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ABSTRACT
Urban flooding is an increasing threat to cities and resident well-being. The Federal Emergency Management Agency (FEMA) 
typically reports losses attributed to flooding which result from a stream overtopping its banks, discounting impacts of higher 
frequency, lower impact flooding that occurs when precipitation intensity exceeds the capacity of a drainage system. Despite its 
importance, the drivers of street flooding can often be difficult to identify, given street flooding data scarcity and the multitude 
of storm, built environment, and social factors involved. To address this knowledge gap, this study uses 922 street flooding 
reports to the city in Denver, Colorado, USA from 2000 to 2019 in coordination with rain gauge network data and Census tract 
information to improve understanding of spatiotemporal drivers of urban flooding. An initial threshold analysis using rainfall 
intensity to predict street flooding had performance close to random chance, which led us to investigate other drivers. A logistic 
regression describing the probability of a storm leading to a flood report showed the strongest predictors of urban flooding were, 
in descending order, maximum 5-min rainfall intensity, population density, storm depth, storm duration, median tract income, 
and stormwater pipe density. The logistic regression also showed that rainfall intensity and population density are nearly as im-
portant in determining the likelihood of a flood report incidence. In addition, topographic wetness index values at locations of 
flooding reports were higher than randomly selected points. A linear regression predicting the number of reports per area iden-
tified percent impervious as the single most important predictor. Our methodologies can be used to better inform urban flood 
awareness, response, and mitigation and are applicable to any city with flood reports and spatial precipitation data.

1   |   Introduction

Urban flooding is an increasing concern around the globe 
(Kundzewicz and Pińskwar 2022; Lei et al. 2023; Mei et al. 2024; 
Mobini et al. 2022; National Academies of Sciences, Engineering, 
and Medicine 2019; Rainey et al. 2021). Currently, the effective 
functioning of stormwater infrastructure is faced with many 
challenges, including increased stormwater due to increased de-
velopment (Lei et al. 2023; Yosua, Kusuma, and Nugroho 2024; 
Zhu et  al.  2023), aging infrastructure (Šiljeg, Milošević, and 

Mamut  2024; Yosua, Kusuma, and Nugroho  2024) and in-
tensified storm events attributed to climate change (Fofana 
et  al.  2022; Moftakhari et  al.  2018; National Academies of 
Sciences, Engineering, and Medicine 2019; Rainey et al. 2021).

Outside of coastal areas, flooding is typically classified as ei-
ther fluvial or pluvial. While fluvial flooding occurs when a 
stream overflows its bank, pluvial flooding occurs when nat-
ural or engineered drainage systems fail to effectively manage 
precipitation, leading to ponding or overland flow (Moftakhari 
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et  al.  2018; Rosenzweig et  al.  2018). Whereas high-magnitude 
and low-frequency events often characterise fluvial flooding, a 
range of event sizes can lead to pluvial flooding (Rosenzweig 
et al. 2018). Pluvial flooding, sometimes called urban flooding 
when it occurs in urban areas, can result from storms that sur-
pass design specifications or from inadequate maintenance of 
drainage systems (Rosenzweig et al. 2018). Despite its growing 
occurrence, pluvial flooding events receive less attention than 
fluvial flooding events. Historically, researchers have docu-
mented most flooding incidents by examining peak stream dis-
charge or reviewing insurance claims within National Flood 
Insurance Program (NFIP)-insured areas, which typically co-
incide with the 100-year floodplain. These conventional records 
often overlook events outside of a floodplain, or flooding that 
cannot be connected to monetary damage (Galloway et al. 2018; 
Moftakhari et  al.  2018; National Academies of Sciences, 
Engineering, and Medicine  2019; Rosenzweig et  al.  2018). 
Regardless, pluvial flooding events can still have significant 
consequences. Urban flooding has been known to lead to traffic 
disruptions, emotional distress, and property damage (Galloway 
et al. 2018; Knight et al. 2021; Moftakhari et al. 2018; National 
Academies of Sciences, Engineering, and Medicine 2019) with 
impacts of each of these problems compounding due to high-
frequency occurrence. Work from Moftakhari et  al.  (2018) 
showed that the aggregated cost of all high-frequency flood-
ing events can exceed those of low-frequency, high magnitude 
events for which cities are more commonly prepared.

Current methods used to understand urban flooding predom-
inantly rely on modelling analyses using programs such as 
CUHP, SWMM and HEC-RAS (Qi et al. 2021; Teng et al. 2017). 
However, because there is no widespread monitoring of street 
flooding as there is for streamflow, the accuracy of these models 
is hard to evaluate without observations with which to compare. 

These approaches can require substantial time and mone-
tary costs, data requirements and implementation challenges. 
Additionally, these types of analyses are often based on design-
storms and a simplified portrayal of the built environment.

To circumvent these challenges, previous researchers have used 
crowd-sourced reports of urban flooding in the form of munic-
ipal service reports in conjunction with rainfall data (Bouwens 
et al. 2018; Michelson and Chang 2019; Sadler et al. 2018; Smith 
and Rodriguez 2017; Tian et al. 2019) and topographic studies 
(Gaitan, ten Veldhuis, and van de Giesen  2015; Kelleher and 
McPhillips  2020) to understand patterns in urban flooding, 
but previous work has often examined storm variables sepa-
rately from topographic and other built environment variables. 
Building upon this body of work, this study aims to understand 
how spatial and temporal drivers comparatively influence the 
likelihood of urban flooding. Methodologies of this paper can 
easily be applied to any city with municipal flood reports and 
spatial precipitation data (from either radar or a rain gauge 
network).

In this analysis, we conceptualise pluvial flooding as the result 
of compounding factors of rainfall characteristics, built infra-
structure, and social variables (Figure 1). Not only are the storm 
characteristics that lead to pluvial flooding important but also 
the characteristics of the land where the rain falls and informa-
tion about the people affected during the flooding, given many 
studies have shown that flood exposure can be high for vulner-
able populations (Qiang 2019; Tate et al. 2021). Focusing on just 
one or two of these variables would leave significant parts of the 
story untold.

This study analyzes crowd-sourced reports of urban flooding 
from the City and County of Denver. We employed multiple 

FIGURE 1    |    A conceptual illustration of the factors leading to pluvial flooding analysed in this study and its consequences.
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methodologies, including rainfall threshold analysis, explora-
tion of spatial characteristics as drivers, topographic wetness 
index (TWI), and logistic regression analysis, to gain a bet-
ter understanding of drivers of urban flooding in Denver, CO. 
Using these methods, this research seeks to address the follow-
ing questions:

1.	 Which storm characteristics best predict flood report 
incidence?

2.	 Which built and social variables explain the most variance 
in urban flood reports?

3.	 How do storm characteristics, built variables and social 
variables together influence the likelihood of urban flood-
ing reports?

The overall goal of this work is to examine the spatiotemporal 
patterns of urban flooding, and which variables are most effec-
tive at predicting urban flooding. We specifically seek to com-
pare the predictive power of variables which are often examined 
separately: storm characteristics, built variables and social 
variables.

2   |   Methods

2.1   |   Study Area

This analysis focused on the City of Denver, Colorado, USA. 
Denver, located 19 km east of the Rocky Mountain foothills, 
is a major metropolitan area in Colorado with a population of 
about 3 million people. From 2010 to 2020, the city's popula-
tion grew by 17% with 178 census tracts (U.S. Census Bureau 
QuickFacts n.d.). Denver has a semi-arid climate with seasonal 
variability. The area receives an average annual precipitation 
of 391 mm, with most falling between April and September. 
Denver has an average annual temperature of 10.1°C. The 
monthly average minimum temperature is −1.3°C and the max-
imum is 23.1°C (US Department of Commerce n.d.). Denver lies 
within the South Platte River Basin, which originates in the 
Rocky Mountains. Denver's downtown is east of the confluence 
of Cherry Creek and the South Platte River.

Helpful to this study, Denver has the Mile High Flood District 
(MHFD). The MHFD is a multi-jurisdiction, government-funded 
entity responsible for stormwater and watershed management 
in the metropolitan Denver area. The MHFD has stream and 
rain gauge networks as a part of their larger, MHFD flood mon-
itoring system.

2.2   |   Flood Reports

We received a database of flood reports from the City and County 
of Denver Department of Transportation and Infrastructure 
Wastewater Management Division. Each flood report was from 
a person who sought to report an issue related to local drainage. 
These flood reports included a date, location and information 
about the reason for the flood report. Complaints came from 
multiple sources and people, beginning in 1966 until 2019. In 
this study, we focused solely on flood reports from 2000 to 2019 

to ensure that we would have corresponding rain gauge data. 
Additionally, we were only interested in flood reports pertaining 
to flooding during rain events, so we excluded reports that were 
associated with categories of icing, unknown, other, constant 
discharge, erosion, siphon, private and maintenance. We also fil-
tered flood reports to only those which occurred between April 
and October to capture reports from the rain season in Denver, 
Colorado, as opposed to winter storms. This process gave us 922 
reports of street flooding (Figure 2). We will use flood report to 
refer to these specific flood reports. We did not have knowledge 
of the process to create official flood reports during the histori-
cal timeframe of this study.

2.3   |   Storm Data

In addition to flood reports, we acquired storm data from the 
MHFD rain gauge network. Rain gauges that had no data were 
removed from analysis. Within Denver, CO, we used 30 rain 
gauges (Figure 3). These gauges are 1 mm tipping bucket gauges 
reporting every tip. We considered any incremental accumula-
tion (tip) in rainfall depth exceeding 5 mm invalid. Rain gauges 
record at least a value of 0 every 12 h (if there is no rain) to indi-
cate they are functioning (Wilson et al. 2022).

Using the rain gauge network, we created Thiessen polygons 
(Figure 3) with the voronoi function from the dismo R package 
(v 1.3-14; Hijmans et  al.  2023). All analyses were performed 
using R Statistical Software (R version 4.3.0 n.d.). Each polygon 
represents the ‘area of influence’ for a specific rain gauge. We 
linked flood report occurring within a polygon with that poly-
gon's rain gauge data. By linking each flood reports to a polygon, 
we estimated the storm characteristics that led to a flood report. 
If the nearest rain gauge associated with a flood report lacked 
data for the specific time of the service report (due to damage 
or malfunction), we removed that rain gauge from the polygon 
network. We then created a new set of polygons and linked the 
flood reports to the next closest rain gauge. At the end of this 
process, all but five flood reports were linked to a rain gauge. 
These five flood reports, which lacked rain gauge data, were 
removed from the analysis. The distances between linked rain 
gauges and flood reports ranged from under 1 to 4 km (Figure 4).

After extracting all rain gauge data from the MHFD, we used 
the USGS Rainmaker R package (v1.0.2; Corsi and Carvin 2023) 
to distinguish storm events and quantify rainfall intensities 

FIGURE 2    |    A map of the City and County of Denver, indicat-
ing flood-reporting hotspots by census tract. We normalised the total 
amount of reports in a census tract by area and population in each tract.
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from rain gauge data. The USGS Rainmaker package calcu-
lates the following storm characteristics: duration, total depth, 
overall intensity and maximum rainfall intensity for 5-, 10-, 15-, 
30-, 60-, 120-, and 240-min durations of each storm event from 
tipping bucket rain gauge data. Within the Rainmaker package, 
we set each rain gauge tip to equal 1 mm, matching the tipping 
rate of the rain gauges in our dataset (Wilson et al. 2022). We 
also set the interevent period to 24 h, meaning that if any tips 
occurred within 24 h of each other, we considered this as one 
storm. We chose 24 h because flood reports had dates of flood-
ing, but not times.

This process allowed us to link flood reports to storm events. 
We linked storm events to flood reports based on dates and rain 
gauge polygons. We linked a storm with a flood report if the 
storm was recorded by a rain gauge within the same polygon 
and occurred within a day before the flood report was made. 
Occasionally, storm events spanned multiple days. A flood re-
port could be matched at any day during a multi-day storm. 
Additionally, we did not use flood reports if there was not 
matched storm event. We also acknowledge that there is some 
uncertainty regarding the timing of storms and the dates of 
flood reports, which could have impacts on this analysis, but did 
our best to minimise or account for this uncertainty.

Of 922 flood reports, 603 were linked to storms and only these 
603 were used for this study. There are a few potential reasons 

that not all flood reports had linked storms. One is due to rain 
gauge errors. Either the rain gauge linked with the flood re-
ports was transmitting, but not tipping, or the linked rain gauge 
was far away from the flood report. Additionally, flood reports 
caused by drinking water or wastewater line breaks, would not 
correspond to a storm. It was not always clearly written in a 
flood report whether there were water line breaks. Lastly, there 
could be inaccuracies with flood report reporting due to human 
error such as transcribing incorrect values for date, time, or lo-
cation or using the reporting system incorrectly.

2.4   |   Climate Analysis

First, we looked at rainfall variation across Denver to see if local-
ised differences in long-term average rainfall explained spatial 
variation in flood reports. To perform this analysis, we mapped 
flood reports on top of Parameter-elevation Regressions on 
Independent Slopes Model (PRISM) data to see if high densities 
of flood reports corresponded to areas of high rainfall. PRISM 
data are long-term climate data that comes from the PRISM 
Climate Group at Oregon State University, which is derived from 
multiple climate monitoring sites across the continental United 
States. We used average monthly and annual rainfall from the 
last 30 years with a spatial resolution of 800 m across Denver. 
This analysis is referenced in Figure S1.

2.5   |   Predictive Threshold

Before moving to more complex analyses, our first goal was to 
determine whether specific thresholds for rainstorm character-
istics could predict the occurrence of street flooding. Previous 
work has used threshold analysis to predict flooding or stream 
flow response with rainfall thresholds (Bouwens et  al.  2018; 
Kampf et  al.  2018; Tian et  al.  2019; Wilson et  al.  2022). The 
threshold analysis determined a value for a certain character-
istic that when exceeded, predicts flooding. Studies that have 
evaluated such a threshold in rainfall intensity have interpreted 
these threshold values as representing situations where infiltra-
tion excess overland flow was expected to occur.

FIGURE 3    |    A map of the City and County of Denver including locations of flood reports, rain gauges, Thiessen polygons and local streams.

FIGURE 4    |    Distances of flood reports to rain gauges.
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In our study, we aimed to identify threshold values for storm du-
ration, total depth, overall intensity and maximum rainfall in-
tensity that, when exceeded, could distinguish between storms 
that led to flood reports and those that did not. We tested thresh-
old values for each of these storm characteristics over periods of 
5, 10, 15, 30, 60, 120, and 240 min. For each characteristic, we 
tested a range of values from the minimum to the maximum, in 
increments of 1/1000 of the respective value's range.

We evaluated each tested value with a performance metric to see 
how well it predicted when flood reports occurred. Pearson cor-
relation evaluates linear relationships, whereas our type of thresh-
old testing required a performance metric for a binary response 
variable. Others have used kappa to evaluate binary classification 
of relatively common events (Kampf et al. 2018) and the equita-
ble threat score to assess the performance of categorical forecasts 
(Brill and Mesinger 2009; Hogan et al. 2010). We used Matthews 
Correlation Coefficient (MCC) as a performance metric for each 
tested threshold. MCC has been determined to be a good choice of 
a performance metric, particularly in situations where datasets are 
imbalanced (Chicco and Jurman 2020). An imbalanced dataset is 
one where rare events are being examined and therefore the sam-
ple size for each binary response category (e.g., storms that led to 
street flooding and those that did not) is very different. Our dataset 
was imbalanced, with 404 unique storms that led to a street flood-
ing report and 20 827 storms that did not.

MCC values will range from −1 to 1. A score of +1 denotes per-
fect prediction, 0 indicates performance no better than random 
guessing, and −1 signifies complete disagreement between pre-
diction and observation. MCC takes into consideration the true 
positive (TP), true negative (TN), false positive (FP) and false 
negative (FN) predictions made by a classifier. In our case, the 
classifier is the predictive threshold value. We calculated MCC 
by the following:

In our case, we classified a storm as a TP when the threshold 
predicts it will lead to street flooding, and it is recorded as hav-
ing led to street flooding. We classified it as a TN when the 
threshold predicts it will not lead to street flooding, and it is not 
recorded as having led to street flooding. We labelled a storm as 
a FP when the threshold predicted it would lead to street flood-
ing, but no flooding was recorded. Conversely, we labelled it as 
a FN when the threshold predicted it would not lead to street 
flooding, but flooding was recorded. We consider the tested 
value with the highest magnitude MCC score to be the strongest 
predictor of the occurrence of a flood report.

2.6   |   Geographic Variables

We additionally considered the influence of geographic vari-
ables, including social and built variables, on street flood report-
ing. We chose to examine these variables at the census tract-level 
scale as opposed to a watershed scale as the census tract scale is 
consistent with government agency data collection while also 
being fine enough to analyse at a neighbourhood scale. The 
variables we analysed were percent imperviousness, length of 
stormwater mains, population density, median income, social 

vulnerability index (SVI) and TWI. We selected these variables 
as they span key variables describing patterns and drivers of 
urban flooding (Figure 1).

We imported the population of each census tract in Denver to R 
from the 2020 US Census using the tidycensus package (v1.4.4; 
Walker and Herman 2023). We imported tract boundaries using 
the tigris package (v2.0.3; Walker 2023). We determined the pop-
ulation density for each tract by dividing the population of that 
tract by its corresponding calculated area (in square kilometres). 
We also examined median income per tract which we extracted 
from the 2020 census, using the tidycensus R package.

We calculated the percent impervious area for each census 
tract by importing a shapefile of impervious surfaces in Denver 
(Denver Open Data Catalogue), then used the st_area function 
in the R sf package (v1.0.13; Pebesma 2018) to calculate the area 
of impervious surfaces. The spatial resolution of this layer is 
0.5 ft, with each pixel in the aerial imagery representing a 0.5-ft 
by 0.5-ft area on the ground.

We calculated the stormwater pipe density of tracts by importing 
a shapefile of Denver's stormwater sewer network (Denver Open 
Data Catalogue), calculating the length of stormwater in a tract 
(in meters) with the st_length function in the sf package, and 
then dividing by the area of the tract (in meters squared). We 
used sf tools in R to calculate lengths and areas.

We also considered the SVI of each tract, to investigate whether 
descriptors of the local population may be related to urban flood-
ing. Existing work emphasises that there are many places across 
the US and around the globe where flood exposure and social 
vulnerability are high, due to the complex interactions between 
environmental factors and social, political and economic fac-
tors within these areas (Rolfe et al. 2020; Tate et al. 2021). The 
Centers for Disease Control and Prevention (CDC) and Agency 
for Toxic Substances and Disease Registry (ATSDR) have cre-
ated an SVI for census tracts to help identify which communi-
ties will require aid in the event of a hazardous event (Flanagan 
et al. 2011). Note that social vulnerability of a community is not 
inherent in individuals but is created by societal forces that re-
move capacity and power from communities (Jones et al. 2024). 
The four main categories of variables used in SVI include socio-
economic status, household characteristics (age, disability sta-
tus, single-parent and English-language proficiency), racial and 
ethnic minority status and housing and transportation type. We 
used the overall state-wide ranking percentile values associated 
with each census tract. SVI uses a percentile ranking which in-
dicates the percentage of tracts that are as vulnerable as or less 
vulnerable than a given tract. For example, an SVI value of 0.95 
indicates that the tract of interest is more vulnerable than 95% of 
all tracts in the state.

TWI quantifies the propensity of a location to accumulate 
water based on its topographic characteristics. To calculate 
TWI, we acquired a bare earth one-meter resolution digital 
elevation model (DEM) from the USGS National Map (U.S. 
Geological Survey 2022). For each DEM, we used the terrain 
function in the raster R package (v3.6.20; Hijmans  2023) to 
calculate flow accumulation and local slope for each cell in 
the map. We calculated TWI as follows:

(1)
MCC = (TP × TN − FP × FN)∕

√

((TP + FP) × (TP + FN) × (TN + FP) × (TN + FN))
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where a represents the total upslope contributing area, or flow 
accumulation, of a cell, and tan(�) represents the slope of each 
point. We replaced any cells with zero slope with 0.001 to be 
compatible with the equation.

We were interested in TWI variation between locations of flood 
reports and the rest of Denver, so we extracted values from the 
922 locations of flood reports. While we realise that the point 
from a flood report used to calculate TWI may not represent the 
exact location of the flood occurrence, this approach made the 
most sense in the absence of additional information. For com-
parison, we also extracted 922 random TWI values from all im-
pervious surfaces in Denver. We limited the random points to 
impervious surfaces to constrain analysis to areas where a flood 
report is possible. Although flooding is possible on a pervious 
surface like a compacted sports field or park, we left this out of 
the analysis because these areas may not be reportable. For all 
variables, we performed a Wilcoxon signed-rank test to see if 
the medians of values in areas of flooding and without flooding 
were significantly different.

2.7   |   Regression Analysis

2.7.1   |   Logistic Regression

To understand the power of influence that each variable has on 
the likelihood of a flood report, we constructed a logistic regres-
sion for the probability of a flood report occurring across storms 
and census tracts. To do this, we constructed a singular data 
frame to organise data by storm. Each storm has temporal data 
from its rain gauge. Then, if we were able to link a storm to a 
flood report, its geographic data came from the tract which con-
tained the flood report. If a storm did not lead to a flood report, its 
geographic data came from the tract which contained the corre-
sponding rain gauge. We omitted storms recorded by rain gauges 
outside of Denver from analysis because we only had flood re-
ports within Denver. We removed one tract from regression anal-
ysis because it had no population and thus no census data.

Explanatory variables used as input to the regression included 
storm depth, storm duration, maximum 5-, 10-, 15-, 30-, 60-, 
120-, and 240-min intensities, percent impervious, population 
density, stormwater pipe density, median income and SVI. We 
normalised each variable from 0 to 1 using the minimum and 
maximum value for each variable so that final coefficients are 
comparable.

We began with all explanatory variables, some of which were 
collinear. To address this, we removed the variable with the 
highest variance inflation factor (VIF) one at a time, until all 
variables had a VIF equal to or below five (Helsel et al. 2020). 
For final variable selection, we selected the resulting variables 
by AIC in a stepwise algorithm using the step function in the 
stats package in R (v 4.3.0; R Core Team (2023)).

We validated our assumption of linear relationships between the 
explanatory and predicted variables by plotting the logit values 

versus mean values at quantiles for each predictor variable and 
visually inspecting for linearity. We also confirmed that there 
were no outliers influencing the model by plotting the model re-
siduals versus leverage and visually inspecting for any outliers 
beyond Cook's distance.

2.7.2   |   Linear Regression

We additionally analysed a linear regression which focused 
on how spatial variables of a tract led to incidences of flood re-
ports per area in that tract. We then used the lm and step func-
tions in the stats package of R (v 4.3.0; R Core Team (2023)) to 
create a linear model which related number of flood reports 
per area of a tract to the spatial variables, population density, 
percent impervious, length of stormwater per area, median 
income and SVI. Each variable was normalized from zero 
to one so that final coefficients would be the same scale for 
comparison.

To perform this linear regression, we assumed that our ex-
planatory variables were independent, linearly related to our 
predictor, homoscedastic, and no outliers exerted significant 
leverage. To ensure the independence of explanatory vari-
ables, we conducted multicollinearity diagnostics, examining 
VIFs and correlation matrices. We also visually examined 
scatter plots of each explanatory variable against the response 
variable to confirm the linearity assumption. We assessed 
homoscedasticity by plotting the residuals against the fitted 
values from our regression model, visually inspecting for a 
consistent spread of residuals across all fitted values on the 
plot. Lastly, we used Cook's distance and standardised re-
siduals to visually inspect for any outliers of significance 
influence.

3   |   Results

3.1   |   Climate and Rainfall Intensity Thresholds

We found that spatial rainfall patterns did not explain areas of 
high flooding (Figure S1). Areas of higher 30-year normal an-
nual rainfall did not correlate to areas of higher flooding. We 
then investigated spatial and temporal variables to better ex-
plain the pattern of street flooding.

We generated a series of values for predictive rainfall thresholds 
and associated values of MCC for each characteristic, shown in 
Table 1. As previously mentioned, the value of MCC will be in 
between −1 and 1, with a value of 0 being the same as random 
chance. Most of our MCC metrics were close to 0, meaning that 
a single variable, rainfall characteristic is not the best predictor 
of a flooding report occurrence (Table 1).

Storms that led to a flood report had a higher maximum 5-min 
intensity compared with those that did not (Figure 5, Table 2). 
As an example of threshold analysis, Figure  5a shows the 
best-performing threshold for a 5-min intensity (the thresh-
old was determined by selecting the threshold with the maxi-
mum MCC value which was 0.12), indicating that storms with 
a maximum 5-min intensity below 82.7 mm/h should not lead 

(2)TWI = ln(a∕ tan(�))
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to flood reports, while those above this threshold should. This 
threshold was not helpful in distinguishing between flooding 
report response, as 97% of all storms, regardless of whether a 
flood was reported, fell below this threshold. This indicates that 
the threshold does not effectively differentiate between storms 
that led to flood reports and those that do not. Additionally, this 
threshold for maximum 5-min rainfall intensity corresponds to 
about an 85% probability that storms will lead to flood reports 
(Figure 5b). The threshold failed to predict about 15% of flood 
reports, further highlighting its limitations in accurately identi-
fying flood-inducing storms.

3.2   |   Comparing Variables for Flood-Reported 
Versus Non-Flood-Reported Storms

In analysing storm characteristics, we observed higher values 
for depth, duration and intensity in storms leading to flood re-
ports compared with those that did not, aligning with expec-
tations (Figure 6a,b,f, Table 2). We saw a similar pattern when 
looking at spatial variables. Percent imperviousness was higher 
for storms associated with flood reports as compared with those 
without (Figure  6e, Table  2). We expected this because more 
impervious surfaces prevent water infiltration, increasing the 
likelihood of flooding.

Population density also resulted in a higher value in storms 
triggering flood reports (Figure  6c, Table  2). This observation 
could indicate a greater number of affected individuals report-
ing floods and increased land development without adequate 
stormwater drainage leading to more flooding.

When examining stormwater pipe density (Figure 6f, Table 2), 
we found a slightly lower median for storms linked to flood re-
ports compared with those that were not. This difference was 
statistically significant. This could indicate that denser storm-
water pipes in an area more effectively drain streets of storm-
water and reduce the likelihood of street flooding. While this 
analysis lacks the depth of a modelling-based approach, it high-
lights the potential relationship between stormwater infrastruc-
ture, development density and flood events.

The median SVI values for storms leading to flood reports ver-
sus those that did not were nearly identical (Table 2, Figure S2). 
We saw a higher mean for SVI in cases when storms produced 
flood reports (Figure  S2). A higher SVI indicates that a more 
vulnerable population sees more flood reports. SVI encom-
passes various indicators such as education levels, English pro-
ficiency, and access to resources, any of which could influence 
an individual's ability to report a flood event. There was a lower 
median for median income for storms that did lead to flood re-
ports, indicating flood reports occur more often in tracts with 
lower incomes (Figure 6d, Table 2).

When looking at TWI, we saw the mean and median val-
ues are higher at points where street flooding was recorded 
when compared with points randomly selected from Denver 
(Figure  6g). These differences were statistically significant. 
This suggests that areas predisposed to higher water accumu-
lation are prone to flooding. Despite this potential explanatory 
power, we were unable to include TWI in regression analyses 
because storms that did not lead to flood reports are not as-
sociated with a particular location and census tract data, like 
flood reports are.

3.3   |   Power of Influence of Different Variables on 
a Flood Report

The logistic regression analysis aimed to understand the con-
tribution of spatial and temporal variables to flood report 
incidence and the influence of significant variables on the 
likelihood of flood reporting after a storm. Looking at ex-
planatory variables and coefficients for temporal variables, 
we observed that both storm depth and 5-min maximum 
rainfall intensity had a positive coefficient and relationship 
to the log-odds of a flood report happening (Table 3). We also 
see that the 5-min maximum intensity had the strongest in-
fluence on a flood report occurring after a storm. Depth of a 
storm was the third highest influencing variable on whether 
a storm report occurs. Differently, we saw that duration had 
a negative coefficient, indicating that the shorter the storm 
duration, the increased likelihood of a flood report happen-
ing. When analysed alone, longer storms saw more flooding 
(Figure 6b, Table 2). However, when we analysed duration and 
storm depth together, the biggest effect was from storms with 
a larger depth.

Considering spatial variables, population density had the second 
highest coefficient, and second most influence overall (Table 3). 
The positive coefficient indicates an increase in population 
density will increase the likelihood of a flood report incident. 

TABLE 1    |    Estimated threshold values for various storm variables 
potentially predictive of flood report occurrence.

Variable Max MCC Threshold

Overall intensity (mm/h) 0.04 0.8

Maximum 5-min intensity 
(mm/h)

0.12 82.7

Maximum 10-min intensity 
(mm/h)

0.13 65.8

Maximum 15-min intensity 
(mm/h)

0.14 52.2

Maximum 30-min intensity 
(mm/h)

0.14 25.9

Maximum 60-min intensity 
(mm/h)

0.14 17.1

Maximum 120-min 
intensity (mm/h)

0.15 9.5

Maximum 240-min 
intensity (mm/h)

0.14 5.6

Duration (h) 0.05 395.5

Depth (mm) 0.10 23.6

Note: The performance metric, MCC (Matthews Correlation Coefficient) 
evaluates the threshold.
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8 of 13 Hydrological Processes, 2024

FIGURE 5    |    (a) Violin plot and (b) CDF showing the distribution of all maximum 5-min intensities, differentiating between flooding and non-
flooding events, with the predictive threshold overlaid; MCC = 82.7 mm/h for max 5-min intensity.

TABLE 2    |    Comparison of median values for variables among storms with and without flood reports, along with corresponding p values from the 
Wilcoxon signed-rank test.

Variable
Median for flood report 

not occurring
Median for flood 
report occurring p

Depth (mm) 4.06 10.2 < 0.001

Duration (h) 2.63 7.77 < 0.001

I5 (mm/h) 12.19 24.38 < 0.001

I10 (mm/h) 6.10 18.29 < 0.001

I15 (mm/h) 8.13 16.256 < 0.001

I30 (mm/h) 4.06 8.13 < 0.001

I60 (mm/h) 2.03 5.08 < 0.001

I120 (mm/h) 1.52 3.43 < 0.001

I240 (mm/h) 0.762 1.78 < 0.001

Percent impervious 46.2 53.1 < 0.001

Population density (per km2) 2081 2733 < 0.001

Median tract income 84 456 77 442 < 0.001

SVI 0.481 0.481 0.01286

Stormwater pipe density (m/m2) 0.008 0.007 0.0462

Note: Bold values denote a significant increase in distribution shift.
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Looking at median income, we see that there is also a positive 
coefficient, meaning a storm occurring in an area with a higher 
median income can expect a higher likelihood of flood reports. 
While median tract income alone has a negative relationship 
with the probability of flooding (Figure  6d, Table  2), median 
tract income is also negatively correlated to population density. 
After we included the population density, which has the stron-
gest spatial effect on increasing the probability of flooding, and 
the median tract income in the model, we see that the effect of 
median tract income is positive. This indicates that there is a 
greater probability of flooding reports in storms and tracts in 
dense, wealthy areas (given that dense areas have lower income 
overall) than in less dense, lower income areas. Last, stormwater 
pipe density had a negative coefficient, indicating a decrease in 

stormwater pipe density being associated with an increase in the 
likelihood of a flood report.

Notably, all variables were significantly different in the single 
variable analysis, but not all variables showed up in the regres-
sion, likely due to correlation to other variables. For example, 
SVI did not show up in the regression and is correlated with 
the other spatial variables, especially median income. Percent 
impervious also did not show up in the regression and was re-
lated to stormwater pipe density and population density, where 
population density also indicates increased population to report 
flooding. This model has a chi-squared value of 1047.8 with 8 
degrees of freedom (8 predictor variables) and gives a p value of 
0.359. Our intention of creating a model was not prediction, but 

FIGURE 6    |    Comparing storm and spatial characteristics of flood-inducing and non-flood events with violin plots: (a) depth, (b) duration, (c) pop-
ulation density, (d) median income, (e) percent impervious, (f) maximum 5-min intensity, (g) stormwater pipe density, (h) TWI. TWI boxplots are 
shown in a different colour as they compare random points versus flood report points, whereas all other boxplots show storms in which no flood was 
reported versus storms in which there was a flood reported.
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rather to understand the impact each variable has on the proba-
bility of a flood report.

3.4   |   Predicting the Density of Flood Reports

We also performed a linear regression to examine how spatial 
variables interact and influence the density of flood reports in 
a tract. Notably, only percent impervious showed up as a sig-
nificant variable in this regression (Table 4; R2 = 0.262). Percent 
impervious had a positive coefficient and relationship with the 
amount of flood reports that happen per area. We expected this 
relationship because impervious surfaces lead to runoff and 
more water flowing into stormwater systems. It was interest-
ing, however, that the algorithm selected percent impervious as 
the only important spatial predictor for flood reports per area. 
This may have happened because we only had 176 tracts, or data 
points, to describe spatial variability of close to 400 km2. The 
176 tracts may not be enough to distinguish variability in other 
inputs to the model. Additionally, other variables may not have 
shown up in the regression because they were correlated with 
each other.

4   |   Discussion

4.1   |   Drivers of Urban Flooding

In this study, we performed several analyses to explore the pre-
dictive ability of single and multiple variables to explain flooding 
in Denver, CO, USA. We found the maximum 5-min intensity 
and population density to be the strongest drivers of flood re-
ports. Differently, Smith and Rodriguez  (2017) found that in 
New York City, New York, USA, maximum hour and daily rain-
fall drove most flooding, whereas areas with combined sewer 
systems experienced less flooding. Additionally, Michelson and 

Chang (2019) found that in Portland, Oregon, USA, flooding in-
creased as depth of 3-day storms increased up to 10 cm. These 
differences are driven in part by differences in climate as well 
as infrastructure. Denver does not have combined sewers, or the 
dense impervious cover found in New York City and does not 
experience the longer storms driven by atmospheric rivers, as 
seen in Portland.

This study underscores the significance of considering multi-
ple variables within the context of urban flooding analysis. We 
found that single-variable threshold analyses failed to capture 
the complexities of urban flooding and proved inadequate as 
predictors. Pluvial flooding is caused by rainfall, but also the 
geographic terrain where that rainfall occurs, including both so-
cial and physical factors of the urban landscape. This is true for 
any city, including Denver.

While other studies have focused on correlations of individ-
ual variables (Kelleher and McPhillips  2020; Michelson and 
Chang 2019; Smith and Rodriguez 2017) to flooding, this study 
is the first to consider a combined view of temporal and spatial 
variables. Temporal and spatial factors both play crucial roles 
in urban flooding analysis; neglecting either can lead to incom-
plete results. Furthermore, examining them together provides a 
more comprehensive understanding.

We examined the distinct contributions of various variables to 
the overall likelihood of a flood report. Our logistic regression 
showed the spatial variable, population density, and a tempo-
ral variable, maximum 5-min intensity, can be nearly equal 
predictors for a flood report (Table 3). While other research-
ers have also found the importance of rainfall intensity and 
percent imperviousness (Bouwens et  al.  2018; Candela and 
Aronica 2016; Smith and Rodriguez 2017), our finding allows 
us to consider simultaneous influence of temporal and spatial 
variables.

TABLE 3    |    Logistic regression values and performance for representing spatial and temporal variables of a storm leading to a flood report or no 
flood report. All coefficients are normalised.

Coefficient Std. error z Pr (> z)

Intercept −5.62 0.18 −30.54 < 0.001

Depth 8.39 1.25 6.65 < 0.001

Duration −3.68 1.43 −2.57 0.01

Maximum 5-min intensity 12.37 1.13 10.86 < 0.001

Population density (per km2) 12.02 0.55 21.64 < 0.001

Median income 2.30 0.39 5.84 < 0.001

Stormwater pipe density −1.39 0.15 −9.14 < 0.001

TABLE 4    |    Linear regression values and performance for representing spatial variable influence on amount of flood reports per area.

Coefficient Std. error t Pr (> t)

Intercept −4.10 1.18 −3.47 0.00064

Percent impervious 17.27 2.19 7.86 3.84 × 10−13
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Most correlations between variables and urban flooding were 
expected, such as more intense storms, locations with higher 
TWI, increased population densities and higher percent im-
perviousness all leading to a higher likelihood or amounts of 
flooding (Figure 6). Socioeconomic variables presented more 
nuance and could benefit from further analysis. We saw sig-
nificantly lower median incomes and higher SVI values when 
comparing storms that lead to flood reports and those that do 
not (Figure 6). These values could reflect populations affected 
by floods but may be skewed by populations with capacity for 
flood reporting. Community resilience to urban flooding can 
be measured using indicators such as public facilities, spatial 
structure of land use, flood management organisations, rescue 
capability, weather forecast accuracy, vulnerable population 
and individual capability (Laurien et al. 2020; Xu et al. 2020; 
Zhong et al. 2020).

4.2   |   City-Wide Analysis Supports Improved Water 
Management and Hazard Mitigation

The MHFD has a flood warning system that is used by emer-
gency response organisations in the Denver metropolitan area. 
The current notification system warns of urban flooding when 
12.7 mm (0.5 in) of rain has fallen within 10 min. This is equiv-
alent to a 10-min rainfall intensity of 76.2 mm/h. Our 10-min 
MCC suggested threshold was 66 mm/h (Table 1), so the MHFD 
threshold is higher than our derived threshold. Additionally, 
our threshold had an MCC grade of 0.130 on a scale from −1 
to 1, deeming it a poor performing threshold (Chicco and 
Jurman 2020). Our findings suggest using a 5-min intensity is 
somewhat better performing, with the best performing 5-min 
intensity threshold at 82.7 mm per hour. This value falls be-
tween the 2- and 5-year NOAA Atlas 14 recurrence interval 
for Denver (NOAA ATLAS 14). An approach that uses spatial 
as well as temporal variables may be more effective in predict-
ing street flooding. Other cities which use rainfall observations 
to inform flood warning systems could utilise our methods to 
evaluate or determine rainfall threshold values. We completed 
our analysis in Denver, and the MHFD operates in communities 
outside of Denver, where spatial characteristics could result in a 
different threshold. Our analysis suggests that areas with higher 
population densities may require a different rainfall intensity 
threshold for urban flooding.

The biggest limitation in our study was our reliance on public 
reports of flooding incidents. Relying on such data is a double-
edged sword: it is a useful way to detect the presence of flood-
ing, but flood report occurrence may be biased to certain areas 
within a city or at certain times (Kontokosta and Hong  2021; 
Liu, Bhandaram, and Garg 2024; Minkoff 2016). For example, 
more reports happened during weekdays and after typical work 
hours. To minimise this uncertainty, we carefully linked flood 
reports to storms, and found that a majority corresponded to 
storms.

Previous work on municipal flood reports shows that low-
income and minority neighbourhoods are less likely to make 
calls for nuisance issues (Kontokosta and Hong 2021). Without 
knowing the motivations of those making flood reports, the 
study is missing insight into what causes urban flooding or 

affected populations. Building a predictive model based on 
potentially biased reports has the potential to underestimate 
flooding in areas with marginalised populations. For example, 
while we observe more flood reports in tracts with lower median 
incomes and higher social vulnerability indices, it is likely that 
these populations under-report flooding, suggesting the actual 
discrepancy is even larger than observed. Suggested follow-up 
work would be to improve understanding of the motivations to 
make flood reports. There may also be the opportunity to use 
other tools, in addition to reporting mechanisms, to account for 
this potential unequal flood reporting. An alternative to using 
these reports would be equal surveying or sensing of flood-
ing in cities to better understand incidences of urban flooding 
(Sullivan et al. 2024; Hino and Nance 2021).

While flood reports are a useful approach to study flooding, 
they also limit our ability to understand the severity of floods 
in terms of damage or hazard. Our methods leave us unable to 
analyse water velocity, depth or quality, characteristics used 
to determine a flood's hazard (Gaitan, ten Veldhuis, and van 
de Giesen 2015; Middelmann-Fernandes 2010). While such in-
formation is generally challenging to come by, researchers are 
using alternative methods to acquire data to understand more 
(Hong and Shi 2023; Lo et al. 2015).

5   |   Conclusions

We used a variety of methods to understand the drivers of urban 
flooding. Our initial threshold analysis of storm characteristics 
was insufficient in determining likelihood of flooding. In our 
novel analysis combining spatial and temporal variables in a lo-
gistic regression, we saw that rainfall intensity and population 
density are nearly as important in determining the likelihood of 
a flood report. In addition, TWI values at locations of flooding 
reports were higher than randomly selected points and a linear 
regression predicting the number of reports per area identified 
percent impervious as the single most important predictor.

Overall, these findings provide valuable insights into urban 
flooding that could be used to examine pluvial flooding predic-
tion systems or prioritise allocation of flood response resources. 
A similar approach as ours can be applied to any city that also 
has records of pluvial flooding and spatial rainfall data, from 
radar or a rain gauge network. Complex relationships between 
variables suggest the need for a spatiotemporal perspective with 
urban flooding. Not only are rainfall characteristics important 
to consider, but so is the environment which the rain falls on; 
this includes topography, the built environment, and population 
characteristics. Since we consider areas with higher popula-
tion density and higher percent imperviousness at higher risk 
of urban flooding, these areas should become target areas for 
increased flood awareness, response, mitigation, and recovery. 
Further investigation should be on areas with lower median in-
comes or more vulnerable populations for potential disparities 
in flooding and mitigation of flooding.

There is still unknown information about motivations behind 
creating flood reports and our work indicates certain popula-
tions are at a higher risk of urban flooding. Any solutions or 
next steps should keep this in mind, as correcting for a specific 
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group of people who write flood reports may inadvertently 
perpetuate further inequities (Galloway et  al.  2018; Hino and 
Nance 2021; National Academies of Sciences, Engineering, and 
Medicine 2019).
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