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ABSTRACT

Increasing complexity, and requirements for the precise cre-

ation of parts, necessitate the use of computer numerical con-

trol (CNC) manufacturing. This process involves programmed

instructions to remove material from a workpiece through oper-

ations such as milling, turning, and drilling. This manufacturing

technique incorporates various process parameters (e.g., tools,

spindle speed, feed rate, cut depth), leading to a highly com-

plex operation. Additionally, interacting phenomena between the

workpiece, tools, and environmental conditions further add to

complexity which can lead to defects and poor product quality.

Two main areas are of focus for an efficient automated system:

monitoring and swift quality assessment. Within these areas, the

critical aspects ascertaining the quality of a CNC manufacturing

operation are: 1) Tool wear: the inherent deterioration of ma-

chine components caused by prolonged utilization, 2) Chatter:

vibration that occurs during the machining process, and 3) Sur-

face finish: the final product’s surface roughness. Many research

domains tend to focus on just one of these areas while neglecting

the interconnected influences of all three. Therefore, to capture

a more holistic and comprehensive assessment of a manufactur-

ing process, the overall product quality should be considered, as

that’s what ultimately counts.

The integration of CNC systems with in-situ monitoring de-

vices such as acoustic sensors, high-speed cameras, and thermal

cameras is aimed at understanding the underlying physical as-

pects of the CNC machining process, including tool wear, chatter,

and surface roughness. The incorporation of these monitoring

devices has allowed the use of artificial intelligence and machine

learning (ML) in smart CNC systems with hopes of increasing

productivity, minimizing downtime, and ensuring product qual-

ity. By capturing the underlying phenomena that occur during the

manufacturing process, users hope to understand the interlinking

dynamics for zero-defect automated manufacturing. However,

even though the use of ML methods has yielded noteworthy re-
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sults in analyzing in-situ process data for CNC manufacturing,

the black-box nature of these models and their tendency to focus

predominantly on single-task objectives rather than multi-task

scenarios pose challenges. In real-world part creation and man-

ufacturing scenarios, there is often a need to address multiple

interconnected tasks simultaneously which demands models that

can multitask effectively. Yet, many ML models designed and

trained for singular objectives are limited in their applicability

and efficiency in more complex multi-faceted environments.

Addressing these challenges, we introduce MTaskHD, a novel

multi-task framework, that leverages hyperdimensional comput-

ing (HDC) to effortlessly fuse data from various channels and

process signals while characterizing quality within a multi-task

manufacturing operation. Moreover, it yields interpretable out-

comes, allowing users to understand the process behind predic-

tions. In a real-world experiment conducted on a hybrid 5-axis

CNC Deckel-Maho-Gildemeister, MTaskHD was implemented to

forecast the quality of three distinct features: left 25.4 mm coun-

terbore diameter, right 25.4 mm counterbore diameter, and 2.54

mm milled radius. Demonstrating remarkable performance, the

model excelled in predicting the quality levels of all three features

in its multi-task configuration with an F1-Score of 95.3%, out-

performing alternative machine learning approaches, including

support vector machines, Naïve Bayes, multi-layer perceptron,

convolutional neural network, and time-LeNet. The inherent

multi-task capability, robustness, and interpretability of HDC

collectively offer a solution for comprehending intricate manu-

facturing dynamics and operations.

Keywords: Computer Numerical Control, Multi-task Learn-

ing, Quality Monitoring

1. INTRODUCTION

CNC subtractive manufacturing, vital for crafting complex

parts, relies on programmed instructions for precise material re-

moval via milling, turning, and/or drilling. Factors like tool

choice, spindle speed, and feed rate play significant roles as their
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complex interactions can lead to defects and lower quality, espe-

cially with intricate commands [1]. Integrating CNC with in-situ

monitoring such as acoustic sensors and high-speed cameras aims

to capture the dynamics of the process, including tool wear, chat-

ter, and surface roughness issues that affect product quality [2, 3].

Analyzing these dynamics individually offers insights into quality

but overlooks the interconnected relationships, where tool wear

leads to faulty machining and defective components, and chatter

causes uncontrolled interactions between the tool and workpiece,

collectively affecting the final surface roughness of the product. A

holistic analysis of these dynamics, rather than focusing on them

individually, provides a deeper understanding of interconnected

relationships and potential in-process defects.

Traditional machine learning (ML) in manufacturing anal-

ysis such as recurrent neural networks [4], and support vector

machines [5] often focuses on single operations resulting in their

limitations by the data collected solely during these specific pro-

cesses. These methods often struggle with analyzing complex

parts that require multiple operations. Integrating various pro-

cesses, or tasks, into a single model enables a more comprehen-

sive and varied approach to manufacturing analysis, facilitating a

deeper investigation into the factors influencing the final product

quality. Given the limitations outlined above, there is an intrinsic

need to develop new models that provide multi-task capabilities

for increasing complex manufacturing operations.

Hyperdimensional computing (HDC) is a computational

paradigm designed to overcome the limitations of traditional

ML, particularly for efficient learning and analyzing out-of-

distribution data. HDC is driven by the insight that the cere-

bellum cortex represents data using high-dimensional spaces

[6]. Within HDC, hypervectors are used to represent data and

model human memory through defined vector operations, namely

bundling, binding, and permutation. Learning from hypervectors

is achieved for a wide range of applications, such as qualifica-

tion of additive manufacturing [7], quality monitoring [8, 9],

friction stir welding [10], data selection [11], and graph genera-

tion [12]. Despite these applications, exploration of hyperdimen-

sional computing’s multi-task learning capabilities has received

limited attention.

We propose MTaskHD, a hyperdimensional computing

framework for multi-task learning. Using a 5-axis hybrid CNC

Deckel-Maho-Gildemeister (DMG) machine, MTaskHD fuses

data from various in-situ channels and process signals, charac-

terizing the geometric quality of three distinct features within a

multi-task manufacturing operation. The remainder of this paper

is as follows: Section 2 introduces the HDC framework for model

implementation and training. Section 3 discusses the detailed

setup for the experiments and results. Finally, the conclusion of

this proposed study is presented in Section 4.

2. RESEARCH METHODOLOGY

2.1 Vector Operations

In this model, two principal operations are employed:

bundling and binding. Bundling, denoted by (+), involves the

element-wise addition of hypervectors and produces a resultant

hypervector that retains similarity to its components. This process

serves as a memory mechanism in computations. Binding, repre-
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FIGURE 1: DEPICTION OF ENCODING PROCEDURE.

sented by (∗), is the element-wise multiplication or the Hadamard

product of hypervectors. The hypervector generated from binding

is distinct from the original hypervectors, making this operation

suitable for associating hypervectors together. Additionally, the

similarity of hypervectors is computed using cosine similarity ą

defined as:

ą(Ą⃗1, Ą⃗2) =
Ą⃗1 · Ą⃗2

∥Ą⃗1∥∥Ą⃗2∥
(1)

where the numerator is the dot product between Ą⃗1 and Ą⃗2. By

employing these vector operations and comparison metrics, the

model can be created to memorize important features from the

hypervectors and updated according to the degree of similarity

between hypervectors. Additionally, classification can be per-

formed utilizing the highest similarities.

2.2 Encoding

The transformation of data into hypervectors is done uti-

lizing the density encoding framework introduced in [13]. We

define input vectors as Į⃗ğ = {Į⃗ğ,1, Į⃗ğ,2, ..., Į⃗ğ,Ĥ} where there are

Ĥ input vectors. Each value in the input vectors is then quan-

tized to the nearest integers scaled by a selected dimension size

Ě. Each integer is then represented by a bipolar vector of di-

mension Ě with elements of {-1, +1}, where the count of -1

elements matches the integer value, and the remaining elements

are +1. These bipolar vectors are subsequently multiplied with

randomly generated bipolar weight hypervectors of dimension Ě

for each corresponding bipolar vector and then bundled together.

Lastly, the hypervector is passed through a sign function to create

the final hypervector representation of the input vector. The full

procedure is depicted in Figure 1.

2.3 Multi-task Learning

The multi-task learning involves a hierarchical binding and

bundling procedure that produces a final hypervector correspond-

ing to a task and label. Given a task Đ with Ĥ samples, ę time-

series channels that are of parameter type Ħ, and a corresponding

label į, the channel data of each sample is first encoded utilizing



the procedure described in 2.2. Next, for each channel, there is

a corresponding randomly generated bipolar hypervector bound

to the encoded channel hypervectors to associate the hypervec-

tor with its specific channel. Each bound hypervector is then

bundled with its corresponding parameter type Ħ and bound us-

ing a randomly generated bipolar hypervector, establishing an

association between the hypervector and the specific parameter

type. Lastly, parameter hypervectors for each respective sample

are bundled together to create the final hypervector representation

corresponding to the samples from task Đ and label į.

After construction of hypervectors for each input sample and

task, those with the same label į are bundled together to create the

representative label hypervectors L. Subsequently, a similarity

check is conducted between the sample and label hypervectors

to identify which samples are incorrectly predicted. Given a

query hypervector Q with label į that is mispredicted by the

current model as į′, we iteratively update both the correct and

mispredicted label hypervectors Lį and Lį′ as:

Lį ← Lį + Ĉ[1 − ą(Lį ,Q)] ×Q

Lį′ ← Lį′ − Ĉ[1 − ą(Lį′ ,Q)] ×Q
(2)

where Ĉ indicates the learning rate of model. When ą(Lį ,Q) ≃
ą(Lį′ ,Q), the model only updates a small portion since the sim-

ilarities will be close to each other. On the other hand, when

the prediction is far from the true label the retraining algorithm

will update the model significantly because the value of ą(Lį ,Q)
is smaller than ą(Lį′ ,Q). This iterative procedure exploits the

similarities between hypervectors to efficiently update and re-

train the model while taking into account all different tasks and

corresponding labels.

3. EXPERIMENTAL DESIGN & RESULTS
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FIGURE 2: FINAL BUILD OF THE DESIGNED PART WITH FEA-

TURES 25.4 MM LEFT COUNTERBORE DIAMETER, 25.4 MM RIGHT

COUNTERBORE DIAMETER, AND 2.54 MM MILLED RADIUS HIGH-

LIGHTED. THE TOTAL NUMBER OF PARTS FOR EACH GEOMET-

RIC DEVIATION LEVEL IS SHOWN ON THE RIGHT.

MTaskHD was evaluated utilizing data collected from a

LASERTEC 65 DED hybrid CNC DMG machine at the Con-

necticut Center for Advanced Technology (CCAT). A total of 18

parts were fabricated using the subtractive CNC portion of the

machine from 1040 steel blocks each with original dimensions

76.2 mm x 76.2 mm x 76.2 mm. Each part was created incorpo-

rating 42 manufacturing operations, or tasks, to create 47 features

such as chamfers, holes, rounded corners, and pockets. During

the manufacturing operations, over 91 time series channels were

captured at 500 Hz by a Siemens Simatic IPC227E corresponding

to the 5 axes (i.e., three linear axes, and rotary A and C axes), and

spindle of the machine. Each of the channels had a correspond-

ing type of process parameter such as current, load, power, and

torque. After creation of the parts, a GOM ATOS ScanBox was

used to measure each feature which was then compared against the

average respective feature measurements. Taking these measure-

ments, labels corresponding to the geometric deviation of each

feature were created utilizing computed Z-scores where scores

below -1 indicate low, scores between -1 and 1 indicate average,

and scores above 1 indicate high levels of deviation. Each geo-

metric deviation level also had a corresponding task label to show

which task created which feature.

From these task and geometric deviation labels, two homo-

geneous tasks used to create 25.4 mm diameter counterbore holes

and one heterogeneous task used to create a 2.54 mm milled ra-

dius feature were chosen for analysis. The purpose of choosing

these three tasks was to analyze how homogeneous or hetero-

geneous tasks can be learned from each other within the same

model. The left counterbore hole, right counterbore hole, and

milled radius are labeled as ĄĈ , ĄĎ, and Ď, respectively, and are

depicted in Figure 2. A total of nine labels were used as there

were three features and three geometric deviations; each feature

is referred to as a task and used interchangeably.

The type of process parameters chosen as inputs were axis

position, command speed, control differential I, control differ-

ential II, contour deviation, current, encoder position I, encoder

position II, load, power, torque, torque feed forward, and velocity

feed forward. There were a total of 64 channels from these pro-

cess parameters and which were then normalized using a min-max

scaler. Due to the low number of parts but an abundance of time

series data, more samples corresponding to each label were cre-

ated using non-overlapping n-gram windows over the time-series

data. This technique ensures an adequate number of samples to

train on rather than utilizing the full length of the data. From

these generated samples, the number of samples corresponding

to each label was balanced ensuring the unbalanced labels did not

influence the results during training.

MTaskHD was implemented in Python using PyTorch. Sen-

sitivity analysis was then conducted to determine the influence

of the amount of data during training on the performance of the

model. A window size of 10, dimension size of 5000, a learning

rate of 1.7, and 181 epochs, or update iterations, were used as

these values achieved stabilized results. Figure 3 depicts the per-

formance of each individual feature along with various combina-

tions of the three features. The legend specifies the proportion of

data allocated for training, with 0.1 representing 10% of the data,

0.3 denoting 30%, and so forth. The general trend of all combina-

tions is performance increases as the proportion of training data

increases. This can be explained due to MTaskHD acquiring a

more diverse and varied data set to train on, enabling it to update

the label hypervectors more effectively. An interesting observa-

tion is the performance of the model when just using feature Ď.

This model achieves metrics above 0.95 with only 10 percent of

the data and improves to maximum of 0.985 with 90 percent of



FIGURE 3: SENSITIVITY OF MODELS CONCERNING COMBINATIONS OF THE PROPORTION OF TRAINING DATA USED FOR THE THREE

FEATURES AND THEIR ACCURACY, PRECISION, RECALL, AND F1-SCORE.

the data. This observation underscores the robustness and effec-

tiveness of the model in capturing critical information from this

feature even with limited samples.

Analyzing the impact of adding homogeneous features to-

gether, one can see that performance improves across all metrics.

For example, when utilizing 10% of the data for training and us-

ing only ÿÿ , or ÿý, performance of the models was around 0.4

for F1-Score. By utilizing both features together in a multi-task

configuration, performance increased by around 0.18 showing a

dramatic uplift. This emphasizes that by including data from

similar tasks, the model is able to learn more nuances from the

data compared to utilizing a singular objective. This also under-

scores the capability of the model in analyzing features even with

a limited amount of data as long as one is able to introduce data

of a similar nature. The inclusion of all three features also shows

an increase in performance across various proportions of training

data compared to the singular features with the exception of just

using feature ý. Overall, by utilizing information from a diverse

selection of tasks, the model enhances its capability to isolate

and comprehend information from the input, thereby enhancing

its proficiency in identifying crucial signals, even in the presence

of noise or contradictory patterns. The integration of multiple

tasks contributes to a broader and more adaptable learning ap-

proach, ultimately resulting in a more effective model.

Finally, the multi-task capability of MTaskHD for three tasks

is compared against conventional machine learning models such

as support vector machines (SVM), Naïve Bayes (NB), multi-

layer perceptron (MLP), convolutional neural network (CNN),

and time-LeNet (t-LeNet). These models were implemented us-

ing Python, specifically using scikit-learn and TensorFlow. All

models are run 50 times and the average performance and standard

deviations are reported. As shown in Table 1, regarding F1-Score,

MTaskHD achieves a score of 0.953 and outperforms SVM, NB,

MLP, CNN, and t-LeNet by 41.9%, 51.6%, 47.2%, 29.3%, and

15.8%, respectively. The performance of MTaskHD is consis-

tent across all metrics and shows its incredible robustness with

the inclusion of varying tasks. This cannot be said of the other

models as their performance is much lower which is explained

by the models being confused with the addition of more out-of-

distribution data across different tasks. Overall, MTaskHD show-

cases its incredible capability in analyzing and predicting the

various geometric deviations across all three features and is a

model that is more holistic and nuanced.

4. CONCLUSION

This paper introduces MTaskHD for multi-task learning in

CNC subtractive manufacturing. Outperforming traditional ma-

chine learning models, this study showcases MTaskHD’s effec-



TABLE 1: PERFORMANCE METRICS OF THE MTaskHD COMPARED TO OTHER CHARACTERIZATION ALGORITHMS FOR THREE TASKS.

Model Accuracy Precision Recall F1-Score

MTaskHD 0.953 ± 0.011 0.955 ± 0.008 0.953 ± 0.011 0.953 ± 0.012

SVM 0.552 ± 0.021 0.572 ± 0.026 0.552 ± 0.021 0.534 ± 0.024

NB 0.467 ± 0.018 0.425 ± 0.018 0.467 ± 0.018 0.437 ± 0.018

MLP 0.532 ± 0.013 0.609 ± 0.030 0.532 ± 0.013 0.481 ± 0.030

CNN 0.681 ± 0.036 0.691 ± 0.046 0.681 ± 0.036 0.660 ± 0.044

t-LeNet 0.806 ± 0.181 0.812 ± 0.199 0.806 ± 0.181 0.795 ± 0.201

tiveness in complex manufacturing, highlighting its robustness

and adaptability in understanding and predicting product quality.
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