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Abstract—Given AI’s increasing role in healthcare, it is vital
to ensure that created models neither perpetuate nor introduce
new biases. One of the naive approaches to mitigating bias
is omitting demographic data features during model training.
However, in healthcare, this method might not yield the best-
performing models as these features may contain crucial care-
related information. This paper explores the trade-offs between
optimal performance and algorithm bias linked to using demo-
graphic data. We demonstrate the approach using a healthcare
model that predicts ICU readmission risk of patients.

Index Terms—Healthcare, Fairness, Machine Learning, Artifi-
cial Intelligence, ICU Readmission Risk

I. INTRODUCTION

AI systems such as machine learning (ML) models are
transforming various industries, and healthcare is no exception.
In every context these systems are used, including healthcare,
they raise the concern of bias against different demographic
subgroups. In healthcare, ML models have been utilized for
diagnosing various diseases, such as cancer [2], and most re-
cently COVID-19 [1]. They have also been used for prediction,
including patients’ Intensive Care Unit (ICU) readmission risk,
mortality, and ICU length of stay [4], [6]. As the use of ML
in healthcare increases so does the concern to ensure that the
developed models do not perpetuate existing biases or create
new ones [3], [5]. In this paper, we examine the bias connected
to using demographic data in ML for healthcare by evaluating
the impact on model performance and fairness of including or
withholding demographic data.

One naive approach to mitigate ML biases is to exclude fea-
tures that might aid in identifying an individual, such as race,
gender, and insurance type, from the training data, ensuring
the model doesn’t explicitly use such features for predictions
[7]. However, this approach may not consistently yield the
best performance and can be ineffective in preventing bias as
these features may provide valuable information, particularly
in healthcare. Lin et al. [4] demonstrated that incorporating
all demographic information enhanced predictive models per-
formance for ICU readmission risk. In contrast, including
such demographic features might introduce additional bias.
To understand this trade-off between performance and bias, we
developed a framework for deciding when to use demographic
data as input using Lin et al.’s model for demonstration [4].
Specifically, the paper explores the models presented by Lin et
al. [4] to investigate whether the increased performance after

using demographic data is consistent across all patients. We
systematically explored the trade-off for each demographic
variable and their combinations by comparing two identical
models that differ only in whether they used particualr demo-
graphic information.

II. METHOD

In the work done by Lin et al., the authors used supervised
machine learning models to predict ICU readmission risk using
patients’ clinical data. They tested several models, including
the Long Short Term Memory (LSTM), Convolutional Neural
Network (CNN), and a hybrid combination of the two. For
input data, they tested different time series windows of the
medical data, finding that the last 48 hours(L-48) before
transfer/discharge data resulted in the best-performing mod-
els. Additionally, they evaluated whether adding demographic
information boosted the performance of the model, finding
positive results. [4]

For our analysis, we took two LSTM models with the L-
48 data from the work done by Lin et al. [4] as base models
where the only difference between the two is the incorporation
of demographic data. The base model was the most explored
and showed the third highest performance improvement with
the inclusion of demographic data in the original work. We
refer to the model with demographic information as WD and
the one without it as WOD.

The original model by Lin et al. [4] utilizes True Positive
Rates (TPR) for reporting results, and we adopt the same
metric to examine performance and bias for two primary
reasons. First, it is used to maintain consistency with the
original work because it allows us to measure disparity using
the originally intended metric. Second, assuming that a true
positive prediction gets the benefit of extended care due to
the high risk of readmission, TPR allows us to gauge the
classification effectiveness of the models and assess whether
the inclusion of demographic data has increased or decreased
the disparity of such benefit.

To examine introduced bias resulting from the use of
demographic data, the TPR of model WOD is computed for
different demographic subgroups, and compared to the TPR
of model WD for the same groups. The TPR for each model
is derived by averaging the TPR values obtained through a
5-fold cross-validation. The difference of these TPRs between
model WOD and WD is then used to measure the disparity of
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(a) (b)

(c) (d)

Fig. 1: TPR differences of model WOD and WD: 1a for gender,
ethnicity, and Insurance separately; 1b, 1c, and 1d for intersec-
tional groups (Insurance, Ethnicity), (Insurance, Gender), and
(Gender, Ethnicity), respectively, where F: Female, M: Male,
G: Government, M-i: Medicaid, M-r: Medicare, P: Private
are different insurance groups and N: No Data, B: Black, H:
Hispanic, A: Asian, W: White are different ethnicity groups

benefit for each demographic group that happens as a result
of using demographic data.

To explore further, we extend our analysis to include in-
tersectional demographic groups. This entails repeating the
same analysis for patients who belong to different categories
of demographic groups, simultaneously. For example, we
evaluate how model WOD performs for female patients with
Medicaid insurance and compare it to how model WD performs
for the same group of patients.

III. RESULTS

When observing the results, bias could be noticed in two
ways. First, when the TPR difference is negative for some
demographic groups and positive for others, it implies varying
benefits from the use of demographic information. Second,
when there is a noticeable gap in the magnitude of the
TPR difference among different groups, it suggests that the
magnitude of benefit from the use of demographic information
varies across such groups.

Fig. 1a to Fig. 1d present the TPR difference for individual
subgroups and their intersection. Each figure is centered at 0
with positive WOD minus WD to the right and negative WOD−WD
to the left of the center. The magnitudes of the bars show
the extent to which demographic information contributed to
the improvement. Figure 1a shows the TPR difference for
all subgroups across gender, ethnicity, and insurance. Addi-
tionally, Figure 1b, 1c and 1d show the difference for all the
intersectional groups.

Figure 1a shows that the addition of demographics data
increased the benefit of all subgroups except for patients with

self-pay and Hispanic patients compared to the model WOD. It
can also be seen that there is a magnitude difference among
both the positive and negative bars. All of the figures illustrate
both kinds of biases discussed above. For example, figure 1c’s
first type of bias is noticeable when observing the performance
bar for female patients with government insurance, where the
bar is to the right of the center axis. It can be inferred that
the addition didn’t help this demographic group, resulting
in an average performance decrease of approximately 13
percent. For the second bias, the noticeable comparison is the
big difference between females and males with government
insurance, where there is a benefit disparity of roughly 40
percent, although more disparities can be observed. Such
inference can be made about all the other figures as well, but
it is important to note that as the number of patients decreases
in the group, the fluctuations in benefit could be higher and
that needs to be kept in mind when making decisions.

IV. DISCUSSION AND CONCLUSION

As shown throughout this paper, depending solely on a
single metric for reporting can obscure nuanced information,
especially in the area of algorithmic fairness. For an increased
overall performance of roughly 2 percent TPR, the figures
above show the kind of benefit disparity that could be intro-
duced. Such disparity could be attributed to inherent historical
biases, systemic biases, or algorithmic biases, prompting the
need for additional research to distinguish between these
factors. Depending on the application, the acceptable trade-
off and bias could differ, but these kinds of analyses allow us
to understand such trade-offs before making decisions.

This paper presented the result of an analysis that looked
to examine the trade-offs between optimal performance and
algorithm bias linked to using demographic data. It is impor-
tant to understand that the use of demographic information
does not always increase benefits for all protected groups
uniformly. This analysis is key to assessing the trade-off
between performance and bias and can be used to decide
whether or not to use demographic information.
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