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Abstract—Applications in the Internet of Things (IoT) uti-
lize machine learning (ML) to analyze sensor-generated data.
However, a major challenge lies in the lack of targeted intel-
ligence in current sensing systems, leading to vast data
generation and increased computational and communication
costs. To address this challenge, we propose a novel sensing
framework to equip sensing systems with intelligent data
transmission capabilities by integrating a highly efficient ML
model placed near the sensor. This model provides prompt
feedback for the sensing system to transmit only valuable
data while discarding irrelevant information by regulating
the frequency of data transmission. The near-sensor model
is quantized and optimized for real-time sensor control.
To enhance the framework’s performance, the training pro-
cess is customized, and a “lazy” sensor deactivation strategy
utilizing temporal information is introduced. The suggested
framework is orthogonal to other IoT frameworks and can be considered as a plug-in for selective data transmission.
The framework is implemented, encompassing both software and hardware components. The experiments demonstrate
that the framework utilizing the suggested module achieves over 85% system efficiency in terms of energy consumption
and storage, with negligible impact on performance. This framework has the potential to significantly reduce data output
from sensors, benefiting a wide range of IoT applications.

Index Terms— Energy efficiency, intelligent sensing, Internet of Things (IoT), machine learning (ML), near-sensor
computing.

I. INTRODUCTION

T
HE prevalence of ubiquitous sensors is currently expe-

riencing an exponential surge, both in terms of their

quantity and the vast amount of data they generate. Despite

the rapid growth, existing approaches to sensor data processing

and transmission cannot keep pace due to their algorithmic and
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architectural limitations [1]. In numerous Internet of Things

(IoT) applications, data collected by sensors are analyzed using

machine learning (ML) models [2], [3], [4], [5]. As the volume

of data continues to grow, many applications opt to send the

data to more computationally powerful nodes, such as edge

or cloud computing nodes, to execute the learning algorithms.

In either scenario, a large volume of data is transmitted at

a high rate to ensure that all necessary information is cap-

tured and processed for various tasks. The significant amount

of data conveyed in both scenarios places high demands

on energy and storage resources, resulting in considerable

resource pressure and wastage [6]. This is especially prob-

lematic for applications that require a relatively complex and

expensive ML model. Fig. 1 depicts a typical IoT system for

video monitoring systems, where dense data generated by the

camera is continuously analyzed using complex ML models.

In the system, visual signals captured by surveillance cameras

are transmitted continuously to a costly ML model, which

may be hosted on a central server, such as a cloud or edge

computing node. Depending on the intended purposes, the ML
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Fig. 1. Application scenarios of an intelligent system.

model performs various tasks, including but not limited to

classification, object detection, and segmentation [7], [8].

Many studies attempted to alleviate the energy and storage

pressures in IoT applications from multiple perspectives, e.g.,

computing offloading, resource allocation, and so on. Tradi-

tional methods have shown substantial progress in tackling

these issues. Certain research efforts leveraged the Lyapunov

optimization algorithm [9] to identify the optimal deci-

sion [10]. Others framed resource allocation and computing

offloading as optimization challenges [11], [12], [13], [14],

[15]. However, these approaches exhibit certain limitations.

First, they require knowledge of the underlying model, which

proves challenging due to the intricate and dynamic nature

of IoT systems. Second, they are vulnerable to being stuck

at local optima. Some research [16], [17], [18], [19], [20]

have introduced intelligent offloading strategies grounded in

deep learning (DL). Furthermore, some research have placed

emphasis on the optimization of hardware structures, thereby

enhancing the efficiency of edge computing [21], [22], [23].

Different from the work above, which uses ML/DL algo-

rithms to automate offloading and resource allocation, some

research proposes solutions to reduce data generated by

the sensor. For example, in the realm of computer vision,

analyze-then-compress (ATC) approaches present an alterna-

tive strategy in which front-end devices extract and transmit

features to a central server. Depending on the specific sce-

nario in which it is being applied, ATC approaches utilize

a variety of traditional feature extraction algorithms, ranging

from handcrafted methods (e.g., [24], [25], [26]) to infor-

mation theory-based methods [27], [28]. In recent years,

more advanced deep learning-based methods have garnered

significant attention. Several early layers of DNN are deployed

on the front-end devices for extracting highly compact and rep-

resentative features. In the face recognition task, for example,

the face of an individual can be represented by features with

several hundred dimensions [29], [30], [31]. By representing

data in such features, the amount of data that needs to be

transmitted can be significantly decreased. In addition, only

a few lightweight operations are required to be performed on

the central server.

However, a notable limitation of DNN-based ATC methods

is their restricted capacity for generalization. Given the metic-

ulous design of DNN architectures, the features they extract

and transmit to the central server are often highly abstract

and tailored specifically to the intended task. However, visual

signal carrying pertinent information typically undergoes a

sequence of downstream tasks for comprehensive analysis.

Consequently, the inherent challenge arises from the deficiency

in generalization, rendering it difficult to design a backbone

network capable of extracting features suitable for all such

tasks. Moreover, in numerous scenarios, it becomes useful

to retain visual signals for subsequent analysis or future

reference. The transmission of excessively abstract features

significantly complicates the process of reconstructing the

original visual signal on the server side. Although front-end

devices possess the capability to store the original signals, their

constrained storage capacity poses a challenge.

In addition, all the efforts mentioned above, whether from

an IoT or ML perspective, still need to process all the data

generated from the sensor, neglecting the fact that in many

IoT applications (e.g., fire alarm, wildlife monitoring, crime

surveillance [32], and healthcare [33]), only a small fraction of

sensor activity typically contains valuable information. Hence,

it is unnecessary to run a costly service, such as a large-scale

DNN model, that handles a continuous and complete stream

of sensor data, whether on the edge or in the cloud. This is

because the service specifically targets only that small fraction

of valuable data, yet it still requires processing substantial

amounts of irrelevant information.

Spiking neural networks (SNNs) and event cameras, on the

other hand, generate data only when there is a change in the

scene, reducing the amount of data needed for transmission.

However, in a static scene, an event camera would barely

generate any data, effectively rendering it blind to stationary

information. This limitation restricts its applicability, partic-

ularly for tasks involving slowly moving objects. Moreover,

the spatial resolution of event cameras is generally lower

compared to high-resolution frame-based cameras, which can

be a limiting factor for applications that require detailed spatial

information. Event cameras can also be sensitive to noise,

especially in low-light conditions, resulting in spurious events

that add complexity to the data processing. Last but not least,

the price of event cameras is generally higher than that of

traditional RGB cameras, which can limit their applicability

for widespread deployment.

Observing the limitations of the approaches previously

discussed, in this article, we rethink and redesign the sensing

system, proposing a new framework that is orthogonal to

previous research directions. Rather than reducing the data

representation or determining where and how data should be

relocated for service execution, our framework focuses on

reducing the amount of data sent out from the sensor side by

identifying valuable information. Our framework, acting as a

“filter,” can be applied before any aforementioned approaches,

and easily be integrated into any system as a plug-in.

Our proposed framework consists of a few components.

First, we deploy a lightweight model near the sensor to detect

whether a frame contains useful information, which we refer to

as a frame of interest (FOI) and only send out those FOIs. The

model helps mitigate the huge amount of unnecessary analysis

of costly ML models over the central server. Although this

process can also be deployed before the costly ML models

at the same place, our near-sensor model offers substantial

savings in transmission costs, encompassing energy, band-

width, and more. To enable intelligent sensing, the near-sensor

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on May 01,2025 at 12:16:05 UTC from IEEE Xplore.  Restrictions apply. 



35860 IEEE SENSORS JOURNAL, VOL. 24, NO. 21, 1 NOVEMBER 2024

Fig. 2. Motivation and design of our proposed intelligent sensing module. (a) General system framework of conventional systems and our system.
(b) Visualization of the data transmission in our system. (c) Illustration of minimum data transmission frequency (denoted by fmin) in our system. fr
denotes the camera’s refresh rate. (d) Illustration of lazy sensor deactivation scheme in our system, N is the number for deactivation count.

model should be fast enough to process frames in real-time

and provide feedback. With the help of this feedback, our

framework produces selective and sparse data. Furthermore,

we enhance the overall performance of the framework by

introducing several effective schemes to mitigate potential

misdetections of the lightweight model, which we explore in

Section II.

In this work, we describe the following contributions.

1) We propose a new framework that improves IoT system

energy and storage efficiency orthogonal to the previous

approaches. It can be readily inserted into any existing

system, serving as an intelligent data generation “filter.”

We call the sensor exploiting this framework an “intel-

ligent sensor” in the rest of the article.

2) To illustrate our framework, we design a modified DNN

model tailored to near-sensor computing.

3) We introduce schemes for alleviating possible misde-

tections of the near-sensor model, including nonzero

minimum transmission frequency and lazy deactivation.

We also conduct a thorough investigation into their

impact on overall system performance.

4) We implement the framework encompassing both

software and hardware components. Our experiments

demonstrate that utilizing our intelligent framework

leads to a substantial reduction in energy and storage

consumption in sensing systems.

II. METHODS

A. Framework Overview

Fig. 2(a) illustrates the framework of a conventional system

and our framework. In Fig. 2(a-1), the conventional sensor

captures and transmits all the frames to the costly models,

regardless of the presence of useful information in the frames.

On the contrary, the intelligent sensor equipped with our

framework, as shown in Fig. 2(a-2), utilizes a lightweight

model near the sensor to detect and control the FOI trans-

mission. The model is deployed on an edge computing device

integrated into the camera, connecting to the image sensor.

Specifically, the camera captures a continuous stream of

frames, which are then fed to the lightweight model for real-

time predictions. With the presence of FOI, the camera raises

the data transmission frequency, and the frames are transmitted

to the central server for more sophisticated operations; if the

frame is detected as background (with no interest), the camera

will turn off the data transmission. Fig. 2(b) provides a visu-

alized example, where the transmitted frames are presented in

color while the discarded frames are shaded in gray. The sys-

tem adopting our framework, as demonstrated in Fig. 2(b-2),

outperforms conventional systems depicted in Fig. 2(b-1) by

exclusively transmitting frames containing a zebra, resulting

in a reduction of storage and energy consumption by half in

this particular instance.

This is because transmitting only the necessary FOIs to the

central server reduces the number of inferences needed by the

complex ML model on the central server, which is the primary

source of energy consumption. This reduction is achieved

while introducing only a negligible energy overhead associated

with the near-sensor model. This is in contrast to previous

approaches that would transmit all frames to the server based

on the camera’s refresh rate, resulting in significant energy

waste due to performing inference on numerous unnecessary

frames.

In this work, we concentrate on the effect of our pro-

posed framework on energy consumption reduction. Each
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element in the framework is elaborated on in the following

sections.

B. Near-Sensor Model

The near-sensor model is tasked with distinguishing FOIs

from all other frames. One way to tackle this problem is

by using a classifier. However, the frames captured by a

sensor may contain multiple objects of interest with varying

scales and positions, while classifiers are typically trained on

images that contain a single, centered object (such as those

found in CIFAR-10, CIFAR-100 [34], and ImageNet [35]).

These classifiers have limitations in detecting multiple objects

with varying scales and positions. As a result, a deep object

detection model is often employed instead. Among different

object detection models, YOLO [36], a single-stage detector,

is selected. Compared with two-shot detectors (e.g., R-CNN,

Fast R-CNN, Faster R-CNN, and R-FCN [37], [38], [39],

[40]), YOLO is lightweight, faster, and with comparable

accuracy in a suitable scenario [41], [42]. These features make

YOLO a good candidate for being embedded into the sensor.

The output layer of YOLO contains bounding box pre-

dictions concatenated to the class prediction and objectness

confidence. However, the goal of our intelligent sensor is

to detect the existence of objects of interest, regardless

of their position in the frame. Therefore, we can only

keep the objectness confidence in the output, which can be

used further to determine FOI. We set a threshold for the

objectness confidence, and only the frames with confidence

exceeding this threshold are transmitted. As increasing the

threshold, the detection becomes stricter, resulting in fewer

frames being considered FOI. Our framework’s definition

allows us to customize the YOLO model in the following

ways.

1) Model Optimization: The architectures of the YOLO

series contain several repetitive blocks. Although these blocks

contribute to the model capacity, they make the model

power-hungry and slower during inference. For example, the

YOLOv5 model family has five variations: x-large, large,

medium, small, and nano. While each model shares the same

structure, they differ in the network’s depth and the number

of filters in different layers (width). Since our model does not

predict bounding boxes, we can modify its depth and width to

create a more lightweight model that still achieves comparable

performance on our task. In other words, in contrast to the

YOLO model, which predicts both the class and location of

an object, our proposed near-sensor model requires only class

prediction. This simplification allows us to reduce the number

of model parameters without compromising the accuracy of

the class prediction task.

In our experiments, we utilized three YOLO-based models,

namely, YOLOv5n, YOLOv5nm, and YOLOv5ns. YOLOv5n

stands for Yolov5 nano, which is the smallest intro-

duced YOLOv5 model. By modifying the depth and width

of the YOLOv5n, we achieved more lightweight models,

which we called nano-medium (YOLOv5nm) and nano-small

(YOLOv5ns). In YOLOv5nm, the depth and width are half of

the depth and width of the YOLOv5n, and in YOLOv5ns, this

ratio is one-third for depth and one-fourth for width.

As mentioned earlier, the output of the YOLO model not

only contains confidence but also concatenates the bound-

ing box information, which is not required in our proposed

module. Consequently, we can remove the part of the model

associated with the bounding box during the inference to

reduce the model size.

2) Inference Simplification: YOLO utilizes a nonmax sup-

pression (NMS) algorithm as the final step to pick the most

appropriate bounding box for the object among all of the

predicted boxes for that specific object. The NMS algorithm

starts with selecting the box with the highest objectness

score among all, removing all the boxes with high overlap

with the selected box, and repeating these steps iteratively.

However, since the sensing scenario does not require bounding

boxes, we can simplify this step. Instead of running the NMS

algorithm, we only keep the highest objectness confidence.

If there is one confidence value greater than the threshold,

it indicates the presence of at least one object in the prediction.

Therefore, by solely comparing the highest confidence value

with the threshold, we can achieve comparable performance,

resulting in reduced inference time.

3) Model Quantization and Loss Function Customization:

Model quantization is another well-known approach to accel-

erating model inference. It involves using fewer bits to store

model parameters while maintaining nearly the same level

of accuracy [43], [44], [45], [46]. Aggressive quantization

leads to a highly lightweight model, but at the cost of

reduced accuracy compared to the original model. On the other

hand, less aggressive quantized models experience minimal

accuracy loss, but they are not as lightweight as aggressively

quantized models [47]. The amount of tolerable accuracy

loss varies across different tasks. For this work, we utilized

the kmeans-lut quantization which is a Look-up-table (LUT)

based quantization [48], where LUT is generated by k-means

clustering.

Moreover, refining the loss function can enhance the perfor-

mance of the model when subjected to intensive quantization.

The conventional YOLOv5 has three loss terms

L = lobj + lcls + lbbox (1)

where lobj, lcls, and lbbox are objectness confidence loss,

classification loss, and bounding box loss, respectively. Among

the loss terms, reducing the lobj and lcls loss terms contributes

to accurate object detection and classification, resulting in

improved performance of our model. In contrast, the lbbox

loss term, which corresponds to the precise bounding box

position, has a negative impact on our model. This is because

it forces the model to make a compromise during the gradient

descent search, making it more difficult for the model to

converge to the optimal. By removing the lbbox term, our

near-sensor model can prioritize the detection of FOIs without

considering the bounding box generation, enabling the model

to achieve a higher degree of quantization while maintaining

a comparable level of accuracy. Therefore, the following loss

function was adapted for training the near-sensor model with

a faster convergence to improve accuracy in our task

L = lobj + lcls. (2)
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C. Data Transmission Frequency

The prediction of the near-sensor model regulates the fre-

quency of data transmission, thereby reducing the volume of

data transmitted to the central server. If the camera records

FOIs, it should be configured to transmit all FOIs to the

server, with a frequency equivalent to the camera’s refresh rate.

Conversely, when the camera captures background frames,

it should lower the data transmission rate to save energy. This

reduced frequency is referred to as the minimum transmission

frequency. The minimum transmission frequency can vary

between zero and the camera’s refresh rate. If the mini-

mum transmission frequency is set to match the camera’s

refresh rate, all frames captured by the camera are forwarded

to the server, indicating that the transmission is unaffected

by the predictions of the lightweight model. In this scenario,

the volume of data transmitted to the server is identical to

that of conventional systems. Conversely, when the minimum

transmission frequency is set to zero, any frames identi-

fied as background frames would not be transmitted to the

server. Fig. 2(c-1) demonstrates the data transmission of our

framework. The blue frames represent the background and

the yellow frames with an elephant depict FOIs. A positive

or negative sign is used to present the near-sensor model

predictions. The frames that are marked with a positive sign

represent the prediction of FOIs. The frames being transmitted

to the server are indicated by the Wi-Fi icon. Only the frames

that are recognized as FOI (frames 2, 3, 13, and 14), are

transmitted.

However, even though the lightweight model displays a

high level of accuracy, it is still inevitable to misdetect some

FOIs as background frames, and these misdetected frames are

all discarded when the minimum transmission frequency is

zero since the data transmission is completely halted. This

wrong discard can be alleviated by increasing the minimum

transmission frequency, which means that even if the frames

are detected as background frames, they are still transmitted to

the server regularly at a lower nonzero frequency. An example

demonstrating the effect of increasing the minimum transmis-

sion frequency is shown in Fig. 2(c-2). When the minimum

transmission frequency equals zero [see Fig. 2(c-1)], all the

frames detected as background are discarded by the intelligent

sensor. This significantly reduces the amount of data transmit-

ted while also losing some useful information (e.g., frames

9–12). To reduce the number of missing FOIs, we increased

the transmission frequency in Fig. 2(c-2). In the figure, the

camera’s refresh rate fr = 30 Hz, and the minimum trans-

mission frequency fmin is set to fr/2 (i.e., 15 Hz). Under this

setting, even if the transmission frequency is tuned down, the

sensor would also send one frame every two frames. From

the figure, we can observe that although the prediction of the

lightweight model maintains the same, we transmit more FOIs

to the server (frames 9 and 12).

D. Lazy Sensor Deactivation

Since FOIs contain valuable information, in this work, the

priority is given to transmitting all FOIs rather than mistakenly

transmitting a background frame. Therefore, we define misde-

tections as the FOIs which are not transmitted. Considering

the fact that the frames in a video have temporal correlation,

we assume that if the camera captures an FOI, the following

frame is likely to be an FOI as well. Thus, in order to

reduce the misdetection of FOIs, inspired by [49], we pro-

posed a scheme for lazy sensor deactivation, which considers

the detection results of neighboring frames. However, unlike

the work in [49] which schedules observation points over the

target execution, our scheme entails monitoring the number

of consecutive background frames detected by the near-sensor

model. The camera maintains a high transmission frequency

until the count (C1) of consecutive background detection

reaches a predefined number (N ). Once the number is met, the

camera tunes down the transmission frequency and resets the

count. The count is reset to zero whenever an FOI is identified.

The adoption of our lazy sensor deactivation scheme enables

the detector to rectify the misdetection of a single frame

by utilizing the adjacent frame’s information. In comparison

to the detector without the lazy sensor deactivation scheme,

utilizing our approach preserves more FOIs since an occa-

sional misdetection cannot affect the transmission frequency.

Decisions for tuning the transmission frequency are made

based on a few adjacent frames. Fig. 2(d) provides an example

that demonstrates the advantages of implementing lazy sensor

deactivation. In this example, the value of N is set to 3. When

compared to the system that does not utilize lazy deactivation

[shown in Fig. 2(d-1)], the implementation of lazy deactivation

[see Fig. 2(d-2)] also transmits the FOIs that are misdetected

by the near-sensor model, as demonstrated by the transmission

of frames 2, 4, and 5.

The utilization of the lazy sensor deactivation scheme incurs

two costs from a storage perspective. The first cost arises when

a negative sample is mistakenly identified as an FOI, leading to

the reset and restart of the count. In the worst case scenario,

a single negative sample misdetection results in storing 2N

additional frames. Nonetheless, this cost is acceptable as our

primary concern lies in preserving the completeness of FOIs.

The inclusion of a few extra negative samples following FOIs

does not influence the pertinent information we aim to retain.

Moreover, given that N is not an excessively large value, our

storage capacity can handle these rare occurrences.

The second cost inherent in the lazy sensor deactiva-

tion scheme manifests in the recovery of the transmission

frequency to a high level and the subsequent repetition

of counting following each period of frequency decrease.

Given that, a large proportion of frames comprise background

and such frames often appear in the form of segments,

the frames following a low transmission frequency period

are more likely to be background as well. As a result,

in a long sequence of background frames, the detector

stores N more frames after each low transmission frequency

period. To mitigate the redundancy following each period,

we introduced one more count (C2) to monitor the num-

ber of consecutive low transmission frequency periods. This

count is used to calculate Nnew for consecutive background

frames

Nnew = max

(

1,
N

2C2

)

. (3)
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Upon tuning down the transmission frequency, C2 increments

by 1. However, the detection of an FOI interrupts the consec-

utive low transmission frequency periods, resetting the count

C2 to zero. At the start of each period, (3) determines the

number (Nnew) for that particular period. Using the count

C2 for consecutive low transmission frequency periods grad-

ually decreases the threshold from N to 1 in the long run,

leading to greater storage and energy savings than the vanilla

scheme.

Algorithm 1 outlines the pseudocode of the proposed

scheme, which incorporates minimum transmission frequency

and lazy sensor deactivation. The pseudocodes 6–12 indicate

the code for lazy sensor deactivation and 14–20 indicate the

code for minimum transmission frequency, where fr is the

camera’s refresh rate, fmin is the minimum transmission fre-

quency, and C3 is a count used to determine whether a frame

should be transmitted in a minimum transmission frequency

period.

E. Dual-Camera Collaboration

Recording and analyzing valuable information necessitate

the utilization of high-resolution images, thereby engendering

a predilection for high-resolution cameras. Nevertheless, the

sustained operation of such cameras for near-sensor computing

proves to be energy burdensome, given their elevated power

consumption. Our objective is to furnish dependable perfor-

mance while concurrently minimizing energy consumption.

Therefore, we integrated an additional low-resolution, and

power-efficient, camera into the sensor configuration.

During periods devoid of FOIs, the high-resolution camera

remains inactive to conserve power, while the low-resolution

camera is engaged in executing the near-sensor model, as elu-

cidated in Section II-B. When an FOI is detected by the

near-sensor model utilizing the low-resolution camera, the

high-resolution camera is activated, capturing and subse-

quently transmitting the pertinent frames. During this phase,

the low-resolution camera is deactivated, given the supe-

rior quality of the frames obtained by the high-resolution

camera.

The power consumption breakdown of using dual-camera

collaboration on the sensor side is depicted in Fig. 3.

The incorporation of a power-efficient low-resolution camera

results in significant power savings (highlighted in shadow),

even compared to using our module with a single high-

resolution camera. Given the infrequent occurrence of FOIs,

our dual-camera collaboration scheme proves to be highly

effective in mitigating energy consumption at the sensor side

over an extended duration.

Note that our dual-camera collaboration requires an addi-

tional low-resolution camera, which increases the cost per

device. The price of an image sensor depends on several

factors, such as resolution, sensor size, technology, dynamic

range, and noise suppression. While a basic CMOS sensor

might cost a few dollars, high-end specialized sensors can be

significantly more expensive, potentially reaching thousands

of dollars. In our system, a basic sensor is sufficient for FoI

detection, resulting in an increase of only 1/1000 to 1/100 over

the original expenses. On the other hand, these basic sensors

Fig. 3. Energy consumption breakdown on the sensor for the framework
utilizing dual-camera collaboration.

support at least 30 frames per second (frames/s), which is

sufficient for our task and does not impact efficiency.

III. EXPERIMENTS

A. Experimental Setup

In this work, we trained and evaluated our framework in

the context of animal detection using the Microsoft Com-

mon Objects in Context (MS COCO) dataset [50], which

is widely used for object detection tasks. In this context,

the images in the dataset were selected and relabeled. The

images containing at least one object belonging to the animal

category are considered FOI and are labeled 1. The remaining

frames are considered background and labeled as 0. The near-

sensor lightweight model detects and transmits FOIs while

filtering out the background frames. The detected frames are

transmitted to a more sophisticated model, in our case a

well-trained Fast R-CNN model, to perform advanced oper-

ations. The framework is implemented using PyTorch [51].

In accordance with the scenario, we ordered the data in the

testset with a specific logic: FOIs and background frames are

presented in a fragmented manner, appearing consecutively

and alternating with each other. The frames in fragments are

ordered randomly.

B. Parameter Evaluation Metrics

The goal of the framework is to detect the animals in all

FOIs while minimizing the system’s energy consumption and

occupying minimal storage. In essence, our module aims to

minimize the misdetection rate, defined as the fraction of FOIs

that are not detected by our near-sensor model

Pmiss =
nmiss

nFOI
(4)

where nmiss is the number of missed FOIs by the near-sensor

model and nFOI is the total number of FOIs in the stream.

In addition, we prioritized the percentage of transmission

reduction achieved by our module in comparison to send-

ing all frames captured by the camera, which is defined

as

Ptrans =
ntrans

nframes
(5)
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Fig. 4. Energy consumption of the baselines and the system adopting
our framework. The experiments are conducted with M = 20 (the total
number of the frames ntotal = 21336, Pmiss = 3% ± 0.6%). The
conventional system implements Fast R-CNN on the server.

where ntrans is the number of transmitted frames and nframes

is the total number of frames in the testset. The energy con-

sumption of the system, including transmission and inference

energy of the Fast R-CNN model, is closely related to the

number of transmitted FOIs; thus the percentage of transmis-

sion reduction serves as a key indicator of the effectiveness of

our framework. In addition to impacting energy consumption,

Ptrans also reflects the amount of storage that can be saved on

the server.

It is worth emphasizing that our framework involves trade-

offs among its various parameters. Altering the values of

these parameters can lead to different performances with

respect to missed detection frames and the percentage of

transmission reduction. For instance, the most extreme sce-

nario is to maintain the transmission frequency equal to the

camera’s refresh rate and transmit all frames to the server.

Although this setting would result in zero missed detection

frames, it would also lead to the highest possible energy

consumption. In the following, we analyze the influence of

each parameter on the performance of our framework utilizing

the proposed module and discuss the tradeoffs between these

parameters.

This study explores the impact of four key parameters on

our system’s performance.

1) The confidence threshold (T ) of YOLO.

2) The ratio (M) of the number of background frames to

the number of FOIs.

3) Minimum transmission frequency ( fmin).

4) The count (N ) at which the sensor deactivates.

C. Results

The comparison of the conventional system, the ATC

method, and the system with our framework are shown in

Fig. 4 (the x-axis is illustrated in log scale). For the system

with our framework, we implemented two models (i.e., Mask

R-CNN [52] and Faster R-CNN) on the server, sorted in

descending order of model complexity. For the conventional

system, we used the least complex model, i.e., Fast R-CNN.

Fig. 5. Normalized energy consumption breakdown. (a) Conventional
system. (b) ATC method. (c) System with our framework.

For the ATC method, we implemented Mask R-CNN by

adopting the approach described in [53]. This is because,

in ATC methods, all downstream tasks rely on the same

abstract features, requiring the complex server-side model to

perform inference for all tasks. The energy consumptions are

measured on three platforms: GeForce RTX 4090, GeForce

RTX 3090, and AMD Threadripper 5955.

The energy consumption of conventional systems comprises

three components: energy consumption by the sensor, trans-

mission energy, and inference energy consumed at the server.

Both the ATC method and the system with our framework

introduce an additional component: near-sensor model energy

consumption. Despite this additional energy consumption, both

the ATC method and our framework reduce the overall sys-

tem energy consumption. This reduction is achieved because

both methods perform preliminary processing on low-power

devices, which facilitates subsequent inference. As shown

in the figure, our proposed framework helps consume less

than 18% energy in all settings compared to the conventional

system, and less than 25% energy compared to the ATC

method.

Although the ATC method also employs a near-sensor

model as a feature extractor, it transmits the features of

all frames to the server for inference. In contrast to the

ATC approaches, our framework does not transmit abstract

features of frames but only transmits the original frames

containing useful information, therefore, significantly reducing

the number of frames sent to the server. While the size of

data transmitted per frame may be larger compared to the

ATC approaches, our framework involves the transmission

of fewer frames, ultimately resulting in a reduction in the

overall amount of data transmitted. In addition, the complex

ML model on the server in the ATC method only has access

to abstract features, therefore, the downstream tasks, such as

object detection and segmentation, rely on a single model.

However, our near-sensor model sends the original FoIs to

the server, allowing for the deployment of complex models
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Fig. 6. Performance evaluation. (a) Heatmaps that display the miss rate Pmiss with different parameter combinations (threshold (T), the ratio
(M) of the number of background frames to the number of FOIs, minimum transmission frequency (fmin), and the count (N) at which the sensor
deactivates). (b) Heatmaps that display the percentage of transmission Ptrans with different parameter combinations.

specifically tailored to each task. This results in superior

performance for each individual task.

The normalized energy consumption breakdown is depicted

in Fig. 5. The conventional system, which consumes the most

energy, is normalized as 1, with the others adjusted accord-

ingly. Despite our framework introducing a negligible energy

portion to the system (near-sensor model), it reduces the need

for server-side inferences, resulting in a substantial decrease in

overall system energy consumption compared to both the con-

ventional system and the ATC method. It is capable of saving

87% on the energy consumption of the conventional system

and keeps valuable information. While the ATC method eases

server-side inferences, the number of inferences remains high,

leading to a higher server energy consumption compared with

our system. On the other hand, our dual-camera collaboration

reduces camera energy consumption compared to both the

conventional system and the ATC method.

D. Parameter Impact Analysis

Fig. 6(a) and (b) presents heatmaps illustrating the impact

of the key parameters on Pmiss and Ptrans. For both metrics,

a lower value indicates better performance. Regarding Pmiss,

a higher value of T leads to a notable increase in the number

of missed FOIs. However, incorporating a lazier deactivation

scheme and increasing the minimum transmission frequency

can mitigate the adverse effects associated with a higher value

of T . When examining the left panel in Fig. 6, N exerts

a dominant influence on Pmiss. As N increases, accuracy
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Fig. 7. Energy consumption comparison across different values of M.
All servers are equipped with GeForce RTX 3090.

Fig. 8. Spearman coefficient of the parameters. The magnitude of the
coefficient reflects the strength of the association between Pmiss,Ptrans
and the variables (T: the confidence threshold of the model, M: the ratio
of the number of background frames to the number of FOIs, f: minimum
transmission frequency, and N: The count at which sensor deactivates).

improves significantly, leading to a decrease in the percentage

of misdetections. Conversely, raising the minimum transmis-

sion frequency has a predominantly negative impact on Ptrans.

However, adopting a high value of T can reduce the amount

of data transmission.

We also examined the relationship between M and Ptrans

and found that our framework exhibits a clear advantage as

M increases, in Fig. 7. Specifically, as M increases from

5 to 50, our approach can save energy ranging from 65% to

92% compared to the conventional system. In contrast, the

energy consumption of both the conventional method and the

ATC method increases proportionally as the amount of data

grows.

The Spearman correlation coefficients [54] of the parameters

are presented in Fig. 8. In the figure, a positive coefficient

indicates a positive correlation between two variables, while

a negative coefficient indicates a negative correlation. The

magnitude of the coefficient reflects the strength of the associ-

ation between the variables. Specifically, T shows a significant

positive correlation with Pmiss, indicating that as T increases,

Pmiss also increases. Conversely, N exhibits a significant

negative correlation with Pmiss, indicating that higher values of

N are associated with lower values of Pmiss. On the other hand,

TABLE I

MODEL PARAMETERS

the coefficient between N and Ptrans is only 0.044, suggesting

that changes in N have little influence on the percentage of

data transmission. This observation aligns with our analysis

in Section II-D. Moreover, as the near-sensor model operates

continuously, the energy reduction in our framework primarily

stems from the decrease in data transmission and the resulting

reduction in server-side inference. Given that N has a negli-

gible effect on Ptrans, it also has minimal impact on overall

energy consumption. In addition, an increase in f corresponds

to an increase in Ptrans, demonstrating a strong direct positive

correlation.

E. Model Customization Analysis

We compared the performance of various lightweight

near-sensor models mentioned in Section II-B1. We evaluated

the tradeoff between the sensitivity and specificity of these

models using receiver operating characteristic (ROC) curves

and area under the curve (AUC), as illustrated in Fig. 9(a).

In addition, Table I displays the number of parameters and

GFLOPS of each model. While the AUC of YOLOv5ns is

only slightly lower than that of YOLOv5n, the reduction

in model size is significant, with the number of parame-

ters decreasing to only 6.2% of the latter. Furthermore, the

detrimental effect resulting from the reduction in model size

can be alleviated by incorporating the lazy sensor deac-

tivation scheme and elevating the minimum transmission

frequency.

We also investigated the influence of quantization on the

model performance. YOLOv5n trained on the original loss

is quantized into different bit precisions, i.e., 16-bit float

point (fp16), 8-bit integer (int8), 5-bit integer (int5), and 4-bit

integer (int4). The performance of both the fp16 and int8

quantized models remains unaffected. However, as illustrated

by Fig. 9(b), when we further reduce bit precision to int5,

a slight degradation in AUC is observed (from 0.97 to 0.96),

and a degradation in performance is noticeable when the model

is quantized to int4 (from 0.97 to 0.93).

As discussed in Section II-B3, the simplified loss function

reduces task difficulty, allowing the model to become more

lightweight or be more aggressively quantized. Fig. 9(c) illus-

trates the impact assessment of our tailored loss function,

demonstrating that with the tailored loss, the model can

achieve intensive quantization while maintaining comparable

performance levels. The model trained on the adapted loss

achieves a higher AUC score under the same level of aggres-

sive quantization (int4 quantization) compared to the model

trained on the original loss. It achieves the same AUC as the

model training on the original loss with the precision float
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Fig. 9. Model comparison. (a) ROC curves of three lightweight models. (b) ROC curves of the models with different quantization trained by original
loss. (c) ROC curves of the model subjected to int4 quantization, trained with our adapted loss function and the original loss function.

TABLE II

DESIGN ACCELERATION ON AMD-XILINX ZCU104

Fig. 10. Experiment setup. (a) Sensor side setup. (b) Accelerator
placement layout on AMD Xilinx ZCU104 FPGA.

fp32. Since fp32 requires 32 bits (4 bytes) per parameter,

while int4 only requires 4 bits (0.5 bytes) per parameter, jointly

adopting the quantization and the customized loss can make

the model 8× smaller without losing performance.

F. Hardware Implementation

The setup on the sensor side is depicted in Fig. 10(a).

A high-resolution camera ( 4⃝), a low-resolution camera ( 3⃝),

and a Wi-Fi adaptor ( 2⃝) are connected to the FPGA board

( 1⃝) via cable to capture and transmit the frames to the server.

In addition, a screen is utilized for visualizing the information

captured by the camera.

To meet the requirements of the proposed scenario, the

near-sensor model is deployed on a resource-limited low-

power edge-level FPGA: AMD-Xilinx Zynq UltraScale+

MPSoC ZCU104 (ZCU104) [55]. FPGAs are semiconductor

devices that are based on a matrix of configurable logic

blocks (CLBs) connected via programmable interconnects.

Through hardware programming (such as Verilog or HLS),

we can implement an ML accelerator on FPGA. The host

program, executed on the ARM Cortex-A53 processor on the

ZCU104’s processing system (PS), was developed in Python.

The communication between the PS and the programmable

logic (PL) is established through the AMBA Advanced eXten-

sible Interface (AXI). Here, the PS side is a host ARM

processor and the PL side is a reconfigurable logic. Our archi-

tecture design is implemented on the top of PL (reconfigurable

logic).

To leverage hardware acceleration, we utilized the

AMD-Xilinx deep learning unit (DPU) intellectual property

(IP) as our hardware accelerator on the ZCU104’s PL side.

Our model was integrated into the DPU using the Vitis AI

framework [56]. Vitis AI is an ML compiler framework devel-

oped by AMD-Xilinx that automatically maps ML operations

(such as convolution and fully connected layers) into Xilinx

hardware IP. The Vitis AI version that we choose is 2.0.

Furthermore, the cameras are connected to the host ARM

CPU, which facilitates communication with the cloud server.

TCP protocol is used as the communication protocol. Table II,

we present the FPGA resource utilization result. In Fig. 10(b),

we present the accelerator placement layout on AMD Xilinx

ZCU104 FPGA. The overview of our hardware platform is

shown in Fig. 11.

Considering the constraints of resources such as power

and space, we sometimes need to reduce the acceleration

performance of deep processing units (DPU) [57], [58]. For

instance, in Table II, we select the parallelism for input,

output, and pixel processing of convolution operations to

be 16, 16, and 8, respectively. If the goal is to reduce

power consumption and resource utilization, one strategy is to

decrease computation parallelism. Another strategy involves

employing knowledge distillation and quantization to mini-

mize model size, thereby reducing the computational overhead

of edge hardware accelerators [5], [59]. In this work, we con-

centrate on accelerating the near-sensor framework on edge

FPGAs. However, we may also consider other AI computing

platforms such as Google Edge TPU and NVIDIA Jetson

Nano [60]. These chips facilitate easier programming of ML

models but compromise the capability for hardware resource

reconfiguration.
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G. Other Applications

In addition to visual monitoring, our proposed framework

can be readily applied for multiple other tasks, such as audio

processing and radar monitoring.

For the audio processing task, we used the UrbanSound8K

dataset [61], a public audio dataset for urban sound classifi-

cation applications. It contains ten classes, including car horn,

gunshot, and dog bark. We focused on the gunshot and siren

classes as the audio of interest. The dataset was reorganized

and relabeled following the strategy outlined in Section III-A.

The near-sensor model detects the audio of interest, while the

server model classifies the specific class of that audio segment.

A frequency-domain filter bank is applied to the audio signals,

which are windowed in the time domain, to generate Mel

spectrograms. These spectrograms are then fed into a CNN for

classification. Compared to conventional methods, the system

adopting our framework maintains comparable accuracy while

consuming only 25% of the energy.

For radar monitoring, we evaluated the framework using the

CRUW dataset [62], a public camera-radar dataset designed

for autonomous vehicle applications. The radar images in this

dataset are captured by the TI AWR1843, which operates at

approximately 30 W [63]. The dataset was processed following

the procedure outlined in Section III-A. Under the same

deployment settings, the system using our framework achieved

comparable performance while consuming only 18% of the

energy required by the conventional system.

H. Security and Privacy Analysis

While our framework offers advantages such as reduced

energy consumption and minimized bandwidth requirements,

it necessitates an investigation of its security and privacy impli-

cations. Security considerations encompass data encryption

both in transit and at rest. On the other hand, privacy con-

cerns entail data minimization through near-sensor processing

and anonymization techniques, user consent, and transparency

regarding data usage. Compared with ATC methods that

transmit abstract features, our framework transmits the original

frames, thus sacrificing data encryption during transmission.

However, it’s worth noting that the conventional system also

lacks data encryption during data transmission. This weakness

can be mitigated by employing encryption techniques tailored

specifically to image data. In addition, both ATC methods

and our framework introduce an extra near-sensor model

component. Since the model is situated near the sensor and

only processes incoming data locally, it does not leak any

information, ensuring data safety.

IV. LIMITATIONS

While our framework is highly effective, there are a few

limitations to consider for further improvements in future

works.

1) Initial Training and Labeled Data Requirement: Deploy-

ing the framework necessitates training the near-sensor

model with labeled data. In some scenarios, obtaining

labeled data may be challenging, or it might be difficult

to fully cover the data distribution of sensor data. This

introduces an initial cost associated with the deployment

of the near-sensor module. However, after this initial

cost, the framework can save substantial energy, espe-

cially on the server side.

2) Accuracy Tradeoffs: Due to the lightweight nature of the

near-sensor model, its accuracy may be lower than that

of the original, more complex model. Although we have

proposed schemes such as lazy deactivation and main-

taining a nonzero transmission frequency to mitigate

possible misdetections, the near-sensor model’s accuracy

is still slightly lower than the server-side model. While

this loss of accuracy is negligible in many scenarios,

it becomes critical in applications where high accuracy

is paramount. In such cases, the near-sensor model may

need to be less lightweight, which would reduce the

energy savings.

3) Environmental Constraints: The performance of our

framework is dependent on the ratio of background

frames to FOIs. In environments where this ratio is

lower, the energy savings and efficiency improvements

may not be as significant.

In future work, we aim to enhance the performance of the

near-sensor model while maintaining its low energy consump-

tion and reducing the initial deployment cost of the framework.

V. CONCLUSION

In this article, we introduce a novel framework for intelli-

gent sensing that addresses some of the challenges associated

with analyzing large-scale sensor data using complex ML

models. Our framework is designed based on the observa-

tion that in many IoT applications, only a small proportion

of sensor data conveys information of interest. Therefore,

our framework intelligently selects the data generated by

the sensors and only transmits and analyzes the data with

useful information. It employs a near-sensor model to detect

information of interest and control the data transmission,

and a complex model located in the server to implement

more sophisticated inference. The near-sensor model and the

minimum transmission frequency are beneficial to reduce the

energy and storage requirements, with a focus on decreasing

the transmission frequency when no useful information is

detected.

We set up the system with our framework on a low-power

FPGA and evaluated the performance. The experimental

results demonstrate that our framework significantly reduces

total energy consumption and storage usage to less than

10% of that of conventional systems while retaining over

95% of useful information. Furthermore, we customized the

model architecture and the loss function to suit our specific

scenario and implemented quantization to achieve additional

model compression. By jointly applying the customized loss

function and quantization, the near-sensor model achieves an

8× reduction in size without any loss in performance.

We also investigated the key factors influencing the frame-

work’s effectiveness. Instead of completely halting data

transmission when no FoI is detected, we maintain a nonzero

minimum transmission frequency. This ensures regular, low-

frequency transmission to the server even in the absence of
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Fig. 11. Hardware platform overview.

Algorithm 1 Intelligent Data Transmission

Require: YOLO prediction(y), Lazy sensor deactivation

count(N ), Camera refresh rate( fr ), Minimum transmission

frequency( fmin), C1, C2, C3 = 0, 0, 0

Ensure: Transmission decision(D)

1: if y == 1 then

2: C1, C2, C3 = 0, 0, 0

3: return D = 1

4: else

5: if C3 == 0 then

6: C1 = C1 + 1

7: if C1 f max(1, N

2C2
) then

8: return D = 1

9: else

10: C1, C2, C3 = 0, C2 + 1, C3 + 1

11: return D = 0

12: end if

13: else

14: C3 = C3 + 1

15: if C3 == fr/ fmin then

16: C1, C3 = C1 + 1, 0

17: return D = 1

18: else

19: return D = 0

20: end if

21: end if

22: end if

FoIs, thereby benefiting the integrity of the useful information.

In addition, our lazy sensor deactivation scheme leverages

the temporal correlation between adjacent frames, achiev-

ing a balance between resource consumption and accuracy.

Furthermore, our proposed framework demonstrates greater

effectiveness as the ratio of background frames to FoIs

increases.

In addition to the evaluations under the visual monitoring

scenario, we extended the framework to other tasks, e.g.,

audio processing and radar monitoring. The results show the

versatility and applicability of our framework under different

scenarios.

We also discussed the limitations of our current framework

and outlined potential directions for future improvements.
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of this article will be made available by the authors, without
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APPENDIX

SUPPLEMENTARY MATERIAL

Video Demo

Our research includes a video demonstration showcasing

the results. In the demo, our model detects the animals

appearing in the frames. The video can be accessed

at the following link: https://drive.google.com/file/d/1-

IpRLfd8Ym38p8APCJgxNq5igiK5ARa5/view?usp=sharing.
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