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ABSTRACT

Urban flooding is an increasing threat to cities and resident well-being. The Federal Emergency Management Agency (FEMA)
typically reports losses attributed to flooding which result from a stream overtopping its banks, discounting impacts of higher
frequency, lower impact flooding that occurs when precipitation intensity exceeds the capacity of a drainage system. Despite its
importance, the drivers of street flooding can often be difficult to identify, given street flooding data scarcity and the multitude
of storm, built environment, and social factors involved. To address this knowledge gap, this study uses 922 street flooding
reports to the city in Denver, Colorado, USA from 2000 to 2019 in coordination with rain gauge network data and Census tract
information to improve understanding of spatiotemporal drivers of urban flooding. An initial threshold analysis using rainfall
intensity to predict street flooding had performance close to random chance, which led us to investigate other drivers. A logistic
regression describing the probability of a storm leading to a flood report showed the strongest predictors of urban flooding were,
in descending order, maximum 5-min rainfall intensity, population density, storm depth, storm duration, median tract income,
and stormwater pipe density. The logistic regression also showed that rainfall intensity and population density are nearly as im-
portant in determining the likelihood of a flood report incidence. In addition, topographic wetness index values at locations of
flooding reports were higher than randomly selected points. A linear regression predicting the number of reports per area iden-
tified percent impervious as the single most important predictor. Our methodologies can be used to better inform urban flood
awareness, response, and mitigation and are applicable to any city with flood reports and spatial precipitation data.

1 | Introduction Mamut 2024; Yosua, Kusuma, and Nugroho 2024) and in-
tensified storm events attributed to climate change (Fofana

Urban flooding is an increasing concern around the globe et al. 2022; Moftakhari et al. 2018; National Academies of

(Kundzewicz and Pinskwar 2022; Lei et al. 2023; Mei et al. 2024;
Mobini et al. 2022; National Academies of Sciences, Engineering,
and Medicine 2019; Rainey et al. 2021). Currently, the effective
functioning of stormwater infrastructure is faced with many
challenges, including increased stormwater due to increased de-
velopment (Lei et al. 2023; Yosua, Kusuma, and Nugroho 2024;
Zhu et al. 2023), aging infrastructure (Siljeg, Milogevi¢, and
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Sciences, Engineering, and Medicine 2019; Rainey et al. 2021).

Outside of coastal areas, flooding is typically classified as ei-
ther fluvial or pluvial. While fluvial flooding occurs when a
stream overflows its bank, pluvial flooding occurs when nat-
ural or engineered drainage systems fail to effectively manage
precipitation, leading to ponding or overland flow (Moftakhari
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et al. 2018; Rosenzweig et al. 2018). Whereas high-magnitude
and low-frequency events often characterise fluvial flooding, a
range of event sizes can lead to pluvial flooding (Rosenzweig
et al. 2018). Pluvial flooding, sometimes called urban flooding
when it occurs in urban areas, can result from storms that sur-
pass design specifications or from inadequate maintenance of
drainage systems (Rosenzweig et al. 2018). Despite its growing
occurrence, pluvial flooding events receive less attention than
fluvial flooding events. Historically, researchers have docu-
mented most flooding incidents by examining peak stream dis-
charge or reviewing insurance claims within National Flood
Insurance Program (NFIP)-insured areas, which typically co-
incide with the 100-year floodplain. These conventional records
often overlook events outside of a floodplain, or flooding that
cannot be connected to monetary damage (Galloway et al. 2018;
Moftakhari et al. 2018; National Academies of Sciences,
Engineering, and Medicine 2019; Rosenzweig et al. 2018).
Regardless, pluvial flooding events can still have significant
consequences. Urban flooding has been known to lead to traffic
disruptions, emotional distress, and property damage (Galloway
et al. 2018; Knight et al. 2021; Moftakhari et al. 2018; National
Academies of Sciences, Engineering, and Medicine 2019) with
impacts of each of these problems compounding due to high-
frequency occurrence. Work from Moftakhari et al. (2018)
showed that the aggregated cost of all high-frequency flood-
ing events can exceed those of low-frequency, high magnitude
events for which cities are more commonly prepared.

Current methods used to understand urban flooding predom-
inantly rely on modelling analyses using programs such as
CUHP, SWMM and HEC-RAS (Qi et al. 2021; Teng et al. 2017).
However, because there is no widespread monitoring of street
flooding as there is for streamflow, the accuracy of these models
is hard to evaluate without observations with which to compare.

These approaches can require substantial time and mone-
tary costs, data requirements and implementation challenges.
Additionally, these types of analyses are often based on design-
storms and a simplified portrayal of the built environment.

To circumvent these challenges, previous researchers have used
crowd-sourced reports of urban flooding in the form of munic-
ipal service reports in conjunction with rainfall data (Bouwens
et al. 2018; Michelson and Chang 2019; Sadler et al. 2018; Smith
and Rodriguez 2017; Tian et al. 2019) and topographic studies
(Gaitan, ten Veldhuis, and van de Giesen 2015; Kelleher and
McPhillips 2020) to understand patterns in urban flooding,
but previous work has often examined storm variables sepa-
rately from topographic and other built environment variables.
Building upon this body of work, this study aims to understand
how spatial and temporal drivers comparatively influence the
likelihood of urban flooding. Methodologies of this paper can
easily be applied to any city with municipal flood reports and
spatial precipitation data (from either radar or a rain gauge
network).

In this analysis, we conceptualise pluvial flooding as the result
of compounding factors of rainfall characteristics, built infra-
structure, and social variables (Figure 1). Not only are the storm
characteristics that lead to pluvial flooding important but also
the characteristics of the land where the rain falls and informa-
tion about the people affected during the flooding, given many
studies have shown that flood exposure can be high for vulner-
able populations (Qiang 2019; Tate et al. 2021). Focusing on just
one or two of these variables would leave significant parts of the
story untold.

This study analyzes crowd-sourced reports of urban flooding
from the City and County of Denver. We employed multiple

Storm characteristics:
Rainfall intensity, depth, duration

-

Spatial variables:
Population density, percent
impervious, length of stormwater
pipe per area

-4

Social variables:
Median income, social vulnerability,
population density and distribution

Pluvial Flooding and
reporting

FIGURE1 | A conceptualillustration of the factors leading to pluvial flooding analysed in this study and its consequences.
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methodologies, including rainfall threshold analysis, explora-
tion of spatial characteristics as drivers, topographic wetness
index (TWI), and logistic regression analysis, to gain a bet-
ter understanding of drivers of urban flooding in Denver, CO.
Using these methods, this research seeks to address the follow-
ing questions:

1. Which storm characteristics best predict flood report
incidence?

2. Which built and social variables explain the most variance
in urban flood reports?

3. How do storm characteristics, built variables and social
variables together influence the likelihood of urban flood-
ing reports?

The overall goal of this work is to examine the spatiotemporal
patterns of urban flooding, and which variables are most effec-
tive at predicting urban flooding. We specifically seek to com-
pare the predictive power of variables which are often examined
separately: storm characteristics, built variables and social
variables.

2 | Methods
2.1 | Study Area

This analysis focused on the City of Denver, Colorado, USA.
Denver, located 19km east of the Rocky Mountain foothills,
is a major metropolitan area in Colorado with a population of
about 3 million people. From 2010 to 2020, the city's popula-
tion grew by 17% with 178 census tracts (U.S. Census Bureau
QuickFacts n.d.). Denver has a semi-arid climate with seasonal
variability. The area receives an average annual precipitation
of 391 mm, with most falling between April and September.
Denver has an average annual temperature of 10.1°C. The
monthly average minimum temperature is —1.3°C and the max-
imum is 23.1°C (US Department of Commerce n.d.). Denver lies
within the South Platte River Basin, which originates in the
Rocky Mountains. Denver's downtown is east of the confluence
of Cherry Creek and the South Platte River.

Helpful to this study, Denver has the Mile High Flood District
(MHFD). The MHFD is a multi-jurisdiction, government-funded
entity responsible for stormwater and watershed management
in the metropolitan Denver area. The MHFD has stream and
rain gauge networks as a part of their larger, MHFD flood mon-
itoring system.

2.2 | Flood Reports

We received a database of flood reports from the City and County
of Denver Department of Transportation and Infrastructure
Wastewater Management Division. Each flood report was from
a person who sought to report an issue related to local drainage.
These flood reports included a date, location and information
about the reason for the flood report. Complaints came from
multiple sources and people, beginning in 1966 until 2019. In
this study, we focused solely on flood reports from 2000 to 2019

Reports per person, per km?
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FIGURE 2 | A map of the City and County of Denver, indicat-
ing flood-reporting hotspots by census tract. We normalised the total
amount of reports in a census tract by area and population in each tract.

to ensure that we would have corresponding rain gauge data.
Additionally, we were only interested in flood reports pertaining
to flooding during rain events, so we excluded reports that were
associated with categories of icing, unknown, other, constant
discharge, erosion, siphon, private and maintenance. We also fil-
tered flood reports to only those which occurred between April
and October to capture reports from the rain season in Denver,
Colorado, as opposed to winter storms. This process gave us 922
reports of street flooding (Figure 2). We will use flood report to
refer to these specific flood reports. We did not have knowledge
of the process to create official flood reports during the histori-
cal timeframe of this study.

2.3 | Storm Data

In addition to flood reports, we acquired storm data from the
MHFD rain gauge network. Rain gauges that had no data were
removed from analysis. Within Denver, CO, we used 30 rain
gauges (Figure 3). These gauges are 1 mm tipping bucket gauges
reporting every tip. We considered any incremental accumula-
tion (tip) in rainfall depth exceeding 5mm invalid. Rain gauges
record at least a value of 0 every 12h (if there is no rain) to indi-
cate they are functioning (Wilson et al. 2022).

Using the rain gauge network, we created Thiessen polygons
(Figure 3) with the voronoi function from the dismo R package
(v 1.3-14; Hijmans et al. 2023). All analyses were performed
using R Statistical Software (R version 4.3.0 n.d.). Each polygon
represents the ‘area of influence’ for a specific rain gauge. We
linked flood report occurring within a polygon with that poly-
gon's rain gauge data. By linking each flood reports to a polygon,
we estimated the storm characteristics that led to a flood report.
If the nearest rain gauge associated with a flood report lacked
data for the specific time of the service report (due to damage
or malfunction), we removed that rain gauge from the polygon
network. We then created a new set of polygons and linked the
flood reports to the next closest rain gauge. At the end of this
process, all but five flood reports were linked to a rain gauge.
These five flood reports, which lacked rain gauge data, were
removed from the analysis. The distances between linked rain
gauges and flood reports ranged from under 1 to 4km (Figure 4).

After extracting all rain gauge data from the MHFD, we used
the USGS Rainmaker R package (v1.0.2; Corsi and Carvin 2023)
to distinguish storm events and quantify rainfall intensities
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FIGURE3 | A map of the City and County of Denver including locations of flood reports, rain gauges, Thiessen polygons and local streams.

60

~
S

Frequency

)
S

2
Distance (km)

FIGURE4 | Distances of flood reports to rain gauges.

from rain gauge data. The USGS Rainmaker package calcu-
lates the following storm characteristics: duration, total depth,
overall intensity and maximum rainfall intensity for 5-, 10-, 15-,
30-, 60-, 120-, and 240-min durations of each storm event from
tipping bucket rain gauge data. Within the Rainmaker package,
we set each rain gauge tip to equal 1 mm, matching the tipping
rate of the rain gauges in our dataset (Wilson et al. 2022). We
also set the interevent period to 24h, meaning that if any tips
occurred within 24h of each other, we considered this as one
storm. We chose 24 h because flood reports had dates of flood-
ing, but not times.

This process allowed us to link flood reports to storm events.
We linked storm events to flood reports based on dates and rain
gauge polygons. We linked a storm with a flood report if the
storm was recorded by a rain gauge within the same polygon
and occurred within a day before the flood report was made.
Occasionally, storm events spanned multiple days. A flood re-
port could be matched at any day during a multi-day storm.
Additionally, we did not use flood reports if there was not
matched storm event. We also acknowledge that there is some
uncertainty regarding the timing of storms and the dates of
flood reports, which could have impacts on this analysis, but did
our best to minimise or account for this uncertainty.

Of 922 flood reports, 603 were linked to storms and only these
603 were used for this study. There are a few potential reasons

104.9° W

104.8°W

that not all flood reports had linked storms. One is due to rain
gauge errors. Either the rain gauge linked with the flood re-
ports was transmitting, but not tipping, or the linked rain gauge
was far away from the flood report. Additionally, flood reports
caused by drinking water or wastewater line breaks, would not
correspond to a storm. It was not always clearly written in a
flood report whether there were water line breaks. Lastly, there
could be inaccuracies with flood report reporting due to human
error such as transcribing incorrect values for date, time, or lo-
cation or using the reporting system incorrectly.

2.4 | Climate Analysis

First, we looked at rainfall variation across Denver to see if local-
ised differences in long-term average rainfall explained spatial
variation in flood reports. To perform this analysis, we mapped
flood reports on top of Parameter-elevation Regressions on
Independent Slopes Model (PRISM) data to see if high densities
of flood reports corresponded to areas of high rainfall. PRISM
data are long-term climate data that comes from the PRISM
Climate Group at Oregon State University, which is derived from
multiple climate monitoring sites across the continental United
States. We used average monthly and annual rainfall from the
last 30years with a spatial resolution of 800 m across Denver.
This analysis is referenced in Figure S1.

2.5 | Predictive Threshold

Before moving to more complex analyses, our first goal was to
determine whether specific thresholds for rainstorm character-
istics could predict the occurrence of street flooding. Previous
work has used threshold analysis to predict flooding or stream
flow response with rainfall thresholds (Bouwens et al. 2018;
Kampf et al. 2018; Tian et al. 2019; Wilson et al. 2022). The
threshold analysis determined a value for a certain character-
istic that when exceeded, predicts flooding. Studies that have
evaluated such a threshold in rainfall intensity have interpreted
these threshold values as representing situations where infiltra-
tion excess overland flow was expected to occur.
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In our study, we aimed to identify threshold values for storm du-
ration, total depth, overall intensity and maximum rainfall in-
tensity that, when exceeded, could distinguish between storms
that led to flood reports and those that did not. We tested thresh-
old values for each of these storm characteristics over periods of
5, 10, 15, 30, 60, 120, and 240min. For each characteristic, we
tested a range of values from the minimum to the maximum, in
increments of 1/1000 of the respective value's range.

We evaluated each tested value with a performance metric to see
how well it predicted when flood reports occurred. Pearson cor-
relation evaluates linear relationships, whereas our type of thresh-
old testing required a performance metric for a binary response
variable. Others have used kappa to evaluate binary classification
of relatively common events (Kampf et al. 2018) and the equita-
ble threat score to assess the performance of categorical forecasts
(Brill and Mesinger 2009; Hogan et al. 2010). We used Matthews
Correlation Coefficient (MCC) as a performance metric for each
tested threshold. MCC has been determined to be a good choice of
a performance metric, particularly in situations where datasets are
imbalanced (Chicco and Jurman 2020). An imbalanced dataset is
one where rare events are being examined and therefore the sam-
ple size for each binary response category (e.g., storms that led to
street flooding and those that did not) is very different. Our dataset
was imbalanced, with 404 unique storms that led to a street flood-
ing report and 20827 storms that did not.

MCC values will range from —1 to 1. A score of +1 denotes per-
fect prediction, 0 indicates performance no better than random
guessing, and —1 signifies complete disagreement between pre-
diction and observation. MCC takes into consideration the true
positive (TP), true negative (TN), false positive (FP) and false
negative (FN) predictions made by a classifier. In our case, the
classifier is the predictive threshold value. We calculated MCC
by the following:

MCC = (TP X TN — FP x FN) / v/((TP + FP) x (TP + FN) x (TN + FP) x (TN + FN))

@
In our case, we classified a storm as a TP when the threshold
predicts it will lead to street flooding, and it is recorded as hav-
ing led to street flooding. We classified it as a TN when the
threshold predicts it will not lead to street flooding, and it is not
recorded as having led to street flooding. We labelled a storm as
a FP when the threshold predicted it would lead to street flood-
ing, but no flooding was recorded. Conversely, we labelled it as
a FN when the threshold predicted it would not lead to street
flooding, but flooding was recorded. We consider the tested
value with the highest magnitude MCC score to be the strongest
predictor of the occurrence of a flood report.

2.6 | Geographic Variables

We additionally considered the influence of geographic vari-
ables, including social and built variables, on street flood report-
ing. We chose to examine these variables at the census tract-level
scale as opposed to a watershed scale as the census tract scale is
consistent with government agency data collection while also
being fine enough to analyse at a neighbourhood scale. The
variables we analysed were percent imperviousness, length of
stormwater mains, population density, median income, social

vulnerability index (SVI) and TWI. We selected these variables
as they span key variables describing patterns and drivers of
urban flooding (Figure 1).

We imported the population of each census tract in Denver to R
from the 2020 US Census using the tidycensus package (v1.4.4;
Walker and Herman 2023). We imported tract boundaries using
the tigris package (v2.0.3; Walker 2023). We determined the pop-
ulation density for each tract by dividing the population of that
tract by its corresponding calculated area (in square kilometres).
We also examined median income per tract which we extracted
from the 2020 census, using the tidycensus R package.

We calculated the percent impervious area for each census
tract by importing a shapefile of impervious surfaces in Denver
(Denver Open Data Catalogue), then used the st_area function
in the R sf package (v1.0.13; Pebesma 2018) to calculate the area
of impervious surfaces. The spatial resolution of this layer is
0.5ft, with each pixel in the aerial imagery representing a 0.5-ft
by 0.5-ft area on the ground.

We calculated the stormwater pipe density of tracts by importing
a shapefile of Denver's stormwater sewer network (Denver Open
Data Catalogue), calculating the length of stormwater in a tract
(in meters) with the st_length function in the sf package, and
then dividing by the area of the tract (in meters squared). We
used sf tools in R to calculate lengths and areas.

We also considered the SVI of each tract, to investigate whether
descriptors of the local population may be related to urban flood-
ing. Existing work emphasises that there are many places across
the US and around the globe where flood exposure and social
vulnerability are high, due to the complex interactions between
environmental factors and social, political and economic fac-
tors within these areas (Rolfe et al. 2020; Tate et al. 2021). The
Centers for Disease Control and Prevention (CDC) and Agency
for Toxic Substances and Disease Registry (ATSDR) have cre-
ated an SVI for census tracts to help identify which communi-
ties will require aid in the event of a hazardous event (Flanagan
et al. 2011). Note that social vulnerability of a community is not
inherent in individuals but is created by societal forces that re-
move capacity and power from communities (Jones et al. 2024).
The four main categories of variables used in SVI include socio-
economic status, household characteristics (age, disability sta-
tus, single-parent and English-language proficiency), racial and
ethnic minority status and housing and transportation type. We
used the overall state-wide ranking percentile values associated
with each census tract. SVI uses a percentile ranking which in-
dicates the percentage of tracts that are as vulnerable as or less
vulnerable than a given tract. For example, an SVI value of 0.95
indicates that the tract of interest is more vulnerable than 95% of
all tracts in the state.

TWI quantifies the propensity of a location to accumulate
water based on its topographic characteristics. To calculate
TWI, we acquired a bare earth one-meter resolution digital
elevation model (DEM) from the USGS National Map (U.S.
Geological Survey 2022). For each DEM, we used the terrain
function in the raster R package (v3.6.20; Hijmans 2023) to
calculate flow accumulation and local slope for each cell in
the map. We calculated TWI as follows:
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TWI = In(a / tan(p)) )

where a represents the total upslope contributing area, or flow
accumulation, of a cell, and tan(p) represents the slope of each
point. We replaced any cells with zero slope with 0.001 to be
compatible with the equation.

We were interested in TWI variation between locations of flood
reports and the rest of Denver, so we extracted values from the
922 locations of flood reports. While we realise that the point
from a flood report used to calculate TWI may not represent the
exact location of the flood occurrence, this approach made the
most sense in the absence of additional information. For com-
parison, we also extracted 922 random TWI values from all im-
pervious surfaces in Denver. We limited the random points to
impervious surfaces to constrain analysis to areas where a flood
report is possible. Although flooding is possible on a pervious
surface like a compacted sports field or park, we left this out of
the analysis because these areas may not be reportable. For all
variables, we performed a Wilcoxon signed-rank test to see if
the medians of values in areas of flooding and without flooding
were significantly different.

2.7 | Regression Analysis
2.71 | Logistic Regression

To understand the power of influence that each variable has on
the likelihood of a flood report, we constructed a logistic regres-
sion for the probability of a flood report occurring across storms
and census tracts. To do this, we constructed a singular data
frame to organise data by storm. Each storm has temporal data
from its rain gauge. Then, if we were able to link a storm to a
flood report, its geographic data came from the tract which con-
tained the flood report. If a storm did not lead to a flood report, its
geographic data came from the tract which contained the corre-
sponding rain gauge. We omitted storms recorded by rain gauges
outside of Denver from analysis because we only had flood re-
ports within Denver. We removed one tract from regression anal-
ysis because it had no population and thus no census data.

Explanatory variables used as input to the regression included
storm depth, storm duration, maximum 5-, 10-, 15-, 30-, 60-,
120-, and 240-min intensities, percent impervious, population
density, stormwater pipe density, median income and SVI. We
normalised each variable from 0 to 1 using the minimum and
maximum value for each variable so that final coefficients are
comparable.

We began with all explanatory variables, some of which were
collinear. To address this, we removed the variable with the
highest variance inflation factor (VIF) one at a time, until all
variables had a VIF equal to or below five (Helsel et al. 2020).
For final variable selection, we selected the resulting variables
by AIC in a stepwise algorithm using the step function in the
stats package in R (v 4.3.0; R Core Team (2023)).

We validated our assumption of linear relationships between the
explanatory and predicted variables by plotting the logit values

versus mean values at quantiles for each predictor variable and
visually inspecting for linearity. We also confirmed that there
were no outliers influencing the model by plotting the model re-
siduals versus leverage and visually inspecting for any outliers
beyond Cook's distance.

2.7.2 | Linear Regression

We additionally analysed a linear regression which focused
on how spatial variables of a tract led to incidences of flood re-
ports per area in that tract. We then used the Im and step func-
tions in the stats package of R (v 4.3.0; R Core Team (2023)) to
create a linear model which related number of flood reports
per area of a tract to the spatial variables, population density,
percent impervious, length of stormwater per area, median
income and SVI. Each variable was normalized from zero
to one so that final coefficients would be the same scale for
comparison.

To perform this linear regression, we assumed that our ex-
planatory variables were independent, linearly related to our
predictor, homoscedastic, and no outliers exerted significant
leverage. To ensure the independence of explanatory vari-
ables, we conducted multicollinearity diagnostics, examining
VIFs and correlation matrices. We also visually examined
scatter plots of each explanatory variable against the response
variable to confirm the linearity assumption. We assessed
homoscedasticity by plotting the residuals against the fitted
values from our regression model, visually inspecting for a
consistent spread of residuals across all fitted values on the
plot. Lastly, we used Cook's distance and standardised re-
siduals to visually inspect for any outliers of significance
influence.

3 | Results
3.1 | Climate and Rainfall Intensity Thresholds

We found that spatial rainfall patterns did not explain areas of
high flooding (Figure S1). Areas of higher 30-year normal an-
nual rainfall did not correlate to areas of higher flooding. We
then investigated spatial and temporal variables to better ex-
plain the pattern of street flooding.

We generated a series of values for predictive rainfall thresholds
and associated values of MCC for each characteristic, shown in
Table 1. As previously mentioned, the value of MCC will be in
between —1 and 1, with a value of 0 being the same as random
chance. Most of our MCC metrics were close to 0, meaning that
a single variable, rainfall characteristic is not the best predictor
of a flooding report occurrence (Table 1).

Storms that led to a flood report had a higher maximum 5-min
intensity compared with those that did not (Figure 5, Table 2).
As an example of threshold analysis, Figure 5a shows the
best-performing threshold for a 5-min intensity (the thresh-
old was determined by selecting the threshold with the maxi-
mum MCC value which was 0.12), indicating that storms with
a maximum 5-min intensity below 82.7mm/h should not lead
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TABLE 1 | Estimated threshold values for various storm variables
potentially predictive of flood report occurrence.

Variable Max MCC Threshold
Overall intensity (mm/h) 0.04 0.8
Maximum 5-min intensity 0.12 82.7
(mm/h)

Maximum 10-min intensity 0.13 65.8
(mm/h)

Maximum 15-min intensity 0.14 52.2
(mm/h)

Maximum 30-min intensity 0.14 25.9
(mm/h)

Maximum 60-min intensity 0.14 17.1
(mm/h)

Maximum 120-min 0.15 9.5
intensity (mm/h)

Maximum 240-min 0.14 5.6
intensity (mm/h)

Duration (h) 0.05 395.5
Depth (mm) 0.10 23.6

Note: The performance metric, MCC (Matthews Correlation Coefficient)
evaluates the threshold.

to flood reports, while those above this threshold should. This
threshold was not helpful in distinguishing between flooding
report response, as 97% of all storms, regardless of whether a
flood was reported, fell below this threshold. This indicates that
the threshold does not effectively differentiate between storms
that led to flood reports and those that do not. Additionally, this
threshold for maximum 5-min rainfall intensity corresponds to
about an 85% probability that storms will lead to flood reports
(Figure 5b). The threshold failed to predict about 15% of flood
reports, further highlighting its limitations in accurately identi-
fying flood-inducing storms.

3.2 | Comparing Variables for Flood-Reported
Versus Non-Flood-Reported Storms

In analysing storm characteristics, we observed higher values
for depth, duration and intensity in storms leading to flood re-
ports compared with those that did not, aligning with expec-
tations (Figure 6a,b,f, Table 2). We saw a similar pattern when
looking at spatial variables. Percent imperviousness was higher
for storms associated with flood reports as compared with those
without (Figure 6e, Table 2). We expected this because more
impervious surfaces prevent water infiltration, increasing the
likelihood of flooding.

Population density also resulted in a higher value in storms
triggering flood reports (Figure 6c¢, Table 2). This observation
could indicate a greater number of affected individuals report-
ing floods and increased land development without adequate
stormwater drainage leading to more flooding.

When examining stormwater pipe density (Figure 6f, Table 2),
we found a slightly lower median for storms linked to flood re-
ports compared with those that were not. This difference was
statistically significant. This could indicate that denser storm-
water pipes in an area more effectively drain streets of storm-
water and reduce the likelihood of street flooding. While this
analysis lacks the depth of a modelling-based approach, it high-
lights the potential relationship between stormwater infrastruc-
ture, development density and flood events.

The median SVI values for storms leading to flood reports ver-
sus those that did not were nearly identical (Table 2, Figure S2).
We saw a higher mean for SVI in cases when storms produced
flood reports (Figure S2). A higher SVI indicates that a more
vulnerable population sees more flood reports. SVI encom-
passes various indicators such as education levels, English pro-
ficiency, and access to resources, any of which could influence
an individual's ability to report a flood event. There was a lower
median for median income for storms that did lead to flood re-
ports, indicating flood reports occur more often in tracts with
lower incomes (Figure 6d, Table 2).

When looking at TWI, we saw the mean and median val-
ues are higher at points where street flooding was recorded
when compared with points randomly selected from Denver
(Figure 6g). These differences were statistically significant.
This suggests that areas predisposed to higher water accumu-
lation are prone to flooding. Despite this potential explanatory
power, we were unable to include TWI in regression analyses
because storms that did not lead to flood reports are not as-
sociated with a particular location and census tract data, like
flood reports are.

3.3 | Power of Influence of Different Variables on
a Flood Report

The logistic regression analysis aimed to understand the con-
tribution of spatial and temporal variables to flood report
incidence and the influence of significant variables on the
likelihood of flood reporting after a storm. Looking at ex-
planatory variables and coefficients for temporal variables,
we observed that both storm depth and 5-min maximum
rainfall intensity had a positive coefficient and relationship
to the log-odds of a flood report happening (Table 3). We also
see that the 5-min maximum intensity had the strongest in-
fluence on a flood report occurring after a storm. Depth of a
storm was the third highest influencing variable on whether
a storm report occurs. Differently, we saw that duration had
a negative coefficient, indicating that the shorter the storm
duration, the increased likelihood of a flood report happen-
ing. When analysed alone, longer storms saw more flooding
(Figure 6b, Table 2). However, when we analysed duration and
storm depth together, the biggest effect was from storms with
a larger depth.

Considering spatial variables, population density had the second
highest coefficient, and second most influence overall (Table 3).
The positive coefficient indicates an increase in population
density will increase the likelihood of a flood report incident.
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FIGURE 5 | (a) Violin plot and (b) CDF showing the distribution of all maximum 5-min intensities, differentiating between flooding and non-

flooding events, with the predictive threshold overlaid; MCC =82.7mm/h for max 5-min intensity.

TABLE 2 | Comparison of median values for variables among storms with and without flood reports, along with corresponding p values from the

Wilcoxon signed-rank test.

Median for flood report Median for flood

Variable not occurring report occurring P

Depth (mm) 4.06 10.2 <0.001
Duration (h) 2.63 7.77 <0.001
15 (mm/h) 12.19 24.38 <0.001
110 (mm/h) 6.10 18.29 <0.001
115 (mm/h) 8.13 16.256 <0.001
130 (mm/h) 4.06 8.13 <0.001
160 (mm/h) 2.03 5.08 <0.001
1120 (mm/h) 1.52 3.43 <0.001
1240 (mm/h) 0.762 1.78 <0.001
Percent impervious 46.2 53.1 <0.001
Population density (per km?) 2081 2733 <0.001
Median tract income 84456 77442 <0.001
SVI 0.481 0.481 0.01286
Stormwater pipe density (m/m?) 0.008 0.007 0.0462

Note: Bold values denote a significant increase in distribution shift.
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reported versus storms in which there was a flood reported.

Looking at median income, we see that there is also a positive
coefficient, meaning a storm occurring in an area with a higher
median income can expect a higher likelihood of flood reports.
While median tract income alone has a negative relationship
with the probability of flooding (Figure 6d, Table 2), median
tract income is also negatively correlated to population density.
After we included the population density, which has the stron-
gest spatial effect on increasing the probability of flooding, and
the median tract income in the model, we see that the effect of
median tract income is positive. This indicates that there is a
greater probability of flooding reports in storms and tracts in
dense, wealthy areas (given that dense areas have lower income
overall) than in less dense, lower income areas. Last, stormwater
pipe density had a negative coefficient, indicating a decrease in

stormwater pipe density being associated with an increase in the
likelihood of a flood report.

Notably, all variables were significantly different in the single
variable analysis, but not all variables showed up in the regres-
sion, likely due to correlation to other variables. For example,
SVI did not show up in the regression and is correlated with
the other spatial variables, especially median income. Percent
impervious also did not show up in the regression and was re-
lated to stormwater pipe density and population density, where
population density also indicates increased population to report
flooding. This model has a chi-squared value of 1047.8 with 8
degrees of freedom (8 predictor variables) and gives a p value of
0.359. Our intention of creating a model was not prediction, but
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TABLE 3 | Logistic regression values and performance for representing spatial and temporal variables of a storm leading to a flood report or no

flood report. All coefficients are normalised.

Coefficient Std. error 4 Pr (>z2)
Intercept —5.62 0.18 -30.54 <0.001
Depth 8.39 1.25 6.65 <0.001
Duration —3.68 1.43 -2.57 0.01
Maximum 5-min intensity 12.37 1.13 10.86 <0.001
Population density (per km?) 12.02 0.55 21.64 <0.001
Median income 2.30 0.39 5.84 <0.001
Stormwater pipe density -1.39 0.15 -9.14 <0.001

TABLE 4 | Linear regression values and performance for representing spatial variable influence on amount of flood reports per area.

Coefficient Std. error t Pr (>t
Intercept —-4.10 1.18 —3.47 0.00064
Percent impervious 17.27 2.19 7.86 3.84x10713

rather to understand the impact each variable has on the proba-
bility of a flood report.

3.4 | Predicting the Density of Flood Reports

We also performed a linear regression to examine how spatial
variables interact and influence the density of flood reports in
a tract. Notably, only percent impervious showed up as a sig-
nificant variable in this regression (Table 4; R>=0.262). Percent
impervious had a positive coefficient and relationship with the
amount of flood reports that happen per area. We expected this
relationship because impervious surfaces lead to runoff and
more water flowing into stormwater systems. It was interest-
ing, however, that the algorithm selected percent impervious as
the only important spatial predictor for flood reports per area.
This may have happened because we only had 176 tracts, or data
points, to describe spatial variability of close to 400km?. The
176 tracts may not be enough to distinguish variability in other
inputs to the model. Additionally, other variables may not have
shown up in the regression because they were correlated with
each other.

4 | Discussion
4.1 | Drivers of Urban Flooding

In this study, we performed several analyses to explore the pre-
dictive ability of single and multiple variables to explain flooding
in Denver, CO, USA. We found the maximum 5-min intensity
and population density to be the strongest drivers of flood re-
ports. Differently, Smith and Rodriguez (2017) found that in
New York City, New York, USA, maximum hour and daily rain-
fall drove most flooding, whereas areas with combined sewer
systems experienced less flooding. Additionally, Michelson and

Chang (2019) found that in Portland, Oregon, USA, flooding in-
creased as depth of 3-day storms increased up to 10cm. These
differences are driven in part by differences in climate as well
as infrastructure. Denver does not have combined sewers, or the
dense impervious cover found in New York City and does not
experience the longer storms driven by atmospheric rivers, as
seen in Portland.

This study underscores the significance of considering multi-
ple variables within the context of urban flooding analysis. We
found that single-variable threshold analyses failed to capture
the complexities of urban flooding and proved inadequate as
predictors. Pluvial flooding is caused by rainfall, but also the
geographic terrain where that rainfall occurs, including both so-
cial and physical factors of the urban landscape. This is true for
any city, including Denver.

While other studies have focused on correlations of individ-
ual variables (Kelleher and McPhillips 2020; Michelson and
Chang 2019; Smith and Rodriguez 2017) to flooding, this study
is the first to consider a combined view of temporal and spatial
variables. Temporal and spatial factors both play crucial roles
in urban flooding analysis; neglecting either can lead to incom-
plete results. Furthermore, examining them together provides a
more comprehensive understanding.

We examined the distinct contributions of various variables to
the overall likelihood of a flood report. Our logistic regression
showed the spatial variable, population density, and a tempo-
ral variable, maximum 5-min intensity, can be nearly equal
predictors for a flood report (Table 3). While other research-
ers have also found the importance of rainfall intensity and
percent imperviousness (Bouwens et al. 2018; Candela and
Aronica 2016; Smith and Rodriguez 2017), our finding allows
us to consider simultaneous influence of temporal and spatial
variables.
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Most correlations between variables and urban flooding were
expected, such as more intense storms, locations with higher
TWI, increased population densities and higher percent im-
perviousness all leading to a higher likelihood or amounts of
flooding (Figure 6). Socioeconomic variables presented more
nuance and could benefit from further analysis. We saw sig-
nificantly lower median incomes and higher SVI values when
comparing storms that lead to flood reports and those that do
not (Figure 6). These values could reflect populations affected
by floods but may be skewed by populations with capacity for
flood reporting. Community resilience to urban flooding can
be measured using indicators such as public facilities, spatial
structure of land use, flood management organisations, rescue
capability, weather forecast accuracy, vulnerable population
and individual capability (Laurien et al. 2020; Xu et al. 2020;
Zhong et al. 2020).

4.2 | City-Wide Analysis Supports Improved Water
Management and Hazard Mitigation

The MHFD has a flood warning system that is used by emer-
gency response organisations in the Denver metropolitan area.
The current notification system warns of urban flooding when
12.7mm (0.5 in) of rain has fallen within 10 min. This is equiv-
alent to a 10-min rainfall intensity of 76.2mm/h. Our 10-min
MCC suggested threshold was 66 mm/h (Table 1), so the MHFD
threshold is higher than our derived threshold. Additionally,
our threshold had an MCC grade of 0.130 on a scale from —1
to 1, deeming it a poor performing threshold (Chicco and
Jurman 2020). Our findings suggest using a 5-min intensity is
somewhat better performing, with the best performing 5-min
intensity threshold at 82.7mm per hour. This value falls be-
tween the 2- and 5-year NOAA Atlas 14 recurrence interval
for Denver (NOAA ATLAS 14). An approach that uses spatial
as well as temporal variables may be more effective in predict-
ing street flooding. Other cities which use rainfall observations
to inform flood warning systems could utilise our methods to
evaluate or determine rainfall threshold values. We completed
our analysis in Denver, and the MHFD operates in communities
outside of Denver, where spatial characteristics could result in a
different threshold. Our analysis suggests that areas with higher
population densities may require a different rainfall intensity
threshold for urban flooding.

The biggest limitation in our study was our reliance on public
reports of flooding incidents. Relying on such data is a double-
edged sword: it is a useful way to detect the presence of flood-
ing, but flood report occurrence may be biased to certain areas
within a city or at certain times (Kontokosta and Hong 2021;
Liu, Bhandaram, and Garg 2024; Minkoff 2016). For example,
more reports happened during weekdays and after typical work
hours. To minimise this uncertainty, we carefully linked flood
reports to storms, and found that a majority corresponded to
storms.

Previous work on municipal flood reports shows that low-
income and minority neighbourhoods are less likely to make
calls for nuisance issues (Kontokosta and Hong 2021). Without
knowing the motivations of those making flood reports, the
study is missing insight into what causes urban flooding or

affected populations. Building a predictive model based on
potentially biased reports has the potential to underestimate
flooding in areas with marginalised populations. For example,
while we observe more flood reports in tracts with lower median
incomes and higher social vulnerability indices, it is likely that
these populations under-report flooding, suggesting the actual
discrepancy is even larger than observed. Suggested follow-up
work would be to improve understanding of the motivations to
make flood reports. There may also be the opportunity to use
other tools, in addition to reporting mechanisms, to account for
this potential unequal flood reporting. An alternative to using
these reports would be equal surveying or sensing of flood-
ing in cities to better understand incidences of urban flooding
(Sullivan et al. 2024; Hino and Nance 2021).

While flood reports are a useful approach to study flooding,
they also limit our ability to understand the severity of floods
in terms of damage or hazard. Our methods leave us unable to
analyse water velocity, depth or quality, characteristics used
to determine a flood's hazard (Gaitan, ten Veldhuis, and van
de Giesen 2015; Middelmann-Fernandes 2010). While such in-
formation is generally challenging to come by, researchers are
using alternative methods to acquire data to understand more
(Hong and Shi 2023; Lo et al. 2015).

5 | Conclusions

We used a variety of methods to understand the drivers of urban
flooding. Our initial threshold analysis of storm characteristics
was insufficient in determining likelihood of flooding. In our
novel analysis combining spatial and temporal variables in a lo-
gistic regression, we saw that rainfall intensity and population
density are nearly as important in determining the likelihood of
a flood report. In addition, TWI values at locations of flooding
reports were higher than randomly selected points and a linear
regression predicting the number of reports per area identified
percent impervious as the single most important predictor.

Overall, these findings provide valuable insights into urban
flooding that could be used to examine pluvial flooding predic-
tion systems or prioritise allocation of flood response resources.
A similar approach as ours can be applied to any city that also
has records of pluvial flooding and spatial rainfall data, from
radar or a rain gauge network. Complex relationships between
variables suggest the need for a spatiotemporal perspective with
urban flooding. Not only are rainfall characteristics important
to consider, but so is the environment which the rain falls on;
this includes topography, the built environment, and population
characteristics. Since we consider areas with higher popula-
tion density and higher percent imperviousness at higher risk
of urban flooding, these areas should become target areas for
increased flood awareness, response, mitigation, and recovery.
Further investigation should be on areas with lower median in-
comes or more vulnerable populations for potential disparities
in flooding and mitigation of flooding.

There is still unknown information about motivations behind
creating flood reports and our work indicates certain popula-
tions are at a higher risk of urban flooding. Any solutions or
next steps should keep this in mind, as correcting for a specific
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https://www.zotero.org/google-docs/?q3PxxH

group of people who write flood reports may inadvertently
perpetuate further inequities (Galloway et al. 2018; Hino and
Nance 2021; National Academies of Sciences, Engineering, and
Medicine 2019).
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