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ABSTRACT

Increasing complexity, and requirements for the precise cre-
ation of parts, necessitate the use of computer numerical con-
trol (CNC) manufacturing. This process involves programmed
instructions to remove material from a workpiece through oper-
ations such as milling, turning, and drilling. This manufacturing
technique incorporates various process parameters (e.g., tools,
spindle speed, feed rate, cut depth), leading to a highly com-
plex operation. Additionally, interacting phenomena between the
workpiece, tools, and environmental conditions further add to
complexity which can lead to defects and poor product quality.

Two main areas are of focus for an efficient automated system:
monitoring and swift quality assessment. Within these areas, the
critical aspects ascertaining the quality of a CNC manufacturing
operation are: 1) Tool wear: the inherent deterioration of ma-
chine components caused by prolonged utilization, 2) Chatter:
vibration that occurs during the machining process, and 3) Sur-
face finish: the final product’s surface roughness. Many research
domains tend to focus on just one of these areas while neglecting
the interconnected influences of all three. Therefore, to capture
a more holistic and comprehensive assessment of a manufactur-
ing process, the overall product quality should be considered, as
that’s what ultimately counts.

The integration of CNC systems with in-situ monitoring de-
vices such as acoustic sensors, high-speed cameras, and thermal
cameras is aimed at understanding the underlying physical as-
pects of the CNC machining process, including tool wear, chatter,
and surface roughness. The incorporation of these monitoring
devices has allowed the use of artificial intelligence and machine
learning (ML) in smart CNC systems with hopes of increasing
productivity, minimizing downtime, and ensuring product qual-
ity. By capturing the underlying phenomena that occur during the
manufacturing process, users hope to understand the interlinking
dynamics for zero-defect automated manufacturing. However,
even though the use of ML methods has yielded noteworthy re-
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sults in analyzing in-situ process data for CNC manufacturing,
the black-box nature of these models and their tendency to focus
predominantly on single-task objectives rather than multi-task
scenarios pose challenges. In real-world part creation and man-
ufacturing scenarios, there is often a need to address multiple
interconnected tasks simultaneously which demands models that
can multitask effectively. Yet, many ML models designed and
trained for singular objectives are limited in their applicability
and efficiency in more complex multi-faceted environments.

Addressing these challenges, we introduce MTaskHD, a novel
multi-task framework, that leverages hyperdimensional comput-
ing (HDC) to effortlessly fuse data from various channels and
process signals while characterizing quality within a multi-task
manufacturing operation. Moreover, it yields interpretable out-
comes, allowing users to understand the process behind predic-
tions. In a real-world experiment conducted on a hybrid 5-axis
CNC Deckel-Maho-Gildemeister, MTaskHD was implemented to
forecast the quality of three distinct features: left 25.4 mm coun-
terbore diameter, right 25.4 mm counterbore diameter, and 2.54
mm milled radius. Demonstrating remarkable performance, the
model excelled in predicting the quality levels of all three features
in its multi-task configuration with an F1-Score of 95.3%, out-
performing alternative machine learning approaches, including
support vector machines, Naive Bayes, multi-layer perceptron,
convolutional neural network, and time-LeNet. The inherent
multi-task capability, robustness, and interpretability of HDC
collectively offer a solution for comprehending intricate manu-
facturing dynamics and operations.

Keywords: Computer Numerical Control, Multi-task Learn-
ing, Quality Monitoring

1. INTRODUCTION

CNC subtractive manufacturing, vital for crafting complex
parts, relies on programmed instructions for precise material re-
moval via milling, turning, and/or drilling. Factors like tool
choice, spindle speed, and feed rate play significant roles as their
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complex interactions can lead to defects and lower quality, espe-
cially with intricate commands [1]. Integrating CNC with in-situ
monitoring such as acoustic sensors and high-speed cameras aims
to capture the dynamics of the process, including tool wear, chat-
ter, and surface roughness issues that affect product quality [2, 3].
Analyzing these dynamics individually offers insights into quality
but overlooks the interconnected relationships, where tool wear
leads to faulty machining and defective components, and chatter
causes uncontrolled interactions between the tool and workpiece,
collectively affecting the final surface roughness of the product. A
holistic analysis of these dynamics, rather than focusing on them
individually, provides a deeper understanding of interconnected
relationships and potential in-process defects.

Traditional machine learning (ML) in manufacturing anal-
ysis such as recurrent neural networks [4], and support vector
machines [5] often focuses on single operations resulting in their
limitations by the data collected solely during these specific pro-
cesses. These methods often struggle with analyzing complex
parts that require multiple operations. Integrating various pro-
cesses, or tasks, into a single model enables a more comprehen-
sive and varied approach to manufacturing analysis, facilitating a
deeper investigation into the factors influencing the final product
quality. Given the limitations outlined above, there is an intrinsic
need to develop new models that provide multi-task capabilities
for increasing complex manufacturing operations.

Hyperdimensional computing (HDC) is a computational
paradigm designed to overcome the limitations of traditional
ML, particularly for efficient learning and analyzing out-of-
distribution data. HDC is driven by the insight that the cere-
bellum cortex represents data using high-dimensional spaces
[6]. Within HDC, hypervectors are used to represent data and
model human memory through defined vector operations, namely
bundling, binding, and permutation. Learning from hypervectors
is achieved for a wide range of applications, such as qualifica-
tion of additive manufacturing [7], quality monitoring [8, 9],
friction stir welding [10], data selection [11], and graph genera-
tion [12]. Despite these applications, exploration of hyperdimen-
sional computing’s multi-task learning capabilities has received
limited attention.

We propose MTaskHD, a hyperdimensional computing
framework for multi-task learning. Using a 5-axis hybrid CNC
Deckel-Maho-Gildemeister (DMG) machine, MTaskHD fuses
data from various in-situ channels and process signals, charac-
terizing the geometric quality of three distinct features within a
multi-task manufacturing operation. The remainder of this paper
is as follows: Section 2 introduces the HDC framework for model
implementation and training. Section 3 discusses the detailed
setup for the experiments and results. Finally, the conclusion of
this proposed study is presented in Section 4.

2. RESEARCH METHODOLOGY
2.1 Vector Operations

In this model, two principal operations are employed:
bundling and binding. Bundling, denoted by (+), involves the
element-wise addition of hypervectors and produces a resultant
hypervector that retains similarity to its components. This process
serves as a memory mechanism in computations. Binding, repre-
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FIGURE 1: DEPICTION OF ENCODING PROCEDURE.

sented by (*), is the element-wise multiplication or the Hadamard
product of hypervectors. The hypervector generated from binding
is distinct from the original hypervectors, making this operation
suitable for associating hypervectors together. Additionally, the
similarity of hypervectors is computed using cosine similarity ¢
defined as:

Hi-H,

—_ (D
IH (I H |l

0(Hy, Hy) =
where the numerator is the dot product between Hy and H,. By
employing these vector operations and comparison metrics, the
model can be created to memorize important features from the
hypervectors and updated according to the degree of similarity
between hypervectors. Additionally, classification can be per-
formed utilizing the highest similarities.

2.2 Encoding

The transformation of data into hypervectors is done uti-
lizing the density encoding framework introduced in [13]. We
define input vectors as X; = {¥; 1,%;2,...,Xi n} Where there are
n input vectors. Each value in the input vectors is then quan-
tized to the nearest integers scaled by a selected dimension size
d. Each integer is then represented by a bipolar vector of di-
mension d with elements of {-1, +1}, where the count of -1
elements matches the integer value, and the remaining elements
are +1. These bipolar vectors are subsequently multiplied with
randomly generated bipolar weight hypervectors of dimension d
for each corresponding bipolar vector and then bundled together.
Lastly, the hypervector is passed through a sign function to create
the final hypervector representation of the input vector. The full
procedure is depicted in Figure 1.

2.3 Multi-task Learning

The multi-task learning involves a hierarchical binding and
bundling procedure that produces a final hypervector correspond-
ing to a task and label. Given a task 7" with n samples, c time-
series channels that are of parameter type p, and a corresponding
label y, the channel data of each sample is first encoded utilizing
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the procedure described in 2.2. Next, for each channel, there is
a corresponding randomly generated bipolar hypervector bound
to the encoded channel hypervectors to associate the hypervec-
tor with its specific channel. Each bound hypervector is then
bundled with its corresponding parameter type p and bound us-
ing a randomly generated bipolar hypervector, establishing an
association between the hypervector and the specific parameter
type. Lastly, parameter hypervectors for each respective sample
are bundled together to create the final hypervector representation
corresponding to the samples from task 7" and label y.

After construction of hypervectors for each input sample and
task, those with the same label y are bundled together to create the
representative label hypervectors L. Subsequently, a similarity
check is conducted between the sample and label hypervectors
to identify which samples are incorrectly predicted. Given a
query hypervector Q with label y that is mispredicted by the
current model as y’, we iteratively update both the correct and
mispredicted label hypervectors L, and L, as:

Ly Ly +7[1 - 6(L,,Q)] x Q
Ly Ly —p[1-8(Ly. Q)] x Q

where 7 indicates the learning rate of model. When §(L,, Q) =
6(Ly/, Q), the model only updates a small portion since the sim-
ilarities will be close to each other. On the other hand, when
the prediction is far from the true label the retraining algorithm
will update the model significantly because the value of 6(L,, Q)
is smaller than 6(L,-, Q). This iterative procedure exploits the
similarities between hypervectors to efficiently update and re-
train the model while taking into account all different tasks and
corresponding labels.

2

3. EXPERIMENTAL DESIGN & RESULTS
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FIGURE 2: FINAL BUILD OF THE DESIGNED PART WITH FEA-
TURES 25.4 MM LEFT COUNTERBORE DIAMETER, 25.4 MM RIGHT
COUNTERBORE DIAMETER, AND 2.54 MM MILLED RADIUS HIGH-
LIGHTED. THE TOTAL NUMBER OF PARTS FOR EACH GEOMET-
RIC DEVIATION LEVEL IS SHOWN ON THE RIGHT.

MTaskHD was evaluated utilizing data collected from a
LASERTEC 65 DED hybrid CNC DMG machine at the Con-
necticut Center for Advanced Technology (CCAT). A total of 18
parts were fabricated using the subtractive CNC portion of the
machine from 1040 steel blocks each with original dimensions
76.2 mm x 76.2 mm x 76.2 mm. Each part was created incorpo-
rating 42 manufacturing operations, or tasks, to create 47 features

such as chamfers, holes, rounded corners, and pockets. During
the manufacturing operations, over 91 time series channels were
captured at 500 Hz by a Siemens Simatic IPC227E corresponding
to the 5 axes (i.e., three linear axes, and rotary A and C axes), and
spindle of the machine. Each of the channels had a correspond-
ing type of process parameter such as current, load, power, and
torque. After creation of the parts, a GOM ATOS ScanBox was
used to measure each feature which was then compared against the
average respective feature measurements. Taking these measure-
ments, labels corresponding to the geometric deviation of each
feature were created utilizing computed Z-scores where scores
below -1 indicate low, scores between -1 and 1 indicate average,
and scores above 1 indicate high levels of deviation. Each geo-
metric deviation level also had a corresponding task label to show
which task created which feature.

From these task and geometric deviation labels, two homo-
geneous tasks used to create 25.4 mm diameter counterbore holes
and one heterogeneous task used to create a 2.54 mm milled ra-
dius feature were chosen for analysis. The purpose of choosing
these three tasks was to analyze how homogeneous or hetero-
geneous tasks can be learned from each other within the same
model. The left counterbore hole, right counterbore hole, and
milled radius are labeled as Hr, Hg, and R, respectively, and are
depicted in Figure 2. A total of nine labels were used as there
were three features and three geometric deviations; each feature
is referred to as a task and used interchangeably.

The type of process parameters chosen as inputs were axis
position, command speed, control differential I, control differ-
ential I, contour deviation, current, encoder position I, encoder
position II, load, power, torque, torque feed forward, and velocity
feed forward. There were a total of 64 channels from these pro-
cess parameters and which were then normalized using a min-max
scaler. Due to the low number of parts but an abundance of time
series data, more samples corresponding to each label were cre-
ated using non-overlapping n-gram windows over the time-series
data. This technique ensures an adequate number of samples to
train on rather than utilizing the full length of the data. From
these generated samples, the number of samples corresponding
to each label was balanced ensuring the unbalanced labels did not
influence the results during training.

MTaskHD was implemented in Python using PyTorch. Sen-
sitivity analysis was then conducted to determine the influence
of the amount of data during training on the performance of the
model. A window size of 10, dimension size of 5000, a learning
rate of 1.7, and 181 epochs, or update iterations, were used as
these values achieved stabilized results. Figure 3 depicts the per-
formance of each individual feature along with various combina-
tions of the three features. The legend specifies the proportion of
data allocated for training, with 0.1 representing 10% of the data,
0.3 denoting 30%, and so forth. The general trend of all combina-
tions is performance increases as the proportion of training data
increases. This can be explained due to MTaskHD acquiring a
more diverse and varied data set to train on, enabling it to update
the label hypervectors more effectively. An interesting observa-
tion is the performance of the model when just using feature R.
This model achieves metrics above 0.95 with only 10 percent of
the data and improves to maximum of 0.985 with 90 percent of
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FIGURE 3: SENSITIVITY OF MODELS CONCERNING COMBINATIONS OF THE PROPORTION OF TRAINING DATA USED FOR THE THREE
FEATURES AND THEIR ACCURACY, PRECISION, RECALL, AND F1-SCORE.

the data. This observation underscores the robustness and effec-
tiveness of the model in capturing critical information from this
feature even with limited samples.

Analyzing the impact of adding homogeneous features to-
gether, one can see that performance improves across all metrics.
For example, when utilizing 10% of the data for training and us-
ing only Hy,, or Hg, performance of the models was around 0.4
for F1-Score. By utilizing both features together in a multi-task
configuration, performance increased by around 0.18 showing a
dramatic uplift. This emphasizes that by including data from
similar tasks, the model is able to learn more nuances from the
data compared to utilizing a singular objective. This also under-
scores the capability of the model in analyzing features even with
a limited amount of data as long as one is able to introduce data
of a similar nature. The inclusion of all three features also shows
an increase in performance across various proportions of training
data compared to the singular features with the exception of just
using feature R. Overall, by utilizing information from a diverse
selection of tasks, the model enhances its capability to isolate
and comprehend information from the input, thereby enhancing
its proficiency in identifying crucial signals, even in the presence
of noise or contradictory patterns. The integration of multiple
tasks contributes to a broader and more adaptable learning ap-
proach, ultimately resulting in a more effective model.

Finally, the multi-task capability of MTaskHD for three tasks
is compared against conventional machine learning models such
as support vector machines (SVM), Naive Bayes (NB), multi-
layer perceptron (MLP), convolutional neural network (CNN),
and time-LeNet (t-LeNet). These models were implemented us-
ing Python, specifically using scikit-learn and TensorFlow. All
models are run 50 times and the average performance and standard
deviations are reported. As shown in Table 1, regarding F1-Score,
MTaskHD achieves a score of 0.953 and outperforms SVM, NB,
MLP, CNN, and t-LeNet by 41.9%, 51.6%, 47.2%, 29.3%, and
15.8%, respectively. The performance of MTaskHD is consis-
tent across all metrics and shows its incredible robustness with
the inclusion of varying tasks. This cannot be said of the other
models as their performance is much lower which is explained
by the models being confused with the addition of more out-of-
distribution data across different tasks. Overall, MTaskHD show-
cases its incredible capability in analyzing and predicting the
various geometric deviations across all three features and is a
model that is more holistic and nuanced.

4. CONCLUSION

This paper introduces MTaskHD for multi-task learning in
CNC subtractive manufacturing. Outperforming traditional ma-
chine learning models, this study showcases MTaskHD’s effec-
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TABLE 1: PERFORMANCE METRICS OF THE MTaskHD COMPARED TO OTHER CHARACTERIZATION ALGORITHMS FOR THREE TASKS.

Model Accuracy Precision Recall F1-Score
MTaskHD | 0.953 +£0.011 | 0.955 +0.008 | 0.953 +£0.011 | 0.953 +0.012
SVM 0.552 +£0.021 | 0.572 +£0.026 | 0.552 +0.021 | 0.534 +0.024
NB 0.467 +£0.018 | 0.425+0.018 | 0.467 +0.018 | 0.437 +0.018
MLP 0.532 +0.013 | 0.609 +0.030 | 0.532 +0.013 | 0.481 +0.030
CNN 0.681 £0.036 | 0.691 +£0.046 | 0.681 +0.036 | 0.660 + 0.044
t-LeNet | 0.806 +0.181 | 0.812+0.199 | 0.806 £ 0.181 | 0.795 + 0.201

tiveness in complex manufacturing, highlighting its robustness
and adaptability in understanding and predicting product quality.
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