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Abstract
We correct an error in [I. Kangasniemi, and J. Onninen, On the heterogeneous distor-
tion inequality. Math. Ann. 384 (2022), no. 3-4, 1275–1308.]

Correction to:
Mathematische Annalen (2022) 384:1275–1308
https://doi.org/10.1007/s00208-021-02315-2

When investigating the potential alternate applications of the methods in our paperOn
the heterogeneous distortion inequality [3], we discovered that the presented proof of
the main result, Theorem 1.3, has a critical flaw. This error occurs late in the paper,
in the relatively technical proof of the lower integrability result shown in Lemma 7.2,
and invalidates this lemma in its stated form. The only results in the paper affected by
this error are Lemma 7.2 and Theorem 1.3.

We have been unable to reprove the original statement of Lemma 7.2. However, in
this corrigendum, we present a fix that recovers the main result, Theorem 1.3, in its
entirety. The fix is non-trivial, and took us numerous failed attempts to find.

The error in the proof of Lemma 7.2 lies in the use of theHardy-Littlewoodmaximal
inequality. In particular, we apply it on a subset of Rn . While there are maximal
inequalities on more general domains, this requires that the definition of the maximal
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function is restricted to the domain; in our case, the definition of the maximal function
extends past the domain, invalidating the inequality.

Remark 1.1 We remark that a slightly weakened version of Theorem 1.3 follows from
Theorem 1.2 of the original article with a far easier argument. In this version, instead
of assuming that σ ∈ Ln+ε(Rn) ∩ Ln−ε(Rn), one would assume that σ ∈ Ln+ε(Rn)

and (σ ◦ ι) |Dι| ∈ Ln+ε(Rn), where ι : Rn ∪ {∞} → R
n ∪ {∞} is the conformal

inversion across the unit sphere. This alternate version is weaker, as its assumptions
imply σ ∈ Ln+ε′

(Rn) ∩ Ln−ε′
(Rn) for ε′ ∈ (0, nε/(n + 2ε)). The proof essentially

only amounts to pre-composing the mapwith ι, proving that the resulting inverted map
is in W 1,n

loc (Rn) by using global Ln-integrability of the derivative and removability of
points forW 1,n-spaces, proving a generalized distortion estimate for the inverted map,
and then applying Theorem 1.2 to show that the inverted map cannot have a zero at
the origin. We leave the details to the interested reader, as our following fix makes this
weaker version unnecessary.

The corrected proof

We follow the notational conventions of the original paper [3]. We start right before
Lemma 7.2 in the original paper, where we have estabilished a continuous mapping
h ∈ W 1,n

loc (Rn,R × S
n−1) with |Dh| ∈ Ln(Rn) and

|Dh(x)|n ≤ K Jh(x) + σ n(x) K ∈ [1,∞), a.e. x ∈ R
n . (7.1)

We match our theorem numbering to the original article, and refer to results therein.
In the original flawed Lemma 7.2, the statement essentially said that if σ ∈

Ln(Rn) ∩ Ln−ε(Rn), then |Dh| ∈ Ln−ε′
(Rn) for some ε′ ∈ (0, ε′). The general

idea of this relied on adapting an argument by Faraco and Zhong [1] which is used to
prove a Caccioppoli inequality below the natural exponent for mappings of bounded
distortion. The difference in our case was that we aimed to perform the argument
globally, leveraging the fact that |Dh| ∈ Ln(Rn).

A naïve repetition of the argument of Faraco and Zhong in our setting is close
to yielding an estimate of the desired form, but fails due to a potential ∞ − ∞ -
cancellation in one of the steps. The original argument was an attempt at a cut-off
procedure that would make the relevant terms finite in the part of the proof where this
cancellation occurs. However, we are currently unable to find any such cut-offmethods
that would fix the proof, largely since the Hardy-Littlewood maximal estimate that is
used to undo an extra maximal function in the canceled term is global.

Our solution is to instead perform a similar argument on a logarithmic scale of lower
integrability. In contrast to the L p-case, a difference occurs in the logarithmic case
where the term to be absorbed has a logarithm less of lower integrability. This differ-
ence provides enough leverage to avoid the aforementioned issues in the cancellation
step, by relying on a trick essentially based on interpolation of exponents.

In particular, the technical estimate we show that replaces the previous Lemma 7.2
is as follows.
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Lemma 7.2 (revised) Suppose that a mapping h : Rn → R × S
n−1 is continuous and

non-constant, and that h ∈ W 1,n
loc (Rn,R × S

n−1) with |Dh| ∈ Ln(Rn). If h satisfies
the distortion inequality (7.1) with σ ∈ Ln−ε(Rn) ∩ Ln(Rn) for some ε ∈ (0, n − 1),
then we have

∫
Rn

|Dh|n logn
(
1 + 1

M(|Dh|)
)

≤ C(n, K , ε)

∫
Rn

(σ n + σ n−ε) < ∞.

We remark that the left hand side of the above estimate is indeed below the natural
exponent on the log-scale, since log(1 + t−1) → ∞ when t → 0. The estimate is
however weaker than a full Ln logn(1 + L−1)-estimate due to the maximal function
in the logarithm, but it is regardless sufficient for us.

For the proof of the revised Lemma 7.2, given a positive integer m ∈ Z>0, we
define the function �m : (0,∞) → (0,∞) by

�m(r) = − d

dr
logm(1 + r−1)

= m

r(1 + r)
logm−1(1 + r−1).

Our key reason for using this function is that, since limt→∞ logm(1 + t−1) =
logm(1) = 0, we have

∫ ∞

r
�m(t) dt = logm(1 + r−1). (7.2)

The other basic property of �m that we need is the following integral estimate.

Lemma 7.3 For every positive integer m ∈ Z>0, we have for all r > 0 the estimate

∫ r

0
t�m(t) dt ≤ Cmr

(
1 + logm−1(1 + r−1)

)
.

Proof Consider first the casem = 1. In this case, we can directly compute the integral
and use the elementary estimate log(1 + r) ≤ r to obtain

∫ r

0
t�m(t) dt =

∫ r

0

dt

1 + t
= log(1 + r) ≤ r = r

2

(
1 + log0(1 + r−1)

)
.

With the case m = 1 done, we then proceed by induction, supposing that m ≥ 2 with
the claim proven for m − 1. We first observe that for all t > 0, we have

t�m(t) = m

1 + t
logm−1(1 + t−1) ≤ m logm−1(1 + t−1).
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2040 I. Kangasniemi, J. Onninen

We then integrate by parts, differentiating logm−1(1 + t−1) to get −�m−1(t) and
integrating 1 to get t . We get the estimate

∫ r

0
t�m(t) dt ≤ m

∫ r

0
logm−1(1 + t−1) dt

= m
(
r logm−1(1 + r−1) − lim

s→0+ s logm−1(1 + s−1)
) + m

∫ r

0
t�m−1(t) dt .

The limit term in the above upper bound vanishes, though it could regardless be ignored
due to it clearly being negative. By using the induction assumption, we hence have

∫ r

0
t�m(t) dt ≤ mr logm−1(1 + r−1) + mCm−1r

(
1 + logm−2(1 + r−1)

)
.

Sincem−2 ≥ 0, we may then use an interpolation estimate to obtain that logm−2(1+
r−1) ≤ max(log0(1+ r−1), logm−1(1+ r−1)) ≤ 1+ logm−1(1+ r−1), and the claim
follows. ��
Proof of the revised Lemma 7.2 Note that we may in fact assume that σ ≤ (K +
1)1/n |Dh|. Indeed, since |Jh | ≤ |Dh|n we always have for free the estimate
|Dh|n ≤ K Jh + (K + 1) |Dh|n . Thus, if h satisfies (7.1) with σ = σ0, then h
also satisfies (7.1) with σ = min(σ0, (K + 1)1/n |Dh|).

Somewhat similarly to the original Lemma 7.2, we define for every λ > 0 the set

Fλ = {x ∈ R
n : M(|Dh|) ≤ λ}.

If x, y ∈ Fλ, we then again have by a pointwise Sobolev estimate that

|hR(x) − hR(y)| ≤ (Cn/2) |x − y| (M(|∇hR|)(x) + M(|∇hR|)(y))
≤ (Cn/2) |x − y| (M(|Dh|)(x) + M(|Dh|)(y)) ≤ Cnλ |x − y| ,

proving that hR is Cnλ-Lipschitz in Fλ. By using McShane extension, we can then
again find a Cnλ-Lipschitz map hR,λ : Rn → R such that hR,λ|Fλ = hR|Fλ . We again
denote hλ = (hR,λ, hSn−1).

We continue as in the original argument, proving that

|Dhλ| ≤ (1 + Cn)M(|Dh|).

Indeed, in Fλ we have |Dhλ| = |Dh|, and in R
n\Fλ we have |Dhλ| ≤ |Dh| +

Cnλ ≤ (1 + Cn)M(|Dh|). By the Hardy-Littlewood maximal inequality, we have
M(|Dh|) ∈ Ln(Rn), and thus [3, Lemma 2.4] of the original paper yields that

∫
Rn

Jhλ = 0

for every λ > 0.
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In Rn\Fλ, we have

Jhλ ≤ ∣∣DhR,λ

∣∣ ∣∣DhSn−1

∣∣n−1 ≤ Cnλ |Dh|n−1 .

Thus, we may estimate

∣∣∣∣
∫
Fλ

Jh

∣∣∣∣ =
∣∣∣∣
∫
Rn\Fλ

Jhλ

∣∣∣∣ ≤ Cn

∫
Rn\Fλ

λ |Dh|n−1 .

Combining this with (7.1), we thus obtain

∫
Fλ

|Dh|n ≤ CnK
∫
Rn\Fλ

λ |Dh|n−1 +
∫
Fλ

σ n .

Multiplying by �n(λ), we get

∫
Fλ

�n(λ) |Dh|n ≤ CnK
∫
Rn\Fλ

λ�n(λ) |Dh|n−1 +
∫
Fλ

�n(λ)σ n . (7.3)

We then let t > 0, integrate (7.3) from t to ∞ with respect to λ, and use Fubini-
Tonelli to swap the order of integrals. Note that the set Fλ is defined with the condition
M(|Dh|) ≤ λ; in our use of Fubini-Tonelli, this condition must be moved to the
integral with respect to λ, where it changes the lower bound of integration to M(|Dh|)
wheneverM(|Dh|) > t . Similarly,Rn\Fλ is definedwith the conditionM(|Dh|) > λ;
whenmoved to the integral with respect to λ, this changes the upper bound toM(|Dh|)
when M(|Dh|) > t , and makes the integral vanish otherwise. Altogether, we obtain

∫
Rn

|Dh|n
(∫ ∞

max(t,M(|Dh|))
�n(λ) dλ

)

≤ CnK
∫
Rn

|Dh|n−1

(∫ max(t,M(|Dh|))

t
λ�n(λ) dλ

)

+
∫
Rn

σ n
(∫ ∞

max(t,M(|Dh|))
�n(λ) dλ

)
. (7.4)

We then evaluate the integrals and estimate. For the σ -term, we use (7.2) and the
fact that we could assume that σ ≤ (1+ K )1/n |Dh|. Thus, in the region {σ �= 0}, we
get that

∫ ∞

max(t,M(|Dh|))
�n(λ) dλ = logn

(
1 + 1

max(t, M(|Dh|))
)

≤ logn
(
1 + 1

M(|Dh|)
)

≤ logn
(
1 + 1

|Dh|
)

≤ logn
(
1 + (1 + K )

1
n

σ

)
.
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2042 I. Kangasniemi, J. Onninen

Moreover, we recall that for all a, b, γ > 0, we have the elementary inequalities
log(a) ≤ C(γ )aγ and (a + b)γ ≤ C(γ )(aγ + bγ ). By applying these inequalities in
the region {σ �= 0}, we obtain the further estimate

logn
(
1 + (1 + K )

1
n

σ

)
≤ C(n, K , ε)

(
1 + σ−ε

)

In the region {σ = 0}, it suffices to know that since M(|Dh|) > 0 everywhere due to
h being non-constant, the integral with respect to λ in the σ -term is finite and is hence
eliminated by the σ n-coefficient.

For the |Dh|-term on the left hand side, we similarly use (7.2), obtaining

∫ ∞

max(t,M(|Dh|))
�n(λ) dλ = logn

(
1 + 1

max(t, M(|Dh|))
)

≥ χRn\Ft logn
(
1 + 1

M(|Dh|)
)

.

The remaining middle integral is then estimated by using Lemma 7.3:

∫ max(t,M(|Dh|))

t
λ�n(λ) dλ ≤ χRn\Ft

∫ M(|Dh|)

0
λ�n(λ) dλ

≤ χRn\Ft C(n)M(|Dh|)
(
1 + logn−1

(
1 + 1

M(|Dh|)
))

.

By applying all these estimates to (7.4), we get

∫
Rn\Ft

|Dh|n logn
(
1 + 1

M(|Dh|)
)

≤ C(n)K
∫
Rn\Ft

|Dh|n−1 M(|Dh|) logn−1
(
1 + 1

M(|Dh|)
)

+C(n)K
∫
Rn\Ft

|Dh|n−1 M(|Dh|) + C(n, K , ε)

∫
Rn

(
σ n + σ n−ε

)
. (7.5)

We proceed to apply Young’s inequality |ab| ≤ |a|p/p+|b|p∗
/p∗ on the first term

on the right hand side of (7.4). In particular, we get

C(n)K |Dh|n−1 M(|Dh|) logn−1
(
1 + 1

M(|Dh|)
)

≤ n − 1

n
|Dh|n logn

(
1 + 1

M(|Dh|)
)

+ (C(n)K )n

n
Mn(|Dh|).
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Thus, with a further use of the fact that |Dh| ≤ M(|Dh|) a.e. in Rn , we have

∫
Rn\Ft

|Dh|n logn
(
1 + 1

M(|Dh|)
)

≤ n − 1

n

∫
Rn\Ft

|Dh|n logn
(
1 + 1

M(|Dh|)
)

+C(n, K )

∫
Rn\Ft

Mn(|Dh|) + C(n, K , ε)

∫
Rn

(
σ n + σ n−ε

)
. (7.6)

We then claim that the first termon the right hand side of (7.6) is finite, and can hence be
absorbed to the left hand side of (7.6). Indeed, inRn\Ft , we have M(|Dh|) > t . Since
M(|Dh|) ∈ Ln(Rn) by the Hardy-Littlewood maximal inequality, the setRn\Ft must
have finite measure. Hence, by again using the elementary estimate log(1 + r) ≤ r
for r ≥ 0, we have

∫
Rn\Ft

|Dh|n logn
(
1 + 1

M(|Dh|)
)

≤
∫
Rn\Ft

|Dh|n
Mn(|Dh|) ≤ ∣∣Rn\Ft

∣∣ < ∞.

Thus, subtracting the term from both sides is possible, leaving us with the estimate

1

n

∫
Rn\Ft

|Dh|n logn
(
1 + 1

M(|Dh|)
)

≤ C(n, K )

∫
Rn\Ft

Mn(|Dh|) + C(n, K , ε)

∫
Rn

(
σ n + σ n−ε

)
.

It remains to estimate the Mn(|Dh|)-term using the global Hardy-Littlewood max-
imal inequality. In particular,

∫
Rn\Ft

Mn(|Dh|) ≤
∫
Rn

Mn(|Dh|) ≤ C(n)

∫
Rn

|Dh|n

≤ C(n)

∫
Rn

(K Jh + σ n) = C(n)

∫
Rn

σ n,

since the integral of Jh over Rn vanishes by |Dh| ∈ Ln(Rn) and [3, Lemma 2.4] of
the original article. In conclusion,

∫
Rn\Ft

|Dh|n logn
(
1 + 1

M(|Dh|)
)

≤ C(n, K , ε)

∫
Rn

(σ n + σ n−ε) < ∞.

Notably, this bound is independent of t . Moreover, since h is non-constant, we have
M(|Dh|) > 0 everywhere, and thus

⋃
t>0 R

n\Ft = R
n . We may thus let t → 0 and

use monotone convergence, and the claim follows. ��
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Fig. 1 The points xi and the balls Bi and B′
i

It now remains to prove Theorem 1.3. It turns out that the revised Lemma 7.2 is
enough to complete a chain of balls estimate similar to the original proof. However,
the basic sequence of balls with a shared center that was used in the original proof is
barely not enough for a successful proof, and we instead need to use a sequence with
limited overlaps that is closer in spirit to the chain condition of [2].

Theorem 1.3 Suppose that f ∈ W 1,n
loc (Rn,Rn) satisfies the heterogeneous distortion

inequality with K ∈ [1,∞) and σ ∈ Ln−ε(Rn) ∩ Ln+ε(Rn), for some ε > 0. If f is
bounded and limx→∞ | f (x)| = 0, then f ≡ 0.

Proof We start as in the original flawed proof. We suppose towards contradiction that
f is bounded and lim

x→∞ | f (x)| = 0, but f is not identically zero. By [3, Theorems 1.1

and 1.2] of the original article, f is continuous and has no zeros. Thus, if we define
h : Rn → R × S

n−1 by

h(x) =
(
log | f | , f

| f |
)

.

then [3, Lemma 7.1] of the original article yields that h ∈ W 1,n
loc (Rn,R × S

n−1),
|Dh| ∈ Ln(Rn), and |Dh|n ≤ K Jh + σ n as before.

We fix a unit vector x0 ∈ S
n−1 ⊂ R

n , and consider balls of the form Bi =
Bn(xi , ri ), i ∈ Z>0,where xi = (2i+1−1)x0 and ri = 2i . This selection ensures that xi
is on the boundary of Bi+1, since |xi+1 − xi | = (2i+2−1)−(2i+1−1) = 2i+1 = ri+1.
It follows that for every i , the intersection of consecutive balls Bi ∩ Bi+1 contains the
ball B ′

i = Bn(xi + (ri/2)x0, ri/2). It is also crucial to observe that no point of Rn is
contained in more than two of the balls Bi . See Fig. 1 for an illustration of the balls
Bi and B ′

i .

Since log | f | ∈ W 1,n
loc (Rn), it has a finite average integral (log | f |)B1 ∈ R

over the first ball. Since limx→∞ f (x) = 0 and dist(0, Bi ) → ∞, we also have
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limi→∞ maxBi log | f | = −∞, and thus limi→∞(log | f |)Bi = −∞. Our objec-
tive is to show an i-independent upper bound for

∣∣(log | f |)Bi − (log | f |)B1
∣∣ =∣∣(hR)Bi − (hR)B1

∣∣, leading to a contradiction as in the original proof.
We estimate this difference with a telescopic sum, obtaining

∣∣(hR)Bi − (hR)B1

∣∣ ≤
i−1∑
j=1

∣∣(hR)Bj+1 − (hR)Bj

∣∣ ≤
∞∑
j=1

∣∣(hR)Bj+1 − (hR)Bj

∣∣ .

We then apply the Sobolev-Poincaré inequality, the fact that B ′
j ⊂ Bj ∩ Bj+1, and the

fact that r j+1/r j = 2. As a result, we can estimate the terms in this telescopic sum by

∣∣(hR)Bj+1 − (hR)Bj

∣∣ ≤ ∣∣(hR)B′
j
− (hR)Bj

∣∣ + ∣∣(hR)B′
j
− (hR)Bj+1

∣∣
≤ −

∫
B′
j

∣∣hR − (hR)Bj

∣∣ + −
∫
B′
j

∣∣hR − (hR)Bj+1

∣∣

≤ 2n−
∫
Bj

∣∣hR − (hR)Bj

∣∣ + 4n−
∫
Bj+1

∣∣hR − (hR)Bj+1

∣∣

≤ Cn

(
r j−

∫
Bj

|∇hR| + r j+1−
∫
Bj+1

|∇hR|
)

.

In particular, since |∇hR| ≤ |Dh|, we have the estimate

∣∣(log | f |)Bi − (log | f |)B1
∣∣ ≤ 2CnV

−1
n

∞∑
j=1

r−n−1
j

∫
Bj

|Dh| , (7.7)

where Vn denotes the volume of the unit ball in Rn .
We then recall the following elementary inequality: if I ⊂ R is a possibly infinite

interval, F,G : I → (0,∞) with F increasing and G decreasing, and s, t ∈ I , then

1 ≤ max

(
F(t)

F(s)
,
G(t)

G(s)

)
≤ F(t)

F(s)
+ G(t)

G(s)
.

We apply this to the right hand side of (7.7) with I = (0,∞), F(ρ) = ρn−1, G(ρ) =
log(1 + ρ−1), t = M(|Dh|), and s = r−1/2

j . In particular, we have

∞∑
j=1

r−n−1
j

∫
Bj

|Dh| ≤
∞∑
j=1

r
− n−1

2
j

∫
Bj

|Dh| Mn−1(|Dh|)

+
∞∑
j=1

r−n−1
j

log(1 + √
r j )

∫
Bj

|Dh| log
(
1 + 1

M(|Dh|)
)

.

(7.8)
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For the first term on the right hand side of (7.8), since r j = 2 j and since |Dh| ≤
M(|Dh|) a.e. in Rn , we may estimate that

∞∑
j=1

r
− n−1

2
j

∫
Bj

|Dh| Mn−1(|Dh|) ≤
(∫

Rn
Mn(|Dh|)

) ∞∑
j=1

2− (n−1) j
2 .

Since |Dh| ∈ Ln(Rn), the integral of Mn(|Dh|) over Rn is finite, and moreover the
sum part of the above upper bound is a convergent geometric sum. Hence, we’ve
obtained an upper bound independent of i for this part of the sum.

For the second termon the right hand side of (7.8), we first applyHölder’s inequality
for integrals with 1 as the other function, obtaining

∞∑
j=1

r−n−1
j

log(1 + √
r j )

∫
Bj

|Dh| log
(
1 + 1

M(|Dh|)
)

≤ C(n)

∞∑
j=1

1

log(1 + √
r j )

(∫
Bj

|Dh|n logn
(
1 + 1

M(|Dh|)
)) 1

n

.

Next, we use Hölder’s inequality for sums, and apply the fact that every point of Rn

is an element of at most two of the sets Bj . The resulting estimate is

∞∑
j=1

1

log(1 + √
r j )

(∫
Bj

|Dh|n logn
(
1 + 1

M(|Dh|)
)) 1

n

≤
⎛
⎝ ∞∑

j=1

1

log
n

n−1 (1 + √
r j )

⎞
⎠

n−1
n

⎛
⎝ ∞∑

j=1

∫
Bj

|Dh|n logn
(
1 + 1

M(|Dh|)
)⎞

⎠
1
n

≤
⎛
⎝ ∞∑

j=1

1

log
n

n−1 (1 + √
r j )

⎞
⎠

n−1
n (

2
∫
Rn

|Dh|n logn
(
1 + 1

M(|Dh|)
)) 1

n

.

Now, by the revised Lemma 7.2, the integral term in this estimate is finite. On the
other hand, for the sum term, we get by r j = 2 j that

∞∑
j=1

1

log
n

n−1 (1 + √
r j )

<

∞∑
j=1

1

log
n

n−1 (
√
r j )

=
(

2

log(2)

) n
n−1

∞∑
j=1

j−
n

n−1 < ∞

since n/(n − 1) > 1. Thus, we have bounded the right hand side of (7.7) with a finite
bound independent of i , which is a contradiction. The claimed result follows. ��
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