeled following the strategy outlined in Section III-A.
The near-sensor model detects the audio of interest, while the
server model classifies the specific class of that audio segment.
A frequency-domain filter bank is applied to the audio signals,
which are windowed in the time domain, to generate Mel
spectrograms. These spectrograms are then fed into a CNN for
classification. Compared to conventional methods, the system
adopting our framework maintains comparable accuracy while
consuming only 25% of the energy.

For radar monitoring, we evaluated the framework using the
CRUW dataset [62], a public camera-radar dataset designed
for autonomous vehicle applications. The radar images in this
dataset are captured by the TI AWRI1843, which operates at
approximately 30 W [63]. The dataset was processed following
the procedure outlined in Section III-A. Under the same
deployment settings, the system using our framework achieved
comparable performance while consuming only 18% of the
energy required by the conventional system.

H. Security and Privacy Analysis

While our framework offers advantages such as reduced
energy consumption and minimized bandwidth requirements,
it necessitates an investigation of its security and privacy impli-
cations. Security considerations encompass data encryption
both in transit and at rest. On the other hand, privacy con-
cerns entail data minimization through near-sensor processing
and anonymization techniques, user consent, and transparency
regarding data usage. Compared with ATC methods that
transmit abstract features, our framework transmits the original
frames, thus sacrificing data encryption during transmission.
However, it’s worth noting that the conventional system also
lacks data encryption during data transmission. This weakness
can be mitigated by employing encryption techniques tailored
specifically to image data. In addition, both ATC methods
and our framework introduce an extra near-sensor model
component. Since the model is situated near the sensor and
only processes incoming data locally, it does not leak any
information, ensuring data safety.

IV. LIMITATIONS
While our framework is highly effective, there are a few
limitations to consider for further improvements in future
works.

1) Initial Training and Labeled Data Requirement: Deploy-
ing the framework necessitates training the near-sensor
model with labeled data. In some scenarios, obtaining
labeled data may be challenging, or it might be difficult
to fully cover the data distribution of sensor data. This

introduces an initial cost associated with the deployment
of the near-sensor module. However, after this initial
cost, the framework can save substantial energy, espe-
cially on the server side.

2) Accuracy Tradeoffs: Due to the lightweight nature of the
near-sensor model, its accuracy may be lower than that
of the original, more complex model. Although we have
proposed schemes such as lazy deactivation and main-
taining a nonzero transmission frequency to mitigate
possible misdetections, the near-sensor model’s accuracy
is still slightly lower than the server-side model. While
this loss of accuracy is negligible in many scenarios,
it becomes critical in applications where high accuracy
is paramount. In such cases, the near-sensor model may
need to be less lightweight, which would reduce the
energy savings.

3) Environmental Constraints: The performance of our
framework is dependent on the ratio of background
frames to FOIs. In environments where this ratio is
lower, the energy savings and efficiency improvements
may not be as significant.

In future work, we aim to enhance the performance of the
near-sensor model while maintaining its low energy consump-
tion and reducing the initial deployment cost of the framework.

V. CONCLUSION

In this article, we introduce a novel framework for intelli-
gent sensing that addresses some of the challenges associated
with analyzing large-scale sensor data using complex ML
models. Our framework is designed based on the observa-
tion that in many IoT applications, only a small proportion
of sensor data conveys information of interest. Therefore,
our framework intelligently selects the data generated by
the sensors and only transmits and analyzes the data with
useful information. It employs a near-sensor model to detect
information of interest and control the data transmission,
and a complex model located in the server to implement
more sophisticated inference. The near-sensor model and the
minimum transmission frequency are beneficial to reduce the
energy and storage requirements, with a focus on decreasing
the transmission frequency when no useful information is
detected.

We set up the system with our framework on a low-power
FPGA and evaluated the performance. The experimental
results demonstrate that our framework significantly reduces
total energy consumption and storage usage to less than
10% of that of conventional systems while retaining over
95% of useful information. Furthermore, we customized the
model architecture and the loss function to suit our specific
scenario and implemented quantization to achieve additional
model compression. By jointly applying the customized loss
function and quantization, the near-sensor model achieves an
8x reduction in size without any loss in performance.

We also investigated the key factors influencing the frame-
work’s effectiveness. Instead of completely halting data
transmission when no Fol is detected, we maintain a nonzero
minimum transmission frequency. This ensures regular, low-
frequency transmission to the server even in the absence of

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on May 01,2025 at 12:16:05 UTC from IEEE Xplore. Restrictions apply.



HUANG et al.: INTELLIGENT SENSING FRAMEWORK: NEAR-SENSOR ML FOR EFFICIENT DATA TRANSMISSION

35869

Wi-Fi adaptor

Vitis Al

n1n1nﬂnn|n1
aggiae

N
DPY "4~

Control & Visualization

Fig. 11. Hardware platform overview.

Algorithm 1 Intelligent Data Transmission
Require: YOLO prediction(y), Lazy sensor deactivation
count(N), Camera refresh rate( f ), Minimum transmission
frequency( finin), C1, C2,C3 =0,0,0
Ensure: Transmission decision(D)
1: if y == 1 then
2: C1,Cp,C3=0,0,0

3: return D =1

4: else

5 if C3 == 0 then

6: Ci=Ci+1

7: if C; < max(1, 2%) then
8 return D =1

9: else

10: Ci,Cr,C3=0,C0+1,C3+1
11: return D =0

12: end if

13: else

14: C3=C3+1

15: if C3 == f;/fmin then
16: C;,C3=C1+1,0
17: return D =1

18: else

19: return D =0

20: end if

21: end if

22: end if

Fols, thereby benefiting the integrity of the useful information.
In addition, our lazy sensor deactivation scheme leverages
the temporal correlation between adjacent frames, achiev-
ing a balance between resource consumption and accuracy.
Furthermore, our proposed framework demonstrates greater
effectiveness as the ratio of background frames to Fols
increases.

In addition to the evaluations under the visual monitoring
scenario, we extended the framework to other tasks, e.g.,
audio processing and radar monitoring. The results show the
versatility and applicability of our framework under different
scenarios.

We also discussed the limitations of our current framework
and outlined potential directions for future improvements.

DATA AVAILABILITY STATEMENT

The dataset Microsoft COCO object detection for this study
can be found in [50]. The raw data supporting the conclusion
of this article will be made available by the authors, without
undue reservation.

APPENDIX
SUPPLEMENTARY MATERIAL

Video Demo

Our research includes a video demonstration showcasing
the results. In the demo, our model detects the animals
appearing in the frames. The video can be accessed
at the following link: https://drive.google.com/file/d/1-
IpRLfd8Ym38p8APCJIgxNq5igiK5ARa5/view Tusp=sharing.
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