JGR Biogeosciences

RESEARCH ARTICLE
10.1029/2023JG007630

Key Points:

o Methane dynamics in salt marshes are
complex and influenced by multiple
variables

e Empirical dynamic modeling and
convergent cross mapping are novel
approaches to characterizing CH,
dynamics

e Results highlight drivers, non-
linearities, lag times, and in-
terconnections among multiple bio-
physical variables for CH, dynamics

Supporting Information:

Supporting Information may be found in
the online version of this article.

Correspondence to:

R. Vargas,
rvargas @udel.edu

Citation:

Hill, A. C., Schifer, K. V. R., Forbrich, 1.,
& Vargas, R. (2024). Empirical dynamic
modeling reveals complexity of methane
fluxes in a temperate salt marsh. Journal of
Geophysical Research: Biogeosciences,
129, €2023JG007630. https://doi.org/10.
1029/20231G007630

Received 12 JUN 2023
Accepted 2 FEB 2024

© 2024 The Authors.

This is an open access article under the
terms of the Creative Commons
Attribution-NonCommercial License,
which permits use, distribution and
reproduction in any medium, provided the
original work is properly cited and is not
used for commercial purposes.

'.) Check for updates

A n . l ADVANCING
nu EARTH AND

-~ SPACE SCIENCES

'

Empirical Dynamic Modeling Reveals Complexity of
Methane Fluxes in a Temperate Salt Marsh

Andrew C. Hill"? @, Karina V. R. Schiifer®, Inke Forbrich*® ©, and Rodrigo Vargas1

1Department of Plant & Soil Sciences, University of Delaware, Newark, DE, USA, >Northern Research Station, United
States Forest Service, Grand Rapids, MN, USA, 3Department of Earth and Environmental Sciences, Rutgers University,
Newark, NJ, USA, “Marine Biological Laboratory, The Ecosystems Center, Woods Hole, MA, USA, 5Departmem of
Environmental Sciences, University of Toledo, Toledo, OH, USA

Abstract Methane dynamics within salt marshes are complex because vegetation types, temperature,
oscillating water levels, and changes in salinity and redox conditions influence CH, production, consumption,
oxidation, and emissions. These non-linear and complex interactions among variables affect the traditionally
expected functional relationships and present challenges for interpreting and developing process-based models.
We employed empirical dynamic modeling (EDM) and convergent cross mapping (CCM) as a novel approach
for characterizing seasonal/multiday and diurnal CH, dynamics by inferring causal variables, lags, and
interconnections among multiple biophysical variables within a temperate salt marsh using 5 years of eddy
covariance data. EDM/CCM is a nonparametric approach capable of quantifying the coupling between variables
while determining time scales where variable interactions are the most relevant. We found that gross primary
productivity, tidal creek dissolved oxygen, and temperature were important for seasonal/multiday dynamics
(rho = 0.73-0.80), while water level was most important for diurnal dynamics during both the growing and
dormancy phenoperiods (tho = 0.72 and 0.56, respectively). Lags for the top-ranked variables (i.e., gross
primary productivity, dissolved oxygen, temperature, water level) occurred between 1 and 5 weeks at the
seasonal scale and 1-24 hr at the diurnal scale. The EDM had high prediction capabilities for intra-/inter-
seasonal patterns and annual CH, sums but had limitations in representing large, infrequent fluxes. Results
highlight the importance of non-linearity, drivers, lag times, and interconnections among multiple biophysical
variables that regulate CH, fluxes in tidal wetlands. This research introduces a novel approach to examining
CH, fluxes, which will aid in evaluating current paradigms in wetlands and other ecosystems.

Plain Language Summary The movement of methane gas in salt marshes is complex and influenced
by various factors such as plant types, temperature, water level, and changes in water salinity and oxygen levels.
These factors interact in complex ways, making predicting the outcome of methane production and movement
difficult. We applied a new method of studying methane dynamics using Empirical Dynamic Modeling and
Convergent Cross Mapping. After analyzing 5 years of ecosystem-scale measurements of methane fluxes, we
show that the amount of oxygen in the water, the temperature, and the amount of light received by plants are
crucial for understanding regulating methane fluxes within days and across seasons. The interconnections
among these variables are complex, and methane fluxes may have delayed responses (i.e., lag times),
highlighting the importance of these interactions. This research improves our comprehension of how
environmental factors interact to affect methane fluxes in wetlands.

1. Introduction

Methane (CH,) is the second most potent greenhouse gas and a crucial atmospheric trace gas with a warming
potential 25-38 times greater than carbon dioxide (CO,) (Bridgham et al., 2013; Neubauer & Megonigal, 2019;
Wuebbles & Hayhoe, 2002). Following a largely unreconciled plateau during a stabilized phase from 2000 to
2006, there has been a steady global rise, with wetlands likely responsible for most natural contributions (Jackson
et al., 2020). While there is evidence that this increase is the result of both anthropogenic and biogenic emissions
(Stavert et al., 2022), there is no easy mitigation option for biogenic sources, and climate change could increase
these emissions resulting in a positive feedback for the global carbon cycle (Dean et al., 2018; Zhang et al., 2017).
This is especially important for coastal wetlands where warming and sea level rise are expected to impact CH,
fluxes directly through changes in microbial metabolism (Lu et al., 2018; Yvon-Durocher et al., 2014), and
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indirectly from effects on co-dependent factors such as plant productivity (GPP) and sediment redox conditions
(Liu et al., 2019; Seyfferth et al., 2020; Strom et al., 2015).

Mechanisms driving CH, fluxes are complex within coastal wetlands with many potential regulators (Huertas
etal., 2019; Vazquez-Lule & Vargas, 2021) and pathways for production and efflux (Capooci et al., 2024). Water
level and waterlogged conditions have been identified as a substantial control for methanogenesis in coastal
wetlands (Li, 2007), but these ecosystems have been considered low CH, emitters despite prevailing anoxic
conditions (Bartlett et al., 1987; Borges & Abril, 2011; Conrad, 2020). This paradigm relies on the idea that
acetoclastic or hydrogenotrophic methanogenesis are the dominant biogeochemical pathways and prevailing
sulfate-reducing bacteria outcompete methanogens (Poffenbarger et al., 2011). However, several lines of evi-
dence indicate coastal wetlands could have high CH, fluxes where other biogeochemical pathways, such as
methylotrophic methanogenesis, play essential roles (Al-Haj & Fulweiler, 2020; Capooci et al., 2024; Con-
rad, 2020; Oremland & Polcin, 1982; Seyfferth et al., 2020). In addition, it has been suggested that multiple
environmental factors (e.g., water level, temperature, GPP, salinity) regulate CH, fluxes at different temporal
scales with potential nonlinear interactions (Huertas et al., 2019; Reid et al., 2013). Consequently, it is imperative
that we accurately understand how biophysical controls regulate CH, fluxes in coastal wetlands to understand
ecosystem response to environmental change.

Our past knowledge of CH, dynamics in tidal wetlands has vastly relied on chamber-based manual measure-
ments. This information has influenced the development of most functional relationships (e.g., salinity thresholds
or temperature dependency) and, subsequently their incorporation into models used to predict CH, fluxes.
However, chambers often face logistical challenges and are sporadic in time and space, restricting our under-
standing by delivering limited or incomplete information (Hill & Vargas, 2022; Kim, 2007; Yang et al., 2021) that
could result in biased estimates of annual fluxes (Vargas & Le, 2023). Technological advances have allowed us to
collect higher frequency CH, fluxes at the ecosystem scale using the eddy covariance technique (EC) (Baldoc-
chi, 2003; Morin, 2019). This data can be leveraged to explore temporal relationships in greater detail, providing a
wealth of information regarding the dynamics of driving mechanisms. Previous studies have analyzed how
biophysical variables regulate ecosystem-scale CH, fluxes in salt marshes (Hill & Vargas, 2022; Huertas
et al., 2019; Reid et al., 2013; Vazquez-Lule & Vargas, 2021). Other studies outside salt marshes have used
machine learning techniques (Rey-Sanchez et al., 2018; Zaki & Abdul-Aziz, 2022) or time series analysis and
information theory to identify the dominant controls of ecosystem-scale CH, fluxes (Knox et al., 2021; Sturtevant
et al., 2016). Together, these studies provide insights into the complex mechanisms and hint that nonlinear dy-
namics may be more relevant for explaining ecosystem-scale CH, fluxes. Therefore, there is a need to identify
potential lags, interactions, and interconnections to provide insights about causality and biogeochemical mech-
anisms controlling CH, fluxes across wetland types.

The complexity of CH, dynamics in coastal wetlands results from interacting variables that cannot be readily
isolated to identify independent functional relationships (Morin, 2019; Véazquez-Lule & Vargas, 2021). As a
novel approach, we employed a form of nonlinear state space reconstruction referred to as empirical dynamic
modeling (EDM) which operates in the state space as opposed to observational space (Park & Stabenau, 2022;
Sugihara & May, 1990; Sugihara et al., 2012). Specifically, we used convergent cross mapping (CCM) as a novel
approach to disentangling CH, drivers within a temperate salt marsh and a multivariate EDM model to predict
CH, fluxes (Munch et al., 2023). We propose EDM as an alternative to techniques such as Granger Causality,
wavelet analysis, and information theory to unravel complex non-linear CH, dynamics (Knox et al., 2021;
Schafer et al., 2014; Sturtevant et al., 2016; Vargas et al., 2010).

The premise of EDM relies upon a simplex algorithm that projects observed time series into an e-multidimen-
sional state space. The value of e (embedding dimension) is determined before performing CCM or any modeling.
In CCM, two time series (e.g., X, and Y,) are projected into their respective e-dimensional state spaces (e.g., X,
and Y,) and values of Y, are used to make nearest neighbor predictions about X (cross-mapping) and vice versa
(reverse cross-mapping). Information content between the two projections is evaluated with the parameter rho (p)
at maximum sample size, which is similar to Pearson's correlation coefficient but determined within state space.
To infer causality, we expect rho to increase with increasing sample size (i.e., convergence) in the direction of the
best cross-mapping (i.e., does X cause Y or Y cause X). Then, the target time series is split for analysis in a
multivariate model, and a nearest neighbor forecasting method is used to track the evolution of nearby points
within the projected multivariate state space (Hsieh et al., 2005). Finally, points are predicted forward in time for
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the out-of-sample portion of the time series as a validation method. We chose the EDM because it can describe
complex interrelations, infer causality, and make predictions in a dynamic ecological system where variables
cannot be evaluated independently.

Here, we examine primary data from 5 years of ecosystem-scale CH, fluxes using the EC technique and EDM to
study seasonal and diurnal CH, fluxes (i.e., dependent variable) by quantifying the coupling between independent
variables (i.e., predictors) while considering time lags and interconnections. We first use CCM to infer causal
relationships between a suite of ancillary variables and CH, fluxes. For variables that indicate a causal link, we
then apply the analysis at a range of time periods to identify relevant time lags or synchronies. We also test all
relevant pairs of ancillary variables with CCM to elucidate complex interactions using causal network maps.
Finally, we construct a multivariate EDM model using the inferred causal variables to make out-of-sample
predictions. EDM and CCM have been used in a variety of ecological studies (Chang et al., 2017; Deyle
et al.,, 2016; Munch et al., 2018; Sugihara et al., 2012), but have not yet been applied for analyzing eddy
covariance data. Because CH, dynamics exhibit complex patterns generated by multiple interactions, we propose
that EDM is best suited to identify the nonlinearities and potential causal relationships that regulate CH, dynamics
in wetlands and other terrestrial ecosystems.

2. Materials and Methods
2.1. Study Site

This study was performed at the St. Jones Reserve as part of the Delaware National Estuarine Research Reserve
System (DNERR). The site is representative of a natural, unrestored mid-Atlantic salt marsh that receives
drainage from highly developed inland areas with a mean elevation of 0.60 = 0.26 m relative to the NAVDS88
datum (McKenna et al., 2018), yet is still influenced by semi-diurnal tidal activity and site hydrology (i.e., riverine
and groundwater flows). Vegetation is dominated by a monoculture of short-form S. alterniflora (~66%). The
remaining cover (~33%) is associated with tall S. alterniflora, S. cynosuroides, and P. australis, which flank tidal
creeks, and S. patens and P. australis along the upland terminus (Vazquez-Lule & Vargas, 2021; Vazquez-Lule
et al., 2022). The prevailing paradigm assumes that low methanogenesis is expected in these salt marshes, but
recent studies have challenged it by demonstrating high rates of methanogenesis (particularly methylotrophic) at
the study site (Capooci & Vargas, 2022; Capooci et al., 2019, 2024; Seyferth et al., 2020). Therefore, new ap-
proaches are needed to identify the complexity of the underlying biophysical drivers of CH, fluxes.

2.2. Data Acquisition
2.2.1. Eddy Covariance Measurements

The eddy covariance (EC) technique was used to measure the ecosystem-scale net exchange of CH, with an open
path near-infrared gas analyzer (Li-7700, Licor, Lincoln, NE, USA) and ecosystem-scale net exchange of CO,
(NEE) with an enclosed path infrared gas analyzer (Li-7200, Licor, Lincoln, NE, USA), and wind components
with a 3D sonic anemometer (Gill Windmaster Pro, Gill Instruments, Lymington, UK) recording measurements at
10 Hz. Preprocessing was completed in Eddy Pro (version 7.0.6), which consisted of time lag compensations,
double coordinate rotation of wind components, and Reynolds block averaging to calculate 30-min fluxes of CH,
and CO,. Expanded preprocessing and tower set-up descriptions can be found elsewhere (Hill & Vargas, 2022;
Vazquez-Lule & Vargas, 2021). During post-processing, several standardized Ameriflux QA/QC procedures
were applied. These included removing values flagged for low quality during pre-processing, calculating
nighttime storage fluxes determined by Eddy Pro, and range filtering of CO, to remove outliers falling beyond
+50 pmol m~2 s™, as these values are outside the typical NEE range observed at this site (Vizquez-Lule &
Vargas, 2021). A range filter was not applied to CH, data as spikes due to ebullition could occur, and the goal was
to incorporate all CH, dynamics within the 30-min block averaging period. In addition, we used an optimal
friction velocity (u*) threshold of 0.069 m s™" to remove low turbulence conditions and applied a fetch/footprint
filter to exclude fluxes originating from forested regions beyond the marsh terminus (Vazquez-Lule & Var-
gas, 2021; Vazquez-Lule et al., 2022).

Data gaps occurring in NEE were filled using marginal distribution sampling (MDS) with customized site var-
iables consisting of energy fluxes (sensible and latent heat; H and LE), radiation, air temperature (Tair), soil
temperature (Tsoil), relative humidity (RH) and vapor pressure deficit (VPD) (Vazquez-Lule & Vargas, 2021).
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Table 1

Definition List for All Variables Used in the Study

Partitioning of NEE into component fluxes of gross primary productivity
(GPP) was completed with the REddyProc R package (Reichstein et al., 2005;

Variable

Wautzler et al., 2018) based on the standard nighttime method (Reichstein

Air Temperature
Atmospheric Pressure
Carbon Dioxide (flux)
Dissolved Oxygen

Gross Primary Productivity
Latent Heat Flux

Methane (flux)
Photosynthetically Active Radiation
Precipitation

Relative Humidity

Salinity

Sensible Heat (flux)

Soil Temperature

Vapor Pressure Deficit
Water Level

Water Temperature

Water Vapor (flux)

Wind Speed

Abbreviation Units
et al., 2005). To fill gaps in CH, fluxes, we applied a random forest technique
Tair °C with the Caret R package and used a full suite of relevant site variables
BP kPa (Figure S1 in Supporting Information S1) (Kim et al., 2020; Kuhn, 2008).
CO,, NEE umol m 2 s~} This method was selected because it is less biased when identifying predictors
DO mg L™ of CH, flux and, like other time series analyses (e.g., wavelets), CCM requires
GPP umol m=2 s~ continuous gap-filled data. In many time series analyses, gaps are ignored in
o computations, in our case causing the lagged state space reconstructions to
LE watts m s fail; therefore, gap filled data is commonly used (Chang et al., 2017; Dietze
CH, mmol m™ s~ o 41 2011; Kim et al., 2020; Vargas et al., 2018).
PAR umol m™2 s~
Precip mm 2.2.2. Meteorology and Water Quality Measurements
L] % Meteorological variables included air temperature (Tair), relative humidity
Sal ppt (RH, HC2-S3, Campbell Scientific, Logan, UT), precipitation (Precip) (TE
H watts m~—2 s~ 525, Tipping Bucket Rain Gauge, Campbell Scientific, Logan, UT), photo-
Tsoil °C synthetically active radiation (PAR) (SQ-110, quantum sensor, Apogee,
VPD KPa Logan, UT), air pressure (Patm) (CS-106, Vaisala, Vantaa, Finland) and wind
- m speed (WSpd) (05103-L Wind Monitor, Campbell Scientific, Logan, UT).
VPD was calculated using Tair and RH based on the Tetens formula (Mur-
ety - ray, 1967). Water quality data were collected from the tidal creek adjacent to
H,0 mmol m™ s~ the EC tower using a YSI EXO2 sonde outfitted with EXO sensors. Measured
WSpd m2 s variables included water temperature (Twater), water level (Level), salinity

(Sal), and dissolved oxygen (DO). Meteorological and water quality data
were averaged for 30 min to align with flux data. Minor gaps in meteorological data were filled using available
on-site sensors. Gaps in water quality data, mainly during the dormancy phenoperiod (<20% of the data), were
filled using empirical relationships from another YSI EXO2 sonde located approximately 2 km upstream within
the St. Jones River, which shares connectivity to the tidal channel. Despite the potential limitations of inferring
these values, the overall relationships were significant and positive. Thus, this approach should not impact the
conclusions of the study. Meteorological and water quality data were collected under the National Estuarine
Research Reserve (NERR) Centralized Data Management Protocol (Kennish, 2019) and can be accessed from the
NERR System Centralized Data Management Office (NERR CDMO; station: delsjmet-p). All variables, their
abbreviations, and units have been summarized in Table 1.

2.3. Data Selection and Phenology

For examining seasonal CH, dynamics, we selected five years spanning 2017-2021 to calculate daily means of
non-gap-filled observations. This period was chosen as all years contained minimal continuous gaps (<30 days).
The original half-hourly time series of post-processed CH, fluxes had 38% gaps. To examine diurnal dynamics,
we used data only from 2020 to 2021, the period with the most complete record (i.e., containing 15% of data gaps)
and when no substantial water surges or storm events occurred. To delineate growing and dormancy periods, we
determined phenology dates with the Phenopix R package using the greenness chromatic coordinate (GCC) from
a site phenocam (Filippa et al., 2016; Hill et al., 2021; Vazquez-Lule & Vargas, 2023). Season start and end dates
were calculated based on the upturn and recession dates of the annual GCC curve from daily midday images (Gu
et al., 2009). To avoid an artifact of calendar years that would result in discontinuous time series for dormancy
data, we included the tail end of 2020 and excluded the tail end of 2021 (Dormancy: November 2020—-April 2021,
Growing: April 2021-October 2021).

2.4. Convergent Cross Mapping

While previous studies have described in detail the methodology behind CCM (Chang et al., 2017; Sugihara
etal., 2012; Sugihara & May, 1990; Tsonis et al., 2018; Ushio & Kawatsu, 2020; Wang et al., 2018), we provide a
brief overview of the implementation of CCM and how we interpreted results as they pertain to our objectives
(Figure S2 in Supporting Information S1). We point out that while CCM is a powerful tool, results are based on
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empirical methods; thus, interpretation of potential causalities should be interpreted with this in mind. All CCM
analyses were completed within the rEDM R package (Ye et al., 2016).

To evaluate the causality between variables, we applied traditional bivariate CCM between CH, and all inde-
pendent variables via the function CCM (Ye et al., 2016). The CCM function is essentially a wrapper for the
simplex algorithm but accesses the level improvement in nearest neighbor predictions within the state space as the
data sample size increases. Specifically, it tests if lags of a predictor variable can be used to predict a target
variable (e.g., does GPP have a causal relationship with CH,) (Schiecke et al., 2015; Sugihara et al., 2012; Tsonis
et al., 2018). It is a standard procedure also to test the opposite cross mapping (i.e., does CH, have a causal
relationship with GPP). In a dynamic system, information about the causal variable becomes embedded within the
target variable (i.e., information about past causal variables is observed in the present target variable). CCM is
carried out using successively larger time-ordered data chunks subsampled randomly from the main data set. For
each of these CCM runs, the cross-mapping performance is evaluated with the output parameter rho (cross-
mapping predictive skill). There is evidence of causality if rho is found to successively increase with larger data
subsamples (i.e., convergence) (Chang et al., 2017). As a final step and significance test, the predictive skill
generated at maximum library size (full data set) is compared to rho generated at maximum library size with a
surrogate data set constructed from the original data randomized in time and containing a preserved seasonal
phase amplitude (Tsonis et al., 2018).

Two steps are applied before CCM, which provide information about the time series of interest (CH,) (Li
et al., 2021). The initial step is determining the embedding dimension (e) via the function EmbedDimension,
which iteratively takes successively longer lags of a set time period defined by the parameter Tau (T). For this
study, we set T to the default value of T = 1 to represent one day for seasonal analyses and 1 hour for diurnal
analyses. The lagged time series are then projected into an e-dimensional state space, forming a shadow manifold
or state space projection (Ye et al., 2016) (Figure S3 in Supporting Information S1). The resulting manifolds are
projected back onto a coordinate axis with the best embedding dimension resulting in a nearly 1:1 mapping of the
original time series (Figure S4 in Supporting Information S1). The number of dimensions (e) required to recreate
the original time series is both a metric of complexity and an a priori requirement for CCM. The second step is
confirming nonlinear dynamics by constructing sequential locally weighted global linear maps (S-map). S-maps
are like nearest neighbor predictions from the simplex algorithm, but instead of considering the average locali-
zation of the nearest neighbors, all neighboring points are regarded with more weight given to closer neighbors
through an exponential localization function (Sugihara, 1994). This is done via the function PredictNonlinear,
which determines if predictions made by S-maps display state or time dependence (i.e., relationships vary with
time) as defined by the parameter theta (©) in a locally weighted linear regression function. If predictive skill
increases at © > 0, we assume that predictions are highly dependent on ecosystem state space (i.e., variable
interactions change with time or under specific conditions) and the hallmark of a nonlinear dynamical system
(Chang et al., 2017).

We applied year-round daily data for seasonal dynamics with a minimum sample size of n = 15 days and a
maximum of n = 1,800 days. For diurnal dynamics, hourly data was used from the selected growing and
dormancy phenoperiods using a minimum sample size of n = 15 hr and a maximum of n = 2,900 and n = 2,700 hr,
respectively. Minimum sample sizes were selected to capture spring neap tidal cycles and sub-daily oscillations,
while maximum sample sizes were selected to cover most of the selected time series. CCM was carried out using
sample runs with the default time period for lags set to 1 unit (Tp = 1 day or hour). The execution radius, which
ignores nearest neighbors within the state space projection, was set at one day or 24 hr to help eliminate influence
from temporal autocorrelation. To generate surrogate data sets, the original data was randomized in time with the
seasonal phase amplitude preserved for daily data by setting the method to “seasonal.” For hourly data, the
method was set to “random” (Deyle et al., 2016).

2.5. Model Interpretation With Extended CCM and Causal Network Maps

Conventional CCM provides a robust means of identifying causality between variable pairs, yet it fails to capture
the optimal time period of the causal influence. Extended CCM is a computationally intensive technique that
involves applying CCM iteratively across multiple time period lags to determine time periods where cross-
mapping skills are maximized. The procedure is also used to help resolve issues of generalized synchrony
where cross-mapping is significant in both directions (i.e., Tair causality on CH, and CH, causality on Tair) as the
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most probable causal relationship will generally have a maximum predictive skill which peaks within the negative
time domain (i.e., negative lags), while the reverse cross-mapping peaks in the positive time domain (i.e., positive
lags; Ye et al., 2015). Variable interactions can occur synchronously, over a day, several hours, or several
consecutive or separate days (Sun et al., 2021). Data were binned into 7-day periods to examine seasonal dy-
namics, and iterations were made spanning +91 days at weekly intervals. For diurnal dynamics, hourly data was
used directly, and iterations were made spanning +24 hr.

We constructed causal network maps based on the bivariate CCM results, to assess how the identified drivers
interact to influence CH, fluxes (Fan et al., 2020; Ye et al., 2016). Conceptually, this is achieved by summarizing
the strength of coupling between all tested variable pairs (Ye et al., 2015), including all ancillary variables with
only positively identified (significant) connections mapped. Here, we selected ranking categories of high,
moderate, and low based on rho values of 0.60-1.0, 0.30-0.59, and 0-0.29, respectively (Fan et al., 2020). We
focus on drivers controlling CH, fluxes as “direct” drivers, while drivers controlling other variables in the system
(e.g., GPP) are defined as “indirect” drivers. This technique allows variables with indirect links that may appear to
influence CH, fluxes to be sorted from those with highly confident direct causal links. However, it is challenging
to distinguish the consistent directionality (i.e., positive or negative sign) of the connection because relationships
can vary over time (i.e., state dependence). Thus, this analysis defines the overall importance of each causal
variable, as explained in other studies (Deyle et al., 2016).

2.6. Multivariate Predictive Modeling

We performed model predictions using a newly constructed multivariate EDM model as an additional feature and
promising application of EDM. We used an out-of-sample validation method with data from 2017 to 2019 as the
training interval and data from 2020 to 2021 as the prediction interval. We included only non-gap-filled data for
the performance comparisons. Predictor data were scaled to reduce dimensional distortion in the state space. The
provided prediction variance based on nearest neighbors in the state space was used to calculate the standard
deviation as a metric of uncertainty. We included all variables identified as being coupled with CH, fluxes by
daily CCM analysis: temperature components of soil, water, and air, DO, GPP, H,O flux, Level, LE, WSpd, PAR,
Patm, RH, and Precip. While issues of cross-correlation could potentially violate assumptions for linear models,
each of these variables interacts with CH, fluxes in different ways as determined by the information embedded in
the CH, time series. Thus, including variables that exhibit cross-correlation with linear evaluation methods is
possible with EDM.

3. Results
3.1. Site Characteristics, Phenology, and CH, Fluxes

During the study period (2017-2021), the annual average air temperature (Tair), salinity (Sal), and water level
(Level) were 13.9 £9.1°C, 8.9 = 4.1 ppt and 0.25 + 0.2 m above sea level, respectively with a tidal range of 1.2 m
and maximum daily salinity as high as 19.5 ppt. The average annual precipitation (Precip) ranged from 567 to
779 mm, which is received evenly across the year (Figure 1) (Tables S1-S3 in Supporting Information S1). The
growing phenoperiod typically begins with green-up events occurring in April or early May, and dormancy
commences with complete vegetation senescence in November. For the reference year utilizing hourly data
(2020-2021), the dormancy phenoperiod began on October 25. It ended at the start of the 2021 growing phe-
noperiod on April 26, which continued until the subsequent dormancy phenoperiod on October 23. Despite high
levels of GPP, which ranged from 1,412-1,609 g C m~2 yr_l, the site was a net carbon source for four out of the
five years (NEE range: —126 to 221 g C m~> yr~') and was a constant annual source of CH, with emissions
ranging from 15.4 t0 16.5 g C m~2 yr~' (Figure 1).

3.2. CH, Time Series Characteristics

We determined that CH, is a highly dimensional independent variable that required at least 10 dimensions to
recreate the original dynamics (Figure S5 in Supporting Information S1). Despite a slightly lower peak at four
dimensions, we selected the dimensionality with the greatest predictive skill to capture a full range of potential
variable dynamics; because CCM is expected to identify coupling and quantify the overall strength of all possible
relationships. This indicates that the response of CH, flux was highly dependent on state space or transient
ecosystem conditions (i.e., dynamical, and nonlinear) (Figure S6 in Supporting Information S1).
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variables and CH, flux from 2017 to 2021. (a) Air, soil, and water
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(d) salinity (pink) and dissolved oxygen (DO) (teal), (d) atmospheric
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3.3. Causality Analysis With CCM

Examination of daily data with CCM at the seasonal/multiday scale identified
temperature components (Tsoil, Twater, Tair), DO, and GPP (Figure 2a) as
important variables. These variables were a distinct grouping, with all other
variables falling below a threshold of rtho = 0.50. The remaining variables
(H,O flux, Level, LE, PAR, WSpd, Patm, RH, Precip; sorted from higher to
lower coupling strength) were identified as important (tho = 0.10-0.50)
except for Sal, VPD, and H, which did not meet the convergence criteria or
overlapped with surrogate data (Figure S7 in Supporting Information S1). The
growing phenoperiod was complex regarding the number of predictors and
lags, yet physical factors also likely played an important role. Examination of
hourly data for the diel scale analysis from the growing phenoperiod identi-
fied Level as the most important variable (rho ~ 0.70), followed by a grouping
that included Patm, Sal, DO, and Tsoil (tho = 0.30-0.50) (Figure 3a). The
remaining variables (PAR, Twater, RH, GPP, H, H,O flux, WSpd, LE, VPD,
Tair; sorted from higher to lower coupling strength) also had a degree of
coupling (rho = 0.15-0.25), except for Precip (Figure S8 in Supporting In-
formation S1). Examination of hourly data from the dormancy phenoperiod
identified Level, DO, and Sal as important variables (rtho = 0.55-0.30)
(Figure 3c). Most remaining variables (Patm, RH, WSpd, Tair, VPD, PAR,
Precip; sorted from higher to lower coupling strength) also exhibited some
coupling (rho = 0.10-0.20), yet this period contained the largest number of
non-significant variables, which included GPP, Tsoil, Twater, H, LE, and
water fluxes (Figure S9 in Supporting Information S1).

3.4. Optimal Lags With Extended CCM

Implementation of extended CCM indicated that the influence of some var-
iables is likely more immediate while others are associated with a lag. While
any identified lags indicate the optimal time period of influence, these lags are
not necessarily related to the overall strength of the relationship. However,
longer lags can mean more indirect relationships within the context of causal

network mapping (Fan et al., 2020). When applying daily data to unravel seasonal/multiday dynamics of CH,
fluxes, we found that PAR, LE, and H,O fluxes are associated with the most extended lag times occurring be-
tween 49 and 70 days (seasonal/multiday scale) (moderate importance). These were followed by a grouping of top
predictor variables identified by the previous CCM analysis (Tsoil, Twater, Tair, GPP) (high importance), which

were identified as most influential between 21 and 35 days (monthly scale). The remaining variables (DO, Level,
WSpd, Patm, RH, Precip) exerted a close temporal relationship (0 days) at a range of strengths but DO was
important over a more extended period (0-3 weeks), followed by Level, Patm, and RH (0-1 week) and finally
WSpd and Precip (0 days). However, Precip had the weakest coupling (Figure 2b) (Figure S10 in Supporting

Information S1).

When applying hourly data from the growing phenoperiod to unravel diurnal dynamics, we found that lags were
more complex. Both Level and Sal (strong and moderate importance, respectively) had peaks occurring between
0 and 5 hr and again between 19 and 23 hr, but the influence of Level was also persistent throughout the day
(denoted as a gray bar in Figure 3b). Temperature components had successively shorter lags moving from Twater

(9-13 hr) to Tsoil (5-7 hr) and finally Tair (3—6 hr) (all moderate causal strength). The remaining variables were
influential immediately (O hr), with GPP extending the longest (0-9 hr), followed by Patm (0-5 hr), LE and water
fluxes (0-3 hr), RH (0-1 hr) and finally DO, VPD, and H (0 hr) (moderate causal strength) (Figure 3b) (Figure
S11 in Supporting Information S1). Lag times were much shorter for the dormancy phenoperiod. Almost all
variables identified as important (Level, DO, Sal, Patm, RH, Tair, VPD, Tsoil) exerted a close temporal rela-
tionship (0 hr) with DO, VPD, Tsoil, Patm, and Level active over the most extended period (0-10 hr). Precip was
influential between 7 and 8 hr, yet again had the lowest importance while PAR, RH, WSpd, and Tair all exerted

influence between 0 and 5 hr (moderate importance strength) (Figure 3d) (Figure S12 in Supporting

Information S1).
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Figure 2. Results from Convergent cross mapping (CCM) and extended CCM for seasonal dynamics from daily data spanning 2017-2021. (a) Identification of strongest

predictor variables for CH, flux using CCM. Red points represent the maximum predictive skill achieved using the simulated surrogate data. Black points indicate

prediction skill of training data. ns denotes non-significant cross-mapping owing to a lack of convergence or overlap with the surrogate data results. Outlined variables

exhibited a prediction skill >0.6. (b) Optimal time lags (in number of days) determined using the extended CCM. See Table 1 for a list of variable definitions.
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Figure 3. Results from Convergent cross mapping (CCM) and extended CCM for diurnal/seasonal dynamics from selected hourly data spanning years 2020-2021.
(a) Growing phenoperiod CCM at maximum library size between all variables and CH, flux, (b) Growing phenoperiod optimal time lags (in number of days) for
extended, (c) Dormancy phenoperiod CCM at maximum library size between all variables and CH, flux. (d) Dormancy phenoperiod optimal time lags (in number of
days) for extended CCM. Red points represent the maximum predictive skill achieved with simulated surrogate data. Black points indicate the prediction skill of training
data. ns denotes non-significant cross-mapping due to a lack of convergence or overlap with surrogate results. Outlined variables exhibit a prediction skill >0.3. See
Table 1 for a list of variable definitions.
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Figure 4. Causal network map showing seasonal dynamics between all relevant variables for daily data spanning 2017-2021.
Numbers represent predictive skill followed by the median value of the optimum time lag (days). Colors represent the
strength of coupling, green = strong (0.6—1.0), orange = moderate (0.30-0.59), and red (weak) (0-0.29). Solid lines represent
significant relationships with CH,, and dashed lines represent significant relationships between ancillary variables. Variables
outlined in bold represent the top causal variables identified by CCM analysis. See Table 1 for a list of variable definitions.

3.5. Causal Network Mapping

Causal network maps show high interconnection among variables at multiple scales (seasonal, multiday, and
diurnal) and indicate that fluxes result from a suite of factors. When using daily data, we discovered several
interesting patterns (Figure 4). First, PAR is important for CH, (rho = 0.66), but its influence may be tied to other
relevant variables (e.g., H,O fluxes and temperature components) (tho = 0.68-0.88). The strong relationship
between GPP and CH, fluxes (tho = 0.86) was influenced by VPD, Tair, Sal, and DO (rho = 0.52-0.82), which
are in turn influenced by RH, PAR, and Level, respectively (rtho = 0.41-0.71). Other variables, such as RH and
WSpd, were not connected to any variables examined.

When applying hourly data for the growing phenoperiod, many highly connected variables identified from the
seasonal analysis (Temperature components, GPP, DO) exert far less influence (Figure 5a). The water level was
the most directly important variable (tho = 0.72) and was highly connected to both Sal and DO (rho-0.90-92),
which exerted moderate influence on CH, fluxes (tho = 0.35-0.38). Over seven additional variables provided
moderate-low influence, but all showed a similar predictive skill (tho = 0.17-0.41), highlighting the complexity
associated with the sub-daily growing phenoperiod. Hourly data from the dormancy phenoperiod exhibited the
most straightforward network connectivity with the least interdependencies (Figure 5b). As with growing phe-
noperiod data, Level was identified as an important variable (tho = 0.60) and exerted a strong influence on Sal and
DO (rho = 0.81-89), which exerted moderate influence on CH, fluxes (tho = 0.38-0.49). Additional variables
were associated with weaker relationships (rtho = 0.12-0.22), and only temperature components, VPD, Patm, Sal,
and DO were dependent on the activity of other variables during this phenoperiod.

3.6. Modeling Output

The predictive multivariate EDM model captured the changing seasonal dynamics well yet had difficulty pre-
dicting periodic emissions peaks, especially during fall senescence (Figures 6a and 6b). This model incorporated
all of the positively coupled variables identified by CCM analysis, including temperature components of soil,
water, air, GPP, DO, H,O0 flux, Level, LE, PAR, WSpd, Patm, RH, and Precip. This generated a 2-year sum of
31.8¢gC m~2 with an annual uncertainty of £29.3 g C m™~>, calculated from the state space. Despite good overall
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Figure 5. Causal network maps showing diurnal/seasonal dynamics between all relevant variables for select hourly data
spanning 2020-2021 for (a) Growing phenoperiod and (b) Dormancy phenoperiod. Numbers represent predictive skill
followed by the median value of the optimum time lag (hours). Colors represent the strength of coupling, green = strong
(0.6-1.0), orange = moderate (0.30-0.59), and red (weak) (0-0.29). Solid lines represent significant relationships with CH,,
and dashed lines represent significant relationships between ancillary variables. Variables outlined in bold represent the top
ranked variables identified by CCM analysis. See Table 1 for a list of variable definitions.

predictions, the approach had challenges representing high fluxes during senescence. There was higher uncer-
tainty, small over-prediction bias for lower magnitude fluxes (<50 nmol m~2 s™"), and an under-prediction bias
for larger fluxes during senescence (Figure 6b). It is important to consider that the uncertainty estimate for the
EDM model is derived from the nearest neighbor distance weights in the projected state space.
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Figure 6. (a) Multivariate EDM modeling results at the daily time step for prediction years 2020-2021 and (b) linear
regression comparisons. Black lines represent non-gap-filled daily CH, flux measured by eddy covariance (EC) as a
benchmark +daily sd (gray shading), and red lines represent daily modeled CH, flux £prediction variance sd (pink shading).
The blue line on regression plots is a 1:1 line.

4. Discussion
4.1. Comparisons With Previous Wetland CH, Studies

Limited studies incorporate long-term information on ecosystem-scale CH, dynamics in salt marshes. Further-
more, most studies have based their analyses on more traditional methods, reporting that temperature, PAR, plant
productivity, or some proxy (e.g., GPP, biomass, chlorophyll concentration), water level, and salinity are
important predictors for CH, fluxes (Abdul-Aziz et al., 2018; Huertas et al., 2019; Martin & Moseman-Val-
tierra, 2017; Poffenbarger et al., 2011). Despite differing temporal averaging periods (e.g., daytime, nighttime,
year-round, multi-year) and different model structures (e.g., linear regression, multivariate canonical correlation,
multivariate generalized least squares), multiple approaches have also been able to identify the importance of
temperature, DO, and Patm for CH, dynamics (Hill & Vargas, 2022; Vazquez-Lule & Vargas, 2021). Other multi-
site studies have also identified comparable predictor variables with linear and nonlinear methods, especially
temperature components, in non-tidal freshwater wetlands (e.g., Knox et al., 2021). However, there is increasing
evidence that the effect of these variables and others, such as water level and GPP, are more complex and in-
fluence CH, fluxes in freshwater wetlands across various temporal scales (Sturtevant et al., 2016).

Our results using CCM indicate that the effects of GPP are highly dependent on the time domain at multiple scales
(seasonal and diurnal) and multivariate interactions among variables. While linear models have identified that
similar variables influence CH, fluxes, those methods have limitations in identifying dependencies, lags, and
complex interrelationships. These limitations are overcome when applying CCM and we demonstrate in-
terrelationships among variables and the relevance of lags that influence CH, dynamics (Figures 2-5).

Several studies based on non-tidal freshwater wetlands have successfully applied alternative nonlinear analysis
methods (Knox et al., 2021; Sturtevant et al., 2016) or machine learning approaches such as ANN's or random
forest techniques (Abbasi et al., 2019; Morin et al., 2017; Rey-Sanchez et al., 2018; Zaki & Abdul-Aziz, 2022;
Zhu et al., 2013). In these non-tidal freshwater wetlands, interactions regulating fluxes do not include the same
dynamics found within tidal wetlands, including frequent oscillation of water level and subsequent modulation of
sediment salinity, dissolved oxygen, and redox conditions (Capooci & Vargas, 2022; Vazquez-Lule & Var-
gas, 2021). Further, dominant vegetation species differ, which can influence the biogeochemical conditions of the
sediments and CH, production (Gao et al., 2018; Seyfferth et al., 2020; Yuan et al., 2016). Despite differences,
these studies also show that both linear and nonlinear approaches identify the strongest relevant drivers, yet
incomplete results from solely applying linear methods limit the full mechanistic understanding of the system
(Sturtevant et al., 2016). Specifically, issues of cross-correlation can restrict which variables are included to
satisfy model requirements, and important lags and interrelationships fail to be identified. In fact, tidal saltwater
wetlands have been purposely excluded from several FLUXNET- CH, analyses because they do not follow the
general pattern of linear relationships defined by freshwater wetlands, and an overall lack of data from these
highly dynamic ecosystems creates difficulties when attempting to generalize across multiple sites (Chang
et al., 2021; Delwiche et al., 2021; Knox et al., 2021).
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In limited cases where nonlinear methods are applied, findings largely support our results, demonstrating lags
with GPP, temperature, and water level, but with temporal synchrony with VPD and energy fluxes (Delwiche
etal., 2021). For example, in a multi-site synthesis study of freshwater sites, median seasonal lags associated with
water level extended 17 & 11 days, 8 = 16, and 5 = 14 days for Tair and Tsoil, respectively, and were synchronous
for Patm while at the diel scale, GPP was lagged up to 4 hr and energy fluxes and VPD were synchronous (<1 hr)
(Knox et al., 2021). A similar study from a forested/shrub wetland found CH, lags associated with GPP extending
up to 60 days (Turner et al., 2021), potentially indicating different time dependencies based on vegetation type
and structure. There is overwhelming evidence supporting that temporal lags exist between multiple environ-
mental variables and CH, fluxes across different types of wetlands. Thus, it is important to explore the appli-
cability of methods such as CCM to improve our understanding of the biophysical drivers of CH, fluxes at
different time scales and with different time lags.

4.2. Seasonal CH, Dynamics

Our results indicate CH, seasonal dynamics were most associated with temperature components, GPP, and DO.
Previous studies showed that predictors such as Level, Patm, and VPD are important in a linear multivariate
context but have lower importance when data is analyzed with CCM (Hill & Vargas, 2022; Vazquez-Lule &
Vargas, 2021). Differences may arise due to the longer time series used in this study; therefore, several conditions
may have changed. We propose that Level, Patm, and VPD are less strongly coupled with CH, activity at this
scale due to: (a) limited occurrence as with transient low-pressure systems, which promote CH, emissions and
rarely exert influence on scales extending beyond several days (Figure 2b) (Knox et al., 2021; Mgnster
et al., 2019; Tokida et al., 2007); or (b) indirect mechanisms as with Patm and pressurized gas flow (Bjorn
et al., 2022; Zhang & Ding, 2011), and VPD limiting stomatal conductance and the possible decrease in plant-
mediated transport. At the seasonal scale, temperature is a strong predictor in temperate ecosystems because it
regulates the window of active plant growth and belowground microbial metabolic rates (Yvon-Durocher
et al., 2014; Zhu et al., 2019), influencing below-ground storage pools and, ultimately, sediment-atmosphere
fluxes (Capooci & Vargas, 2022; Reid et al., 2013). GPP also has strong coupling and may suggest there is
connectivity or flow between plant photoassimilates and methanogens in the rhizosphere, which increases with
seasonal biomass development. We observed a 32-day median lag time between GPP and effects on CH, flux,
similar to the lag identified for temperature (35 days), which may indicate structural changes in the vegetation,
such as the development of aerenchyma tissues, are responsible for the observed seasonal increase in CH, flux
(Granse et al., 2022). Weaker couplings were associated with physical variables such as Patm, and lag times for
these variables were much shorter. Thus, these differential groupings based on coupling strength may provide
insights into how biological versus physical processes operate at different temporal scales.

Salinity, when used as a proxy of sulfate availability, has previously been identified as an important daily-scale
predictor by linear modeling but had no direct causal influence on seasonal CH, fluxes in this study. While
salinity causes direct inhibitory effects for acetoclastic and hydrogenotrophic methanogenesis by limiting the
availability of substrates via microbial competition in most wetlands (Reddy et al., 2022), there is evidence for the
presence of methylotrophic bacteria in salt marshes which produce CH, from non-competitive substrates resulting
in elevated emissions despite the presence of sulfate (Capooci & Vargas, 2022; Capooci et al., 2024; Seyfferth
et al., 2020). Evidence to support this phenomenon exists from a variety of wetland studies that contain S.
alterniflora and emit methane above or at the high-end of a widely accepted CH,-sulfate threshold (Comer-
Warner et al., 2022; Huertas et al., 2019; Oremland et al., 1982; Poffenbarger et al., 2011). We propose that the
elevated emissions, especially during senescence, are tied to the release of secondary plant compounds (osmo-
lytes) associated with S. alterniflora (which we did not measure) including glycine betaine and dimethyl sul-
foniopropionate which are broken down via fermentation to trimethylamine and dimethyl sulfide and are
exclusively utilized by methylotrophic methanogens (Husband & Kiene, 2007; Jones et al., 2019). It is also
important to note that this marsh rarely experiences salinity extremes over 20ppt, thus sites influenced by higher
salinity may experience different characteristics.

4.3. Diurnal CH, Dynamics

Our results indicate that diurnal CH, dynamics during the growing phenoperiod are tied by multiple factors with
many potential interdependencies among variables, yet variables with the highest association were Level, Patm,
Sal, DO, and Tsoil. This may indicate that CH, fluxes over the diurnal course are influenced by both biochemical
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factors likely tied to plant and microbial activity (Sal, DO, Tsoil) and physical factors likely tied to emissions
(Level, Patm) (Knox et al., 2021; Liu et al., 2019; Moore & Roulet, 1993; Reid et al., 2015). While several studies
have made attempts at reducing this level of complexity by applying parsimonious models that only incorporate
the most important drivers (via linear methods) (Abdul-Aziz et al., 2018; Baird et al., 2019; Levy et al., 2012), this
may only be useful for generating coarse-scale information. Other studies have applied more complex process-
based models, although these require an extensive mechanistic understanding and often experience difficulties
when moving across study sites (Li et al., 2016; Zhang et al., 2020), where interacting variables and driving
processes can differ considerably (Krauss et al., 2016; Rosentreter et al., 2021). This can limit the range of
potential applications and may be less relevant for coastal wetlands where relationships can differ greatly from
site to site.

Our results indicate that the dormancy phenoperiod is comparatively simple. Variables with the highest asso-
ciation were Level, DO, and Sal. This is also supported by considerably less interconnection between variables.
Considering the lack of active vegetation, we can assume mechanisms related to these predictors change in
relation to the growing or year-round daily averaging periods (Bansal et al., 2020; Reid et al., 2013). Although the
relationship is weak, coupling between CH, and Sal increases following the end of senescence and the preceding
seasonal peak in emissions. Because vegetation is no longer present, the flow of photoassimilates stops, and the
availability of osmolyte byproducts likely decreases within sediments. Thus, Sal may become more relevant
during dormancy as competition between sulfate-reducing bacteria and methanogens likely increases (Derby
etal., 2021; Poffenbarger et al., 2011), while the spatial separation between production zones at depth may be less
exposed to sulfate fluctuations from tidal exchange (Koebsch et al., 2019). Further, plant-mediated transport is
curtailed, likely leading to greater importance of conditions at the sediment interface (Wang & Han, 2005). This is
supported by the lack of association between variables such as GPP, LE, and H,O flux. This could also explain the
importance of DO in tidal waters, which reaches a concentration peak during dormancy, likely influencing CH,
oxidation rates. In either case, the top hourly predictor identified for both growing and dormancy phenoperiods is
Level, which oscillates between low and high tides at six-hour intervals but also shifts on a 14-day spring/neap
tide and is highly tied to fluctuations of DO and Sal (Vazquez-Lule & Vargas, 2021). Our results indicate that
while all these variables are related and often highly cross-correlated with linear methods, each of these variables
likely exerts a unique influence on CH, dynamics, yet there is also strong interdependence with how these
variable relationships change in time, highlighting the importance of incorporating true nonlinear analysis
methods.

4.4. Relevance of Time Lags

On a seasonal/multiday scale, almost all variables identified by CCM were associated with lag times where
potential influence is exerted across several consecutive days or weeks. Variables with higher identified asso-
ciations (temperature components and GPP) had medium lag times (i.e., “slow”) near 3-5 weeks, likely asso-
ciated with the possible threshold effect with the temperature-driven initiation of plant growth (O'Connell
etal., 2020), or increased production and transport of photoassimilates to the rhizosphere (Knox et al., 2021). This
lag time (3 weeks) was also associated with the effect of salinity on GPP, likely indicating increases in plant
osmolyte production coinciding with initial spring biomass accumulation (Husband & Kiene, 2007; Mulholland
& Otte, 2000). It is important to recognize that we are measuring CH, fluxes (the physical process of release);
thus, these observed lags are also likely associated with the disconnection between production and observed
fluxes. The shortest lags exert immediate (<1 week) (i.e., “fast”) but also prolonged impact extending up to
1 week for Level, Patm, and RH and up to 4 weeks for DO. This effect from Level is likely a result of high/low
water levels tied to spring/neap tide cycles, which oscillate on a 6-7-day period. Yet, there are also fluctuations at
shorter time periods, both of which impact soil water content and biogeochemical conditions of the sediments
(Seyfterth et al., 2020). Tidal waters also directly influence salinity and DO levels within sediments, but the effect
of DO is prolonged and likely tied to its strong influence on GPP, as shown by our results (Figure 4). The effects
of Patm and RH are likely tied to mesoscale circulation and air mass transit which modify the air column and
provide a physical forcing mechanism (Tokida et al., 2007). The longest lag times were associated with LE, H,O
flux, and PAR, which likely represents a major seasonal oscillation driven by solar angle and changes in available
radiation (Guo et al., 2010). While only identified as having weak associations, there were no lags associated with
WSpd or Precip, indicating an effect exclusively at the sub-daily level as, in most cases, the occurrence of wind or
rain rarely extends into multi-day events.
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During the growing phenoperiod, variables identified by CCM (Level, Patm, Sal, DO, Tsoil) all operated at
different peak lag times, highlighting the complexity of observing and measuring fluxes during this time. The
highest-ranking variable identified, (Level) exerts influence over the entire 24-hr period yet peaks at 0-5 hr and
20-24 hr, near when Sal was influential, which is likely tied to semi-diurnal tidal cycling and water levels which
are typically higher during nighttime high tide (Forbrich & Giblin, 2015). Influence over the entire 24-hr period
may be due to a smearing-out effect as the tide shifts its range an hour each day. Patm and DO (moderately causal)
were associated with a zero-lag time but the effect of Patm extended up to 5 hr. These lags are likely related to fast
(immediate) oxidation activity across sediment, daily pressure fluctuations, and convective flow-through trans-
port of CH, via plant-mediated transport driven by solar activity (Ding & Cai, 2007; Kim et al., 1999). Although
the overall causality was weaker and distributed across variables, many of the fast variables during the growing
phenoperiod are related to energy exchange dynamics (LE and H) and tied to changes in evapotranspiration (H,O
flux, VPD, RH). This is likely explained by combined evaporation from saturated sediments where CH, has
accumulated in porewater, evaporation from areas of open water that receive a lateral influx of dissolved CH,, and
plant-mediated transport factors reliant on stomatal activity, which channel dissolved CH, in the transpiration
stream (Megonigal & Guenther, 2008; Trifunovic et al., 2020). We found GPP is both a fast and slow variable
which could indicate a supply of photoassimilates is triggered upon initiation of morning photosynthesis but with
lags extending up to 8 hr when photosynthesis gears down in the evening.

During the dormancy phenoperiod, variables identified by CCM (Level, Sal, DO) were found to have immediate
influence but were influential at lag times extending up to 5-10 hr, highlighting the importance of tidal activity
and modulation of associated variables (Sal and DO). While the remaining variables comprised weaker associ-
ations, several interesting patterns emerged. In contrast to the slower effect of Tair during the growing pheno-
period, Tair was a fast variable with short lag times in dormancy, while the effect of Tsoil had longer lags, up to
9 hr, potentially indicating a connection to microbial activity and temperature thresholds associated with CH,
production (Chadburn et al., 2020). All highly associated variables were related to tidal activity (Level, DO, Sal),
indicating that hydrological factors and the riverine-ocean connectivity become crucial during the dormancy
phenoperiod. The shorter lag times found during this phenoperiod may also indicate more direct coupling with
physical factors and less complex interactions involving the presence of vegetation, such as substrate supply and
plant-mediated transport (Vazquez-Lule & Vargas, 2021). Taken together, these results highlight the multi-
mechanistic activities and processes that regulate CH, fluxes.

4.5. Multivariate EDM Modeling

This study demonstrates high complexity in the biophysical controls of CH, fluxes in tidal wetlands. These results
are based on high-frequency measurements and long-term observations (5 years) contributing to our under-
standing of CH, dynamics. This model captured most of the higher magnitude fluctuations and high emission
peaks during the growing phenoperiod yet omitted higher magnitude fluctuations during senescence. Despite
good performance, this model still considerably underpredicted during senescence and overpredicted during
green-up. Consequently, these transitions represent a challenge as rapid metabolic and structural changes happen
in the plant canopy while microbial community activity could also be altered (Capooci et al., 2024; Vazquez-Lule
et al., 2022). Although we included the full suite of associated variables identified by CCM, this could indicate
that additional variables omitted or not measured (e.g., sediment redox potential, biomass, sediment substrate
availability) are essential to explain these unusually high fluxes during senescence. While we scaled predictor
variables, adding variables may still cause distortion in the state space, ultimately leading to a larger uncertainty.
Thus, simpler models focusing on key predictor variables could be preferable to saturated models with complex
interpretability.

5. Conclusion

We demonstrate that nonlinear state space methods can be used to uncover complex dynamics and in-
terdependencies among possible predictors and their influence on CH, flux. The technique can tease apart not
only the strength of causal variables but also identify lags and complex variable interconnections. Overall, CCM
was able to identify and rank multiple variables while providing a holistic picture of variable interactions and
lagged relationships, which is critical for an accurate mechanistic understanding of system behavior. We found
that seasonal CH, emissions were highly influenced by changes in temperature of soil, water, and air, DO, and
GPP with lag times ranging from O to 35 days. Diurnal growing season emissions were highly influenced by
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Level, Patm, Sal, DO, and Tsoil with lag times ranging from 0 to 23 hr while diurnal dormancy season emissions
were influenced by Level, Sal, and DO with shorter lag times (0—10 hr). We highlight that CCM is a powerful
technique that provides mechanistic information regarding potential driver associations, lags, and inter-
connectivity among an extensive collection of potentially important variables. Therefore, by complementing
CCM with multivariate EDM we can generate interpretable empirical models that provide insights into con-
trolling mechanisms of ecosystem processes.

While we included many ancillary variables typically measured at wetland FLUXNET sites to parameterize our
EDM model, results could change if a different set of variables were included, as with any empirical modeling
approach. Thus, we encourage the scientific community to test the applicability of CCM/EDM across different
wetland sites. Future work should also focus on expanding this analysis to define lag windows for the network
maps, and better examination of how this novel technique compares to other nonlinear methods.
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