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Abstract— Efficiency and performance are significant chal-
lenges in applying Machine Learning (ML) to robotics, espe-
cially in energy-constrained real-world scenarios. In this con-
text, Hyperdimensional Computing offers an energy-efficient al-
ternative but has been underexplored in robotics. We introduce
ReactHD, an HDC-based framework tailored for perception-
action-based learning for sensorimotor controls of robot tasks.
ReactHD employs hypervectors to encode sensory inputs and
learn the suitable high-dimensional pattern for robot actions.
It also integrates two HD-based lightweight symbolic learning
techniques: HDC-based supervised learning by demonstration
(HDC-IL) and HD-Reinforcement Learning (HDC-RL) to en-
able precise, reactive robot behaviors in complex environments.
Our empirical evaluations show that ReactHD achieves robust
and accurate learning outcomes comparable to state-of-the-art
deep learning while substantially improving the performance
and energy consumption efficiency by 14.2x and 15.3x. To
the best of our knowledge, ReactHD is the first HDC-based
framework deployed in real-world settings.

I. INTRODUCTION

We increasingly seek to harness the capabilities of ma-
chine learning(ML) to bolster the autonomy of robotic
systems. However, a critical challenge emerges from the
current state of ML with its inherent inefficiency in energy
consumption and performance on modern GPUs [1].

Brain-inspired Hyperdimensional Computing (HDC)
emerges as an innovative computing paradigm to address the
concerns surrounding efficiency and lightweight learning [2].
In contrast to conventional numerical computation
methodologies that heavily rely on arithmetic operations
grounded in Boolean logic, HDC harnesses symbolized
information encoded with high-dimensional vectors, taking
inspiration from the activities of vast biological neurons.
Notably, the machine learning workflows in HDC frequently
adopt a binary-centric framework, allowing them to perform
highly efficient computations. Prior research has shown
substantial performance enhancements, with gains of up
to two or three orders of magnitude compared to the
performance and energy efficiency of deep learning (DNN)
methods [3], [4], [5], [6], [7].

Despite the advances of HDC-based learning algorithms
for machine learning tasks [8], [9], [10], a relatively scant
body of research has been explored in the context of
robotics tasks [11], [12], [13], [14], [15]. They primarily
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serve as proof-of-concept endeavors to facilitate an au-
tomated perception-action mechanism by deploying HDC-
based learning methodologies, focusing on emulating the
behaviors of robots by mimicking a set of expert inputs, also
known as behavior cloning in the form of imitation learning
(IL). However, the scope of these efforts has often been
limited, typically constrained to specific scenarios, such as
simulation environments [11], [12], or addressing relatively
simplified problems [13], [15].

To initiate on the applications of Hyperdimensional Com-
puting (HDC)-based learning in real-world settings, we must
address several technical challenges. Firstly, operating “in
the wild” contrasts controlled environments, as the sensor
inputs have a high level of complexity. For example, pre-
vious work often leverages a relatively small number of
discrete sensor inputs, however, real-world robotic problems
necessitate the processing of an extensive array of sensor
inputs, e.g., LIDAR sensors, frequently encompassing contin-
uous data streams with underlying inter-feature relationships.
Secondly, a recurring concern with HDC-based solutions
in robotics is the potential compromise in accuracy when
compared to state-of-the-art ML methodologies represented
by DNNs. To enable HDC-based solutions to excel in real
robots, it is imperative to mitigate this accuracy gap for
robust and reliable performance. Lastly, transitioning from
supervised learning to a fully automated learning solution
such as Reinforcement Learning (RL) becomes a crucial re-
quirement, particularly considering the challenges associated
with behavior cloning since it often struggles to adapt and
generalize in dynamic, real-world scenarios [16].

In this paper, we introduce ReactHD, an advanced
HDC-based learning framework tailored for robotic tasks.
ReactHD framework first encodes sensory input perceptions
to high-dimensional vectors, called hypervectors, and learns
suitable high-dimensional patterns for potential actions to
execute targeted tasks in a notion of perception-action-based
learning. In particular, we focus on real-world sensorimotor
robot controls that collect LiDAR data and drive it in
an eight-directional mode. In tandem with advancements
in HDC-based supervised learning for precise IL, called
HDC-IL, we propose an advanced HDC-based RL solution,
called HDC-RL, with an emphasis on high sample efficiency.
Incorporating RL into the HDC-based framework empowers
robots to learn autonomously, adapt to the complexities of
dynamic real-world scenarios, and make informed decisions,
thereby providing the robustness of real-world robotic ap-
plications. Our framework is designed to be capable of ad-
dressing diverse problems by simply plugging in task-specific
models, such as object tracking, obstacle avoidance, and
navigation, on a single platform without requiring additional
feature engineering.
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To the best of our knowledge, our work is the first
pioneering work that deploys an HDC-based solution in
the wild unlike the prior work based on simulated envi-
ronments. In our real-world deployment, we empirically
demonstrate highly accurate learning outcomes with HDC
while achieving practical reductions in computing energy and
resource consumption. We execute all HDC processes on an
embedded device, Raspberry Pi 4 based on low-power ARM
Cortex-A72, obviating the need for intricate GPGPU support.
In our evaluations, we observed that ReactHD achieves
comparable learning quality to state-of-the-art deep learning
while improving the performance and energy consumption
efficiency by 14.2x and 15.3x.

II. RELATED WORK

HDC is a computing paradigm inspired by the brain
designed for efficient learning based on principles from
theoretical neuroscience [2], [17]. It has emerged as a
novel computing method with several characteristics, such as
high computational efficiency and robustness, that as well-
suited for robotics applications. There have been a number
of attempts to apply HDC to robotics tasks. [12] initially
explored the application of robotics tasks in HDC. This was
further extended to various tasks, such as sequence-based
localization, object recognition tasks [11], and goal-oriented
navigation [13]. The work in [15] introduced the concept
of transfer learning into HDC-based navigation. While these
attempts highlighted the potential of HDC in robotic appli-
cations, they were restricted to either simulations or offline
dataset-based evaluations. Additionally, those works often
utilized a limited number of sensor inputs typically having
discrete values.

In contrast to previous work that primarily explored HDC
in simulated or highly controlled settings, our paper intro-
duces a pioneering HDC-based learning framework for real-
world sensorimotor robotics tasks. By incorporating imitation
learning (IL) and reinforcement learning (RL) into the HDC
framework, we enable autonomous, adaptive behavior in
robots, bridging the gap between computational efficiency
and sophisticated real-world applications.

III. BACKGROUND: MIMICKING HUMAN MEMORY
COGNITION WITH HDC

Hypervector Representation Inspired by the human brain’s
ability to associate disparate pieces of data and distin-
guish their relationships, HDC hinges on the hypervector,
a high-dimensional vector with a fixed dimensionality, e.g.,
D = 10,000, ie., H € RP. To utilize HDC in target
learning tasks, we first transform the input data into a
set of hypervectors, termed encoding. We then proceed to
the learning process using operations specifically designed
for hypervectors. In this high-dimensional space, randomly
generated hypervectors with D components chosen from
{—1,1} are nearly orthogonal, implying minimal similarity
between them. Each unique item or symbol can thus be
captured by a randomly generated hypervector, offering
a robust and distributed way to encode information. For
instance, if the need arises to represent hypervectors from
independent sensors, random hypervectors can be generated
for each sensor and employed during the encoding stage.

Bundling and Binding HDC employs a set of operations
on hypervectors to learn target tasks. These operations
emulate human memory functions, like aggregation and

linking, through element-wise operations such as bundling
and binding. Bundling, denoted by ¢, achieves information
aggregation by element-wise addition of hypervectors. The
resulting hypervector retains the characteristics of its parent
vectors, signified by a dot product similarity (Hj;, S) that
is significantly greater than zero — approaching D in most
cases — where S = H; @ - - - @ Hy. Binding, denoted by ®,
is the element-wise multiplication of hypervectors, leading
to a new hypervector that occupies an orthogonal position.
Formally, (H;,S) ~ 0 when S = H; ® H,, effectively
linking two pieces of information with different orthogonal
representations. The resulting hypervector can be binarized,
i.e., by taking its sign bit, sign(H), to ensure efficiency for
the rest of the learning process.

Permutation Permutation operations, represented by p" (H),
shuffle the components of a hypervector H by shifting it n
bits. The output is a hypervector nearly orthogonal to the
original, with (H, p"(H)) = 0. The operation’s reversibility,
p~"(p"(H)) = H, makes it useful to represent sequences.
Reasoning in HDC HDC’s reasoning capabilities hinge on
measuring the similarity between hypervectors, e.g., the dot
product as a metric (H;, Hy). Reasoning involves searching
this high-dimensional space to find hypervectors closest to
a query. For instance, consider a set of hypervectors that
encode sensor information. By bundling the encoded hyper-
vectors according to their corresponding desired actions, we
can generate A action hypervectors where A is the number of
actions. Subsequently, reasoning can be conducted by com-
paring the similarities between these per-action hypervectors
and a query hypervector representing a sensor state.

IV. HDC LEARNING FOR ROBOTICS

In this paper, we present ReactHD, an HDC-based
learning framework specifically engineered for lightweight
perception-to-action tasks in the wild. As outlined in Fig-
ure 1, the first step is the encoding procedure (@), which
transforms raw input data into hypervectors, considering var-
ious characteristics of the real-world sensor inputs. With the
encoded hypervector, the objective of our learning procedure
is to train action hypervectors (@) such that they maintain
high similarity with the most appropriate hypervectors for
each action. To achieve this, we introduce two learning
techniques for real-world settings: IL via supervised learning
(HDC-IL) and automated learning through RL (HDC-RL).
In HDC-IL, we significantly improve prediction accuracy
as compared to the earlier HDC robotics works by iter-
atively refining the training dataset. i.e., expert behavior
logs, employing a strategy akin to state-of-the-art deep
neural network algorithms. This also involves considering
hard-negative samples, a frequent challenge in many real-
world robotic tasks. On the other hand, we also propose an
HDC-based RL algorithm, eliminating the need for expert
inputs throughout the learning process. Our HDC-based RL
algorithm is devised to achieve high sample efficiency, draw-
ing inspiration from the concept of prioritized experience
replay [18], but implementing its main concepts thoroughly
with HDC operations. Notably, our IL and RL techniques
yield HDC models that perform the perception-to-action
translation with compatible structures. This architectural con-
sistency offers a compelling advantage of serving HDC mod-
els in the deployment (@) to be readily adapted to various
robotics tasks, such as object tracking, obstacle avoidance,
and navigation tasks, without structural modification.
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A. Data Encoding

The role of the encoding procedure is to project raw
features of input data into a hypervector space. The en-
coding procedure of most of prior HDC works is generally
constrained to processing discrete categorical values and
focuses on independent features. For example, in the earlier
HDC work for robotics [13], the encoding is represented as
V,; ® B, where V; is a random hypervector associated with
a categorical value, and B, is another random orthogonal
hypervector for a feature position. Unlike the prior works, we
develop our encoding strategy with three key considerations
for real-world input data: (i) the incorporation of continuous
values, (ii) the recognition of inter-feature relationships, and
(iii) the accommodation of temporal ordering. In particular,
we focus on how to encode real-world LiDAR inputs.

Figure 2 presents an overview of our encoding scheme,
termed circular encoding. This mechanism adeptly captures
a temporal sequence of LiDAR measurements, each com-
prising an array of continuous feature values distributed
across F' directions, i.e., F = (fi, -, f2). Theoretically
underpinned by Random Fourier Features (RFF) [19], a
technique validated for its effectiveness in a number of HDC
literature [20], [21], [7], [10], [9], our methodology initiates
with the generation of a set of F' base hypervectors, B > B;.
These serve as distinct markers for each feature in the LIDAR
data. Assuming we have F' LiDAR data points collected at a

given moment, our scheme deviates from traditional practices
that employ mapping of discrete categorical values to random
hypervectors. Instead, we scale each base hypervector with
its corresponding feature value. We then employ cosine and
sign activation functions to revert the input to a binary space
for higher computation efficiency, finally obtaining:

H' = sign(cos(ft xBo @+ @ fi. x Bp)).

In real-world applications, features often exhibit inter-
feature relationships, e.g., measurements for the LiDAR data.
For example, measurements at proximate degrees tend to
be more closely related than those at distant degrees. To
account for such relationships explicitly within our encoding
framework, we generate base hypervectors that mirror these
inherent correlations. Let us introduce a hyperparameter,
denoted as k, which signifies the number of closely related
features that should be encoded with similar base hypervec-
tors. Instead of generating a full set of F' base hypervectors,
we construct C' = [F'/k] pivot hypervectors. The other base
hypervectors are then synthesized through an interpolation
process. The interpolation for a base hypervector, denoted
as B;.xc+. for any i, is performed by drawing its initial left
[(1 = A/K) - D] elements from B;.x, while the remaining
right elements are then filled in from B;. (x4 o). This method
makes the base hypervectors similar to each other among
closely situated features. It should be noted that the base
hypervectors at each end are similar, thereby reflecting the
circular nature of LiDAR measurements.

In the last stage of our encoding scheme, we explicitly
incorporate the temporal relationships present in a time
series of LiIDAR measurements. Leveraging the permutation
operation, as elaborated in Section III, we enrich the feature
space with temporal context. Specifically, for a time sequence
of length L, the final encoded hypervector E; integrates
samples across temporal positions, as captured by the for-
mula: E; = H' @ p!(HOV) @ ... @ pt1(HI-LD),
The permutation operation yields a hypervector orthogonal
to its original vector, thus effectively differentiating LiDAR
measurements obtained at disparate time intervals.

B. Imitation Learning Based on Supervised Learning

For imitation learning, ReactHD operates with training
dataset curated by experts for a target problem to develop
a distinct set of action hypervectors, denoted as A;(€ A)
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where 1 < ¢ < A. Figure 3 illustrates the iterative learn-
ing procedure tailored for IL, called HDC-IL. This dataset
encompasses two key components: (i) feature vectors that
are subsequently encoded using our novel circular encoding
procedure and (ii) predefined actions governing movement
directions. In our specific application, we consider eight
directional movements alongside a ‘stop’ action, yielding a
total of A =9 discrete actions.

The traditional HDC-based robot control approaches [13],
which generally bundle encoded hypervectors into corre-
sponding action hypervectors A; with a single pass until
sufficient similarity is achieved, represented as (A,, E)
where a corresponds to the action for an encoded hypervector
E. In contrast, we adopt an iterative learning methodology
similar to the DNN techniques, drawing inspiration from
a multi-epoch approach, which is called retraining in prior
work [9]. During iterative training, the algorithm revisits the
training dataset for a predetermined number of iterations.
Should a sample be misclassified, both the misclassified and
true action hypervectors undergo adaptive adjustments with
the bundling operation by:

Aniss = Amiss — Q  and  Ape = Are + Q.

Another key piece of our learning algorithm involves the
methodical management of hard negative samples to refine
action hypervectors. In real-world scenarios, expert actions
are not uniformly distributed. Consider, for instance, the task
of obstacle avoidance. It is inclined to predominantly select
the ‘stop’ action due to the frequent absence of close objects.
As a result, in our dataset representing the inputs of the
human expert, the frequency of ‘stop’ actions is on average
7.33 times greater than that of any other action. In this
context, hard-negative samples are particularly challenging
instances where the model incorrectly predicts ‘non-stop’
actions in situations that necessitate a ‘stop’.

To address this issue, we introduce a hard-negative mining
technique tailored with HDC operations, parameterized by
the hypervector «, as outlined in Algorithm 1. Before each
training iteration, we utilize the current state of the HDC
action model A to compute high-dimensional similarities for
all encoded samples, Ef{ € EX, labeled as the negative
class H, e.g., ‘stop’. The softmax function is applied to
the similarity vector for each sample to normalize, which is
then subtracted from a one-hot vector identifying the target
negative action, i.e., O =[--0;---] where o, =1if i = H
otherwise zero. The resulting mean serves as a weight for
each sample, indicating its difficulty to classify correctly.
Through weighted sampling with a list of weights W, we
selectively incorporate these hard-negative samples in the
training iteration, effectively balancing the training set. The
number of hard-negative samples included is calculated as
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Fig. 4: ReactHD Reinforcement Learning.

a x N, where N represents the average count of samples
for each non-negative action. As a result, the training algo-
rithm proceeds to focus more on the hard-negative samples
throughout the iterative procedure, creating the robots model
for real-world scenarios.

Algorithm 1 HDC-based Hard-Negative Mining

cInput: A; € A,EF, o, N
: Output: Hard-negative samples for training iteration
: Initialize: Weight vector W <« ]
: for each hypervector Ef € EH for action H do
V =0 — softmax([- - (Ef, A;) - ])
W+ = mean(V)
end for ~
: Compute the weighted sampling rate as o x N
: Sample o X N hard-negative samples from W

e e Y

C. Reinforcement Learning

IL is known to be inherently limited by the scope of
the training data and cannot adapt to unseen situations.
To address these limitations, ReactHD incorporates RL to
enable the agent to interact with the environment and learn
optimal behavior through trial and error, called HDC-RL.
As shown in Figure 4, operating in a typical episodic
environment providing the states and rewards and actuating
with given actions, our HDC-based RL approach draws
parallels from the recent development of the HDC-based
RL algorithm [22] with crucial modifications for the sample
efficiency for real-world scenarios. Specifically, we maintain
two copies of the action models: one for Q-value estimation
later (also later used for deployment) and another serving
as a periodically updated target model to stabilize learning
called the target HDC model, say A; € A and A’; € A/,
respectively. Furthermore, we utilize a replay buffer to store
experiences, facilitating efficient training and addressing the
non-stationary nature of the RL problem. The replay buffer
stores tuples of experiences (E;, a;, 7, E;11) where E; and
E,; represent the encoded hypervectors for the current and
next states, a; is the action taken, and r; is the received
reward. These tuples are sampled in mini-batches to update
the action hypervectors during training. In ReactHD, we
incorporate the dual-model and replay-buffer mechanisms
used in the original DQN [23] into the HDC learning.

The proposed RL algorithm learns a value-based policy
to maximize the resultant Q-values. Our goal is to train the
action hypervectors A; so that the predicted Q-value, de-
noted as qpreq, is obtained through the dot product similarity
between A; and the encoded hypervector for the current
state Fy: gprea = (A, - E;). To this end, the two sets of
action hypervectors A and A’ are initialized as zero vectors.
During each training iteration, a mini-batch M is sampled
from B and is used to update the action hypervectors in A
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according to the error between the predicted Q-value, gpred,
and the ground truth Q-value, .. The update equation for
the action hypervector corresponding to a specific action a;
with a learning rate [ is formalized as:

Aq, = Aq, @ B(duwue — Gprea) X Er.

To calculate gy, a target model A’ is employed. Specifically,
Qwue 18 computed with a discount rate v as:

Qtrue = Tt + Y In3X<A/a, Et+1>.

The target model A’ is updated at predefined intervals,
ensuring a more stable convergence of the Q-values. To
balance the exploration and exploitation, an e-decay policy
is instituted. Upon action selection, the RL agent interacts
with its environment, consequently acquiring a new state
and a corresponding reward. These sequences of state-action-
reward-state transitions are organized into episodes, serving
as training data to refine the RL action model iteratively.
In our evaluation of the initial RL algorithm, we found
that learning in LiDAR-based robotic environments often
progressed slowly, primarily due to the agent’s regular inter-
action with less informative samples. This issue arises from
the complexity of LiDAR data, which contains hundreds of
features, thus significantly expanding the problem space, in
contrast to the environments with fewer than 10 features
typically explored in existing HDC-based RL research [22].
To address this issue, we integrate a prioritized experience re-
play mechanism by translating its main conception with HDC
operations. To this end, our algorithm utilizes a ‘surprise’
factor for each sample, which is quantified during the action
selection as the difference in dot-product similarity between
Gpred and Gyue. This factor is stored in the replay buffer
alongside the respective experience tuples. For training, it
takes a mini-batch M using weighted sampling based on this
’surprise’ factor, thereby skewing the distribution of sampled
experiences toward more informative states. The original
concept of importance-sampling weights, used in conven-
tional prioritized experience replay [18], is incorporated by
multiplying it with 5. During the post-training, the factors for
the used samples are updated in the replay buffer, ensuring
an adaptive learning process with high sample efficiency.

V. EXPERIMENTAL RESULTS

We employ a Wheeltec Mecanum Omnidirectional driving
robot with a Raspberry Pi 4, which leverages a low-power
ARM Cortex-A72 for computational tasks. The robot is
equipped with an RPLidar Al Lidar sensor, operating with
a scan resolution of 0.5°, equating to 720 data points per
scan and a scan frequency ranging between 8 to 9 Hz. It
thus obtains F' = 720 features for Lidar reading, and we
pass them to the encoding process that considers L = 7
successive time-series measures. For the robot’s mobility,
we define a set of nine actions that allow control in eight
directions along with a ‘stop’ action. The HDC-IL and
HDC-RL algorithms and other comparative methods are
implemented using PyTorch 1.12 running on CPU.

In addition to the physical experiments, we develop an
in-house simulation environment designed to emulate the
dynamics of the omnidirectional driving robot within var-
ious obstacle-rich settings and synthesize LiDAR data. By
leveraging this simulated environment, we can rigorously
pre-train our HDC-based RL models without the inefficiency

and potential safety risks associated with direct RL training
on the actual robotic hardware. We then deployed the trained
HDC models onto the physical robot for evaluation.
Evaluated Tasks: We evaluated five tasks designed to
address different challenges in robotics. We evaluate the
performance of both our HDC-based IL and RL approach.
For IL, we use the data collected for the actual robot driving:
e Obstacle Avoidance (AVO): This task requires the robot to
maintain a predefined safe distance (50 cm) from a moving
obstacle. The IL model is trained on data collected for 6
minutes long, while the RL model is structured to provide a
single -1 reward for proximity violations.

e Object Tracking (TRA): This task has a similar setup to
the obstacle avoidance task; the goal is to track the closest
person within a certain distance threshold.

o Navigation 1 & 2' (NAV1 & NAV2): In NAV1, the robot
is tasked with making a circle around a set of centrally-
placed boxes. NAV2 features a map scattered with various
objects. The robot aims to move from a starting point to
an endpoint through a more challenging environment. We
utilized the training data for eight successful trials for IL.
For RL, we give positive rewards when passing each corner
of major objects to help navigation, while a negative reward
is given when hitting a wall.

In addition to four tasks with real-world robots, we in-
clude another task mainly for comparative assessment, called
RORB. This task is taken from prior literature that proposed
a concept for HDC-based virtual robot controls [13]. It
employs a simplified 10 x 10 2-D grid environment with
15 obstacles randomly located. A virtual robot moves one
grid cell at a time in one of the four cardinal directions.
It relies on six types of sensor inputs: four for detecting
obstacles in each direction and two for denoting the x and
y directions toward the goal. An additional feature is also
included to consider the robot’s last action, i.e., having seven
input features ' = 7 with four direction movement.

A. Learning Quality Evaluation

Imitation Learning We first assess the learning efficacy
of HDC-IL with comparisons with a traditional HDC algo-
rithm and a state-of-the-art Deep Neural Network (DNN)
consisting of three fully-connected layers, each containing
512 neurons. The baseline HDC algorithm represents earlier
HDC-based approaches for robotics tasks [13], relying on
simplistic binding-to-bundling operations and randomly gen-
erated hypervectors for encoding [8] under the assumption
that all sensor inputs are independent, and (ii) employing
single-pass learning for its training. To address the challenges
of highly imbalanced action scenarios in robotics, we utilize
a custom metric named ‘negative-aware accuracy’. This
metric regards predictions as correct for non-stop action
samples if they match the true label or are predicted as
’stop’. Conversely, for samples labeled as ’stop’, accuracy
requires precise prediction as ’stop’. This metric is employed
for safe robot decision-making by prioritizing the recognition
of inaction when uncertain.

As illustrated in Figure 5a, our proposed IL algorithm
demonstrates superior performance over the baseline HD
algorithm. Our approach yields an average accuracy that
is 24.3% higher across four real-world LiDAR-based tasks.
Notably, in the context of the four LiDAR-based tasks, our

1Visual representations for the navigation tasks are shown in Section V-C.
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Fig. 5: Quantitative Evaluation of ReactHD

approach effectively navigates the challenges presented by
the extensive feature space (F' = 720), a scenario where
the baseline algorithm struggles. The robustness of our
method to hard negatives ensures it avoids the pitfalls of
defaulting to ineffective negative stop actions, significantly
improving the negative-aware accuracy. As compared to the
deep learning model, our algorithm maintains a comparable
learning quality. The advantages of HDC-based strategies,
such as their computationally efficient nature, as compared
to the DNN will be further elaborated in Section V-B.

Reinforcement Learning Next, we evaluate our HDC-RL
algorithm.? Figure 5b compares the scores obtained over
multiple episodes. Here, the score is defined as the number
of successful steps for AVO and TRA, and as the mean
reward accumulated over steps per episode for NAV1 and
NAV2. Additionally, we evaluate our algorithm without the
use of prioritized experience replay. Although this simplified
version can accomplish some tasks, it generally requires
longer run times and sometimes fails to learn within an
acceptable number of episodes. This limitation arises from
its inability to adequately prioritize samples in the replay
buffer, a challenge that our proposed algorithm successfully
overcomes from existing HDC-based RL methods [22].

B. Efficiency Evaluation

In this section, we discuss the system efficiency of
learning-based robotics tasks, particularly when running our
proposed HDC-based algorithm and the DNN model on a
Raspberry Pi (RPi) device, which has computational and
power limitations often encountered in robotic environments.
Figure 5c presents the improvement of performance and en-
ergy efficiency as compared to DNN. For instance, in training
imitation learning (IL), it achieves an average speedup of
14.2x and an energy efficiency improvement of 15.3x. To
train a minibatch in RL, the HDC-RL archives a speedup by
5.3x. For inference, we assess the time it takes to process
a single LiDAR measure in real-time. Notably, the inference
runtimes for both IL and RL models are identical, regardless
of the target tasks. The results show that the ReactHD
framework also significantly enhances inference efficiency,
being 14.2x faster than the DNN.

C. Ablation Study

HDC-IL We next evaluate the contributing factors to the
learning quality improvements in our proposed imitation
learning approach. To this end, we experiment with two
altered versions of the algorithm: one without using the

2We also verify the trained models with the real-world deployment. Please
refer to the accompanying video.
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Fig. 6: Ablation Study. The dominant actions are evaluated
after 30 epochs for NAV1 and 150 epochs for NAV2.

circular encoding and another without using the hard neg-
ative mining. As shown in Figure 6a, both elements play
a crucial role in enhancing learning quality. For instance,
when circular encoding is excluded, there is a significant
decrease in accuracy by 12.5% across all four tasks. The hard
negative mining is also an important component, particularly
for specific robotics tasks®, where it yields improvements of
5.8% for TRA.

HDC-RL We here assess the impact of prioritized expe-
rience replay by comparing the trajectories in navigation
tasks. Figure 6b-e presents the learned actions having the
highest Q value at each grid point on the navigation map
after learning across different numbers of episodes. The
results show that our original approach, as presented with
the detailed decision-making for different grids, achieves
faster convergence on the navigation tasks. In contrast, the
approach without using prioritized experience replay (PER)
learns a relatively small portion of the map, eventually failing
to learn NAV2 after 1000 epochs. We believe that this en-
hanced learning speed significantly increases the practicality
of our method for real-world applications, as it enables the
HDC algorithm to prioritize challenging and informative
experiences, thereby improving the overall quality and ef-
ficiency of learning.

VI. CONCLUSIONS

We present ReactHD, an HDC-based learning framework
devised specifically for real-world robotic tasks. Based on a
new HDC encoding method for real-world LiDAR sensors,
we proposed HDC-based IL and RL for accurate learning in
the wild. We evaluated ReactHD’s capability along with real-
world deployment and show that it achieves high learning
quality while significantly reducing computational and en-
ergy requirements, e.g., improving the inference performance
by 14.2x.

3Note that the navigation tasks do not experience significant effects since
the expert inputs consist of consistent movements.
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