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The particle trajectories in irrotational, incompressible and inviscid deep-water surface
gravity waves are open, leading to a net drift in the direction of wave propagation
commonly referred to as the Stokes drift, which is responsible for catalysing surface
wave-induced mixing in the ocean and transporting marine debris. A balance between
phase-averaged momentum density, kinetic energy density and vorticity for irrotational,
monochromatic and spatially periodic two-dimensional water waves is derived by working
directly within the Lagrangian reference frame, which tracks particle trajectories as a
function of their labels and time. This balance should be expected as all three of these
quantities are conserved following particles in this system. Vorticity in particular is always
conserved along particles in two-dimensional inviscid flow, and as such even in its absence
it is the value of the vorticity that fundamentally sets the drift, which in the Lagrangian
frame is identified as the phase-averaged momentum density of the system. A relationship
between the drift and the geometric mean water level of particles is found at the surface,
which highlights connections between the geometry and dynamics. Finally, an example
of an initially quiescent fluid driven by a wavelike pressure disturbance is considered,
showing how the net momentum and energy from the surface pressure disturbance transfer
to the wave field, and recognizing the source of the mean Lagrangian drift as the net
momentum required to generate an irrotational surface wave by any conservative force.
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A. Blaser and others

1. Introduction
Deep-water surface gravity waves are ubiquitous in the global oceans, and affect the
transport of heat, momentum and mass both along and across the air–sea interface
(Melville 1996; van Sebille et al. 2020; Deike 2022). One crucial property of irrotational
deep-water waves is that the particle trajectories are not closed, leading to a net drift in
the direction of wave propagation commonly referred to as the Stokes drift (Stokes 1847).
Formally, the Stokes drift is defined as the difference between the mean Lagrangian and
mean Eulerian currents,

US ≡ uL − uE, (1.1)

where uL and uE represent the Lagrangian and Eulerian currents, respectively, and the
overline indicates a time mean in each reference frame over a wave period. One often
neglected issue with this definition is the validity of taking the difference between two
quantities in different reference frames with different dependent variables, and more
importantly different definitions of averaging, as the Lagrangian and Eulerian periods are
not equal (Longuet-Higgins 1986). To avoid this confusion, we will instead use the term
‘wave-induced mean Lagrangian drift’ to refer to the mean Lagrangian velocity of fluid
particles over the Lagrangian wave period.

The wave-induced mean Lagrangian drift modulates upper ocean currents, affects the
transport of buoyant pollutants, plankton and marine debris (DiBenedetto, Ouellette &
Koseff 2018), and enhances vertical mixing via Langmuir circulation (Craik & Leibovich
1976; Belcher et al. 2012; Wagner et al. 2023). There is also evidence that this drift, or
mean Lagrangian momentum density, can help with the interpretation of many central
geometric, kinematic and dynamic properties of surface waves (Pizzo et al. 2023). Despite
the elapse of over 175 years since its discovery, there is still confusion regarding the origins
and interpretation of the wave-induced mean Lagrangian flow for irrotational surface
gravity waves. Most derivations, including that of Stokes (1847), calculate the magnitude
and direction of the drift from an asymptotic integration of the kinematic condition relating
the Eulerian and Lagrangian velocities, which simply states that at a fixed point in time
and space, the Eulerian and Lagrangian velocities are equal,

dx(t)
dt

= uE(x(t), t), (1.2)

since at a fixed time a particle’s location is coincident with a fixed point in space. Thus
the particle trajectories within a wave, which are fundamentally Lagrangian quantities,
are typically derived from the Eulerian velocity fields. When done in this way, the mean
Lagrangian drift appears to simply fall out of the maths, and physical explanations for its
existence tend to come post factum. Why, fundamentally, should progressive irrotational
surface waves induce a mean motion of water? What sets its magnitude and direction?
Finally, how is the mean Lagrangian drift related to other quantities such as vorticity and
energy density? Answering such questions is the primary aim of this paper.

In § 2, we introduce the governing equations and relevant conditions for solving
irrotational, incompressible, spatially periodic and inviscid two-dimensional progressive
deep-water surface gravity waves in the Lagrangian reference frame, which tracks the
trajectories of individual fluid parcels as a function of labelling coordinates. In this
frame, the wave-induced mean Lagrangian drift is written explicitly as the average
velocity of fluid parcels and is thus identified as the mean Lagrangian momentum density
of the system, physically motivated when one recalls momentum being equivalent to
mass flux. In § 3, through an investigation of these equations, we show how the mean
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Momentum, energy and vorticity balances in water waves

momentum density, or equivalently the drift, is related to the vorticity and energy density
of irrotational water waves. Despite the flow being completely irrotational, it is precisely
this very strict condition of irrotationality that dynamically mandates a sheared mean
Lagrangian drift, and thus we emphasize that even in irrotational flow, it is the vorticity
that sets the magnitude and direction of the drift. We then dynamically connect the mean
momentum and kinetic energy densities, showing that all monochromatic, irrotational and
progressive waves with non-zero kinetic energy require a non-zero mean Lagrangian drift.
Finally, we highlight a connection between the mean potential and mean kinetic energy
densities through the mean pressure using a Bernoulli equation in the Lagrangian frame
first outlined by Pizzo et al. (2023).

To further explore the dynamic relationship between these variables, in § 4 we consider
the momentum and energy budgets within the physically motivated Lagrangian reference
frame. To show how the wave-induced mean Lagrangian drift emerges from an initially
quiescent flow, we consider a simple example where a still surface is resonantly driven
by a wavelike pressure forcing. Through the integral momentum budgets, we find that
all the momentum transferred to the waves from the surface forcing goes into the mean
momentum, or mean Lagrangian drift. The same is shown to be true for the total energy.
Finally, while the main body of this work concerns irrotational flow owing to its prevalence
in the literature, one can turn to Appendix A for a generalization of each major result to
rotational flow.

2. The Lagrangian description of water waves
Lagrangian quantities track evolution following fixed fluid particles. Thus a complete
two-dimensional Lagrangian description of a fluid domain requires calculating particle
trajectories x(α, β, τ ) for each fluid element as a function of continuous particle labelling
coordinates (α, β) and time τ . Note that we distinguish τ from t to emphasize that the
partial derivative with respect to τ holds particle labels fixed. We will equivalently indicate
such derivatives with an overhead dot. The particle trajectories x(α, β, τ ) represent a
general time-dependent mapping between label space (α, β) and physical space (x, y) that
must be invertible because no two particles can occupy the same physical location at the
same time; that is, the function

J ≡ ∂(x, y)
∂(α, β)

= xαyβ − xβyα (2.1)

must not be equal to zero anywhere in the domain. Here, subscripts indicate partial
derivatives. The determinant of the Jacobian matrix of this mapping, J , also allows
us to easily change variables of differentiation. For example, the two-dimensional
incompressibility condition in the Eulerian frame is expressed as

ux + vy = 0, (2.2)

which can be mapped to the Lagrangian frame through the following series of steps:

0 = ux + vy = ∂(u, y)
∂(x, y)

+ ∂(x, v)

∂(x, y)
= 1

J

(
∂(u, y)
∂(α, β)

+ ∂(x, v)

∂(α, β)

)

= 1
J

(
∂(ẋ, y)
∂(α, β)

+ ∂(x, ẏ)
∂(α, β)

)
= 1

J
∂

∂τ

∂(x, y)
∂(α, β)

= 1
J

J̇ = 0. (2.3)

Therefore, incompressible flow requires that J be time-independent. We could have
determined this condition without calculation by recalling that J determines how
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A. Blaser and others

infinitesimal areas are mapped between label space and physical space. A small collection
of particles dα dβ must enclose the same physical area J −1 dx dy for all time, or else the
flow would be allowed to compress.

Since we are considering inviscid flow, the Euler equations will suffice for our treatment.
Upon conversion to the Lagrangian frame, they become (Lamb 1932, Art. 15)

J ẍ + pαyβ − pβyα = 0, (2.4)
J ÿ + pβxα − pαxβ + J g = 0, (2.5)

where p represents the pressure and g the acceleration due to gravity. Note that in the
Lagrangian frame, the nonlinear terms arise in the pressure terms and not in the inertia
terms, in contrast to the Eulerian reference frame.

While incompressibility provides a constraint on our mapping between label space
and physical space, there is still tremendous freedom in how we label our particles; this
is known as the particle relabelling symmetry and represents a gauge freedom of fluid
mechanics. The conserved quantity associated with this gauge freedom is the vorticity
(Salmon 1988). Just as in electromagnetism, this gauge can be chosen conveniently to
simplify computations, but we leave it general for now.

Here, our physical system amounts to solving equations (2.4) and (2.5) for variables
(x, y, p) as functions of (α, β, τ ), subject to the incompressibility condition (2.3) for a
given labelling gauge choice. To close the system, we impose boundary conditions at
the free surface and the bottom. As part of our labelling freedom, we label particles at
the surface with β = 0, which makes the evaluation of surface quantities straightforward.
This is equivalent to saying that our domain in label space is just the lower half-plane,
which is much simpler to work with both theoretically and numerically. This is in contrast
to the Eulerian frame, where the domain is bounded above by the free surface η(x, t),
which is itself a dependent variable of the system and not known a priori. Thus our
surface boundary condition, equivalent to the dynamic boundary condition in Eulerian
coordinates, simply states that pressure must vanish at the surface, i.e.

p(β = 0) = 0, (2.6)

which is just another way of saying that the wave is unforced. We examine what happens
when this condition is relaxed in a later section. The bottom boundary condition states
that the vertical velocity must vanish as we tend towards the infinitely deep impermeable
bottom:

ẏ(β = −∞) = 0. (2.7)

As a final point, the fact that the domain in label space is time-independent also means
that all points initially within the domain remain there. This is in contrast to the Eulerian
frame, where certain points, such as those with y = 0, are outside of the fluid part of
the time, and therefore taking temporal averages at these points becomes ill-defined. The
implications of these Eulerian averages are discussed further below.

3. Drift in relation to vorticity, momentum and energy
Up to this point, we have neglected to mention the vorticity of these waves. While it has
long been known that there exists an exact solution to the above system in which particles
undergo purely circular trajectories, these Gerstner (1802) waves have a non-vanishing
vorticity (Lamb 1932, Art. 251). When surface waves are generated from a state of rest
by a (conservative) pressure gradient force, they are irrotational (Phillips 1977). We can
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Momentum, energy and vorticity balances in water waves

compute the vorticity in Lagrangian coordinates by a simple mapping between reference
frames,

q ≡ vx − uy = ∂(ẋ, x)
∂(x, y)

+ ∂(ẏ, y)
∂(x, y)

= 1
J

(
∂(ẋ, x)
∂(α, β)

+ ∂(ẏ, y)
∂(α, β)

)
, (3.1)

so that irrotational flow requires

qJ = ẋαxβ − ẋβxα + ẏαyβ − ẏβyα = 0. (3.2)

Recall that in two-dimensional inviscid flow, vorticity is materially conserved along
particles, e.g.

q̇ = 0. (3.3)

However, this does not extend to three dimensions, where vorticity is no longer materially
conserved on particles (due to vortex tilting and stretching) but is instead conserved on
one-dimensional vortex lines. In two dimensions, these lines collapse to a point because
they are assumed to extend indefinitely in a direction orthogonal to the plane. Here,
we restrict ourselves to two-dimensional wave fields with no variation in the transverse
direction. Applications to finite-extent wave packets in both two and three dimensions are
under current investigation by the authors (see also Pizzo & Salmon 2021).

3.1. Series expansions
We consider permanent, progressive, spatially periodic and monochromatic waves in two
dimensions, and expand our trajectories in a series, following Clamond (2007) and Pizzo
et al. (2023), as

x = α + U(β) τ +
∞∑

n=1

xn(β) sin(θn), y = β + y0(β) +
∞∑

n=1

yn(β) cos(θn), (3.4a,b)

where θn = nk(α − (c − U(β))τ ), k is the wavenumber, c is the phase speed, U(β) is the
explicit mean Lagrangian drift, and y0(β) is the mean water level, a parameter explored
further in § 3.3. The justification for these expansions is as follows. First, we expand
about a rest state (x = α, y = β). We then include an explicit steady mean Lagrangian
drift in x and a mean water level in y, which will be constrained by the equations of
motion and boundary conditions. Due to the horizontal periodicity of the wave profiles, a
Fourier series expansion is best suited to represent the wavelike orbital motion of the fluid
particles. Because the waves are permanent in shape, the Fourier coefficients can depend
only on the vertical label β. Note that the intrinsic frequency, Doppler-shifted by U(β), is
needed to remove secular terms at higher orders; see Clamond (2007) discussing Buldakov,
Taylor & Taylor (2006). Inserting these expansions into the irrotational condition (3.2) and
taking the time-averaged component yields

− U′(β) + (c − U(β))

∞∑

n=1

n2k2(x′
n(β) xn(β) + y′

n(β) yn(β)) = 0, (3.5)

which can be integrated as

U(β) =

c
2

∑
n2k2(x2

n + y2
n)

1 + 1
2

∑
n2k2(x2

n + y2
n)

, (3.6)
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A. Blaser and others

a result first found by Pizzo et al. (2023), which shows what form the drift must take
to maintain irrotational flow. The integration constant is zero since we are considering
the frame where the fluid velocity vanishes at depth. While this relation just comes from
a dynamic constraint, it shows that given an expansion of the form (3.4), and so long
as a wave is present (e.g. xn, yn /= 0 for some n), there must be a positive-definite mean
Lagrangian drift U(β) for the flow to stay irrotational. While this line of reasoning explains
why a sheared mean flow is needed if an irrotational wave is present, we still lack a physical
mechanism for its origin. To that end, we next turn to an investigation of wave dynamics.

3.2. Drift and energy
Kelvin’s circulation theorem states that the circulation of a material contour

Γ ≡
∮

u · dℓ (3.7)

is conserved following the flow (i.e. Γ̇ = 0). A lesser-known Lagrangian version of this
theorem (see Salmon 1988, eq. 4.12) equivalently defines the circulation as

Γ =
∮

A · dα, A ≡ ẋ ∇αx + ẏ ∇αy (3.8)

in two dimensions, where ∇α = (∂α, ∂β) is the gradient operator in label space. From this
it is clear that

u · dℓ = A · dα, (3.9)

which proves how these are equivalent representations of the circulation. For irrotational
flow, we can always write the Eulerian velocity u as the gradient of a scalar velocity
potential φ. By the chain rule, we can show that

∇φ · dℓ = ∇αφ · dα, (3.10)

which, when compared with (3.9), shows that for irrotational flow, A is just the gradient
of the velocity potential φ in label space.

What makes the Lagrangian representation particularly interesting here is that the
material loop in label space is fixed in time by definition, so Kelvin’s circulation theorem
reduces to

∂Γ

∂τ
=
∮

∂A
∂τ

· dα = 0 (3.11)

for any closed loop in a potentially rotational fluid. However, if we constrain ourselves to
irrotational flows, then we have

Γ =
∮

A · dα =
∮

∇αφ · dα =
∫∫

∇α × (∇αφ) dα dβ = 0, (3.12)

where we used Stokes’ theorem and the fact that the curl of a gradient always vanishes.
Additionally, and importantly, if we constrain ourselves to spatially periodic flows, such
as those represented by (3.4), then we can choose a closed contour as in figure 1, which is
a rectangle in label space with width λ = 2π/k, extending vertically from β = β0 to the
infinite bottom (β → −∞), where the velocity vanishes. Because A is λ-periodic, which
can be shown from (3.4), the side contours cancel, and owing to our deep-water condition,
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Momentum, energy and vorticity balances in water waves

y

x

β = β0

β → – ∞

λ

Figure 1. Schematic of a potential closed material loop for periodic, progressive waves (red). The top contour
is a material line of constant vertical label β = β0. Because A is λ-periodic, which can be shown from (3.4),
the side contours cancel. By our infinite bottom condition, A vanishes as we approach the bottom, and there are
no contributions there. Note the clockwise orientation used.

the bottom boundary does not contribute. Therefore, the only segment in the contour that
contributes is the top segment, reducing (3.12) to

Γ =
∫ α+λ

α
φα dα =

∫ α+λ

α
(ẋxα′ + ẏyα′) dα′ = 0, (3.13)

or equivalently that the phase average of ẋxα + ẏyα is zero for any irrotational and
horizontally periodic fluid. From here, we can take advantage of our expansions (3.4),
which relate α and τ derivatives as

xα = c − ẋ
c − U

, yα = − ẏ
c − U

(3.14a,b)

and thus transforms the integrand to

ẋxα + ẏyα = cẋ − (ẋ2 + ẏ2)

c − U
. (3.15)

The consequence of (3.13) and (3.14) is that

(c − U)Γ =
∫ α+λ

α
(cẋ − (ẋ2 + ẏ2)) dα′ = 0, (3.16)

which, defining a phase average with angle brackets ⟨·⟩, yields

c⟨ẋ⟩ = ⟨ẋ2 + ẏ2⟩. (3.17)

A key realization is that in the Lagrangian frame, these quantities have physical
interpretations such as ⟨ẋ⟩, the phase-averaged momentum density, and ⟨ẋ2 + ẏ2⟩, twice the
phase-averaged kinetic energy density, which are exactly how they would look in classical
physics. Note that, crucially, from expansions of the form (3.4), the phase-averaged
momentum density is exactly the mean Lagrangian drift U(β). Thus we obtain the exact
relation

c U(β) = 2⟨T⟩, (3.18)

where T = 1
2 (ẋ2 + ẏ2) is defined as the kinetic energy density. This relation implies that

the mean Lagrangian drift is linked to the kinetic energy of the system through the phase
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A. Blaser and others

speed c, with all of its nonlinear corrections, implying that any irrotational wave of the
form (3.4) that has energy must also have a mean Lagrangian flow, even if the underlying
system does not represent surface gravity waves. Recall that all we have invoked here is
Kelvin’s circulation theorem, irrotational flow, and trajectories of the form (3.4). Finally,
we emphasize that this relationship holds level-wise (i.e. for each vertical β level) and
as such encodes depth dependence. A similar relationship linking momentum density to
kinetic energy density in the Eulerian frame was first found by Levi-Civita (1924), written
in the form

cI = 2K, (3.19)

where

I ≡
∫ η

−h
u dy (3.20)

is defined as the wave impulse, where η is the sea surface, −h is the constant depth, and
the overline represents an Eulerian average in x over one wavelength. The Eulerian kinetic
energy density K is defined as

K ≡
∫ η

−h

1
2

(u2 + v2) dy. (3.21)

This was later found to hold between any two material contours, or equivalently
streamlines in a co-moving frame, by Starr (1947). While this equation is similar in
scope to (3.18), so there is a direct connection between momentum and kinetic energy,
these terms mean different things in different frames. To see this, consider (3.20), the
Eulerian-averaged Eulerian momentum over one period. One can split this integral at the
still-water level y = 0, yielding

I =
∫ 0

−h
u dy +

∫ η(x,t)

0
u dy. (3.22)

Since the first integral’s endpoints are constants, we can move the Eulerian phase average
inside the integral. But since ū = 0 for irrotational surface gravity waves, the first integral
is identically zero. Thus the only net Eulerian momentum density exists in the second
integral between the still-water level and the sea surface or, in other words, between
the crests and troughs. Geometrically speaking, this occurs because at physical locations
between the crests and troughs, a fixed point (x, y) is outside of the fluid part of the time
and thus does not experience a full period within the fluid.

Putting aside the difficulty of dealing with points partly outside of the fluid domain,
these conserved Eulerian quantities are not physically connected to the mass flux of
particles, and one would not be able to isolate the mean Lagrangian drift from such an
approach. The relationship (3.18) found above holds for each material line of constant
β, and as such shows equivalent vertical dependence in U(β) and ⟨T⟩, but it is also
more connected to the classical meanings of terms such as momentum and kinetic energy
densities, which in the Lagrangian frame directly encodes the mean Lagrangian drift U(β).

3.3. Drift, mean water level and mean pressure
The last connection that we explore is between the wave-induced mean Lagrangian drift,
the mean water level and the mean fluid pressure. The mean water level y0(β) in (3.4) at
first appears to lack motivation – it would seem that setting it to zero would be most natural.
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Momentum, energy and vorticity balances in water waves

This is not the case, due to the fact that the Lagrangian and Eulerian mean water levels
are different, as the Lagrangian mean sums over particles, which are not equally spaced in
physical space. Mathematically, the mean water levels (MWL) in each frame are given as

MWLEul = 1
λ

∫ λ

0
η(x, t) dx, (3.23)

MWLLag = 1
λ

∫ λ

0
y(α, 0, t) dα = y0(β), (3.24)

where η(x, t) is the typical Eulerian sea surface elevation function, equivalent to
y(α(x, t), 0, t) assuming that one inverts the mapping from α to x. The mean water level
in the Eulerian frame, due to mass conservation, is the same as the still-water level, so it
is typically set to zero. If we try to convert this to the Lagrangian frame, we see that

MWLEul = 1
λ

∫ λ

0
η(x, t) dx = 1

λ

∫ λ

0
y(α, 0, t)

∂x
∂α

dα /= MWLLag, (3.25)

so the mean water levels are not the same. Precisely, they differ within the integral by the
factor xα , which corresponds to the unequal spacing of particles along the water surface.
In surface gravity waves, this tends to bunch particles towards the wave crest and spread
them out within the trough. A consequence of this is that the wave crests and troughs, as
defined by the Lagrangian phase in (3.4), are also of unequal lengths in physical space.
The incompressibility condition in the Lagrangian frame is therefore maintained by the
stretching or compressing of particles in the vertical direction. We choose y0(β) such that
the Eulerian mean water level is zero, i.e.

⟨yxα⟩|β=0 = 0, (3.26)

subject to the incompressibility condition (2.3) and the irrotational flow condition (3.2),
which sets the vertical dependence. The physical meaning of the Lagrangian mean water
level is that the presence of waves raises the average potential energy of the fluid parcels
relative to their rest state in a still fluid. How is it then connected to the kinetic energy and
therefore the drift?

Following Pizzo et al. (2023), upon multiplying (2.4) by xβ and (2.5) by yβ , we find

pβ + gyβ + ÿyβ + ẍxβ = 0. (3.27)

Taking advantage once again of our expansions (3.4), we can write

ÿ = −(c − U)ẏα, ẍ = −(c − U)ẋα, (3.28a,b)

yielding
pβ + gyβ − (c − U)(ẏαyβ + ẋαxβ) = 0. (3.29)

Noting that the terms in parentheses are part of the vorticity, we can use our irrotational
flow condition (3.2) to write

pβ + gyβ − (c − U)(ẋβxα + ẏβyα) = 0, (3.30)

which, after another conversion between time and space derivatives, becomes

(p + gy + 1
2 (ẋ − c)2 + 1

2 ẏ2)β = 0. (3.31)
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Performing an indefinite integral of this equation yields

p + gy + 1
2

(ẋ2 + ẏ2) − cẋ + c2

2
= f (α, τ ), (3.32)

where f (α, τ ) is a constant of integration, whose value is constrained by the boundary
conditions. For our system, as we approach the infinite bottom, all wave terms (ẋ, ẏ, U, y0)
vanish, and pressure becomes hydrostatic (p → −gβ), which implies f (α, τ ) = c2/2.
Clearly, this looks like Bernoulli’s equation in Lagrangian coordinates, as was first noticed
by Pizzo et al. (2023). If we take the phase average of this equation, we find

⟨p⟩ + gβ + g y0(β) + ⟨T⟩ − c U(β) = 0, (3.33)

an exact relation that holds level-wise. If we substitute the main result (3.18) from the
previous subsection, then this becomes

⟨p⟩ + gβ + g y0(β) + ⟨T⟩ − 2⟨T⟩ = 0, (3.34)

which can be rewritten as
⟨p⟩ = ⟨T⟩ − ⟨V⟩, (3.35)

where ⟨V⟩ = g(β + y0(β)) is the average potential energy of particles. Thus the mean
pressure acts as a Lagrangian for the system, which is similar to what Luke (1967) found
in the Eulerian frame, where the expression of the pressure from Bernoulli’s equation was
used as a Lagrangian to get both the equations of motion and the boundary conditions for
the velocity potential φ and surface η. If we apply Whitham’s method using the averaged
Lagrangian and substitute the expansions (3.4) for ⟨T⟩ and ⟨V⟩, then the action becomes

A =
∫ t2

t1

∫ 0

−∞

(
1
2

U(β)2 + 1
4

∑

n
n2k2(xn + yn)

2(c − U(β))2 − g y0(β)

)

dβ dτ.

(3.36)

Varying the mean Lagrangian drift itself yields

δU : U(β) =

c
2

∑
n2k2(x2

n + y2
n)

1 + 1
2

∑
n2k2(x2

n + y2
n)

, (3.37)

exactly the same as (3.6), which was originally found by a dynamic constraint.
One interesting consequence of (3.35) is that it shows that the magnitudes of the mean

kinetic energy, mean potential energy and mean pressure are all related. Recalling the
previous subsection, this equivalently means that the mean Lagrangian drift, the mean
water level and the mean pressure are also related. Substituting our forms for ⟨T⟩ and ⟨V⟩
gives

⟨p⟩ − (−gβ) = c U(β)

2
− g y0(β), (3.38)

where −gβ is just the hydrostatic component of the pressure. At the surface (β = 0), we
know that the pressure vanishes via the dynamic boundary condition, which implies

g y0(0) = c U(0)

2
, (3.39)

a result first discovered by Longuet-Higgins (1986), though only at the surface. Our (3.38)
implies that at each and every material line, the balance between mean kinetic energy
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Momentum, energy and vorticity balances in water waves

(drift) and mean potential energy (MWL) differs exactly by the mean pressure deviation at
that depth, which is in general non-zero. This result connects the mean water level, a purely
geometric quantity, to the mean momentum and pressure, dynamic quantities, and as such
we show how one can infer dynamics from geometry, and vice versa, for irrotational water
waves.

4. Conservation laws
The previous section introduced a close connection between momentum and energy for
spatially periodic, irrotational waves in a fluid. What are the corresponding conservation
laws for these quantities? Returning to the momentum equations

J ẍ + pαyβ − pβyα = 0, (4.1)
J ÿ + pβxα − pαxβ + J g = 0, (4.2)

we can derive a conservation law for total horizontal momentum by vertically integrating
(4.1) from the infinite bottom to the free surface:

∫ 0

−∞
J ẍ dβ +

∫ 0

−∞
(pαyβ − pβyα) dβ = 0. (4.3)

Recognizing that incompressibility requires J to be time-independent, we can pull a time
derivative out of the first integral. In addition, if we consider the integral

∂

∂α

∫ 0

−∞
pyβ dβ =

∫ 0

−∞
pαyβ dβ +

∫ 0

−∞
pyαβ dβ (4.4)

and apply integration by parts to the last term, then we obtain the expression

∂

∂τ

∫ 0

−∞
J ẋ dβ

︸ ︷︷ ︸
≡I

+ ∂

∂α

∫ 0

−∞
pyβ dβ

︸ ︷︷ ︸
≡ S

= pyα|b=0, (4.5)

where we define I and S as the vertically integrated horizontal momentum density and
flux, respectively. Put in this way, (4.5) becomes a standard conservation law for bulk
horizontal momentum:

∂I
∂τ

+ ∂S
∂α

= pyα|β=0, (4.6)

where pyα at the surface is the source of momentum. Note that

pyα|β=0 = pηxxα = pηx(1 + · · · )|β=0, (4.7)

since η(x, t) ≡ y(α(x, t), 0, t). In the Eulerian frame, the source of momentum from the
wind is given to lowest order by the correlation of surface pressure and sea surface slope
ηx, which we see validated here (Miles 1957; Phillips 1977). Recall that for an unforced
wave, p = 0 at the surface, and total momentum is conserved.
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We perform the same process for the vertically integrated energy by multiplying (4.1)
by ẋ and (4.2) by ẏ, adding the two equations, and vertically integrating to get

∂E
∂τ

+ ∂F
∂α

= p(ẋyα − xα ẏ)|β=0, (4.8)

where E is defined as the vertically integrated energy density,

E ≡
∫ 0

−∞
J
(

ẋ2 + ẏ2

2
+ gy

)
dβ, (4.9)

and F is defined as the vertically integrated energy flux,

F ≡
∫ 0

−∞
p(xβ ẏ − ẋyβ) dβ. (4.10)

Just as with horizontal momentum, if pressure vanishes at the surface, then total energy is
conserved.

In the Lagrangian frame, the average momentum density ⟨I⟩ is all contained within the
mean Lagrangian drift, as it is the only term that survives the phase averaging. If there
was no pressure forcing and we phase-averaged the horizontal momentum conservation
law (4.6), then we would find

∂⟨I⟩
∂τ

= 0, (4.11)

which just states that the total integrated mean Lagrangian drift, or equivalently the average
horizontal momentum density, is conserved. To see how this momentum (and therefore
energy) can increase in time, we need to allow for a non-zero pressure forcing, which
leads naturally to an example of generating Stokes waves from rest.

4.1. Generating Stokes waves from rest
While the previous analysis showed why a drift must occur if the wave is progressive,
irrotational and contains energy, it is helpful to also show how a mean Lagrangian drift
can arise on an initially quiescent flow. To begin, we consider a still fluid that at τ = 0 is
subject to an external wavelike surface pressure forcing (e.g. by wind)

p(β = 0) = ϵp0 sin(kα − ωτ ), (4.12)
where ϵ ≪ 1 is our small parameter and we take ω =

√
gk so that the pressure disturbance

propagates at the same speed as a surface gravity wave with the same wavelength.
Physically speaking, this pressure forcing drives a resonant response in the sea surface,
generating waves whose amplitudes grow linearly in time (Pizzo & Wagner 2021). In the
Lagrangian frame, the particle trajectories for this system valid to second order in ϵ are
found to be

x(α, β, τ ) = α + ϵωp0

2g
τ ekβ sin(kα − ωτ ) +

ϵ2p2
0k2ω

12g
e2kβτ 3, (4.13)

y(α, β, τ ) = β − ϵωp0

2g
τ ekβ cos(kα − ωτ ) +

ϵ2p2
0k2

8g
e2kβτ 2, (4.14)

p(α, β, τ ) = −gβ + +ϵp0 ekβ sin(kα − ωτ ) −
ϵ2p2

0k
8g

(e2kβ − 1), (4.15)

where solutions are found through a standard perturbation approach (see Salmon (2020),
ch. 1, for an outline of the method). Note that we have ignored the mean Lagrangian drift
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Momentum, energy and vorticity balances in water waves

in the phase since it does not affect the results to second order. Because the amplitude
grows linearly in time, the mean Lagrangian drift – which is normally proportional to the
square of the amplitude times τ – correspondingly grows as τ 3. The second-order term in
(4.14) is just the mean water level, which scales as the square of the amplitude, which is
there to ensure the incompressibility condition subject to the gauge J = 1. To see how
this explicitly connects to the drift, we will first perform a phase average of the horizontal
momentum conservation law (4.6):

∂

∂τ

∫ 0

−∞
⟨ẋ⟩ dβ = ∂

∂τ

∫ 0

−∞
U(β, τ ) dβ = ⟨pyα|β=0⟩. (4.16)

This gets rid of the flux terms since the entire solution is spatially periodic in α. Our
gauge choice J = 1 trivializes the Jacobian term. Thus the mean external pressure forcing,
represented by the correlation of p and yα at the surface, provides a source of horizontal
momentum that fuels the increase of the mean horizontal momentum, or equivalently the
vertically integrated Lagrangian mean drift.

Inserting our solutions (4.13)–(4.15) into the phase-averaged horizontal momentum
conservation law (4.16), we confirm our results

∂

∂τ

∫ 0

−∞
U(β, τ ) dβ = ⟨pyα|β=0⟩ =

ϵ2p2
0ωk

4g
τ, (4.17)

notably that the mean momentum input from the wind to the waves in order to generate
wave growth goes entirely into increasing the mean Lagrangian drift.

Though the simple example presented above is by no means intended to be a complete
description of how waves are generated, it illustrates a physical source for the mean
Lagrangian flow. There need not be any small-amplitude approximations either; (4.6)
assumes only inviscid flow and infinite depth.

In short, to generate periodic irrotational surface gravity waves from rest, there must
be a mean input of horizontal momentum to the water, or equivalently a convergence of
momentum flux. This mean momentum lives entirely within the mean Lagrangian flow,
identifying the wave-induced mean Lagrangian drift as nothing more than the average
horizontal momentum necessary for the generation of irrotational surface gravity waves
by any conservative force.

As a further check, we see that by inserting our solutions (4.13)–(4.15) into the phase
average of the energy conservation law (4.8), we recover

∂⟨E⟩
∂τ

= ⟨p(ẋyα − xα ẏ)|β=0⟩ = 1
4

ϵ2kp2
0τ + O(ϵ4), (4.18)

which shows that, just as with momentum, generating waves requires a flux of energy from
the wind to the waves. However, to lowest order, this energy resides wholly in the orbital
particle motion and gravitational potential energy from the mean water level. Recalling
the result from the previous section, we do indeed see that the kinetic energy and mean
Lagrangian drift are related, notably that the mean source of momentum multiplied by
c =

√
g/k is equivalent to the mean source of energy at this order, once again highlighting

the connection between these two quantities.

5. Discussion
In this paper, we have shown that the mean Lagrangian drift, equivalent to the
phase-averaged momentum density in the physically motivated Lagrangian frame, is
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intimately connected to the vorticity and energy densities for irrotational, monochromatic
and spatially periodic waves. We further highlighted this connection by showing that
sources of momentum and energy (e.g. from the wind) all add to the momentum and
energy of the wave field, using a simple example of an initially quiescent fluid resonantly
forced by a wavelike pressure disturbance at the surface. Physically speaking, this implies
that the wave-induced mean Lagrangian drift arises due to the necessary input momentum
and energy to generate an irrotational wave from rest by any conservative force. Thus
we are well equipped to answer the questions posed in the Introduction. Permanent,
progressive and irrotational waves require a mean motion of water due to the fact that
for these waves to have kinetic energy, they require a net momentum (or mass flux), which
in the Lagrangian frame resides in the mean Lagrangian drift. Its magnitude and direction
are set by the strict dynamic constraint of irrotational flow, as prescribing the vorticity
on particles is equivalent to prescribing their mean Lagrangian drift (see Appendix A
for cases with non-vanishing vorticity). Finally, the mean Lagrangian drift is not simply
related to the mean kinetic energy density in a bulk sense; it is exactly proportional to it,
at all vertical material levels, with a factor of 1/(2c).

Our theoretical results imply that for irrotational, monochromatic and periodic waves,
the mean kinetic energy and momentum of particles are intimately related through the
wave’s phase speed. This could suggest that anywhere energy is jettisoned, such as by
wave breaking, it is accompanied by a shedding of momentum density to the underlying
mean flow (Rapp & Melville 1990). This connection between wave energy and mean
momentum helps to illuminate the close two-way coupling between currents and waves,
and as such will be of particular interest to the air–sea interaction community seeking to
model transport and energy budgets between the atmosphere and the ocean.

In addition, we have explored a connection between the mean potential energy, mean
kinetic energy and mean pressure, showing that at the surface, mean kinetic and mean
potential energies are equal, which relates the surface drift directly to the mean water
level. This is especially relevant to the observational community as direct measurements
of the mean Lagrangian drift are particularly difficult (Kenyon 1969), especially close
to the surface (Lenain & Pizzo 2020). On the other hand, measurements of geometric
properties such as the Lagrangian mean water level might offer an alternative way to
estimate the mean Lagrangian drift, as in McAllister & van den Bremer (2019). One
added caveat is that all of this analysis rests upon the assumption of two-dimensional
flow, which is fundamentally different from fully three-dimensional flow, due to the fact
that vorticity is no longer conserved on fluid particles because of vortex tilting/stretching.
Examples of how to employ the Lagrangian frame for three-dimensional flow can be found
in Yakubovich & Zenkovich (2001).

It should be noted that the results presented here are similar to the ‘pseudo-momentum
rule’ in generalized Lagrangian mean theory, which states that O(A2) mean forces can
be calculated as if pseudo-momentum were momentum and the fluid medium were
absent (McIntyre 2019), where A is the small amplitude parameter. For surface waves,
pseudo-momentum per unit mass is defined as the wave energy over the phase speed c. We
emphasize that it is twice the mean kinetic energy, which when divided by c yields U(β),
valid to all orders of amplitude. To lowest order, the mean kinetic and potential energies
are equal, which explains the O(A2) result. The exact difference between the mean kinetic
and potential energies is given by the mean pressure (3.35), which has non-vanishing
terms starting at O(A4). The field of wave-mean interactions is vast (Leibovich 1983;
Bühler 2014; Thomas 2016), and while we do not investigate a general connection between
momentum, energy and vorticity for different types of waves – one may look towards
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Salmon (2016), Wagner & Young (2015) and Thomas (2023) for other examples – a purely
Lagrangian framework may prove insightful for such systems.

There is also a connection between these results for irrotational waves and the Darwin
drift for irrotational flow around a submerged body (Darwin 1953). Darwin’s result states
that the ‘added mass’ of a body moving through an irrotational fluid, which is related to
the kinetic energy of the body, is equal to the ‘drift volume’ swept out by the passing of
the object. The equivalent drift volume for surface waves is simply a vertical integral of
the Lagrangian mean drift, which by (3.18) is directly related to the kinetic energy of the
waves. The similarities between Darwin drift and Stokes drift were first explored by Eames
& McIntyre (1999).

Note that these results do not hold in the general case of rotational waves, such
as Gerstner (1802) waves, which have no mean Lagrangian drift and therefore no net
Lagrangian momentum density, yet still have a non-zero energy from their orbital motion.
In this case, the connection between kinetic energy and drift fails due to the non-vanishing
circulation. Here, we have focused solely on irrotational flow, though, if desired, any
arbitrary vorticity could be prescribed to the system, generating a non-zero circulation that
would balance the kinetic energy term in lieu of the drift. A comprehensive investigation
of rotational flow is given in Appendix A.

Finally, this work highlights the benefits of working directly within the Lagrangian
frame, which is the most natural way to compute and interpret fundamentally Lagrangian
quantities. Some of them, such as momentum and energy, take on more classical meanings
when computed in this frame, and as such can be easier to interpret.
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Appendix A. Rotational waves
Owing to the relative simplicity of irrotational planar flow in the Eulerian frame, allowing
for the use of a velocity potential, the vast majority of the surface wave literature concerns
irrotational waves. However, it is generally understood that common effects such as wave
breaking (Rapp & Melville 1990; Pizzo & Melville 2013) and ocean–atmosphere shear
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flows that can generate surface waves (Young & Wolfe 2014) imply that real-world surface
gravity waves often contain vorticity. Without the benefit of potential flow, Eulerian
treatments of rotational surface gravity waves (Phillips 2001; Constantin, Sattinger &
Strauss 2006) become quite difficult. This is where the Lagrangian machinery outlined in
this article operates best, as vorticity is conserved on particles in two-dimensional inviscid
flow. Thus any Lagrangian formulation presented above that holds for a varied collection
of particles can be modified easily to account for vortical waves. As an example, we direct
the reader to Pizzo et al. (2023, eq. 2.9) to see how the drift is dynamically constrained by
an arbitrary vorticity. For convenience, we rewrite it here:

U(β) =

c
2

∑

n
n2k2(x2

n + y2
n) −

∫ β

−∞
⟨J q⟩ dβ ′

1 + 1
2

∑

n
n2k2(x2

n + y2
n)

. (A1)

To determine the balance between mean momentum, kinetic energy and vorticity for
water waves, we return to the definition of the circulation in the Lagrangian frame, (3.8),
and apply Stokes’ theorem to find

Γ =
∮

A · dα =
∫∫

(∇α × A) · n̂ dα dβ, (A2)

where n̂ is the unit normal. For the contour used above described by figure 1, because of
the clockwise orientation, n̂ points into the page, and we have

Γ = −
∫ 0

−∞

∫ α+λ

α
J q dα′ dβ ′, (A3)

using the definition of A and q. This is also equivalent to the enclosed vorticity (with
a minus sign for the orientation of n̂) within the material loop, identical to that in the
Eulerian frame. Since the α derivative is over a wavelength, we can convert this to a phase
average, resulting in

Γ =
∮

A · dα =
∫ α+λ

α
(ẋxα + ẏyα) dα′ = −

∫ β

−∞
⟨J q⟩ dβ ′ (A4)

for our chosen material loop, since as before the side and bottom contours do not
contribute. The contour integral part of the equation is unchanged from the irrotational
case, so after a few manipulations the result becomes

c U(β) − 2⟨T⟩ = −(c − U(β))

∫ β

−∞
⟨J q⟩ dβ ′, (A5)

where U(β) and ⟨T⟩ are defined the same as before. As a quick check, consider the
Gerstner (1802) wave, which is exactly described by the circular trajectories and pressure

x(α, β, τ ) = α − A ekβ sin(k(α − cτ )), (A6)

y(α, β, τ ) = β + A ekβ cos(k(α − cτ )) + 1
2 A2k, (A7)

p(β, τ ) = −gβ + 1
2 A2k2c2(e2kβ − 1), (A8)

where A < 1 is the amplitude of the wave and c =
√

g/k is the exact phase speed.
These waves have vorticity but no mean Lagrangian drift (U = 0). Inserting these
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into (A5) yields

2⟨T⟩ = c
∫ β

∞
⟨J q⟩ dβ ′ = A2k2c2 e2kβ , (A9)

which validates the result for this special case. Thus (A5) is the generalization of (3.18) and
states that there is actually a balance between drift, kinetic energy density and vorticity for
the waves considered. Stokes waves, where the balance is entirely between drift and kinetic
energy density, or Gerstner waves, which balance kinetic energy density and vorticity, are
thus limiting cases for this general result.

Finally, we investigate how the Bernoulli equation (3.32) is altered by allowing for an
arbitrary vorticity starting at (3.29) to find

pβ + gyβ − (c − U)(J q + ẋβxα + ẏβyα) = 0, (A10)

(p + gy + 1
2 (ẋ − c)2 + 1

2 ẏ2)β − (c − U)J q = 0. (A11)

Once again, we can integrate this equation and use the same argument to constrain the
constant of integration ( f (α, τ ) = c2/2) to find

p + gy + ẋ2 + ẏ2

2
− cẋ =

∫ β

−∞
(c − U)J q dβ ′, (A12)

a result also derived in Pizzo et al. (2023). If we now phase-average this equation, we get

⟨p⟩ + gβ + g y0(β) + ⟨T⟩ − cU =
∫ β

−∞
(c − U)⟨J q⟩ dβ. (A13)

Using our new result linking drift, kinetic energy density and vorticity (A5), we can write
the mean pressure as

⟨p⟩ = ⟨T⟩ − ⟨V⟩ − (c − U)

∫ β

−∞
⟨J q⟩ dβ ′ +

∫ β

−∞
(c − U)⟨J q⟩ dβ ′

= ⟨T⟩ − ⟨V⟩ −
∫ β

−∞

∂U(β ′)

∂β
Γ (β ′) dβ ′, (A14)

where we use the definition of the circulation Γ as in (A4). This result shows how, when
vorticity is present, the mean pressure is not precisely equal to ⟨T⟩ − ⟨V⟩ and differs by
terms related to the vorticity and the mean Lagrangian drift. If we again insert this into
an averaged Lagrangian via Whitham’s method and vary U(β), then we recover (A1).
Interestingly, when either the vorticity is zero, as in (3.35), or the mean Lagrangian drift is
zero, as in a Gerstner wave, we do in fact see that the mean pressure acts as a Lagrangian
for the system, i.e.

⟨p⟩Stokes = ⟨T⟩ − ⟨V⟩, ⟨p⟩Gerstner = ⟨T⟩ − ⟨V⟩, (A15a,b)

but not necessarily for intermediate waves with non-zero drift and vorticity. Writing this
result explicitly in terms of the mean Lagrangian drift and mean water level results in

⟨p⟩ − ⟨−gβ⟩ = c U(β)

2
− g y0(β) − c − U

2
Γ (β) −

∫ β

−∞

∂U(β ′)

∂β
Γ (β ′) dβ ′. (A16)

For the Gerstner wave, where U vanishes, we can use (A8) to write
1
2

A2k2c2(e2kβ − 1) = −g y0(β) − c
2

Γ (β), (A17)
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which, by computing the circulation, yields

y0 = 1
2 A2k, (A18)

independent of depth. This is in contrast to the irrotational case, whose mean water level
decays exponentially, highlighting again the importance of vorticity for these quantities.
At the surface, where the mean pressure vanishes for an unforced wave, we have

g y0(0) = c U(0)

2
− c − U(0)

2
Γ (0) −

∫ 0

−∞

∂U(β ′)

∂β
Γ (β ′) dβ ′, (A19)

and as such, the mean water level, a purely geometric quantity, is related to both the
dynamic mean Lagrangian drift and the vorticity.
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